DEPARTMENT OF ELECTRICAL ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

CERTIFICATE

I, VIJAY PRIYADARSHI, Roll No. 2K12/PSY/23 student of M. Tech. (POWER SYSTEM),

hereby declare that the dissertation/project titled "DYNAMIC STABILITY ENHANCEMENT

OF POWER SYSTEM USING FUZZY LOGIC BASED POWER SYSTEM

STABILIZER" under the supervision of J.N.RAI. of Electrical Engineering Department Delhi

Technological University in partial fulfillment of the requirement for the award of the degree of

Master of Technology has not been submitted elsewhere for the award of any Degree.

Place: Delhi

Date: 24.07.2014

(VIJAY PRIYADARSHI)

(J. N. RAI)

Assoc. Proof. EED, DTU

i

ACKNOWLEDGEMENT

Words are inadequate to express the overwhelming sense of gratitude and humble regards to my

supervisor J. N. Rai, EED, DTU for his constant motivation, support, expert guidance, constant

supervision and constructive suggestion for the submission of my progress report of thesis work.

I express my gratitude to **Prof. Madhusudan Singh**, Head of the Department, for his help and

support during my study.

I also thank all the teaching and non-teaching staff for their nice cooperation to the students.

I would like to express my thanks to PhD scholar **Mr. Ramesh singh** for his support throughout

my project.

I would also like to thank my friend Ritika Gour.

I would like to thank all whose direct and indirect support helped me completing my thesis in

time.

This report would have been impossible if not for the perpetual moral support from my family

members, and my friends. I would like to thank them all.

Vijay Priyadarshi

2K12/PSY/23

ii

DECLARATION

I, VIJAY PRIYADARSHI hereby declare that the work, which is being presented in the project

report entitled, "DYNAMIC STABILITY ENHANCEMENT OF POWER SYSTEM USING

FUZZY LOGIC BASED POWER SYSTEM STABILIZER" submitted for partial fulfilment

of the requirements of the award of the degree of Master of Technology (POWER SYSTEM) is

an authentic record of my own work carried out under the able guidance of J. N. RAI, Assoc.

Professor, EED, DTU. The matter embodied in the report has not been submitted for the award

of my other degree or diploma.

Submitted by:-

Vijay Priyadarshi

2K12/PSY/23

Power System

EED, DTU

iii

ABSTRACT

Synchronisation loss and frequent breakdowns of power systems with subject to low frequency oscillations are a major threat to power system. Oscillations of 0.2 to 3.0 Hz, are caused due to system disturbances which in some cases may increase also. The reduction of power transmission capability and loss of synchronism and even breakdown of whole power system are the result of these oscillations.

The conventional methods to improve power system stability are usually sluggish in nature. Design of quicker and reliable control techniques have always been a tedious task for a power engineer. Newer techniques like Fuzzy, Neural network, genetic algorithm and hybrid of these namely Neuro-Fuzzy, etc. are promising future solutions which is seen in the literature.

Fuzzy systems eliminate the mathematical blocks and thus reduce the system complexity by reducing the time for control. Using Fuzzy Logic causes the implementation easier and increases the computational capability. A single machine connected to an infinite bus is used here and fuzzy logic controller is used to control the response, finally the results are computed and compared with the conventional solution techniques to prove the advantage of the Fuzzy logic.

CONTENTS

	Certific	ate	\boldsymbol{i}
	Acknowledgement Declaration		ii
			iii
	Abstrac	t	iv
	Table of Content List of Abbreviation		v
			viii
	List of H	igures	ix
	List of Tables		xi
	S. NO.	TOPIC	PAGE NO.
1		INTRODUCTION	1
	1.1	Power System Stability	1
	1.1.1	Types of Oscillations	3
	1.1.2	Low Frequency Oscillations	4
	1.2	Literature Survey	4
	1.2.1	Power System Stabilizer (PSS)	4
	1.2.2	PID (Proportional-Integral-Derivative) Controller	5
	1.2.3	Genetic Algorithm	6
	1.2.4	Fuzzy Logic Controller	6

