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CHAPTER-1 

 

INTRODUCTION 

1.1. OVERVIEW 

In this report we proposes a face recognition system for consumer applications under 

that is invariant to the illumination variation, frontal face with varying expression, 

occlusion and disguise. The proposed method based on f ace  r eco gn i t i on  

s ys t em  to  r eco gn ize  th e  f ace  un d e r  t he  ab ov e  p r ob l ems  o f  t h e  va s t  

v e r i t i e s . For this purpose we have recognize the face using the sparse representation 

with the feature extraction. Although sparse representation classifier can recognize 

without feature extraction but feature extraction may make the face recognition system 

more efficient. Objective of this report is to improve the accuracy of face recognition 

under real life environments. Since differential components between lines rarely vary in 

relation to illumination direction, we expect the proposed feature to be able to cope 

with illumination variation. Moreover, the advantage of our approach is that it does 

not require any complex pre-processing steps like other methods, and it can be 

easily implemented in a real-time face recognition system since the proposed feature is 

simply obtained from LBP and Gabor collectively. In the proposed method, the face 

images are first copied into two images one image feed to the LBP feature extraction 

and other one feed to Gabor feature extraction, and both methods are then separately 

applied to each image. Next, from each image features  are computed and  

then concatenated to  make feature vector . This feature vector is then used for 

recognizing the face using sparse representation classifier. Performance evaluation of 

the proposed system was carried out using an extended Yale face database B which 

consists of 2,414 face images for 38 subjects representing 64 illumination conditions 

under the frontal pose. Consequently, we will demonstrate the effectiveness of the 

proposed approach by comparing our experimental results to those obtained with 

conventional approaches. 

1.2. COMMON PROBLEMS WITH FACE RECOGNITION SYSTEM 

Most general problems face recognition system can face are given below  

1.2.1. Illumination variation 

Illumination variation are the conditions in which the uncontrolled illumination is applied 

to the face or object of the interest. Illumination variation usually cause the performance 

degradation to most of the face recognition system. Example of the shown in picture 1[1] 
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Picture 1: The picture shows the illumination variation[2], in the above image 

illumination variation occurs due to spotlight is put on different angles due to these 

angles shadow forms on one side of the face. 

1.2.2. Alignment problem 

The alignment problem is that the face is not aligned to the origin of the image due to 

that the face is not recognized by many system. Shown in picture 2 

     

Picture 2(a)     Picture 2(b)  

Picture 2: The above image show misalignment of the face in the image picture 2(a) 

shows original image picture 2(b) shows misaligned image  

1.2.3. Occlusion 

Occlusion occurs when some object comes in front of the face to be recognized. This 

problem is a very critical because only the few systems are developed for the occlusion 
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handling and may not work properly for the problem so we try to eliminate that problem. 

Example shown in figure below  

 

Picture 3: shows the condition of the occlusion 

1.2.4. Disguise 

This is the condition occurs when the occlusion to the face occurs because of the facial 

accessories for example hat, sunglasses, scarf, mask. This happens in day to day life for 

example you take a picture of man after a week braid and mustaches grown over the face 

many system may not recognize the face. We will try to overcome this problem to some 

extent   

 

                         Figure 4(a) Figure 4(b) 

Picture 4: Condition of disguise figure 4, figure 4 (a) shows person with hat figure 4(b) 

person with sunglasses.  

1.2.5. Age variation 
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Age variation is the condition for which we have trained the system for the conditions of 

the age variation. With humans age variation condition always associated with the 

change in time of the observation. With increase in time face of the human changes as 

baby, childhood, teenage, young, mature and old etc. these classification are according to 

the group of ages. Although, this algorithm would not work in the condition of age 

variation but I shows this problem just to make aware the face system user to the same. 

 

                      Picture 5(a) picture 5(b) 

Picture 5; 5(a) shows childhood image and 5(b) shows image of young person 

1.2.6. Very Low Resolution Problem 

This condition occurs when the subject to be recognized is very far from the camera in 

that case the face to be recognized picture snap shoot become very difficult. Our 

algorithm also would not work for this condition. 

  

Figure 6 (b)shows the photo in which person is far from camera 6(b) shows low 

resolution face.  

