Friction stir processing of aluminum alloy and effect of number of passes

A Major Project Report

Submitted in Partial Fulfillment for the Award of the Degree of

Master of Technology

In

Mechanical Engineering

With specialization in

PRODUCTION ENGINEERING

By

SANDEEP KUMAR (Roll No. 2K12/PRD/20)

Under the guidance of

Sh. N. YUVARAJ (Assistant Professor)

Department of Mechanical Engineering

DEPARTMENT OF MECHANICAL AND PRODUCTION ENGINEERING DELHI TECHNOLOGICAL UNIVERSITY DELHI-110042 SESSION 2012-14

CERTIFICATE

This is to certify that the project entitled "**Friction stir processing of Al alloy and effect of number of passes**" being submitted by me, is a bonafide record of my own work carried by me under the guidance and supervision of **Sh. N. Yuvaraj** (Assistant **Professor**) in partial fulfillment of requirements for the award of the Degree of Master of Technology (Production Engineering) in Mechanical Engineering, from Delhi Technological University, Delhi.

The matter embodied in this project has not been submitted for the award of any other degree.

Sandeep Kumar

University Roll No: 2K12/PRD/20

This is to certify that the above statement made by the candidate is correct to the best of our knowledge.

Sh. N. Yuvraj (Assistant Professor)

DEPARTMENT OF MECHANICAL AND PRODUCTION ENGINEERING DELHI TECHNOLOGICAL UNIVERSITY DELHI-110042 30-JULY-2014 2012-2014

ACKNOWLEDGEMENT

I have a great pleasure in expressing my deep sense of gratitude and indebtedness to my mentor, **Sh. N. Yuvraj** (Assistant Professor) of Mechanical Engineering Department of Delhi Technological University, Delhi for their invaluable and fruitful constructive suggestions and guidance that has enabled me to overcome all the problems and difficulties while carrying out multi-functionaries of the present investigation. He has guided me for fundamentals and provided many technical papers on the subject matter and thus inculcated the interest and quest for knowledge of this work. He provided constant support and encouragement for successful completion of this work. I feel fortunate for the support, involvement and well wishes of my mentor and this is virtually impossible to express them in words.

I am also grateful to Prof. Naveen Kumar Head Department of Mechanical Engineering, for providing the experimental facilities in various labs of the Department

I also have great respect and indebtedness for machine shop instructor Mr. Pardeep Kumar and CNC shop instructor Mr. Fransis and metal forming shop instructor Mr. Tekchand for their support provided for experiments, required for the completion of this special subject and I am especially thankful to Chiteka and Gorav for their help and support.

I am also thankful to all the lab assistants of my college for their kind help.

SANDEEP KUMAR

2K12/PRD/20

CONTENTS

		Торіс	Page
			no.
		Certificate	ii
		Acknowledgement	iii
		Contents	iv
		List of Figures	vii
		List of Tables	ix
		Abstract	Х
Chapter 1	1.0	INTRODUCTION	
	1.1	Friction Stir Processing	1
	1.2	Aluminum and its alloys	2
	1.3	Advantage of the FSP process	5
	1.4	Limitations of the FSP process	6
	1.5	Application of FSP	6
Chapter 2	2.0	Literature Review	7
Chapter 3	3.0	Experimental procedure	11
	3.1	Process parameters	11
	3.2	FSP Tool preparation	12
	3.2.1	Selection of tool material	12
	3.2.2	Tool Geometry	13

	3.3	work-piece preparation	15
	3.3.1	Selection of work-piece material	15
	3.3.2	Procedure for preparation of work-piece	15
	3.4	Processing Methodology	16
	3.5	Sample preparation for different testing	18
		from friction stir processed plate	
	3.5.1	Microstructure observation	18
	3.5.1.1	Sample preparation	18
	3.5.1.2	Polishing of samples	18
	3.5.1.3	Optical microscopy	19
	3.5.2	Tensile test samples	20
	3.5.3	Wear test	22
	3.5.3.1	Wear test sample preparation	22
	3.5.3.2	Wear testing operation	23
Chapter 4	4.0	Microstructure and mechanical	26
		properties	
	4.2	Micro-hardness	29
	4.3	Tensile data	29
	4.4	Stress V/s Strain diagrams	29
	4.5	Fractography of tensile samples	32
Chapter 5	5.0	wear properties	35
	5.1	wear rate	35
	5.2	wear rate v/s sliding distance	37
	5.3	Friction coefficient v/s sliding distance	40

	5.4	SEM of wear test specimen	43
	5.5	Temperature distribution over friction	46
		disc	
Chapter 6	6.0	Conclusions	48
		References	49

List of Figures

Fig. No.	Title	Page no.
1	Tool diagrams	13-14
2	FSP specimen plate	15
3	FSP on milling machine	17
4	FSPed zone of different passes	17
5	Microstructure sample mounting machine	18
6	Sample fine polishing machine	19
7	samples for microstructure observation	19
8	Setup for microstructure observation	20
9	Schematic sketch of tensile specimen	20
10 (a)	Tensile specimen before testing	21
10 (b)	Tensile specimen after testing	21
11	Tensile testing machine	22
12	Samples for wear test	23
13	sample disc for wear test	24
14	Wear testing machine	25
15	Microstructure images	26-28
16	Micro-hardness of FSPed specmen on the top surface	28
17	Stress-Strain diagrams	29-31
18	Fractography of tensile FSPed specimen of different passes	32-34
19	Cumulative wear rate v/s sliding distance diagrams for different passes	37-40
20	Friction coefficient v/s sliding distance diagrams for	40-42

different passes

21	SEM of wear test specimen of different passes	43-45
22	Temperature distribution over friction disc for different	46-47
	passes	

List of Tables

Table	Description	Page no.
no. 1	processing parameters	11
2	H-13 tool composition	13
3	Chemical composition of 1050 Al alloy	15
4	Tensile results of all specimen	29
5	Wear rate result for base material specimen	35
6	Wear rate result for FSPed one pass specimen	35
7	Wear rate result for FSPed two pass specimen	36
8	Wear rate result for FSPed three pass specimen	36
9	Wear rate result for FSPed four pass specimen	37
10	Image Information about FSPed one pass specimen	46
11	Image Information about FSPed three pass specimen	47

ABSTARCT

Friction stir processing is a newly developed solid state processing technique in which a rotating tool is inserted in a work piece for localized micro-structural modification for specific property enhancement. Alloys like aluminium, magnesium, copper etc. are most suitable for friction stir processing. Friction stir processing increases the super plasticity of material. It modifies the microstructure, increases micro-hardness and tribological properties like tensile strength, wear behavior etc. are improved. The aluminium alloy (grade 1050 have major alloying elements as iron and silicon. In this study we obtain optimum traverse and rotational speeds are 25 m/min and 1600rpm after a number of trails. The square pin profiled tool produced defect free FSP region compare to other pin profiles and obtain defect free micro and macrostructure in friction stir processing region at D/d ratio 3. These are fixed based on the literature review. In this study we processed the aluminium alloy (AA1050) with square pin profile of H-13 tool material at 1600rpm rotational speed and 25mm/min traverse speed by friction stir processing. Final results shows 9 percent increase in tensile strength compare to base alloy and hardness of processed sample increase compare to base material sample and tensile elongation decrease as number of passes increase. Wear loss of processed specimen also reduced due to increase in hardness of processed sample.