	1.3	Problem Statement	7
	1.4	Solution Methodology	7
	1.5	Objectives of the Work	7
	1.6	Contributions of the Thesis	8
2		MODELLING OF POWER SYSTEM	9
	2.1	Introduction	9
	2.2	Single Machine Infinite Bus (SMIB) Model	9
	2.2.1	Classical Model Representation of the Generator	10
	2.3	Effects of Synchronous Machine Field Circuit Dynamics	12
	2.4	Representation of Saturation in Stability Studies	17
	2.5	Effects of Excitation system	17
	2.6	Power System Stabilizer (PSS) Model	25
3		CONVENTIONAL POWER SYSTEM STABILIZERS	31
	3.1	Introduction	31
	3.2	Conventional Power System Stabilizer Design	31
	3.3	Conclusion	39
4		DESIGN OF FUZZY LOGIC BASED PSS	40
	4.1	Introduction	40
	4.2	Fuzzy sets	41
	4.3	Membership functions	41
	4.3.1	Triangular Membership Function	42
	4.4	Fuzzy Systems	42

	4.5	Design of Fuzzy Logic Based PSS	44
	4.5.1	Input/output Variables	45
5		RESULTS AND DISCUSSION	49
	5.1	The Case Study	49
	5.2	Performance without Excitation System	50
	5.3	Performance with Excitation System	50
	5.4	Performance with Conventional PSS	51
	5.5	Performance with Fuzzy Logic Based PSS	52
6		CONCLUSION AND FUTURE WORK SCOPE	55
	6.1	Conclusion	55
	6.2	Future work scope	55
7		Reference	56
		System Data	59

LIST OF ABBREVIATIONS

AVR Automatic Voltage Regulator

AEA Adaptive Evolutionary Algorithm

ANFIS Adaptive Neuro-Fuzzy Inference System

CPSS Conventional Power System Stabilizer

COS Centre of Sum

FLPSS Fuzzy Logic Power System Stabilizer

FL Fuzzy Logic

FRMG Fuzzy Reference Model Generator

GN Generalized Neuron

GA Genetic Algorithm

LFO Low Frequency Oscillation

MF Membership Function

MOM Mean of Maxima

MISO Multi Input Single Output

MRAC Model Reference Adaptive Controller

NN Neural Network

PSS Power System Stabilizer

PI Proportional Integral

PID Proportional Integral Derivative

RFLPSS Robust Fuzzy Logic Power System Stabilizer

RNNC Recurrent Neural Network Controller

SMIB Single Machine Infinite Bus

STR Self-Tuning Regulator

LIST OF FIGURES

2.1 General Configuration of SMIB	9
2.2 Equivalent Circuit of SMIB	10
2.3 Classical model of the synchronous generator	10
2.4 Phasor diagram of machine quantities	12
2.5 Phasor diagram of relative position of synchronous machine variables	14
2.6 Block diagram of a synchronous generator excitation system	18
2.7 Block diagram of thyristor excitation system with AVR	19
2.8 Block diagram representation with excitation and AVR	21
2.9Block diagram of thyristor excitation system with AVR and PSS	26
2.10 Block diagram of thyristor excitation system with AVR and PSS	27
3.1 Block diagram of PSS	31
3.2 Power System Configuration	32
3.3 Block diagram of a linear model of a synchronous machine with a PSS	33
3.4 Simplified block diagram to design a CPSS	34
3.5 Compact block diagram to design a CPSS	34
3.6 Frequency response of the plant without PSS	36
3.7 Frequency response of the CPSS $(G_p(j\omega))$	38
3.8Frequency response of log magnitude of $G(j\omega)$ and $\frac{1}{G_p(j\omega)}$	38
3.9 Closed loop frequency response of the system with CPSS	39
4.1 Triangular Membership Function	42

4.2 Block diagram of Fuzzy logic controller	43
4.3 Basic Structure of Fuzzy Logic Controller	44
4.4 Membership function for speed deviation	46
4.5 Membership function for acceleration	46
4.6 Membership function for voltage	46
5.1 Test System for Proposed Fuzzy Logic Based PSS	49
5.2 Response without excitation system	50
5.3 Response with excitation system for $-veK_5$	51
5.4 Response with excitation system for $+veK_5$	51
5.5 Response with CPSS for $-veK_5$	52
5.6 Response with CPSS for $+veK_5$	52
5.7 Variation of angular position with FLPSS for $-veK_5$	53
5.8 Variation of angular position with FLPSS for $+veK_5$	53
5.9 Variation of angular speed with FLPSS for $-veK_5$	54
5.10 Variation of angular speed with FLPSS for $+veK_5$	54

LIST OF TABLES

4.1 Membership functions for fuzzy variables	45
4.2 Decision table	47