1.3. ORGANIZATION OF THESIS 

Chapter 2: This chapter includes the Algorithm of the proposed Model. It gives 

overview of the overall system. 
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Chapter 3: This chapter is about the Linear Binary Pattern. This chapter tells about the 

LBP feature extraction method. 

Chapter 4: This chapter is about the Gabor Feature Extraction. This chapter also gives 

the mathematical formulation of Gabor Filter. 

Chapter 5: This chapter includes the mathematical formulation of the Sparse 

Representation classifier and tells how it can be used with or without feature 

extraction schemes. 

Chapter 6: This chapter discusses the Experiment and results. In experiment is carried 

out on two different databases and shows respective results. 

Chapter 7: In this chapter conclusion and future scope is discussed. 
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CHAPTER-2 

ALGORITHM OF THE PROPOSED SYSTEM 

 In this model we try to develop a face recognition system which can work with 

alignment and occlusion problem. For this we use the feature extraction along with the 

sparse representation classifier 

Algorithm of the proposed model 

2.1. Training algorithm 

Input: path of the training images 

Output: Dictionary of the feature vectors for the training images  

Step 1: path of the training image   

Step 2: loop according to the training images required 

Step 3: preprocessing 

Step 4: LBP feature extraction 

Step 5: Gabor feature extraction  

Step 6: Combine the LBP and Gabor Feature to make descriptor 

Step 7: Create Dictionary   

Step 8: repeat for N times 

Training algorithm in case of the proposed system only the feature of the both types LBP 

and Gabor are calculated, and then stored in a form suitable for the storage in the storage 

media. The features are extracted from all the training examples and make feature  
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LBP Feature Extraction Gabor feature Extraction 

Combine LBP and Gabor Feature 

Training 
Images Path 

Dictionary of Images 

Picture 1: Proposed Training System Block Diagram 
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2.2. Testing algorithm 

Input: Test Image 

Output: Identity of the image 

Step 1: Preprocessing 

Step 2: Apply LBP for feature extraction 

   

Preprocessing 

LBP Feature Extraction Gabor feature Extraction 

Combine LBP and Gabor Feature 

Sparse Representation Classifier 

TEST 
IMAGE 

IDENTITY OF IMAGE 

Picture 2: Proposed Testing System Block Diagram 
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Step 3: Apply Gabor filter for feature extraction  

Step 4: Combine the LBP and Gabor Feature to make descriptor 

Step 5: Compare testing image feature with Dictionary of feature vectors   

The above image shows the block diagram of the proposed system in which the input 

is the image of the subject to be identified and the output is the identity of the image it 

shows the name and identified image from the database. 

Preprocessing Step 

Preprocessing may be the cropping the face image of the concerned subject which 

may be cropped manually or if you want to crop it automatically from given image 

you may introduce the face detection algorithm before the recognition algorithm to 

make it fully automatically. But here, we are doing only recognition and not detection. 

So, the preprocessing face image must be cut manually.  

In many algorithm the image must be converted from RGB to Gray image this is 

because color feature are the worst feature due to the color varies in accordance to the 

lightning conditions to remove the impact of the color variation to the processing 

algorithm we must eliminate the color component from the image for the RGB to 

Gray conversion is the best tool in the matlab to do best with the problem occurs due 

to the color component of the image. 

Now we have to parallel system which are used for the feature extraction purpose for 

doing this we have two feature extraction system to improve efficiency of the 

recognition system. 

1) LBP Feature extraction 

2) Gabor Feature extraction 

For extraction of the feature the one copy of the image to be recognized feed to the 

LBP feature Extraction system and other one feed to the Gabor Feature extraction 

system. The extracted feature are thus concatenated to make single feature vector.  

Creating Dictionary during Training System 

This feature vector is then stored to make dictionary for the system for the comparison 

at the time of the testing. The features for all the training images are calculated at this 

time so the more time is required at this stage. We may also compare test image by 

extracting feature for training images but it require large time and greatly reduce the 

performance so we calculate feature vector for the training image once and make the 

dictionary. So the dictionary creation is the most critical issue in this the images to be 

selected for making the dictionary may be the issue of thinking because which images 

to be chosen decides the efficiency for the recognition system. We choose the set of 

images for creating dictionary such that the system may give the maximum 

performance for this remove the redundant images for example images with the same 
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pose and expression are the worst case for creating the dictionary due to the redundant 

feature vectors are stored for these image the result remains same but the recognition 

reduced greatly because of the unnecessarily matching the test image with the same 

training images.  

