
Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 1 

 

CHAPTER 1 : INTRODUCTION 

 

1.1. Background 

Health care is one of the most important thing in our life. Disease or illness can really mean a 
down turn in our life. The biggest asset we can have in life is the health. Health care is the 
management of treatment offered by medical, nursing, dental or any other related service to 
patient for his any health problems. When we talk about the care of health, we are talking of 
all goods and services that are produced to improve our health. They may be curative, 
preventative or even palliative solutions. A system of health care is organized to give health 
services to a large population or a group of people. 
Depending on how the system is organized the health care can be for an individual or for a 
large group of people. In developed countries, the health care system is designed as such that 
it should cover all the people; whether poor or rich. In society, people are worried about the 
kinds of systems there are, to deal with issues of health. However, the systems are lacking in 
regard to flaws. In developing countries, people usually take care of health as an individual 
thing and, if you do not have enough money, you might not get access to quality care. There 
are so many disparities and, some systems in certain countries are worse; not able to deal with 
demand of health. Health is not a cheap affair; you have to have a good system if you want it 
to work for you. Governments have the responsibility to create or formulate policies that will 
favor people in this regard. Good systems of health can be set up by the top most leadership of 
a state. 
If technology can be used to simplify and speed up the healthcare, it will lead to improved and 

higher quality health care facilities for majority. 

 

1.2. Motivation 
A healthcare system is an essential requirement for places with mass population. An efficient 
system with reliable patient record, and secure health flow is required for the care to reach to 
the right patient at right time. In the developing countries like India the health flow in the 
public hospitals is based on an OPD (Out Patient Data) Card. The patients have to register for 
a doctor standing in long queues. Once the doctor sees a patient, prescription is written 
manually on the card, or may be suggested to move to another department for investigations, 
test. There is no mapping if the OPD card belongs to a specific patient. There can be security 
flaws if the OPD card is utilized by an unauthorized patient. Also if the OPD card is lost all 
patient records are lost. There is a need to store information digitally. Work is still in process 
for the electronic patient record management. One of the challenges is that record 
management should be acceptable and be adopted uniformly across different hospitals. At 
least the patient should be able to retain records electronically as Personal Health Records and 
use it for secure records. The records could be either be retained electronically on some 
external source or retained on a mobile ¬device frequently retained by a patient.  
 



Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 2 

 

In spite of well networked health care system, access to healthcare in rural areas is far from 
satisfactory. In the current scenario, 75% of the qualified consulting doctors practice in urban, 
23% in semi-urban (towns) and only 2% in rural areas where as the vast majority of 
population live in the rural areas. However increasing the number of doctors alone is not the 
solution. Accepting that organic solutions will not meet the tyranny of numbers in India, the 
government needs to adopt technology as a means to deliver healthcare to rural area as 
technology has often provided a platform for enhancing the provision of quality healthcare 
and for driving down the health expenditure. [1] 
If technology can be used to simplify and speed up the healthcare, it will lead to improved and 

higher quality health care facilities for majority. 

 

1.3. Thesis Outline 
 

Thesis consists of following chapters: 
 
Chapter 2 explains studies carried out in literature.  
 
Chapter 3 research background is given. This chapter explains the Kerberos Protocol and its 
concepts.  
 

Chapter 4 explains the Java Authentication and Authorization Service (JAAS) with its 
architecture, classes and interfaces. 
 
Chapter 5 explains the Java RMI and its various components.  
 
Chapter 6 is for Proposed Architecture and various workflows in architecture are explained.  
 
Chapter 7 gives the implementation details of the project and explains link between different 
modules of the project. 
 
Chapter 8 shows the gives testing results in the form of snapshots, logfile, tables, etc.  
 
At last we summarize the thesis with conclusion and future work in Chapter 9.  
 

 

 

 

 

 

 

 

 

 

 

 



Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 3 

 

CHAPTER 2 : LITERATURE SURVEY 

 

Kerberos Assisted Authentication in Mobile Ad-hoc Networks 
 
Asad Amir Pirzada et.al., in their work Kaman [2], Kerberos Assisted Authentication in 
Mobile Ad-hoc Networks, proposed the secure authentication scheme for ad-hoc networks. In 
Kaman there are multiple Kerberos servers used for distributed authentication and load 
balancing. Also, in Kaman the secret key or password is only known to user while server will 
have cryptographic hash of the user password. The Kaman servers on periodic basis or on-
demand, replicate their databases with each other. Also, a replication sequence number is 
associated with each replication. 
 

 
Fig.1 : Operations of Kaman [2] 

 

The communication between two clients is done using the session key which is acquired by 
client from one of the server. While server generates the key and encapsulates it in ticket to 
send it requested client. In the end the client use this ticket to establish secure session between 
two parties. Also the availability check feature minimizes the malicious attacks. 
 
 
 
 
 
 
 
 
 
 
 
 

 



Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 4 

 

 

CTES based Secure approach for Authentication and Authorization of 

Resource and Service in Clouds 
 
Sanjeev Kumar Pippal et.al.[3], in their work proposed modifications to Kerberos and 
explained the Collaborative Trust Enhanced Security Model with the messages involved in 
the process of user authentication and authorization for distributed cloud services. The 
proposed model is more efficient despite of increase number of messages. Also overhead in 
keep track of active users of network has been reduced. For this , they have introduced the 
coordinator systems in proposed model. They ascertained that this model overcomes the 
drawbacks of Kerberos such as password guessing attack, platform dependency, etc. 

 
Fig. 2 : Components of CTES Model [3] 

 

 
Fig. 3 : Messages used in CTES Model [3] 

 

 

 



Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 5 

 

Socket VS RMI 
SeungJun Bang et.al[4], in their work evaluated the performance of two distributed 
communication mechanism i.e. Socket and RMI. The performance of each mechanism is 
evaluated on the basis of its processing speed with increase number of computers. 

 
 

Fig. 4 : Performance evaluation of Calculating Pi application 
on two different JMPI implementations [4] 

 

No. of Computers Socket (sec.) RMI (sec.) 

1 35.422 35.250 

2 19.125 12.219 

4 13.406 13.453 

6 31.406 22.469 

8 40.594 31.485 

Table 1 : The Processing Speed according to No. of Computers used 
for executing SOR application [4] 

 
The performance results shows that the two mechanisms gets their speedup differently with 
respect to communication patterns of applications and the number of computers used.  
 
 
 
 
 

 



Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 6 

 

CHAPTER 3 : RESEARCH BACKGROUND 

 

3.1. Kerberos [5] 

Kerberos is an authentication service that enables clients and servers to establish authenticated 

communication. Kerberos provides a secure way of authentication over insecure networks. To 

prove the identity of both end users and network servers, the Kerberos uses encrypted tickets 

instead of sending clear plain text passwords.  

 

3.1.1. Requirements 

Secure: Kerberos should be strong enough to protect weak link from opponent 

Reliable: Kerberos should be highly reliable with one system able to back up another 

Transparent: The client/user should not be aware that authentication taking place, expect to 

enter a password for login 

Scalable: The System should be capable of supporting large number of clients and service 

providers. 

 

3.1.2. Kerberos V4 [7][8] 

Kerberos V4 was the first version of Kerberos distributed by MIT. The basics of Kerberos V4 

protocol are documented in the Athena Technical Plan. The first three versions of Kerberos is 

no more in use. While Version 4 and Version 5 are conceptually similar, but slightly different 

from one another. Version 4 is simple and has better performance, but works only with 

TCP/IP, while Version 5 has more functionality. Although, Kerberos V4 could not be 

exported outside the United States because of some export control restrictions on encryption 

software. Still there are several implementations of Kerberos V4 implementation exist. Now, 

the original MIT Kerberos 4 implementation is in maintenance mode and officially considered 

as dead. 

 

 

 



Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 7 

 

3.1.3. Kerberos V5 [7][8] 

To add new features and security enhancements which were not present in Version 4, the 

Kerberos V5 is developed. The list of features added in Version 5 are as follows: 

• A better wire protocol, based on ASN.1 

• Credential forwarding and delegation 

• Replay cache 

• More flexible cross-realm authentication 

• Extensible encryption types 

• Pre-authentication 

Apart from the MIT's Kerberos V5, many other implementations of Kerberos V5 have been 

developed, some are commercial and some open source such as Heimdal. 

 

3.2. Description of how Kerberos works [6] 
The client authenticates itself to the Authentication Server (AS) which forwards the username 
to a Key distribution center (KDC). The KDC issues a Ticket Granting Ticket (TGT), which 
is time stamped, encrypts it using the user's password and returns the encrypted result to the 
user's workstation. This is done infrequently, typically at user logon; the TGT expires at some 
point, though may be transparently renewed by the user's session manager while they are 
logged in. 

When the client needs to communicate with another node ("principal" in Kerberos parlance) 
the client sends the TGT to the Ticket Granting Service (TGS), which usually shares the same 
host as the KDC. After verifying the TGT is valid and the user is permitted to access the 
requested service, the TGS issues a Ticket and session keys, which are returned to the client. 
The client then sends the Ticket to the service server (SS) along with its service request. 

 

3.3. Kerberos Terminology and Concepts 

3.3.1. Realms, Principals and Instances [8] 

Kerberos installation contains entities such as individual users, computers and services. Each 

one has a unique principal associated with it. Also, each principal has associated long term 

key, which can be a password or passphrase. The principal is divided into the hierarchical 

structure to accomplish the global unique names. 

Each principal is starts with a username or service name called Primary. Optionally the 

username or service name is followed by Instance. The instance is used in two situations : for 

service principals and for administrative use. The username and optional instance, together 



Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 8 

 

form a unique identity in respective realm. Every Kerberos installation defines an 

administrative realm of control that is distinct from other Kerberos installation. Kerberos 

define this by the realm name. Generally, realm name is given DNS domain name in 

uppercase. 

 

Fig. 5 : Relation between Primary, Instance and REALM 

 

Fig. 6 : Typical Form of Kerberos V5 Principal 

For example, DTU owns domain name dce.ac.in then for its users it would create a Kerberos 

realm as DCE.AC.IN. While the user with name Jack will have principal such as 

jack@DCE.AC.IN. This simple form of principal is valid in both Kerberos 4 and Kerberos 5. 

Whereas if Jack is also admin in realm DCE.AC.IN then the principal would be 

jack/admin@DCE.AC.IN. 

 

3.3.2. Service and host principals [8] 

Not only the users but also the hosts and servers offering Kerberos services have principals. 

As, in Kerberos, each endpoint of connection can request mutual authentication, so both 

endpoints require an identity and a key. 

Primary / 
Instance 

(Optional) @ Realm 

 

 

 
REALM 

 

 

 

 

 

 

 

 

 

 

Admin Instance 

P3 P2 

P1 

 

Service Instance 

P6 P5 

P4 

P1 P2 P4 P6 



Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 9 

 

Well, the service principal and user principals are slightly different. In service principal, the 

username component is the service that the principal represents. While in case of host 

principal, the username is host. To distinguish service principals for the same service and on 

different hostnames, the instance component contains the hostname of the machine the service 

principal is located on. Service that use Kerberos authentication are said as Keberized. 

 

3.3.3. Kerberos 4 principals [8] 

 Kerberos 4 principals are made up of three elements : the username, an optional instance, and 

the realm. The username and instance are separated by a period, and the username and 

instance are separated from the realm by an @ symbol. 

For example, jack.admin@DCE.AC.IN 

In general, the forms of Kerberos 4 principal are : 

• user[.instance]@REALM 

• service.hostname@REALM 

 

3.3.4. Kerberos 5 principals [8] 

Kerberos 4 principals has same elements like Kerberos 4 principals. While in place of a single 

instance component of Kerberos 4, the Kerberos 5 may contain several sub instance 

components. Also, the Kerberos 5 uses a forward slash to separate the username and instance 

components instead of dot in case of Kerberos 4. 

For example, jack/admin@DCE.AC.IN 

In general, the Kerberos 5 principals have the following format: 

component[/component][/component]....@REALM 

Practically there are two types of Kerberos 5 principals such as 

• username[/instance]@REALM 

• service/fully_qualified_domain_name@REALM 

 

 

 



Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 10 

 

3.3.5. The Key Distribution Center (KDC) [8] 

The integral part of the Kerberos System is KDC. It consists three components: a database 

which consists all principals and its associated encryption keys, the Authentication Server and 

the Ticket Granting Server. 

Every Key Distribution Center contains the database of all the principals contained in the 

realm with their associated secrets. 

 

3.3.6. The Authentication Server (AS) [8] 

The authentication Server issues an encrypted Ticket Granting Ticket to clients who wants to 

login to the Kerberos realm. Instead of client, the TGT which is encrypted with user's 

password will prove the identity of client to the KDC. As, user and the KDC know the user's 

password. The TGT returned by the Authentication Server can be used to request service 

tickets. 

 

3.3.7. The Ticket Granting Server (TGS) [8] 

Ticket Granting Server issues service tickets to clients. The TGS server takes two piece of 

data from clients, a ticket request which has principal name of service the client wants to 

contact and a Ticket Granting Ticket which has issued by Authentication Server (AS). After 

verification of TGT the client get service ticket. 

 

3.3.8. Tickets [8] 

Tickets confirm the identity of the two principals. One principal being a user and the other a 

service requested by the user. Tickets establish an encryption key used for secure 

communication during the authenticated session. 

 

3.3.9. Keytab Files [8] 

These are the files extracted from the KDC principal database and contain the encryption key 

for a service or host. 

 

 



Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 11 

 

3.4. Kerberos Authentication Dialogue [9] 

The actions performed by Kerberos are as follows: 

Step 1 (KRB_AS_REQ): Client/User logs on to workstation and requests service from 

resource server. The workstation on the behalf of user sends message to the Authorization 

Server requesting TGT. 