Testing system 

The feature vector for the testing image is calculated exactly same as that of the 

training due to the size of the feature vector of the testing image must be same as that 

of the training image, if they are not the message of the mismatch in the dimension of 

the feature occur and the system would not work. So, for the proper working of the 

system dimension of the training feature vector and the testing feature vector must be 

same. Hence we use the fixed length descriptor. 

Another thing a testing system require is classifier. A classifier is a tool used for 

comparing the feature of the training image and the testing image the efficiency and 

the working of the system greatly depends upon the selection of the classifier after the 

feature extraction technique. We use the sparse representation classifier for 

recognizing the person for this face recognition algorithm. The features extracted from 

both LBP and Gabor are then feed to sparse representation classifier, it then compare 

the features by using the sparse measure and ℓ
1 

–minimization technique. 

Above one is the overview of system for more about the system and its components 

read following chapters. 
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(1) 

CHAPTER-3 

LOCAL BINARY PATTERNS FEATURE EXTRACTION 

Real world textures can occur at arbitrary rotations and they may be subjected to vary-

ing illumination conditions. This has inspired few studies on gray scale and rotation 

invariant texture analysis, which presented methods for incorporating both types of 

invariance. Gray scale invariance by assuming that the gray scale transformation is a 

linear function. 

In this study we propose a theoretically and computationally simple approach which is 

robust in terms of gray scale variations and which is shown to discriminaterotated 

textures efficiently. Extending our earlier work, we present a truly gray scale and 

rotation invariant texture operator based on local binary patterns[18]. Starting from the 

joint distribution of gray values of a circularly symmetric neighbor set of eight pixels 

in a 3x3 neighborhood, we derive an operator that is by definition invariant against 

any monotonic transformation of the gray scale. Rotation invariance is achieved by 

recognizing that this gray scale invariant operator incorporates a fixed set of rotation 

invariant patterns[19]. 

The novel contribution of this work is to use only a limited subset of ‘uniform’ pat-

terns instead of all rotation invariant patterns, which improves the rotation invariance 

considerably. We call this operator LBP8
riu2

. The use of only ‘uniform’ patterns is 

motivated by the reasoning that they tolerate rotation better because they contain 

fewer spatial transitions exposed to unwanted changes upon rotation. This 

approximation is also supported by the fact that these ‘uniform’ patterns tend to 

dominate in deterministic textures, which is demonstrated using a sample image data. 

Further, we propose operator called LBP16
riu2

, which enhances the angular resolution 

of LBP8
riu2

 by considering a circularly symmetric set of 16 pixels in a 5x5 

neighborhood[20]. 

 

These operators are excellent measures of the spatial structure of local image texture, 

but they by definition discard the other important property of local image texture, 

contrast, since it depends on the gray scale. We characterize contrast with rotation 

invariant variance measures named VAR8 and VAR16, corresponding to the circularly 

symmetric neighbor set where they are computed. We present the joint distributions of 

these complementary measures as powerful tools for rotation invariant texture classifi-

cation. As the classification rule we employ nonparametric discrimination of sample 

and prototype distributions based on a log-likelihood measure of the (dis)similarity of 

histograms[21]. 

 

The performance of the proposed approach is demonstrated with two problems used in 

recent studies on rotation invariant texture classification. In addition to the original 

experimental setups we also consider more challenging cases, where the texture 

classifier is trained at one particular rotation angle and then tested with samples from 

other rotation angles. Excellent experimental results demonstrate that the texture 

representation obtained at a specific rotation angle generalizes to other rotation angles. 

The proposed operators are also computationally attractive, as they can be realized 

with a few operations in a small neighborhood and a lookup table. 

 

3.1 MATHEMTICAL OVERVIEW OF LBP 

Gray Scale and Rotation Invariant Local Binary Patterns 

We start the derivation of our gray scale and rotation invariant texture operator by 
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(5) 

defining texture T in a local 3x3 neighborhood of a monochrome texture image as the 

joint distribution of the gray levels of the nine image pixels: 

T= P
(
g0,g1,g2,g3,g4, g5, g6, g7,g8) 

Where gt (i=0,...,8), correspond to the gray values of the pixels in the 3x3 neighborhood 

according to the spatial layout illustrated in Fig. 1. The gray values of diagonal pixels (g2, 

g4, g6, and g8) are determined by interpolation. 

g4 

• 

g3 

• 
g2 

• 

g5  og0 *g1 

• 

g6 • 

g7 

*g8 

 

 

Fig. 1. The circularly symmetric neighbor set of eight pixels in a 3x3 neighborhood. 

Achieving Gray Scale Invariance 

As the first step towards gray scale invariance we subtract, without losing information, 

the gray value of the center pixel (g0) from the gray values of the eight surrounding 

pixels of the circularly symmetric neighborhood (g, i=l,...,8) giving: 

T = p(go, gl-go, g2 – go, g3 – go, g4 – go, g5 – go, g6 – go, g7 – go, g8 - go)            

(2) 

Next, we assume that differences grg0 are independent of g0, which allows us to factorize 

Eq.(2): 

T ≈ p(go)p(gl – go, g2 – go, g3 – go, g4 – go, g5 – go, g6 – go, g7 – go, g8 - go) (3) 

In practice an exact independence is not warranted, hence the factorized distribution is 

only an approximation of the joint distribution. However, we are willing to accept the 

possible small loss in information, as it allows us to achieve invariance with respect to 

shifts in gray scale. Namely, the distribution p(g0) in Eq.(3) describes the overall 

luminance of the image, which is unrelated to local image texture, and consequently does 

not provide useful information for texture analysis. Hence, much of the information in 

the original joint gray level distribution (Eq.(l)) about the textural characteristics is 

conveyed by the joint difference distribution: 

T≈ p(gi-go, g2- go,g3-go, g4-go, g5-go, g6-go, g7-go, g8-go)  (4) 

Signed differences grg0 are not affected by changes in mean luminance, hence the joint 

difference distribution is invariant against gray scale shifts. We achieve invariance with 

respect to the scaling of the gray scale by considering just the signs of the differences 

instead of their exact values[19]: 

T ≈ p(s(gl – go), s(g2 — go), s(g3 – go), s(g4 – go), ...,s(g8-

go)) 

Where 
 

1, 0

0, 0( ) { x

xs x 


       (6) 

 



P a g e  | 13 

 

Delhi Technological University 
 

If we formulate Eq.(5) slightly differently, we obtain an expression similar to the LBP 

(Local Binary Pattern) operator we proposed in 

 

 
8

1

8 0

1

( )2i

i

i

LBP g g 



      (7) 

 

The two differences between LBP8 and the LBP operator the pixels in the neighbor set 

are indexed so that they form a circular chain, and 2) the gray values of the diagonal 

pixels are determined by interpolation. Both modifications are necessary to obtain the 

circularly symmetric neighbor set, which allows for deriving a rotation invariant 

version of LBP8. For notational reasons we augment LBP with subscript 8 to denote 

that the LBP8 operator is determined from the 8 pixels in a 3x3 neighborhood. The 

name ‘Local Binary Pattern’ reflects the nature of the operator, i.e. a local 

neighborhood is thresholded at the gray value of the center pixel into a binary 

pattern[19]. LBP8 operator is by definition invariant against any monotonic 

transformation of the gray scale, i.e. Achieving Rotation Invariance 

 

The LBP8 operator produces 256 (2
8
) different output values, corresponding to the 256 

different binary patterns that can be formed by the eight pixels in the neighbor set. 

When the image is rotated, the gray values gi will correspondingly move along the 

perimeter of the circle around g0. Since we always assign g1 to be the gray value of 

element (0,1), to the right of g0, rotating a particular binary pattern naturally results in 

a different LBP8 value. This does not apply to patterns 000000002 and 11nnn2  which 

remain constant at all rotation angles. To remove the effect of rotation, i.e. to assign a 

unique identifier to each rotation invariant local binary pattern we define: 
36

8 8min{ ( , ) , 0.1.....7}riLBP ROR LBP i where i    (8) 

as long as the order of the gray values stays the same, the output of the LBP8 operator 

remains constant. 