Step 2 (KRB_AS_REP): AS verifies users access right in its database, creates ticket-granting 

ticket and session key. Results are encrypted using key derived from user's password and 

sends message back to user. 

Step 3 (KRB_TGS_REQ): Workstation prompts user/client for password and uses password 

to decrypt incoming message, then sends ticket and authenticator that contain client's name, 

network address and time to TGS. 

Step 4 (KRB_TGS_REP):  TGS decrypts ticket and authenticator, verifies request, then 

creates ticket for requested server. 

Step 5 (KRB_AP_REQ): Workstation sends ticket and authenticator to server. 

Step 6 (KRB_AP_REP): Server verifies that ticket and authenticator match, then grants 

access to service. If mutual authentication is required, server returns an authenticator. 

 
Fig. 7 : Kerberos Authentication Process [10] 

 

 

 

 



Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 12 

 

3.5. Why Kerberos ? 

Today's network applications wants both sides of a connection to be authenticated to prevent 

phishing and other malicious attacks. Kerberos makes mutual authentication simple. Also, 

Kerberos is symmetric, any two parties which can authenticate in one way can also 

authenticate in other direction. Also, Kerberos meets the modern distributed systems 

requirements. The Kerberos is architecturally sound which makes it easy to integrate into 

other systems. In today's scenario Kerberos is widely integrated in most popular operating 

systems and software applications. Now it is an integral part of IT infrastructure.[11] 

 

3.6. Replication [7] 

Replication ensures that the accounts database is spread over a number of servers so as to 
safeguard from node capture and compromise. It also ensures that all user accounts are kept 
up to date by reflecting any changes to all the servers. This mechanism ensures that all 
accounts that have been added, modified or revoked since the last replication are updated in 
the repository in a timely and orderly manner. 

 

3.7. Kerberos Master Slave Replication [12] 

Kerberos was designed to allow for a Master/Slave replication cluster. A master is primary 
server, while there might be one or more slave which acts as the backup for master. The 
master and slave servers can be thought as Primary and Secondary servers respectively. 

The master Kerberos machine maintains the master copy of the authentication database. The 
information of master Kerberos is stored in application databases which consists of account 
and data policy data. The slave Kerberos machines have read-only copies of the database 
elsewhere in the system. 

As an extra copy of authentication database is there in slave machine ,so if the master 
machine is not available, the authentication can still be done by the slave machines. The 
process to perform authentication on any one of several machines reduces the chances of a 
bottleneck on the master machine. 

The advantages of having multiple copies of the database are those usually cited for 
replication are: 

• higher availability  

• better performance. 

 
 
 
 
 
 



Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 13 

 

3.8. Solution to Data Inconsistency [13] 

 

To achieve the data consistency between master and slave machines, the master database is 
dumped on regular interval of time like hourly or daily. After this the entire data is sent to 
slave machines which in turn update their own data. The program known as kprop on master 
machine 
send the updated data to a peer program on slave known as kpropd. First master machines 
sends a checksum of dumped data which encrypted by Kerberos master database key. The 
master database key is known to both master and slave machine. The propagated data is 
cached by kpropd on slave machine. The slave machine calculates the checksum of the data 
received and if it is matching with checksum sent by master, then the new information is used 
to update slave's database.  
  



Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 14 

 

CHAPTER 4 : JAAS 

 
 

4.1. Introduction to JAAS [14] 
 
JAAS is short name for Java Authentication and Authorization Service. JAAS was introduced 
into J2SDK 1.4. 
 
JAAS is used for two purposes 
For Authentication, where users are authenticated to determine who is executing current Java 
code, irrespective of whether the code is running as application, an applet or a servlet doesn't 
matter. 
 
For Authorization, where users are authorized to ensure for access control rights for doing 
particular actions. 
 
Authentication using JAAS is carried out in pluggable fashion. Due to this the applications is 
independent from underlying authentication technologies. Hence, updated authentication 
technologies can be plugged into application without requiring alteration to application. 
 

4.2. JAAS High-Level Architecture 
 

 
Fig. 8 : JAAS High-Level Architecture [15] 



Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 15 

 

 
The above Fig.8 shows the high-level overview of how JAAS achieves the pluggability. The 
application which wants to embed JAAS Authentication firstly deals with LoginContext. 
Under the bottom of LoginContext there are various dynamically configured LoginModules, 
which are actually responsible for actual authentication. Also JAAS is stackable, means in 
single login context, a bunch of security modules can be stack on top of another, while each 
called in order and each one is dealing with a different security infrastructure. 
 
To use JAAS authentication in the given application has following basic steps: 

1. Create a LoginContext 
2. Optionally pass the CallbackHandler to LoginContext, for gathering or processing 

authentication data 
3. Perform authentication by calling LoginContext's login() method 
4. Perform privileged actions using retured Subject (if login successds) 

 
For example, 
    LoginContext lc = new LoginContext("MyExample"); 
    try { 
        lc.login(); 
    } catch (LoginException) { 
        // Authentication failed. 
    } 
    // Authentication successful, we can now continue. 
    // We can use the returned Subject if we like. 
    Subject sub = lc.getSubject(); 
    Subject.doAs(sub, new MyPrivilegedAction()); 
 

4.3. JASS Classes and Interfaces [15] 

 
The fundamental JAAS classes and interfaces used in the process are typically divided into 
three groups: 
 

Group Name Details 

Common Subject, Principal, credential 

Authentication LoginContext, LoginModule, CallbackHandler, Callback 

Authorization Policy, AuthPermission, PrivateCredentialPermission 

Table 2 : JAAS's Classes and Interfaces [15] 
 
These classes and interfaces are in the javax.security.auth package's sub-packages, while 
some prebuilt implementations in the com.sun.security.auth package included in J2SE 1.4. 
 
 
  



Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 16 

 

CHAPTER 5 : JAVA RMI 

 

5.1. Introduction to Java RMI [16]  
 
RMI stands for Remote Method Invocation. Remote Method Invocation is well supported by 
Java. RMI give capability to client to access the service of remote server as if these services 
are invoked on local objects. The main idea behind RMI is to give server one or more Remote 
Objects.  Methods are the representation  of the operations that take place in the server instead 
of clients. While the Remote Interface are the methods of Remote Object. 
 

5.2. RMI Concepts [16] 
 

5.2.1. Remote Interface 

It is a interface which extends java.rmi.Remote. A remote interface gives the list of available 
methods on remote object. Also, all methods which are in remote interface are declared with 
throws java.rmi.RemoteException. 
 
5.2.2. Remote Object 

 

Remote object provides its public methods to remote clients across network. A remote object 
extends java.rmi.server.UnicastRemoteObject and implements a remote interface. 
 
5.2.3. Remote Methods 

 

These are the methods which are listed in remote interface and implemented by remote object. 
All parameters and result types in remote methods must be serializable. 
 
5.2.4. Serializable Object 

 

An object which is serializable must implement the interface java.io.Serializable. Objects 
representing resources or things in the operating systems cannot be serialized. While, Objects 
representing data can be serialized. 
 
5.2.5. Remote Exception 

 

It is an exception which shows the communication problem between client and the server. The 
typical remote exceptions are related to broken network connection or crashed server. 
 
5.2.6. Remote Stub 

 

It is an object which acts on the behalf of the remote object in client JVM. It implements the 
same remote interface as the remote object which it represents. The remote stub receive 
method calls from the client and pass the calls on the remote object. 
 



Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 17 

 

5.2.7. RMI Registry 

It is the naming service which maintains the track of remote objects in server and its service 
endpoints. For the purpose of client lookup operations the rmiregistry associates each remote 
object with a name. 

 
Fig. 9 : Basics of RMI [16] 

  



Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 18 

 

CHAPTER 6 : DESIGN ARCHITECTURE 

 

In this chapter, the proposed design architecture and the basic flow associated with each 
architectural component is explained in depth. 
 

6.1. Proposed Architecture 

 
The proposed architecture is based on four main entities : 

[1] Kerberos Servers 
a. Kerberos Master 
b. Kerberos Slave 

[2] Intermediate Server  
[3] Service Server 
[4] Clients 

 
 



Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 19 

 

Fig. 10 : Proposed Architecture 
 

The Sequential steps of working of the proposed architecture are: 
 

1. Register the Kerberos Master server to Intermediate Server. 
2. Register the Kerberos Slave server to Intermediate Server. 
3. Service Server request Scheduled Kerberos server to get authenticated. 
4. Service Server get Scheduled Kerberos server domain name/IP from Intermediate 

Server 
5. Service Server sent Kerberos authentication request on scheduled Kerberos Server 
6. Service Server get authenticated by scheduled Kerberos Server 
7. Client request Scheduled Kerberos server to get authenticated. 
8. Client get Scheduled Kerberos server domain name/IP from Intermediate Server 
9. Client sent Kerberos authentication request on scheduled Kerberos Server 
10. Client get authenticated by scheduled Kerberos Server 
11. Client sent request to Service Server to get its service 
12. Service accept the client request and give access to its services, if its authenticated 

client 
R. Replication of Master KDC's Database to Slave KDC. 

 

 

Client 1 

Client 2 

Client 3 

Client n 

Intermediate 

Server [RMI 

Server] 

Service Server 

[Patient 

Information] 

Kerberos 

Master 

Kerberos 

Slave 1 

Kerberos 

Slave 2 

Kerberos 

Slave n 

7 

1 

2 

3 4 

5 

6 

8 

9 

10 

11 

12 

R 

R 

R 



Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 20 

 

6.2. Kerberized Client and Application Server 

MIT Kerberos V5 will be used on backend to provide security to our network. Kerberized 
Client and Kerberized Application(Service) Server will use the third party authentication 
service provided by Kerberos Server. The basic flow using Kerberos's KDC, where Doctor 
will be the Kerberized Client and Service Server will the Kerberized Application Server. 
  

 
 

Fig. 11 : Basic Flow between Kerberos KDC, Doctor and Service Server 
 

1. Patient taps his/her card on the device for patient doctor interaction. 

2. Doctor asks for TGT (Ticket Granting Ticket) from Authentication Server (AS). 

3. AS provides the TGT to the Doctor, after authentication. 

4. Doctor sends the TGT acquired from AS to the Ticket Granting Server (TGS) and asks 

for the ticket to access the service server. 

5. TGS sends the Ticket Granting Service (TGS) in response only after validating TGT. 

6. The TGS acquired is sent to the Service Server (already registered with KDC) to ask 

for its’ services. 

7. Service server validates the TGS and provides the access to its services, if validated. 

 

 

 

 

 

 



Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 21 

 

6.3. Kerberized Client and Intermediate Server 

Now an Intermediary server was introduced basically for load balancing and to check if any 

KDC goes down. The basic flow of the intermediary server is as follows: 

 

Fig. 12 : Basic Flow of Intermediate Server 

1. Clients make a request for IP address of KDC. 

2. Intermediary Server checks for the KDC if it is up. 

3. Intermediary Server, taking care of load balancing provides the IP address of the KDC 

to the client. 

4. The client then makes request using the given IP address to the KDC for tickets. 

5. The KDC responds back and the basic flow given above for KDC is carried forward. 

 

The main task of Intermediary Server  will be Load balancing (make sure that all the requests 

are not allocated to a single KDC ,i.e. Resource  distribution ) and to keep a check on whether 

there exists at least one Master machine in the whole Kerberos System which can add users to 

the database. Also it was to keep a check on Master KDC, if it goes down another KDC will 

be made the master by Intermediate Server. 

 

 

 

 

 

KDC's 

 

Clients 

Intermediate 

Server 

5 

4 

3 

2 

1  



Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 22 

 

6.4. Kerberos Master-Slave Replication 

For Kerberos Database to be consistent on each KDC, replication of Master KDC's database 

to Slave KDC is important. This replication of Kerberos Database is done on hourly basis. 

The Intermediate Server will maintain the list of KDC's in the Authentication System. 

Whereas Client will connect to Intermediate Server and get the Scheduled KDC Name/IP for 

authentication. 

The below Fig. 11 shows the Kerberos Master-Slave Replication and interaction between 

Client, Intermediate Servers and KDC's. 

 

Fig. 13 : Kerberos Master-Slave Replication 

 

1.Client and Intermediate Server Interface 

2. Intermediate Server and KDC's Interface 

R/W = Read and Write 

R/O = Read Only 

 

 

 

 

 

Propagation 

of 

 Kerberos 

Database 

Master 

KDC 

Slave 

KDC 

Kerberos 

Database 

(Local File 

System) 

Kerberos 

Database 

Copy 

Intermediate 

Server 

 KDCs List 

Client 

 

R/W 

R/O 

2 

1 

2 



Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 23 

 

CHAPTER 7 : IMPLEMENTATION 

 

This section explains the implementation of Kerberos Server Setup with Master-Slave  
replication, Intermediate Server based on Java RMI Server, Service Server and Clients based 
on RMI clients with JAAS and GSS-API. 

 

7.1. Kerberos Setup 
 

MIT Kerberos is implemented on Ubuntu Servers 10.04 and 100 principals were created and 
tested for master-slaves.  

Initially, a KDC, i.e. A Key Distribution Server of Kerberos was installed on Ubuntu, using 
the Ubuntu Server Guide. Network Configurations were done so as to make the KDC 
working. The ticket generation was tested by calling and viewing a generated ticket for a 
specific principal. The same was done and tested for 100 principals. 