 

where ROR(x,i) performs a circular bit-wise right shift on the 8-bit number xi times. In 

terms of image pixels Eq.(8) simply corresponds to rotating the neighbor set 

clockwise so many times that a maximal number of the most significant bits, starting 

from g8, are 0. We observe that LBP8
ri36

 can have 36 different values, corresponding 

to the 36 unique rotation invariant local binary patterns illustrated in Fig. 2, hence the 

super- script
ri36

. LBP8
ri36

 quantifies the occurrence statistics of these patterns 

corresponding to certain microfeatures in the image, hence the patterns can be 

considered as feature detectors. For example, pattern #0 detects bright spots, #8 dark 

spots and flat areas, and #4 edges. Hence, we have obtained the gray scale and rotation 

invariant operator LBP8
ri36

 that we designated as LBPROT 
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Fig. 2. The 36 unique rotation invariant binary patterns that can occur in the eight 

pixel circularly symmetric neighbor set. Black and white circles correspond to bit 

values of 0 and 1 in the 8-bit output of the LBP8 operator. The first row contains the 

nine ‘uniform’ patterns, and the numbers inside them correspond to their unique 

LBP8
riu2

 values. 

 

Improved Rotation Invariance with ‘Uniform’ Patterns 

However, experiments has showed that LBP8
ri36

 as such does not provide a very good 

discrimination, as we also concluded. There are two reasons: 

1. The performance of the 36 individual patterns in discrimination of rotated textures 

varies greatly: while some patterns sustain rotation quite well, other patterns do not 

and only confuse the analysis. Consequently, using all 36 patterns leads to a subop-

timal result (addressed in this section). 

2 .Crude quantization of the angular space at 45
o
 intervals . 

 

The varying performance of individual patterns attributes to the spatial structure of the 

patterns. To quantify this we define an uniformity measure U(‘pattern’), which cor-

responds to the number of spatial transitions (bitwise 0/1 changes) in the ‘pattern’. For 

example, patterns 000000002 and 111111112 have U value of 0, while the other seven 

patterns in the first row of Fig. 2 have U value of 2, as there are exactly two 0/1 transi-

tions in the pattern. Similarly, other 27 patterns have U value of at least 4. 

We argue that the larger the uniformity value U of a pattern is, i.e. the larger number 

of spatial transitions occurs in the pattern, the more likely the pattern is to change to a 

different pattern upon rotation in digital domain. Based on this argument we designate 

patterns that have U value of at most 2 as ‘uniform’ and propose the following 

8
2

8 0

1

( ){riu

i

i

LBP s g g


  ,   if U(LBP8) ≤ 2   (9) 

  9   otherwise 

 

 

Eq.(9) corresponds to giving an unique label to the nine ‘uniform’ patterns illustrated 

in the first row of Fig. 2 (label corresponds to the number of ‘1’ bits in the pattern), 

the 27 other patterns being grouped under the ‘miscellaneous’ label (9). Superscript 
riu2

 corresponds to the use of rotation invariant ‘uniform’ patterns that have U value of 

at most 2. 

The choice of ‘uniform’ patterns with the simultaneous compression of ‘non-uniform’ 

patterns is also supported by the fact that the former tend to dominate in deterministic 
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textures. Using the image data of the experiments. In practice the mapping from LBP8 

to LBP8
riu2

, which has 10 distinct output values, is best carry out with a lookup table 

of 256 elements. 

Improved Angular Resolution with a 16 Pixel Neighborhood 

The rotation invariance of LBP8
riu2

 is hampered by the crude 45
o 

quantization of the 

angular space provided by the neighbor set of eight pixels. To report this we present a 

modification, where the angular space is quantized at a finer resolution of 22.5
o
 

intervals. This is attained through the circularly symmetric neighbor set of 16 pixels 

illustrated. Yet again, the gray values of neighbors which do not fall exactly in the 

center of pixels are estimated by interpolation. Note that we increase the size of the 

local neighborhood to 5x5 pixels, as the eight added neighbors would not provide too 

much new information if inserted into the 3x3 neighborhood. An added benefit is the 

dissimilar spatial resolution, if we should want to perform multi-resolution analysis. 