 

7.2. Master Slave Replication[17] 

 

7.2.1. Methodology used to Install Master Kerberos: 

1. The first step in installing a Kerberos Realm is to install the krb5-kdc and krb5-admin-
server 

packages. From a terminal enter: 

sudo apt-get install krb5-kdc krb5-admin-server 

2. Next, create the new realm with the kdb5_newrealm utility 

sudo krb5_newrealm 

 

The user is asked to create a new realm which in our case is LANSLAB.EDU 

 

3. Now that the KDC running an admin user is needed. It is recommended to use a different 

username from your everyday username. Using the kadmin.local utility in a terminal prompt 

enter: 

sudo kadmin.local 

Authenticating as principal root/admin@LANSLAB.EDU with password. 

kadmin.local: addprinc princ1/admin 



Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 24 

 

WARNING: no policy specified for harsh/admin@LANSLAB.EDU; defaulting to no policy 

Enter password for principal "princ1/admin@LANSLAB.EDU": 

Re-enter password for principal "princ1/admin@LANSLAB.EDU": 

Principal "princ1/admin@LANSLAB.EDU" created. 

kadmin.local: quit 

 

4. Next, the new admin user needs to have the appropriate Access Control List (ACL) 
  permissions. 

The permissions are configured in the /etc/krb5kdc/kadm5.acl file: 

princ1/admin@LANSLAB.EDU     * 

This entry grants princ1/admin the ability to perform any operation on all principals in the 
realm. 

 

5. Now restart the krb5-admin-server for the new ACL to take affect: 

sudo /etc/init.d/krb5-admin-server restart 

 

6. The new user principal can be tested using the kinit utility: 

kinit -p princ1/admin@LANSLAB.EDU 

harsh/admin@LANSLAB.EDU's Password:  

 

7. After entering the password, use the klist utility to view information about the Ticket 
Granting Ticket (TGT) : 

klist 

Credentials cache: FILE:/tmp/krb5cc_1000 

Principal: harsh/admin@LANSLAB.EDU 

Issued Expires Principal 

Jan 13 14:53:34 Jan 14 14:53:34 krbtgt/LANSLAB.EDU@LANSLAB.EDU 

 

8. An entry is added into the /etc/hosts section: 

172.16.6.28   kdc01.lanslab.edu  kdc01 

 

After the successful setup of Kerberos the next task was Master Slave Replication. 

 



Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 25 

 

9. Configuring the master KDC 

In our setup the following names were used:- 

kmaster.lanslab.edu    - master KDC 
kslave.lanslab.edu ,kslave2.lanslab.edu ,kslave3.lanslab.edu - slave KDC’s 
.k5.LANSLAB.EDU  - stash file 
admin/admin         - admin principal 
 

10. Edit KDC configuration files 

the configuration files, krb5.conf and kdc.conf were modified  to reflect the correct 
information (such as domain-realm mappings and Kerberos servers names) for our realm  
An example krb5.conf file: 

[libdefaults] 
   default_realm =LANSLAB.EDU 
 
[realms] 
   LANSLAB.EDU = { 
       kdc = kmaster.lanslab.edu 
       kdc = kslave.lanslab.edu 
       kdc = kslave2.lanslab.edu 
       kdc = kslave3.lanslab.edu 
       admin_server = kmaster.lanslab.edu     
} 
 

11. Create the KDC database 

kdb5_util create -r LANSLAB.EDU -s 
 
Initializing database '/usr/local/var/krb5kdc/principal' for realm 'LANSLAB.EDU', 
master key name 'K/M@LANSLAB.EDU’ 
You will be prompted for the database Master Password. 
It is important that you NOT FORGET this password. 
Enter KDC database master key:  <= Type the master password. 
Re-enter KDC database master key to verify:  <= Type it again. 
 

12. Add administrators to the ACL file 

Next we created an Access Control List (ACL) file and put the Kerberos principal of at least 
one of the administrators into it. This file is used by the kadmind daemon to control which 
principals may view and make privileged modifications to the Kerberos database files 
An example kadm5.acl file 
*/admin@LANSLAB.EDU        * 
 
 
 



Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 26 

 

 

13. Start the Kerberos daemons on the Master KDC 

service start krb5-kdc 
after the setup of primary kdc the next task was to install slave KDC’s 
 
 

7.2.2. Install The Slave KDCs [18] 

1. Create host keytabs for slave KDCs 

Each KDC needs a host key in the Kerberos database. These keys are used for mutual 
authentication when propagating the database dump file from the master KDC to the 
secondary KDC servers. 

On the master KDC, connect to administrative interface and create the host principal for each 
of the KDCs’ host services. The commands are:- 

kadmin 
kadmin: addprinc -randkey host/kmaster.lanslab.edu 
NOTICE: no policy specified for "host/kmaster.lanslab.edu@LANSLAB.EDU"; assigning 
"default" 
Principal "host/kmaster.lanslab.edu@LANSLAB.EDU" created. 
 
kadmin: addprinc -randkey host/kslave.lanslab.edu 
NOTICE: no policy specified for "host/kslave.lanslab.edu@ATHENA.MIT.EDU"; assigning 
"default" 
Principal "host/kslave.lanslab.edu@LANSLAB.EDU" created. 
 
Next, extract host random keys for all participating KDCs and store them in each host’s 
default keytab file. Ideally, you should extract each keytab locally on its own KDC. If this is 
not feasible, you should use an encrypted session to send them across the network. To extract 
a keytab on a slave KDC called kslave.lanslab.edu, you would execute the following 
command: 

kadmin: ktadd host/kslave.lanslab.edu 
Entry for principal host/kslave.lanslab.edu, with kvno 2, encryption 
   type aes256-cts-hmac-sha1-96 added to keytab FILE:/etc/krb5.keytab. 
Entry for principal host/kslave.lanslab.edu, with kvno 2, encryption 
   type aes128-cts-hmac-sha1-96 added to keytab FILE:/etc/krb5.keytab. 
Entry for principal host/kslave.lanslab.edu, with kvno 2, encryption 
   type des3-cbc-sha1 added to keytab FILE:/etc/krb5.keytab. 
Entry for principal host/kslave.lanslab.edu, with kvno 2, encryption 
   type arcfour-hmac added to keytab FILE:/etc/krb5.keytab. 
 
 
 
 



Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 27 

 

2. Configure slave KDCs 

Database propagation copies the contents of the master’s database, but does not propagate 
configuration files, stash files, or the kadm5 ACL file. The following files were copied to 
each slave  

� krb5.conf 

� kdc.conf 

� kadm5.acl 

� master key stash file 

 

3. Propagation ACL 

Create a file named kpropd.acl in the KDC state directory containing the host principals for 
each of the KDCs: 

host/kmaster.lanslab.edu@LANSLAB.EDU 
host/kslave.lanslab.edu@LANSLAB.EDU 
host/kslave2.lanslab.edu@LANSLAB.EDU 
host/kslave3.lanslab.edu@LANSLAB.EDU 

 
Then, add the following line to /etc/inetd.conf on each KDCkrb5_prop stream tcp nowait root 
/usr/local/sbin/kpropd kpropd 

You also need to add the following line to /etc/services on each KDC, if it is not already 
present (assuming that the default port is used): 

krb5_prop       754/tcp               # Kerberos slave propagation 
Restart inetd daemon. 

 
4. Database propagation 
The next step is to propagate the database from the master kdc to the slave kdc’s 
 
From a terminal on the kmaster, create a dump file of the principal database: 
sudo kdb5_util dump /var/lib/krb5kdc/dump 
 
Using the kprop utility push the database to the Secondary KDC: 
sudo kprop -r LANSLAB.EDU -f /var/lib/krb5kdc/dump kslave.lanslab.edu 
 
If the propagation is Successful, then Succeeded message will seen on terminal. 



Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 28 

 

Propagation script 
The master KDC, kmaster.lanslab.edu, must regularly push its database out to the slaves to 
maintain synchronization. One way to do this is to create a script on kmaster, called 
/etc/cron.hourly/krb5-prop, to regularly perform the database dump and propagation tasks.  
For pseudo code of Propagation script refer Appendix 1.  
 
This completes the setup of Master and Slave replication process. 
 
The next task was to avoid the situation where the master goes down, i.e. the application 
database goes down. In such a situation we want one of the slaves to work as a master to 
provide the application privileges. 
 
Role Reversal 

In the following instructions,kdc2.example.com will become the master and kdc1 its slave. 
First, on kmaster, stop the Kerberos administration server process (kadmin): 
/etc/init.d/krb5-admin-server stop 
 
Then, still on kmaster, disable the propagation script and run it once more manually: 
mv /etc/cron.hourly/krb5-prop/krb5-prop 
 
Now, over on kslave, install the Kerberos administration server: 
 apt-get install krb5-admin-server 
 
 
 
Also, create a propagation script, /etc/cron.hourly/krb5-prop, just like the one above in step 8, 
except that the slave mentioned in it should be kmaster  instead of kslave. 
Next, still on kslave, create a new file on kslave, called /etc/krb5kdc/kadm5.acl, with the 
following contents: 
*/admin * 
admin * 
 
This same file should be deleted from the previous master server, kmaster 
Finally edit the admin-server name in the krb5.conf file and change it to refer to kslave 
instead of kmaster 
A new cron job script is created to propagate the database from newly created master to the 

rest of the slaves. 

 

 

 

 



Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 29 

 

7.3. Kerberized Client and Application Server [14][19] 

 

We developed two programs (kerberized client and application server) in Java using JAAS 
and GSS-API: 
 

Using JAAS authentication from the application typically involves the following steps: 

1. Create a LoginContext 
2. Optionally pass a CallbackHandler to the LoginContext, for gathering or processing 

authentication data 
3. Perform authentication by calling the LoginContext's login() method 
4. Perform privileged actions using the returned Subject (assuming login succeeds) 

Underneath the covers, a few more things occur: 

1. During initialization, the LoginContext finds the configuration entry "MyExample"in a 
JAAS configuration file (which we configured) to determine which LoginModules to 
load. 

2. During login, the LoginContext calls each LoginModule's login() method 
3. Each login() method performs the authentication or enlists a CallbackHandler 
4. The CallbackHandler uses one or more Callbacks to interact with the user and gather 

input 
5. A new Subject instance is populated with authentication details such as Principals and 

credentials. 

This all is done just to login to the KDC i.e. to get TGT in the subject. 

Now that we have got TGT, the TGT authenticator is created and used to ask for TGS then. 

The passing of TGS and the communication between client and application server takes place 

with the help of GSS-API.[23][24] 

 

Broadly speaking, the GSS-API does two main things: 

1. It creates a security context in which data can be passed between applications. A 
context can be thought of as a sort of “state of trust” between two applications. 
Applications that share a context know who each other are and thus can permit data 
transfers between them as long as the context lasts. 

2. It applies one or more types of protection, known as security services, to the data to be 
transmitted. Security services are explained in Security Services. 

 



Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 30 

 

The GSS-API describes many procedure calls. Significant ones which we used in our code 

are: 

• GSS_Init_sec_context - generates a client token to send to the server, usually a 

challenge 

• GSS_Accept_sec_context - processes a token from GSS_Init_sec_context and can 

generate a response token to return 

• GSS_Wrap - converts application data into a secure message token (typically 

encrypted) 

• GSS_Unwrap - converts a secure message token back into application data 

 

These are the basic steps in using the GSS-API: 

1. Each application, client and server, acquires credentials explicitly. 
2. The client initiates a security context and the server accepts it. 
3. The client applies security protection to the message (data) it wants to transmit. This 

means that it either encrypts the message or stamps it with an identification tag. The 
sender transmits the protected message. 

4. The server decrypts the message (if needed) and verifies it (if appropriate). 
5. The recipient returns an identification tag to the sender for confirmation for mutual 

authentication. 
6. Both applications then communicate in a secure manner. 

A general schema of this process is presented in Fig. 14, which shows one way that the GSS-
API can be used. 



Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 31 

 

 

 

Fig. 14 : GSS-API Overview [19] 

This was all successfully implemented and tested with more than one clients. 

  



Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 32 

 

7.4. Implementation of Scalable Master Slave Replication 

The manner in which the priority is given to the machines depends on the configuration files 

krb5.conf which consists of all the KDC’s 

String type IP Arraylist is created which consist of IP addresses of all the KDC’s. 

Intermediary Server keeps on checking whether the Master is still active in every 15 seconds. 

If the master is active it does not do anything and whenever the Master is down ,it chooses a 

new master and activate its services (special services are  available to only the master 

machine). 

While the new master is active, if the previous master goes up again it sends an on boot 

message to the intermediary server and intermediary server in return deactivates its services 

and now forces it to act as a slave. 

The client initially retrieves the IP address of the KDC, it shall contact for the tickets from the 

Intermediary server. The Intermediate server checks for the KDC which is up and does not 

bear much load, and then gives its IP address to the client. After client gets the IP address of 

the KDC, it contacts the KDC for the tickets and then sends the IP address of KDC machine 

to the Intermediate server. The Intermediate server in response releases the resources that 

were allocated to that KDC machine. 

� The following tasks needs to be performed to start the services on the master KDC 

• service krb5-admin-service start 

• create a crontab file for the database propagation from the master machine to the slave 

machine. 

• Create kadm5.acl with an admin principal name  

• Edit the krb5.conf file .Change the name of the admin-server to the name of the kdc 

machine 

� The following tasks needs to be performed to stop the services on the master KDC 

• service krb5-admin-service stop 

• delete the crontab  

• delete the  kadm5.acl . 

• Edit the krb5.conf file .Change the name of the admin-server to the name of the kdc 

machine which is the current master. 

 

 

 

 

 

 



Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 33 

 

7.5. Intermediate Server and Client Implementation 

Programmatically, everything is handled using Java RMI Client - Server Processes. The 

Intermediate Server acts as RMI Server which has 5 main tasks : 

a. Maintain KDC List 

b. Give Scheduled KDC Name/IP to Clients 

c. Implement Some Scheduling Algorithm 

d. Maintain Client and Service Server List 

e. Check if Master is still up 

Every KDC as soon as it is up, is supposed to send a message of request to add in KDC List 

of the Intermediate server and maintain a connection with it so that clients can be allocated to 

the respective KDC. While, the Clients are RMI client which first contact the Intermediate 

Server for scheduled KDC Name/IP, after getting the scheduled KDC Name/IP it will send 

authentication request on KDC. If the client is authenticated user then it will get authenticated 

by KDC and gets TGT. Now, client has TGT which is used for requesting service from 

Application Server (Service Server). 

 

 

Fig. 15 : Main Tasks of Intermediate Server 

 

Intermediary 

server

listening for KDCs

KDC1 [master]

KDC2 [slave]

KDCn [slave]

checking if 

master is still up

listening for 

clients

client1

client2

clientm

Scheduling Algo.



Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 34 

 

Now when resource allocation comes into picture, the problem of critical section follows 

it. So to handle it we used a flag bit, which will be set if a thread is allocating resource to a 

client. At that very point no other client will be allocated any resource. As soon as the 

former client is allocated with the KDC, the flag bit is set to false and now any other client 

can enter the critical section and again set flag true symbolizing locked critical section. 

Also the problem of infinite waiting was solved using FCFS approach by maintaining a 

waiting queue and adding the clients into it as soon as they come and removing the client 

sequentially. 

  



Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 35 

 

CHAPTER 8 : TESTING AND RESULTS 

 

The results which come after setting up the Kerberos Master-Slave Servers and 

implementation of RMI Intermediate Server, Service Server and Clients requesting the 

services are shown with the help of screenshots, tables and graphs. 

8.1. Test Environment 

For testing we have used 3 KDCs i.e. 1 Master KDC and 2 Slave KDCs. The configuration 

details are listed in below Table 3. 

 Kerberos Master Kerberos Slave 1 Kerberos Slave 2 

OS Ubuntu Server 10.04 Ubuntu Server 10.04 Ubuntu Server 10.04 

Processor Intel Core 2 Duo Intel Core 2 Duo Intel Core 2 Duo 

RAM 5.7 GB 1.9 GB 3.7 GB 

Hard Disk 250 GB 250 GB 250 GB 

Host Name kmaster.lanslab.edu kslave.lanslab.edu kslave2.lanslab.edu 

IP Address 172.16.6.24 172.16.6.18 172.16.6.22 

Functionality Intermediate RMI 
Server, AppServer, 

Master KDC, Clients 

 
SlaveKDC 

 
Slave KDC  

Gateway IP 172.16.1.1 172.16.1.1 172.16.1.1 

Table 3 : Configuration Details of All KDCs 

 

 

 

 

 

 

 

 

 

 



Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 36 

 

8.2. Kerberos Replicated Master-Slave Servers 

 

Fig. 16 : Adding Principal into Kerberos Master Database 



Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 37 

 

 

Fig. 17 : Kerberos Master Database Propagation to Slave 

 

8.3. RMI Intermediate Server 

 

Fig. 18 : RMI Intermediate Server 

 

 



Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 38 

 

8.3. RMI Client Add KDC  

 

Fig. 19 : RMI Client Add KDC 

8.4. Service Server 

 

Fig. 20 : AppServer waiting for incoming connection 

 



Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 39 

 

8.5. RMI Clients 

 

Fig. 21 : Testing of n-Clients at a once for Authentication 

 

Fig. 22 : Generated Log containing Each Authentication Time of Clients 

 



Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 40 

 

8.6. Load Testing 

For load balancing we have implemented the RoundRobin Scheduling so that it will give one 

Scheduled KDC Name/IP in cyclic manner. We carried out the load testing of implemented 

system with 3 KDCs (1 Master KDC and 2 Slave KDCs) and 200 Clients at once. For this 

purpose we used the Java ExecutorService. The testing results are as follows: 

  Principal 

Name 

Schedule KDC 

Name/IP returned 

Time Taken 

by 

Intermediate 

Server to 

give 

Scheduled 

KDC 

Name/IP 

(msec) 

Time Taken 

by KDC to 

Authenticate 

the Client 

(msec) 

Time Taken by 

AppServer to 

Authenticate 

Client (msec) 

Total Time of 

Kerberos 

Authentication 

(msec) 

P1 kmaster.lanslab.edu 3 182 82 269 

P2 kslave.lanslab.edu 2 179 79 264 

P3 kslave2.lanslab.edu 1 171 72 249 

P4 kmaster.lanslab.edu 2 172 82 258 

P5 kslave.lanslab.edu 2 211 81 298 

P6 kslave2.lanslab.edu 2 203 84 291 

P7 kmaster.lanslab.edu 2 179 103 289 

P8 kslave.lanslab.edu 2 155 53 211 

P9 kslave2.lanslab.edu 2 190 73 279 

P10 kmaster.lanslab.edu 3 171 71 260 

P11 kslave.lanslab.edu 1 179 57 249 

P12 kslave2.lanslab.edu 2 147 50 200 

P13 kmaster.lanslab.edu 2 180 54 239 

P14 kslave.lanslab.edu 8 190 60 264 

P15 kslave2.lanslab.edu 4 157 49 221 

P16 kmaster.lanslab.edu 2 191 63 267 

P17 kslave.lanslab.edu 9 173 57 251 

P18 kslave2.lanslab.edu 2 156 70 238 

P19 kmaster.lanslab.edu 2 141 57 201 

P20 kslave.lanslab.edu 5 145 60 222 

P21 kslave2.lanslab.edu 11 163 61 247 

P22 kmaster.lanslab.edu 2 164 72 250 

P23 kslave.lanslab.edu 9 163 69 251 

P24 kslave2.lanslab.edu 2 193 61 261 

P25 kmaster.lanslab.edu 5 173 62 247 

Table 4.1 : Load Testing Result 



Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 41 

 

 

  

Principal 

Name 

Schedule KDC 

Name/IP returned 

Time Taken 

by 

Intermediate 

Server to 

give 

Scheduled 

KDC 

Name/IP 

(msec) 

Time Taken 

by KDC to 

Authenticate 

the Client 

(msec) 

Time Taken by 

AppServer to 

Authenticate 

Client (msec) 

Total Time of 

Kerberos 

Authentication 

(msec) 

P26 kslave.lanslab.edu 2 160 44 212 

P27 kslave2.lanslab.edu 2 171 55 238 

P28 kmaster.lanslab.edu 3 176 65 253 

P29 kslave.lanslab.edu 1 128 48 178 

P30 kslave2.lanslab.edu 4 172 64 250 

P31 kmaster.lanslab.edu 2 154 50 209 

P32 kslave.lanslab.edu 1 183 55 249 

P33 kslave2.lanslab.edu 2 160 56 231 

P34 kmaster.lanslab.edu 2 161 85 249 

P35 kslave.lanslab.edu 2 153 69 231 

P36 kslave2.lanslab.edu 1 187 59 250 

P37 kmaster.lanslab.edu 1 182 58 251 

P38 kslave.lanslab.edu 2 140 56 209 

P39 kslave2.lanslab.edu 2 161 65 229 

P40 kmaster.lanslab.edu 2 169 60 243 

P41 kslave.lanslab.edu 2 176 55 240 

P42 kslave2.lanslab.edu 2 168 61 242 

P43 kmaster.lanslab.edu 2 112 49 165 

P44 kslave.lanslab.edu 2 154 43 200 

P45 kslave2.lanslab.edu 2 165 49 230 

P46 kmaster.lanslab.edu 1 154 56 221 

P47 kslave.lanslab.edu 1 152 57 219 

P48 kslave2.lanslab.edu 1 167 46 229 

P49 kmaster.lanslab.edu 1 199 54 259 

P50 kslave.lanslab.edu 1 146 43 191 

Table 4.2 : Load Testing Result 



Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 42 

 

  

Principal 

Name 

Schedule KDC 

Name/IP returned 

Time Taken 

by 

Intermediate 

Server to 

give 

Scheduled 

KDC 

Name/IP 

(msec) 

Time Taken 

by KDC to 

Authenticate 

the Client 

(msec) 

Time Taken by 

AppServer to 

Authenticate 

Client (msec) 

Total Time of 

Kerberos 

Authentication 

(msec) 

P51 kslave2.lanslab.edu 2 174 72 249 

P52 kmaster.lanslab.edu 2 154 84 251 

P53 kslave.lanslab.edu 5 169 64 238 

P54 kslave2.lanslab.edu 2 182 49 241 

P55 kmaster.lanslab.edu 1 183 64 259 

P56 kslave.lanslab.edu 3 63 59 239 

P57 kslave2.lanslab.edu 2 148 53 211 

P58 kmaster.lanslab.edu 2 154 73 239 

P59 kslave.lanslab.edu 2 146 49 199 

P60 kslave2.lanslab.edu 1 180 48 230 

P61 kmaster.lanslab.edu 2 151 45 199 

P62 kslave.lanslab.edu 2 163 70 238 

P63 kslave2.lanslab.edu 2 153 56 214 

P64 kmaster.lanslab.edu 2 190 54 260 

P65 kslave.lanslab.edu 1 183 55 250 

P66 kslave2.lanslab.edu 2 185 54 250 

P67 kmaster.lanslab.edu 1 192 54 257 

P68 kslave.lanslab.edu 1 169 47 219 

P69 kslave2.lanslab.edu 2 182 65 250 

P70 kmaster.lanslab.edu 2 156 66 227 

P71 kslave.lanslab.edu 1 185 52 252 

P72 kslave2.lanslab.edu 1 180 58 240 

P73 kmaster.lanslab.edu 1 142 66 210 

P74 kslave.lanslab.edu 1 178 70 258 

P75 kslave2.lanslab.edu 2 155 53 230 

Table 4.3 : Load Testing Result 

 



Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 43 

 

  

Principal 

Name 

Schedule KDC 

Name/IP returned 

Time Taken 

by 

Intermediate 

Server to 

give 

Scheduled 

KDC 

Name/IP 

(msec) 

Time Taken 

by KDC to 

Authenticate 

the Client 

(msec) 

Time Taken by 

AppServer to 

Authenticate 

Client (msec) 

Total Time of 

Kerberos 

Authentication 

(msec) 

P76 kmaster.lanslab.edu 3 178 49 230 

P77 kslave.lanslab.edu 1 178 47 238 

P78 kslave2.lanslab.edu 1 173 54 240 

P79 kmaster.lanslab.edu 2 154 56 220 

P80 kslave.lanslab.edu 1 173 54 229 

P81 kslave2.lanslab.edu 5 170 51 239 

P82 kmaster.lanslab.edu 1 171 64 240 

P83 kslave.lanslab.edu 1 151 62 229 

P84 kslave2.lanslab.edu 1 161 54 217 

P85 kmaster.lanslab.edu 4 197 61 262 

P86 kslave.lanslab.edu 2 165 50 221 

P87 kslave2.lanslab.edu 1 163 71 239 

P88 kmaster.lanslab.edu 1 166 51 229 

P89 kslave.lanslab.edu 1 196 60 258 

P90 kslave2.lanslab.edu 1 143 54 209 

P91 kmaster.lanslab.edu 2 173 58 241 

P92 kslave.lanslab.edu 1 170 45 228 

P93 kslave2.lanslab.edu 1 158 57 229 

P94 kmaster.lanslab.edu 1 142 65 209 

P95 kslave.lanslab.edu 1 163 46 229 

P96 kslave2.lanslab.edu 1 165 60 230 

P97 kmaster.lanslab.edu 2 162 45 219 

P98 kslave.lanslab.edu 1 173 47 229 

P99 kslave2.lanslab.edu 1 162 69 249 

P100 kmaster.lanslab.edu 1 173 53 230 

Table. 4.4 : Load Testing Result 

 



Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 44 

 

  

Principal 

Name 

Schedule KDC 

Name/IP returned 

Time Taken 

by 

Intermediate 

Server to 

give 

Scheduled 

KDC 

Name/IP 

(msec) 

Time Taken 

by KDC to 

Authenticate 

the Client 

(msec) 

Time Taken by 

AppServer to 

Authenticate 

Client (msec) 

Total Time of 

Kerberos 

Authentication 

(msec) 

P101 kslave.lanslab.edu 2 184 63 249 

P102 kslave2.lanslab.edu 2 177 50 239 

P103 kmaster.lanslab.edu 1 171 61 239 

P104 kslave.lanslab.edu 1 133 42 177 

P105 kslave2.lanslab.edu 3 187 53 250 

P106 kmaster.lanslab.edu 1 183 53 249 

P107 kslave.lanslab.edu 4 180 55 251 

P108 kslave2.lanslab.edu 2 161 57 230 

P109 kmaster.lanslab.edu 2 154 64 228 

P110 kslave.lanslab.edu 1 174 63 240 

P111 kslave2.lanslab.edu 5 144 59 221 

P112 kmaster.lanslab.edu 2 168 64 238 

P113 kslave.lanslab.edu 1 146 49 208 

P114 kslave2.lanslab.edu 1 173 53 239 

P115 kmaster.lanslab.edu 1 158 59 219 

P116 kslave.lanslab.edu 1 180 52 241 

P117 kslave2.lanslab.edu 2 175 51 231 

P118 kmaster.lanslab.edu 2 158 79 239 

P119 kslave.lanslab.edu 1 171 55 228 

P120 kslave2.lanslab.edu 1 174 69 249 

P121 kmaster.lanslab.edu 1 172 47 231 

P122 kslave.lanslab.edu 2 167 54 227 

P123 kslave2.lanslab.edu 2 185 92 281 

P124 kmaster.lanslab.edu 1 168 47 218 

P125 kslave.lanslab.edu 1 149 50 201 

Table. 4.5 : Load Testing Result 



Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 45 

 

  

Principal 

Name 

Schedule KDC 

Name/IP returned 

Time Taken 

by 

Intermediate 

Server to 

give 

Scheduled 

KDC 

Name/IP 

(msec) 

Time Taken 

by KDC to 

Authenticate 

the Client 

(msec) 

Time Taken by 

AppServer to 

Authenticate 

Client (msec) 

Total Time of 

Kerberos 

Authentication 

(msec) 