 

 
Following the derivation of LBP8, we first define the 16-bit version of the rotation 

variant LBP: 
16

1

16 0

1

( )2i

i

i

LBP s h h 



     (10)   

 

The LBP16 operator has 65536 (2
16

) different output values and 243 different rotation 

invariant patterns can occur in the circularly symmetric set of 16 pixels. Choosing 

again the ‘uniform’ rotation invariant patterns that have at most two 0/1 transitions, 

we define LBP
riu2

, 

 

16
2 2

16 0

1

( ){riu

i

i

LBP s h h


  ,   if U(LBP16) ≤ 2   (11) 

  17   otherwise 

 

Therefore, the LBP16
riu2

 operator takes 18 distinct output values, of which values from 

0 (pattern 00000000000000002) to 16 (pattern 11111111111111112) correspond to the 

number of 1 bits in the 17 unique ‘uniform’ rotation invariant patterns, and value 17 

denotes the ‘miscellaneous’ class of all ‘nonuniform’ patterns. Actually the mapping 

from LBP16 to LBP16
riu2

 is implemented with a lookup table of 2
16

 elements. 

 

Rotation Invariant Variance Measures of the Contrast of Local Image Texture 

Normally, image texture is considered as a two dimensional phenomenon that be able 

to characterized with two orthogonal properties, spatial structure (pattern) and contrast 

(the ‘amount’ of local image texture). With gray scale and rotation invariant texture 

description these two are an interesting pair: whereas spatial pattern is affected by 
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rotation, contrast is not, and vice versa, while contrast is affected by the gray scale, 

spatial pattern is not. Subsequently, till we want to restrict ourselves to pure gray scale 

invariant texture analysis, contrast is of no interest, as it depends on the gray scale. 

 

The LBP8
riu2

 and LBP16
riu2

 operators are true gray scale invariant measures, i.e. their 

output is not affected by any monotonic transformation of the gray scale. They are 

excellent measures of the spatial pattern, but by definition throw away contrast. If we 

under stable lighting conditions wanted to incorporate the contrast of local image tex-

ture as well, we can measure it with rotation invariant measures of local variance: 

 
8

2

8 8

1

1
( )

8
i

i

VAR g 


  , where 
8

8

1

1

8
i

i

g


    (12) 

 
16

2

16 16

1

1
( )

16
i

i

VAR h 


  , where 
16

16

1

1

16
i

i

h


   (13) 

 

VAR8 and VAR16 are by definition invariant against shifts in gray scale. Meanwhile 

LBP and VAR are complementary, their joint distributions LBP8
riu2

/VAR8 and 

LBP16
riu2

/ VAR16 are very powerful rotation invariant measures of local image texture. 

Nonparametric Classification Principle 

In the classification phase a test sample S was allocated to the class of the model M 

that maximized the log-likelihood measure: 

 

 

1

( , ) log
B

b b

b

L S M S M


   (14) 

 

 

where B is the number of bins, and Sb and Mb correspond to the sample and model 

probabilities at bin b, respectively. This nonparametric (pseudo-)metric measures like-

lihoods that samples are from alternative texture classes, based on exact probabilities 

of feature values of pre-classified texture prototypes. In the case of the joint distribu-

tions LBP8
riu2

/VAR8 and LBP16
riu2

/VAR16, the log-likelihood measure (Eq.(14)) was 

extended in a direct manner to scan through the two-dimensional histograms. 

 

Sample and model distributions were achieved by scanning the texture samples and 

prototypes with the selected operator, and dividing the distributions of operator 

outputs into histograms having a fixed number of B bins. Since LBP8
riu2

 and LBP16
riu2

 

have a entirely defined set of discrete output values, they do not need any additional 

binning procedure, but the operator outputs are directly gathered into a histogram of 

10 (LBP8
riu2

) or 18 (LBP16
riu2

) bins. 