P126 kslave2.lanslab.edu 1 170 65 242 

P127 kmaster.lanslab.edu 3 166 50 223 

P128 kslave.lanslab.edu 2 160 45 219 

P129 kslave2.lanslab.edu 1 171 65 240 

P130 kmaster.lanslab.edu 1 139 47 189 

P131 kslave.lanslab.edu 1 173 46 228 

P132 kslave2.lanslab.edu 1 165 55 232 

P133 kmaster.lanslab.edu 2 168 56 238 

P134 kslave.lanslab.edu 1 153 54 209 

P135 kslave2.lanslab.edu 2 187 49 239 

P136 kmaster.lanslab.edu 1 176 53 239 

P137 kslave.lanslab.edu 2 166 53 230 

P138 kslave2.lanslab.edu 3 172 58 237 

P139 kmaster.lanslab.edu 5 168 53 241 

P140 kslave.lanslab.edu 2 176 56 245 

P141 kslave2.lanslab.edu 2 167 50 224 

P142 kmaster.lanslab.edu 2 172 47 232 

P143 kslave.lanslab.edu 1 188 48 249 

P144 kslave2.lanslab.edu 7 216 63 291 

P145 kmaster.lanslab.edu 2 210 62 286 

P146 kslave.lanslab.edu 2 164 62 229 

P147 kslave2.lanslab.edu 1 149 49 200 

P148 kmaster.lanslab.edu 2 172 60 234 

P149 kslave.lanslab.edu 2 168 75 245 

P150 kslave2.lanslab.edu 1 158 51 211 

Table. 4.6 : Load Testing Result 



Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 46 

 

  

Principal 

Name 

Schedule KDC 

Name/IP returned 

Time Taken 

by 

Intermediate 

Server to 

give 

Scheduled 

KDC 

Name/IP 

(msec) 

Time Taken 

by KDC to 

Authenticate 

the Client 

(msec) 

Time Taken by 

AppServer to 

Authenticate 

Client (msec) 

Total Time of 

Kerberos 

Authentication 

(msec) 

P151 kmaster.lanslab.edu 2 169 50 228 

P152 kslave.lanslab.edu 4 169 48 231 

P153 kslave2.lanslab.edu 1 170 57 239 

P154 kmaster.lanslab.edu 2 166 60 229 

P155 kslave.lanslab.edu 2 149 67 219 

P156 kslave2.lanslab.edu 2 161 58 222 

P157 kmaster.lanslab.edu 2 159 49 217 

P158 kmaster.lanslab.edu 2 169 46 221 

P159 kslave.lanslab.edu 2 150 62 218 

P160 kslave2.lanslab.edu 1 183 49 248 

P161 kmaster.lanslab.edu 1 177 61 240 

P162 kslave.lanslab.edu 1 168 61 238 

P163 kslave2.lanslab.edu 1 186 56 250 

P164 kmaster.lanslab.edu 2 203 42 259 

P165 kslave.lanslab.edu 3 204 43 269 

P166 kslave2.lanslab.edu 1 176 58 250 

P167 kmaster.lanslab.edu 2 182 55 249 

P168 kslave.lanslab.edu 1 174 62 242 

P169 kslave2.lanslab.edu 2 182 52 247 

P170 kmaster.lanslab.edu 1 186 57 250 

P171 kslave.lanslab.edu 2 168 63 245 

P172 kslave2.lanslab.edu 3 149 58 230 

P173 kmaster.lanslab.edu 2 178 47 228 

P174 kslave.lanslab.edu 1 183 55 240 

P175 kslave2.lanslab.edu 1 175 47 238 

Table. 4.7 : Load Testing Result 



Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 47 

 

Principal 

Name 

Schedule KDC 

Name/IP returned 

Time Taken 

by 

Intermediate 

Server to 

give 

Scheduled 

KDC 

Name/IP 

(msec) 

Time Taken 

by KDC to 

Authenticate 

the Client 

(msec) 

Time Taken by 

AppServer to 

Authenticate 

Client (msec) 

Total Time of 

Kerberos 

Authentication 

(msec) 

P176 kmaster.lanslab.edu 1 169 58 229 

P177 kmaster.lanslab.edu 1 112 51 169 

P178 kslave.lanslab.edu 1 118 49 199 

P179 kslave2.lanslab.edu 3 159 56 219 

P180 kmaster.lanslab.edu 1 160 55 220 

P181 kslave.lanslab.edu 2 173 63 241 

P182 kslave2.lanslab.edu 1 155 60 218 

P183 kmaster.lanslab.edu 1 169 52 229 

P184 kslave.lanslab.edu 1 166 60 228 

P185 kslave2.lanslab.edu 2 173 54 231 

P186 kmaster.lanslab.edu 1 162 63 230 

P187 kmaster.lanslab.edu 4 151 50 218 

P188 kslave.lanslab.edu 1 155 49 210 

P189 kslave2.lanslab.edu 4 161 74 240 

P190 kmaster.lanslab.edu 1 170 58 239 

P191 kslave.lanslab.edu 2 159 57 219 

P192 kslave2.lanslab.edu 2 141 55 202 

P193 kmaster.lanslab.edu 1 141 43 187 

P194 kslave.lanslab.edu 2 167 53 231 

P195 kslave2.lanslab.edu 2 176 61 240 

P196 kmaster.lanslab.edu 4 182 73 268 

P197 kslave.lanslab.edu 2 153 47 209 

P198 kslave2.lanslab.edu 2 170 49 224 

P199 kmaster.lanslab.edu 2 187 48 238 

P200 kslave.lanslab.edu 1 163 47 219 

 Avg. Time 1.98 167.345 57.54 234.18 

Table. 4.8 : Load Testing Result 



Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 48 

 

The above Table. clearly shows that the introduction of intermediate server only adds 

approximately 2 msec in overall Kerberos authentication. But the load balanced nature of 

proposed architecture will share the equal load on each KDC which improves the Kerberos 

Authentication Time significantly. 

 

 

Fig. 23 : Principal Number VS Authentication Times 

 

  

 



Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 49 

 

8.7. Comparison of Average KDC Authentication Time  

The comparison is made on the basis of Average KDC Authentication Time for two scenario: 

1. Without Load Balancing 

2. With Load Balancing 

 

The following Table shows this comparison upto 200 clients and using 2 KDCs: 

Sr. No. No. of Clients Avg. KDC 

Authentication Time 

with Load Balancing 

(msec) 

Avg. KDC 

Authentication Time 

without Load Balancing 

(msec) 

1 10 220.3 220.1 

2 50 182.48 196.92 

3 75 174.02 184.3 

4 100 167.97 177.48 

5 125 165.96 174.15 

6 150 165.77 173.37 

7 175 165.45 170.97 

8 200 165.63 169.56 

Table 5 : Avg. KDC Authentication Time Comparison 

 

Fig. 24 : No. of Clients VS Avg. KDC Authentication Time 

  

 



Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 50 

 

CHAPTER 9 : CONCLUSION AND FUTURE WORK 

 

9.1. Conclusion 

Kerberos is symmetric, any two parties can authenticate to prevent phishing and other 

malicious attacks. Also, Kerberos makes mutual authentication simple. While Kerberos solve 

most modern distributed systems requirements, it is architecturally sound which makes it easy 

to embed into other systems. In current days, Kerberos is integral part of IT infrastructure. 

The serious problem with giving all authentication request on single KDC is if the current 

KDC goes down, then there would not be any entity to authenticate the users. The Replicated 

Kerberos implemented with Master-Slave KDCs solves this problem. But, again the slave 

KDCs are only used when the Master KDC is unavailable or down. With use of Load 

Balancing implemented in Intermediate Server makes whole Authentication Model fast and 

reliable. 

Use of RMI solves the problem of opening and closing of sockets with respective user request 

and it makes authentication even simpler. It also shifts processing load from Client to 

Intermediate Server, since client has only request to Intermediate Server, the Scheduled KDC 

Name/IP to which it can send the authentication request. 

The experimental results of this project shows that the introduction of Intermediate Server 

only adds 2 msec in whole Kerberos authentication process, but it adds reliability through 

replication and load balancing, hence increased the availability of authenticated servers. 

  



Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 51 

 

9.2. Future Work 

In future, to solve the Intermediate Server's bottleneck problem we want to extend it to 

Rigorous Binary Tree Code Algorithm [25]. Also, The Kerberized Java Client can be 

integrated with Doctor Application for proper user of Kerberos authentication. Also, RBAC 

[20] can also be integrated with Java Application Server for managing user permissions and to 

implement group access control. 

There is possibility to deploy this Replicated, Load Balanced Master-Slave Kerberos Model 

on CloudStack[21] Cloud to give Authentication As A Service. This will make this 

architecture even more fast, reliable and scalable on demand. 

 It can also be extended to generate soft tokens for authenticated users for two-factor 

authentication security.[22] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 52 

 

REFERENCES 

[1] Dr. Shilekh Mittal, " Eye Opening Aspect of Telemedicine in Punjab", Sciknow 

Publication, Health Care, 2013. 

[2] Asad Amir Pirzada et.al., 2004, "Kerberos Assisted Authentication in Mobile Ad-hoc 

Networks", ACSC '04 Proceedings of the 27th Australian conference on Computer 

Science. 

[3] Sanjeev Kumar Pippal et.al., 2011, "CTES based Secure approach for Authentication 

and Authorization of Resource and Service in Clouds", International Conference on 

Computer and communication Technology (ICCCT) - 2011. 

[4] SeungJun Bang et.al, 2007, "Implementation and Performance Evaluation of Socket 

and RMI based Java Message Passing Systems", Fifth International Conference on 

Software Engineering Research, Management and Applications, IEEE, 2007. 

[5] Kerberos: The Network Authentication Protocol 
http://web.mit.edu/kerberos/ 

[6] Kerberos Protocol 

http://en.wikipedia.org/wiki/Kerberos_(protocol) 

[7] Charlie Kaufman et.al., Book, Network Security, PRIVATE Communication in 

PUBLIC World, Second Edition. 

[8] Jason Garman, Book, Kerberos : The Definitive Guide, O'Reilly Publication, 2003 

[9] Essentials of Kerberos Authentication 
http://consultingblogs.emc.com/markwilson/archive/2005/06/06/1541.aspx 

[10] Kerberos Authentication Explained 

 http://consultingblogs.emc.com/markwilson/archive/2005/06/06/1541.aspx 

[11] MIT Consortium, Why is Kerberos a Credible Security Solution? 

 http://www.kerberos.org/software/whykerberos.pdf 

[12] Kerberos Server Replication 

 http://tldp.org/HOWTO/Kerberos-Infrastructure-HOWTO/server-replication.html 

[13] Ubuntu 10.04 Server Guide 

 https://help.ubuntu.com/10.04/serverguide/serverguide.pdf 

[14] JAAS Guide by Oracle 

 http://docs.oracle.com/javase/7/docs/technotes/guides/security/jaas/JAASRefGuide.ht

ml 

[15] Scalable Java Security with JAAS  

 http://www.javaworld.com/article/2074873/java-web-development/all-that-jaas.html 

[16] Anders Fongen, RMI Lab Tutorial 

 http://www.java.no/web/files/moter/tuplespace.pdf 

 



Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 53 

 

 

[17] Kerberos Server Guide 

 https://help.ubuntu.com/10.04/serverguide/kerberos.html 

[18] Kerberos Master Slave Replication Guide 

 www.rjsystems.nl/en/2100-d6-kerberos-slave.php 

[19] GSS-API Programming Guide 

 http://docs.oracle.com/cd/E19455-01/806-3814/6jcugr7d6/index.html 

[20] Role Based Access Control  

 http://en.wikipedia.org/wiki/Rbac 

[21] Apache CloudStack Website 

 http://cloudstack.apache.org/ 

[22] Pkinit Configuration and Soft Tokens 

 http://k5wiki.kerberos.org/wiki/Pkinit_configuration 

[23]Generic Security Services - Application Program Interface 

 http://en.wikipedia.org/wiki/Generic_Security_Services_Application_Program_Interfa

ce  

[24]Introduction to JAAS and Java GSS-API Tutorials

 http://docs.oracle.com/javase/7/docs/technotes/guides/security/jgss/tutorials/index.htm

l 

[25] Hongjun Liu et.al., 2007, "A distributed expansible authentication model based on 

Kerberos", ScienceDirect, Journal of Network and Computer Applications 31 (2008) 472-

486  

[26] AskUbuntu Website 

 http://askubuntu.com/ 

[27] Stackoverflow Website 

 http://stackoverflow.com/ 

 

  



Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 54 

 

APPENDIX 

 

Appendix 1 

Propagation Script on Master KDC: 

Create file name /etc/cron.hourly/krb5-prop with following contents: 

 

  

#!/bin/sh 
 
# Distribute KDC database to slave servers 
slavekdcs=”kslave.lanslab.edu kslave2.lanslab.edu kslave3.lanslab.edu” 
 
/usr/sbin/kdb5_util dump /var/lib/krb5kdc/dump 
error=$? 
if [ $error -ne 0 ]; then 
 echo "Kerberos database dump failed" 
 echo "with exit code $error. Exciting." 
 exit 1 
fi 
for kdc in $slavekdcs; do 
 /usr/sbin/kprop $kdc > 
 error=$? 
 if [ $error -ne 0 ]; then 
  echo "Propagation of database to host $kdc" 
  echo "failed with exit code $error." 
 fi 
done 
exit 0 



Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 55 

 

Appendix 2 

Intermediate Java RMI Server's Source Code: 

1. InterMServer.java 

import java.net.InetAddress; 

import java.rmi.RemoteException; 

import java.rmi.registry.LocateRegistry; 

import java.rmi.registry.Registry; 

import java.rmi.server.UnicastRemoteObject; 

import java.text.SimpleDateFormat; 

import java.util.Date; 

import java.util.Iterator; 

import java.util.LinkedHashMap; 

import java.util.List; 

import java.util.Map; 

import java.util.Map.Entry; 

 

public class InterMServer extends UnicastRemoteObject implements KDCInterface { 

String servername,KDC,masterKDC; 

Registry registry; 

int key_count = 0;//rschcount=0; // storing the count of setipKDCMap's count 

public static int rrcount=0; // for cycle through KDC list 

public static SimpleDateFormat sdf = new SimpleDateFormat("HH:mm:ss:SSS"); 

public static String KDCinitTime; /* KDC's init Time i.e. initialisation 

time/start/addtime of KDC */ 



Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 56 

 

Map<String, Integer> ipKDCLLMap = new LinkedHashMap<String, Integer>();// 

HashMap<String, Integer>(); 

/*------------------------------------------------------------------------------------------------------

---------------*/ 

/*------------------------------------------------------------------------------------------------------

---------------*/ 

public InterMServer() throws RemoteException{ 

try { 

 KDCinitTime = sdf.format(new Date()); 

 System.out.println("Intermediate Server's Major Version 1 /KDC 

Communication Server Init Time : "+KDCinitTime+"\n"); 

 InetAddress IP=InetAddress.getLocalHost(); 

 servername = IP.getCanonicalHostName(); 

 System.out.println("IP of my system is := "+servername+"\n"); 

} catch (Exception e) { 

 // TODO: handle exception 

 System.out.println("Can't get inet address....\n"); 

} 

int port = 9916; 

System.out.println("This Intermediate Server's KDCInterface Address = "+ 

servername + "\tPort="+ port+"\n"); 

try { 

registry = LocateRegistry.createRegistry(port); 

registry.rebind("InterMServer", this); 

} catch (Exception e) { 

 // TODO: handle exception 

 System.out.println("Remote Exception"+e); 



Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 57 

 

 } 

} 

/*------------------------------------------------------------------------------------------------------

---------------*/ 

@Override 

public void addKDC(String x) throws RemoteException { 

// TODO Auto-generated method stub 

System.out.println("Got request to add KDC with IP Address:"+x+"\n"); 

int y = 134; // load balancing purpose 

ipKDCLLMap.put(x, y); 

++key_count; 

System.out.println(x+" KDC Added Sucessfully........\n"); 

System.out.println("Now the number of KDC's in System is:\t"+key_count+"\n"); 

System.out.println("--------------------------------------------------------------------------------

------------------\n"); 

} 

@Override 

public Map<String, Integer> getCurrentKDCs() throws RemoteException { 

// TODO Auto-generated method stub 

return ipKDCLLMap; 

} 

@Override 

public String getMasterKDC() throws RemoteException { 

// TODO Auto-generated method stub 

Iterator<Entry<String, Integer>> iter = ipKDCLLMap.entrySet().iterator(); 



Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 58 

 

Entry<String, Integer> next = iter.next(); 

return next.getKey();//masterKDC; 

} 

@Override 

public String getSchKDCip() throws RemoteException { 

// TODO Auto-generated method stub 

/*This implementation of Interface gives the IP of KDC from Intermediate server to 

the client to next authentication process*/ 

rrcount++; 

System.out.println("Value of RRCount is:"+rrcount); 

String rrSchip = RoundRSch(ipKDCLLMap,rrcount); 

return rrSchip; 

} 

private String RoundRSch(Map<String, Integer> ipKDCLLMap2, int rrcount2) { 

// TODO Auto-generated method stub 

int countKDC = 0; 

String rrschIP=""; 

countKDC = ipKDCLLMap2.size(); 

System.out.println("No of KDC's in System are:"+countKDC); 

/*Iterator to rotate through the KDCs IP*/ 

Iterator<Entry<String, Integer>> iter = ipKDCLLMap.entrySet().iterator(); 

Entry<String, Integer> next1 = null; 

 /*Following code is actual scheduling the KDC IP*/ 

// 3rd solution 

int jump = rrcount2 % countKDC; 



Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 59 

 

System.out.println("Jump Value is :"+jump); 

if (jump != 0) { 

while(iter.hasNext()){ 

 for(int i=0;i<jump;i++){ 

  next1=iter.next(); 

  System.out.println(next1.getKey()); 

  } 

 break; 

 } 

} else { 

while(iter.hasNext()){ 

 for(int i=0;i<countKDC;i++){ 

  next1=iter.next(); 

  System.out.println(next1.getKey()); 

   } 

 break; 

  }    

} 

rrschIP = next1.getKey(); 

System.out.println("Scheduled KDC at first is:"+rrschIP); 

/*Uptil now the scheduled KDC IP is returned now update the load value of scheduled 

KDC IP's LoadLimit....*/ 

/*Check the load limit value and if it is greater than zero assign the respective IP to 

client 

 * and update the corresponding Load limit of KDC IP*/ 



Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 60 

 

if(next1.getValue() != 0){ 

ipKDCLLMap.put(rrschIP,ipKDCLLMap.get(rrschIP)-1); 

}else { 

 while(iter.hasNext()){ 

  next1 = iter.next(); 

  } 

 rrschIP = next1.getKey(); 

 ipKDCLLMap.put(rrschIP,ipKDCLLMap.get(rrschIP)-1); 

 } 

   

 if(ipKDCLLMap.get(rrschIP)<0){ 

 //return "Load limit of Scheduled KDC exceeds...Try Again"; 

 ipKDCLLMap.put(rrschIP, 0); 

 return null; 

 } 

 else 

 return rrschIP; 

 } 

}  

  



Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 61 

 

2. RMI Interface (Same for Java RMI Server and its Clients): 

KDCInterface.java 

import java.rmi.Remote; 

import java.rmi.RemoteException; 

import java.util.List; 

import java.util.Map; 

public interface KDCInterface extends Remote { 

 void addKDC(String x) throws RemoteException; 

 public Map<String, Integer> getCurrentKDCs() throws RemoteException; 

 String getMasterKDC() throws RemoteException; 

 //This is Experimental with Client 

 String getSchKDCip() throws RemoteException; 

} 

  



Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 62 

 

Appendix 3 

Source Code of Addition of KDC's to Intermediate Server's KDC List : 

1. AddKDC.java 

import java.rmi.NotBoundException; 

import java.rmi.RMISecurityManager; 

import java.rmi.RemoteException; 

import java.rmi.registry.LocateRegistry; 

import java.rmi.registry.Registry; 

import java.util.Iterator; 

import java.util.List; 

import java.util.Map; 

import java.util.Map.Entry; 

public class AddKDC { 

public static void main(String args[]){ 

KDCInterface IServer; 

Registry registry; 

String serverAddress = args[0]; 

String serverPort = args[1]; 

String text = args[2]; 

System.out.println("AddKDC Program Started......\n"); 

System.out.println("Sending Current KDC : "+text+" To 

"+serverAddress+":"+serverPort+"\n"); 

try { 

System.setSecurityManager(new RMISecurityManager()); 

registry = LocateRegistry.getRegistry(serverAddress,(new Integer(serverPort)).intValue()); 



Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 63 

 

IServer = (KDCInterface)(registry.lookup("InterMServer")); /* for CheckMaster.java file its 

CheckMasterServer & for InServer.java file its IntServer */  

//call the remote method 

System.out.println("Program is under Process.........\n"); 

IServer.addKDC(text); 

System.out.println("KDC : "+text+" Added Successfully.......\n"); 

Map<String, Integer> KDClist = IServer.getCurrentKDCs(); 

System.out.println("List of KDCs are:\t");//+KDClist); 

System.out.println("~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~"); 

System.out.println("|\tSr.No.\t\t|"+"\t\tKDC IP\t\t\t|"+"\tLoad Limit\t|"); 

System.out.println("~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~"); 

Iterator<Entry<String, Integer>> iter = KDClist.entrySet().iterator(); 

int j=1;  // Used for Sr. No. Field 

 while (iter.hasNext()) { 

  Entry<String, Integer> next = iter.next(); 

  Integer value = next.getValue(); 

  System.out.println("|\t  "+j+"\t\t|\t"+next.getKey()+"\t\t|\t    "+value+"\t\t|\t"); 

  System.out.println("|-----------------------|---------------------------------------|-------

----------------|\t"); 

  j++;         

  } 

System.out.println("\n"); 

System.out.print("The Master KDC is : "); 

String masterkdc = IServer.getMasterKDC(); 



Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 64 

 

System.out.println(masterkdc); 

System.out.println("---------------------------------------------------------------------\n"); 

System.out.println(""); 

   

// Getting Scheduled IP for Processing 

/*String schKDC = IServer.getSchKDCip(); 

System.out.println("Scheduled KDC is:\n"+schKDC); 

*/ 

} catch (RemoteException e) { 

 // TODO: handle exception 

 e.printStackTrace(); 

  } 

 catch (NotBoundException e) { 

 // TODO: handle exception 

 System.err.println(e); 

  } 

 } 

} 

 

2. RMI Interface (Same for Java RMI Server and its Clients): 

KDCInterface.java 

import java.rmi.Remote; 

import java.rmi.RemoteException; 

import java.util.List; 

import java.util.Map; 



Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 65 

 

public interface KDCInterface extends Remote { 

 void addKDC(String x) throws RemoteException; 

 public Map<String, Integer> getCurrentKDCs() throws RemoteException; 

 String getMasterKDC() throws RemoteException; 

 //This is Experimental with Client 

 String getSchKDCip() throws RemoteException; 

} 

 

Appendix 4 

Application Server's Source Code : 

1. appServer.java 

import org.ietf.jgss.*; 

import java.io.*; 

import java.net.Socket; 

import java.net.ServerSocket; 

import java.security.PrivilegedAction; 

import javax.security.auth.Subject; 

import javax.security.auth.callback.Callback; 

import javax.security.auth.callback.CallbackHandler; 

import javax.security.auth.callback.NameCallback; 

import javax.security.auth.callback.PasswordCallback; 

import javax.security.auth.callback.UnsupportedCallbackException; 

import javax.security.auth.login.LoginContext; 

import javax.security.auth.login.LoginException; 

 



Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 66 

 

public class appServer  { 

 

static Subject serviceSubject = new Subject(); 

static LoginContext context = null; 

int localPort=9990; 

public static void main(String[] args) throws IOException, GSSException { 

System.setProperty( "sun.security.krb5.debug", "true"); 

System.setProperty( "java.security.krb5.realm","LANSLAB.EDU");  

System.setProperty( "java.security.krb5.kdc","172.16.6.18"); 

System.setProperty( "java.security.auth.login.config", "./jaas.conf"); 

System.setProperty("javax.security.auth.useSubjectCredsOnly","false"); 

final String username = "princ3/admin"; 

final String password = "princ3"; 

final int localPort = 9990; 

// Create LoginContext with a callback handler 

try { 

context = new LoginContext("server", new LoginCallbackHandler(username , password)); 

// Perform authentication 

context.login(); 

} catch (LoginException e) { 

 // TODO Auto-generated catch block 

 e.printStackTrace(); 

         } 

System.out.println(context.getSubject()); 

         



Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 67 

 

// Perform action as authenticated user 

serviceSubject = context.getSubject(); 

ServerSocket ss = new ServerSocket(localPort); 

while(true) 

      { 

 System.out.println("Waiting for incoming connection..."); 

 Socket socket = ss.accept(); 

 (new ServerThread(socket,serviceSubject)).start(); 

      } 

     } 

} 

 

2. LoginCallbackHandler.java 

import java.io.IOException; 

import javax.security.auth.callback.Callback; 

import javax.security.auth.callback.CallbackHandler; 

import javax.security.auth.callback.NameCallback; 

import javax.security.auth.callback.PasswordCallback; 

import javax.security.auth.callback.UnsupportedCallbackException; 

 

class LoginCallbackHandler implements CallbackHandler { 

private String password; 

private String username; 

public LoginCallbackHandler() { 

     super(); 



Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 68 

 

} 

  

  

public LoginCallbackHandler( String name, String password) { 

    super(); 

    this.username = name; 

    this.password = password; 

} 

public void handle( Callback[] callbacks) 

     throws IOException, UnsupportedCallbackException { 

    for ( int i=0; i<callbacks.length; i++) { 

     if ( callbacks[i] instanceof NameCallback && username != null) { 

    NameCallback nc = (NameCallback) callbacks[i]; 

   nc.setName( username); 

 } 

else 

  if ( callbacks[i] instanceof PasswordCallback) { 

 PasswordCallback pc = (PasswordCallback) callbacks[i]; 

 pc.setPassword( password.toCharArray()); 

 } 

        } 

     } 

} 

 

 



Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 69 

 

 

 

 

3. ServerAction.java 

import java.io.DataInputStream; 

import java.io.DataOutputStream; 

import java.net.ServerSocket; 

import java.net.Socket; 

import java.security.PrivilegedAction; 

import org.ietf.jgss.GSSContext; 

import org.ietf.jgss.GSSCredential; 

import org.ietf.jgss.GSSManager; 

import org.ietf.jgss.GSSName; 

import org.ietf.jgss.MessageProp; 

import org.ietf.jgss.Oid; 

 

public class ServerAction implements PrivilegedAction{ 

 DataInputStream inStream; 

 DataOutputStream outStream; 

 public ServerAction(DataInputStream inStream,DataOutputStream outStream){ 

  this.inStream=inStream; 

  this.outStream=outStream; 

 } 

 public Object run(){ 

     try{ 



Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 70 

 

  GSSManager manager = GSSManager.getInstance(); 

 

            /* 

             * Create a GSSContext to receive the incoming request 

             * from the client. Use null for the server credentials 

             * passed in. This tells the underlying mechanism 

             * to use whatever credentials it has available that 

             * can be used to accept this connection. 

             */ 

           

Oid krb5Oid = new Oid("1.2.840.113554.1.2.2"); 

GSSName serviceName = manager.createName("princ3/admin@LANSLAB.EDU", 

GSSName.NT_USER_NAME); 

GSSCredential serviceCredentials = manager.createCredential(serviceName, 

GSSCredential.INDEFINITE_LIFETIME, krb5Oid, GSSCredential.ACCEPT_ONLY); 

GSSContext context = manager.createContext(serviceCredentials); 

// Do the context eastablishment loop 

byte[] token = null; 

 while (!context.isEstablished()) { 

               token = new byte[inStream.readInt()]; 

                System.out.println("Will read input token of size " 

                + token.length+ " for processing by acceptSecContext"); 

                inStream.readFully(token); 

                System.out.println("Properties set server 0"); 

                token = context.acceptSecContext(token, 0, token.length); 



Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 71 

 

                System.out.println("Properties set server 1"); 

                // Send a token to the peer if one was generated by 

                // acceptSecContext 

                if (token != null) { 

                    System.out.println("Will send token of size " 

                                       + token.length+ " from acceptSecContext."); 

                    outStream.writeInt(token.length); 

                    outStream.write(token); 

                    outStream.flush(); 

                } 

            } 

 

            System.out.print("Context Established! "); 

            System.out.println("Client is " + context.getSrcName()); 

            System.out.println("Server is " + context.getTargName()); 

            /* 

             * If mutual authentication did not take place, then 

             * only the client was authenticated to the 

             * server. Otherwise, both client and server were 

             * authenticated to each other. 

             */ 

            if (context.getMutualAuthState()) 

                System.out.println("Mutual authentication took place!"); 

 

            /* 



Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 72 

 

             * Create a MessageProp which unwrap will use to return 

             * information such as the Quality-of-Protection that was 

             * applied to the wrapped token, whether or not it was 

             * encrypted, etc. Since the initial MessageProp values 

             * are ignored, just set them to the defaults of 0 and false. 

             */ 

            MessageProp prop = new MessageProp(0, false); 

 

            /* 

             * Read the token. This uses the same token byte array 

             * as that used during context establishment. 

             */ 

            token = new byte[inStream.readInt()]; 

            System.out.println("Will read token of size " 

                               + token.length); 

            inStream.readFully(token); 

 

            byte[] bytes = context.unwrap(token, 0, token.length, prop); 

            String str = new String(bytes); 

            System.out.println("Received data \"" 

                               + str + "\" of length " + str.length()); 

 

            System.out.println("Confidentiality applied: " 

                               + prop.getPrivacy()); 

 



Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 73 

 

            /* 

             * Now generate a MIC and send it to the client. This is 

             * just for illustration purposes. The integrity of the 

             * incoming wrapped message is guaranteed irrespective of 

             * the confidentiality (encryption) that was used. 

             */ 

 

            /* 

             * First reset the QOP of the MessageProp to 0 

             * to ensure the default Quality-of-Protection 

             * is applied. 

             */ 

            prop.setQOP(0); 

 

            token = context.getMIC(bytes, 0, bytes.length, prop); 

 

            System.out.println("Will send MIC token of size " 

                               + token.length); 

            outStream.writeInt(token.length); 

            outStream.write(token); 

            outStream.flush(); 

 

            context.dispose(); 

            outStream.close(); 

         



Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 74 

 

     }catch (Exception e){ 

       e.printStackTrace(); 

     } 

  return null; 

 } 

} 

  

4. ServerThread.java 

import java.io.*; 

import java.net.Socket; 

import java.security.PrivilegedAction; 

import java.security.PrivilegedActionException; 

import javax.security.auth.Subject; 

 

public class ServerThread extends Thread{ 

 Socket socket; 

 Subject serviceSubject; 

  public ServerThread(Socket socket,Subject serviceSubject) 

  { 

   this.socket=socket; 

   this.serviceSubject=serviceSubject; 

  } 

   

  public void run() 

  { 



Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 75 

 

   try 

   { 

  describeConnection(socket);  

            DataInputStream inStream = new DataInputStream(socket.getInputStream()); 

            DataOutputStream outStream = new DataOutputStream(socket.getOutputStream()); 

 

          PrivilegedAction action = new ServerAction(inStream,outStream); 

          Subject.doAs(serviceSubject, action); 

  }catch (Exception e){ 

    e.printStackTrace(); 

   } 

   try  

   { 

   socket.close(); 

   }catch(IOException ex){ 

    System.out.println("IOException occurred when closing socket."); 

    } 

 } 

   

  void describeConnection(Socket client)  

  { 

  String destName = client.getInetAddress().getHostName(); 

  String destAddr = client.getInetAddress().getHostAddress(); 

  int destPort = client.getPort(); 



Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 76 

 

  System.out.println("Accepted connection to "+destName+" ("+destAddr+")"+" 

on port "+destPort+"."); 

  } 

} 

 

Appendix 5 

Kerberized RMI Clients Source Code: 

1. kerbClient.java 

import java.io.File; 

import java.io.FileOutputStream; 

import java.io.IOException; 

import java.rmi.NotBoundException; 

import java.rmi.RemoteException; 

import java.rmi.registry.LocateRegistry; 

import java.rmi.registry.Registry; 

import java.security.PrivilegedAction; 

import java.text.SimpleDateFormat; 

import java.util.Date; 

import java.util.Iterator; 

import java.util.Map; 

import java.util.Map.Entry; 

import java.util.StringTokenizer; 

import javax.security.auth.Subject; 

import javax.security.auth.login.LoginContext; 

import javax.security.auth.login.LoginException; 



Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 77 

 

import org.ietf.jgss.GSSException; 

 

public class kerbClient { 

 public static StringBuilder sbuilder = new StringBuilder(); 

 public static SimpleDateFormat sdf = new SimpleDateFormat("HH:mm:ss:SSS"); 

 public static String intservaddr = "";//"127.0.0.1"; // IP address of Intermediate 

Server 

 public static String username = "";  // Username to be authenticate 

 public static String passwd = "";  // Password of respective user 

 public static Registry intservRegistry; 

 public static KDCInterface IServer; 

 public static int intServPort = 9916; 

 public static String schAuthServ;  //to store scheduled KDC's IP retrieved 

from intermediate server 

 public static String 

startTime,endTime,reqTime,ipRetrieveTime,kdcauthReqTime,kdcauthStartTime,kdcauthCom

pletionTime,appServAuthReqTime,appServAuthStartTime,appServAuthCompletionTime;

 //inTimegetAuthServ; 

 public static String totalinterMServTime, totalKDCServTime, totalAppServAuthTime, 

totalAuthTime; 

  

 private static Subject subject = new Subject(); 

 private static LoginContext lc = null; 

  

 public static void Client(String[] args) throws IOException, GSSException{ 

  startTime=sdf.format(new Date()); 

  System.out.println("Kerberos Client Program is Starting.......\n"); 



Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 78 

 

  System.out.println("Kerberos Client Init Time is:\t"+startTime+"\n"); 

  System.out.println("-----------------------------------------------------------------------

-------------\n"); 

   

  /*Kerberos System Property Settings for Authentication*/ 

  System.setProperty("sun.security.krb5.debug", "true"); 

  System.setProperty("java.security.krb5.realm", "LANSLAB.EDU"); 

  System.setProperty("java.security.auth.login.config", "./jaasc.conf"); 

  // Parse arguments 

    if (args.length!=2 && args.length!=3) 

      invalidOptions(); 

    else 

    { 

        username = args[0]; 

        passwd = args[1]; 

        System.out.println("UserName:\t"+username+"\nPassword:\t"+passwd); 

        if (args.length == 3) 

       intservaddr = args[2]; 

    } 

    try { 

intservRegistry = LocateRegistry.getRegistry(intservaddr,(new 

Integer(intServPort)).intValue()); 

reqTime = sdf.format(new Date()); 

System.out.println("Sending request to "+intservaddr+" : "+intServPort+"\t at 

Time"+reqTime+"\n"); 



Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 79 

 

System.out.println("------------------------------------------------------------------------------------

\n"); 

IServer = (KDCInterface)(intservRegistry.lookup("InterMServer")); /* for*/ 

System.out.println("Connected to Intermediate Server\t"+intservaddr+"\n"); 

/*Now get the Scheduled KDC IP i.e. the Retrieve the IP of Authentication Server to be used 

with respective Client*/ 

schAuthServ = IServer.getSchKDCip();//"192.168.50.10";// 

ipRetrieveTime = sdf.format(new Date()); 

System.out.println("Time when Authentication Server IP assigned to Client is : 

\t"+ipRetrieveTime+"For"+username+"\n"); 

totalinterMServTime = timeDiff(reqTime, ipRetrieveTime); 

System.out.println("Time Taken by Intermediatery Server to give Scheduled KDC IP 

:"+totalinterMServTime+"\n"); 

if(schAuthServ != null){ 

System.out.println("IP Address Retrieved is :\t"+schAuthServ+"\n"); 

System.out.println("------------------------------------------------------------------------------------

\n"); 

  } 

 else 

 { 

 System.out.println("******Error/Warning:Load Limit of All KDC's exceeds...Try 

Again....\n"); 

 } 

/*Now we have retrieved the scheduled IP lets check the Updated LoadLimit of Each 

KDC...*/ 

Map<String, Integer> KDClist = IServer.getCurrentKDCs(); 

System.out.println("List of KDCs are:\t");//+KDClist); 



Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 80 

 

System.out.println("~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~"); 

System.out.println("|\tSr.No.\t\t|"+"\t\tKDC IP\t\t\t|"+"\tLoad Limit\t|"); 

System.out.println("~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~"); 

Iterator<Entry<String, Integer>> iter = KDClist.entrySet().iterator(); 

 int j=1; 

 while (iter.hasNext()) { 

 Entry<String, Integer> next = iter.next(); 

 Integer value = next.getValue(); 

 System.out.println("|\t  "+j+"\t\t|\t"+next.getKey()+"\t\t|\t    "+value+"\t\t|\t"); 

 System.out.println("|-----------------------|---------------------------------------|----------------

-------|\t"); 

 j++; 

     } 

} catch (RemoteException e) { 

 // TODO: handle exception 

 e.printStackTrace(); 

 } catch (NotBoundException e) { 

 // TODO Auto-generated catch block 

 e.printStackTrace(); 

} 

/*Now we have retrieved the scheduled KDC's IP now the authentication process will start*/ 

System.setProperty("java.security.krb5.kdc", schAuthServ); 

/*Authentication Server is Set for further process...*/ 



Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 81 

 

/*First Step of JAAS Authentication "Create LoginContext with optionally passing 

CallbackHandler to LoginContext for gathering or processing authentication data...."*/ 

 try { 

  kdcauthReqTime = sdf.format(new Date()); 

  System.out.println("\nKDC Authentication Request Time : 

"+kdcauthReqTime+"\n"); 

  lc = new LoginContext("JaasSample", new LoginCallbackHancler(username, 

passwd)); 

 // Authentication successful, we can now continue. 

 } catch (LoginException e) { 

  // TODO: handle exception 

  e.printStackTrace(); 

  System.exit(-1); 

  } catch (SecurityException se) { 

   // TODO: handle exception 

   se.printStackTrace(); 

   System.exit(-1); 

   } 

 // the user has 3 attempts to authenticate successfully 

       int i; 

       for (i = 0; i < 3; i++) { 

       try { 

         kdcauthStartTime = sdf.format(new Date()); 

           System.out.println("KDC Authentication Start Time 

:"+kdcauthStartTime+"\n"); 

              // attempt authentication 



Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 82 

 

               lc.login(); 

              kdcauthCompletionTime = sdf.format(new Date()); 

              System.out.println("\nKDC Authentication Completion 

Time:"+kdcauthCompletionTime+"\n"); 

             totalKDCServTime = timeDiff(kdcauthReqTime,kdcauthCompletionTime); 

             System.out.println("Time for Authentication by KDC : 

"+totalKDCServTime+"\n"); 

               break; 

          } catch (LoginException le) { 

              System.err.println("Authentication failed:"); 

              System.err.println("  " + le.getMessage()); 

              try { 

                  Thread.currentThread().sleep(3000); 

              } catch (Exception e) { 

                  e. printStackTrace(); 

              } 

          } 

} 

   // did they fail three times? 

     if (i == 3) { 

     System.out.println("Sorry....\n"); 

     System.exit(-1); 

    } 

 System.out.println("Authentication succeeded!\n"); 

subject = lc.getSubject(); 



Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 83 

 

appServAuthReqTime = sdf.format(new Date()); 

PrivilegedAction action = new ClientAction(schAuthServ, username); 

appServAuthStartTime = sdf.format(new Date()); 

System.out.println("AppServer Authentication Start Time:"+appServAuthStartTime); 

Subject.doAs(subject, action); 

appServAuthCompletionTime = sdf.format(new Date()); 

System.out.println("AppServer Authentication Completion Time 

:"+appServAuthCompletionTime); 

totalAppServAuthTime = timeDiff(appServAuthReqTime, appServAuthCompletionTime); 

System.out.println("Time for Authentication by AppServer :"+totalAppServAuthTime); 

endTime=sdf.format(new Date()); 

totalAuthTime=timeDiff(reqTime,endTime);  

logTime(sbuilder,username); 

 } 

private static void invalidOptions(){ 

     System.out.println("MyClient <username password> [server]"); 

     System.exit(0); 

} 

  

private static void logTime(StringBuilder sbuild,String user){ 

sbuilder.append("For User/Client\t"+user+"\n"); 

sbuilder.append("\n"); 

sbuilder.append("KDC Name/IP Address Retrieved is :\t"+schAuthServ+"\n"); 

sbuilder.append("\n"); 



Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 84 

 

sbuilder.append("Time Taken by Intermediatery Server to give Scheduled KDC IP 

:"+totalinterMServTime+" For "+user+"\n"); 

sbuilder.append("\n"); 

sbuilder.append("Time for Authentication by KDC : "+totalKDCServTime+" For 

"+user+"\n"); 

sbuilder.append("\n"); 

sbuilder.append("Time for Authentication by AppServer :"+totalAppServAuthTime+" For 

"+user+"\n"); 

sbuilder.append("\n"); 

sbuilder.append("Total time taken is:"+totalAuthTime); 

sbuilder.append("\n"); 

sbuilder.append("*************************************************************

******************************************\n"); 

sbuilder.append("\n"); 

Log(sbuilder,username); 

} 

  

// Log files generator 

static void Log(StringBuilder logData, String fileNameExt) { 

 try { 

  String user[]=username.split("/"); 

  String folder="/home/kslave/Desktop/LoadTest"; 

  String filename=user[0] + ".txt"; 

  File f = new File(folder,filename); 

  if (!f.exists()) 

   f.createNewFile(); 



Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 85 

 

  String data = new String(logData); 

  FileOutputStream fout = new FileOutputStream(f); 

  fout.write(data.getBytes()); 

  fout.flush(); 

  fout.close(); 

  } catch (IOException e) { 

   // TODO Auto-generated catch block 

   e.printStackTrace(); 

  } 

 } 

 static String timeDiff(String time1,String time2) 

 { 

  StringTokenizer tokens1 = new StringTokenizer(time1, ":"); 

  StringTokenizer tokens2 = new StringTokenizer(time2, ":"); 

  int hr1 = Integer.parseInt(tokens1.nextToken()); 

  int min1 = Integer.parseInt(tokens1.nextToken()); 

  int sec1 = Integer.parseInt(tokens1.nextToken()); 

  int mili1 = Integer.parseInt(tokens1.nextToken()); 

  int hr2 = Integer.parseInt(tokens2.nextToken()); 

  int min2 = Integer.parseInt(tokens2.nextToken()); 

  int sec2 = Integer.parseInt(tokens2.nextToken()); 

  int mili2 = Integer.parseInt(tokens2.nextToken()); 

 

  int totalMili1 = (hr1 * 60 * 60 * 1000) + (min1 * 60 * 1000) 

    + (sec1 * 1000) + mili1; 



Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 86 

 

  int totalMili2 = (hr2 * 60 * 60 * 1000) + (min2 * 60 * 1000) 

    + (sec2 * 1000) + mili2; 

 

  int diff = totalMili2 - totalMili1; 

 

  int diffMili = diff % 1000; 

  int diffSec = (diff / 1000) % 60; 

 

  return (diffSec + " s " + diffMili 

    + " ms"); 

 } 

} 

 

2. KDCInterface.java 

import java.rmi.Remote; 

import java.rmi.RemoteException; 

import java.util.List; 

import java.util.Map; 

 

public interface KDCInterface extends Remote { 

 void addKDC(String x) throws RemoteException; 

 public Map<String, Integer> getCurrentKDCs() throws RemoteException; 

 String getMasterKDC() throws RemoteException; 

 //This is Experimental with Client 

 String getSchKDCip() throws RemoteException; 



Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 87 

 

} 

 

3. LoginCallbackHandler.java 

import java.io.IOException; 

import javax.security.auth.callback.Callback; 

import javax.security.auth.callback.CallbackHandler; 

import javax.security.auth.callback.NameCallback; 

import javax.security.auth.callback.PasswordCallback; 

import javax.security.auth.callback.UnsupportedCallbackException; 

 

public class LoginCallbackHancler implements CallbackHandler { 

 private String username, passwd; 

 

 public LoginCallbackHancler(){ 

  super(); 

 } 

public  LoginCallbackHancler(String name, String passwd) { 

  super(); 

  this.username = name; 

  this.passwd = passwd; 

 } 

 @Override 

 public void handle(Callback[] callbacks) throws IOException, 

   UnsupportedCallbackException { 

  // TODO Auto-generated method stub 



Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 88 

 

  for ( int i=0; i<callbacks.length; i++) { 

        if ( callbacks[i] instanceof NameCallback && username != null) { 

          NameCallback nc = (NameCallback) callbacks[i]; 

          nc.setName( username); 

        } 

        else if ( callbacks[i] instanceof PasswordCallback) { 

          PasswordCallback pc = (PasswordCallback) callbacks[i]; 

          pc.setPassword( passwd.toCharArray()); 

        } 

      } 

        } 

} 

 

4. ClientAction.java 

import java.io.DataInputStream; 

import java.io.DataOutputStream; 

import java.io.PrintWriter; 

import java.net.Socket; 

import java.security.PrivilegedAction; 

import java.util.Date; 

import org.ietf.jgss.GSSContext; 

import org.ietf.jgss.GSSCredential; 

import org.ietf.jgss.GSSManager; 

import org.ietf.jgss.GSSName; 

import org.ietf.jgss.MessageProp; 



Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 89 

 

import org.ietf.jgss.Oid; 

 

public class ClientAction implements PrivilegedAction{ 

 String hostName; 

 String username; 

 int port; 

 public ClientAction(String schAuthServ,String username){ 

 hostName="172.16.6.22"; 

     port=9990; 

     this.username=username; 

} 

public Object run(){ 

     try{ 

        /* 

         * This Oid is used to represent the Kerberos version 5 GSS-API 

         * mechanism. It is defined in RFC 1964. We will use this Oid 

         * whenever we need to indicate to the GSS-API that it must 

         * use Kerberos for some purpose. 

         */ 

         

        Oid krb5Oid = new Oid("1.2.840.113554.1.2.2"); 

        GSSManager gssManager = GSSManager.getInstance(); 

 

        /* 

         * Create a GSSName out of the server's name. The null 



Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 90 

 

         * indicates that this application does not wish toimport java.security.PrivilegedAction; 

make 

         * any claims about the syntax of this name and that the 

         * underlying mechanism should try to parse it as per whatever 

         * default syntax it chooses. 

         */ 

  GSSName clientName = gssManager.createName(username, 

GSSName.NT_USER_NAME);  

  GSSName serviceName = 

gssManager.createName("princ3/admin@LANSLAB.EDU", null); 

 

        /* 

         * Create a GSSContext for mutual authentication with the 

         * server. 

         *    - serverName is the GSSName that represents the server. 

         *    - krb5Oid is the Oid that represents the mechanism to 

         *      use. The client chooses the mechanism to use. 

         *    - null is passed in for client credentials 

         *    - DEFAULT_LIFETIME lets the mechanism decide how long the 

         *      context can remain valid. 

         * Note: Passing in null for the credentials asks GSS-API to 

         * use the default credentials. This means that the mechanism 

         * will look among the credentials stored in the current Subject 

         * to find the right kind of credentials that it needs. 

         */ 



Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 91 

 

  GSSCredential clientCredentials = gssManager.createCredential(clientName, 

8*60*60, krb5Oid, GSSCredential.INITIATE_ONLY); 

  GSSContext context = gssManager.createContext(serviceName, krb5Oid, 

clientCredentials, GSSContext.DEFAULT_LIFETIME); 

   

        // Set the desired optional features on the context. The client 

        // chooses these options. 

 

        context.requestMutualAuth(true);  // Mutual authentication 

        context.requestConf(true);  // Will use confidentiality later 

        context.requestInteg(true); // Will use integrity later 

 

       // String Time4=kerbClient.sdf.format(new Date()); 

        //String TimeKDC=kerbClient.timeDiff(kerbClient.Time3,Time4); 

        //kerbClient.sbuilder.append("Time for KDC: "+TimeKDC+"\n"); 

        //writer.flush(); 

  //writer.write(kerbClient.IP); 

  //writer.flush(); 

  //writer.close(); 

  //// Do the context eastablishment loop 

 

        byte[] token = new byte[0]; 

   

  //String Time5=kerbClient.sdf.format(new Date()); 

   



Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 92 

 

        Socket socket = new Socket(hostName, port); 

        DataInputStream inStream = new DataInputStream(socket.getInputStream()); 

        DataOutputStream outStream = new DataOutputStream(socket.getOutputStream()); 

 

         

        while (!context.isEstablished()) { 

 

           // token is ignored on the first call 

         token = context.initSecContext(token, 0, token.length); 

            // Send a token to the server if one was generated by 

            // initSecContext 

            if (token != null) { 

                System.out.println("Will send token of size "+ token.length + " from 

initSecContext."); 

                outStream.writeInt(token.length); 

                outStream.write(token); 

                outStream.flush(); 

            } 

 

            // If the client is done with context establishment 

            // then there will be no more tokens to read in this loop 

            if (!context.isEstablished()) { 

                token = new byte[inStream.readInt()]; 

                System.out.println("Will read input token of size " + token.length + " for processing 

by initSecContext"); 



Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 93 

 

                inStream.readFully(token); 

            } 

        } 

         

        //String Time6=kerbClient.sdf.format(new Date()); 

         

        //String TimeServerAuthentication=kerbClient.timeDiff(Time5, Time6); 

         

        //kerbClient.sbuilder.append("Time for authentication by 

server"+TimeServerAuthentication+"\n"); 

         

        System.out.println("Context Established! "); 

 

        /* 

         * If mutual authentication did not take place, then only the 

         * client was authenticated to the server. Otherwise, both 

         * client and server were authenticated to each other. 

         */ 

        if (context.getMutualAuthState()) 

            System.out.println("Mutual authentication took place!"); 

 

        byte[] messageBytes = "Hello There!\0".getBytes(); 

 

        /* 

         * The first MessageProp argument is 0 to request 



Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 94 

 

         * the default Quality-of-Protection. 

         * The second argument is true to request 

         * privacy (encryption of the message). 

         */ 

        MessageProp prop =  new MessageProp(0, true); 

 

        /* 

         * Encrypt the data and send it across. Integrity protection 

         * is always applied, irrespective of confidentiality 

         * (i.e., encryption). 

         * You can use the same token (byte array) as that used when 

         * establishing the context. 

         */ 

 

        token = context.wrap(messageBytes, 0, messageBytes.length, prop); 

        System.out.println("Will send wrap token of size " + token.length); 

        outStream.writeInt(token.length); 

        outStream.write(token); 

        outStream.flush(); 

 

        /* 

         * Now we will allow the server to decrypt the message, 

         * calculate a MIC on the decrypted message and send it back 

         * to us for verification. This is unnecessary, but done here 

         * for illustration. 



Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 95 

 

         */ 

 

        token = new byte[inStream.readInt()]; 

        System.out.println("Will read token of size " + token.length); 

        inStream.readFully(token); 

        context.verifyMIC(token, 0, token.length, 

                          messageBytes, 0, messageBytes.length, 

                          prop); 

 

        System.out.println("Verified received MIC for message."); 

 

        System.out.println("Exiting..."); 

        context.dispose(); 

        socket.close(); 

     }catch(Exception e){ 

       

      /*if(!IS.isClosed()) 

      { 

       writer.write(kerbClient.IP); 

       try{ 

       IS.close(); 

       }catch(Exception ec) 

       { 

        ec.printStackTrace(); 

       } 



Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 96 

 

      } 

      */ 

      e.printStackTrace(); 

     } 

  return hostName; 

    } 

} 

 

5. KerbMulThreads.java 

import java.io.IOException; 

import java.util.Iterator; 

import java.util.List; 

import java.util.concurrent.ExecutorService; 

import java.util.concurrent.Executors; 

import java.util.concurrent.Future; 

import java.util.ArrayList; 

import org.ietf.jgss.GSSException; 

 

public class KerbMulThreads { 

 private static final int MYTHREADS = 1; 

 private static String intermURL = "172.16.6.22"; 

 private static int noOfInstances = 201; 

 private static String user; 

 private static String pass; 

 //private static String p = "p"; 



Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 97 

 

 public static void main(String args[]) throws Exception { 

  String [] usernames = new String[noOfInstances]; 

  String [] passwds = new String[noOfInstances]; 

  ExecutorService executor = Executors.newFixedThreadPool(MYTHREADS); 

  

  for(int i=1;i<noOfInstances;i++){ 

   usernames[i]= "p"+Integer.toString(i); 

   System.out.println(usernames[i]); 

   passwds[i]= "p"+Integer.toString(i); 

   System.out.println(passwds[i]); 

  

 System.out.println("#####################################################

#####################"); 

       

  } 

List<Object> list= new ArrayList<Object>();//new MyRunnable(usernames, passwds, 

intermURL); 

for(int i=1;i<noOfInstances;i++){ 

System.out.println("@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@

@@@@@@@@@@@@@@@@@@@@@@@@@@"); 

System.out.println("Thread :\t"+i+"\t submitted"); 

MyRunnable obj= new MyRunnable(usernames[i],passwds[i],intermURL); 

executor.submit(obj); 

list.add(obj); 

} 

System.out.println("~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~"); 



Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 98 

 

System.out.println("All Tasks are Submitted................... "); 

executor.shutdown(); 

// Wait until all threads are finish 

while (!executor.isTerminated()) { 

  

        } 

        System.out.println("\nFinished all threads"); 

   

//kerbClient kerb = new kerbClient(); 

} 

public static class MyRunnable implements Runnable { 

 private final String user,pass,intermURL; 

 kerbClient kerb = new kerbClient(); 

 public MyRunnable(String user, String pass, String intermURL) { 

  // TODO Auto-generated constructor stub 

  this.user = user; 

  this.pass = pass; 

  this.intermURL = intermURL;  

   

 } 

@Override 

public void run() { 

 // TODO Auto-generated method stub 

 String[] args = {user,pass,intermURL}; 

 try { 



Secure Healthcare Services using Replicated Kerberos 2014 

 

DELHI TECHNOLOGICAL UNIVERSITY Page 99 

 

 System.out.println("Executing Thread's Run Body..........................."); 

 kerb.Client(args); 

  

 } catch (IOException e) { 

 // TODO Auto-generated catch block 

 e.printStackTrace(); 

 } catch (GSSException e) { 

  // TODO Auto-generated catch block 

  e.printStackTrace(); 

  } 

 } 

        } 

} 

 