 

Variance find out VAR8 and VAR16 have a continuous-valued output, hence quan-

tization of their feature space is requisite. This had been done by adding together 

feature distributions for every single model image in a total distribution, which was 

divided into B bins having an equal number of entries. From now, the cut values of the 

bins of the histograms related to the (100/B) percentile of the joint data. Deriving the 
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cut values from the total distribution and assigning every bin the same amount of the 

combined data assures that the highest resolution of quantization is used where the 

amount of entries is largest and vice versa. The number of bins used in the quantiza-

tion of the feature space is significant, as histograms with a too modest number of bins 

fail to deliver sufficient discriminative information about the distributions. Oppositely, 

since the distributions have a finite number of entries, a too large number of bins may 

lead to sparse and unstable histograms. As a rule of thumb, statistics literature often 

proposes that an average number of 10 entries per bin should be sufficient. In the 

experiments we set the value of B so that this condition was satisfied. 

 

3.2. LOCAL BINARY PATTERN PIXEL BASED 

Local binary patterns were introduced by Ojala et al as a fine scale texture descriptor. In 

its simplest form, an LBP description of a pixel is created by thresholding the values of 

the 3 x 3 neighborhood of the pixel against the central pixel and interpreting the result as 

a binary number. The process is illustrated in figure 1. 

 

 

Figure 1. The LBP operator thresholds each pixel against its neighboring pixels and 

interprets the result as a binary number. In the bottom image each gray-level value 

corresponds to a different local binary pattern. 

In the LBP operator is generalized by allowing larger neighborhood radii r and different 

number of sampling points s. These parameters are indicated by the notation LBPs,r. For 
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example, the original LBP operator with radius of 1 pixel and 8 sampling points is 

LBP8,1. Another 

 

 

Figure 2. LBP descriptors are built by partitioning the LBP face image into a grid and 

computing LBP histograms over each grid cell. These histograms may then be 

concatenated into a vector or treated as individual descriptors. 

important extension is the definition of “uniform patterns”. An LBP[19] is defined as 

uniform if it contains at most two 0-1 or 1-0 transitions when viewed as a circular bit 

string. Thus the 8-bit strings 01100000 and 00000000 are uniform, while 01010000 and 

00011010 are not. Ojala observed that when using 8 sampling points, uniform patterns 

accounted for nearly 90% of the patterns in their image datasets. Therefore, little 

information is lost by assigning all non uniform patterns to a single arbitrary number. 

Since only 58 of the 256 possible 8 bit patterns are uniform, this enables significant 

space savings when building LBP histograms. To indicate the usage of two-transition 

uniform patterns, the superscript u2 is added to the LBP operator notation. Hence the 

LBP operator with a 2 pixel radius, 8 sampling points and uniform patterns is known as 

LBP. 

The success of LBP has inspired several variations. These include local ternary patterns, 

elongated local binary patterns, multi scale LBP [20], centralized binary patterns and 

patch based LBP, among others. 

In this we use LBP, which was selected by Ahonen et al in their pioneering work 

applying LBP to face recognition. This descriptor has been used, by itself or in 

combination with other features, by most methods that use LBP[21] for face recognition. 
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3.2. HISTOGRAM 

In our experiment we have applied the eight different filter of 3*3 matrix to extract the 

LBP features by multiplying separately to the face image. After applying the filter 

histogram is calculated of all the eight filtered images. These histogram then 

concatenated to form the feature vector. 

For a grayscale image there are different 256 gray values. This means any of the pixel in 

grayscale image falls in one of 256 category. Histogram of an image is a graph which 

shows the number of pixels falls into the one of 0-255(or 1-256) gray value. It gives the 

no pixels against no gray values. It tells how many pixels haves same values every face 

image have different histogram after applying LBP so histogram of the LBP filtered 

image may be used as the feature vector.  

 

Figure 3: x axis represents the 256 different gray values and y axis no of pixels having 

that value   
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CHAPTER-4 

 

GABOR FEATURE EXTRACTION 
 

4.1. GABOR FILTER 

 

Gabor filter is a linear filter used for edge detection used for the edge detection, it is 

named after Dennis Gabor. Frequency and orientation representations of Gabor filters 

are similar to those of the human visual system, and they have been found to be 

particularly suitable for texture representation and discrimination. In the spatial 

domain, a 2D Gabor filter is a Gaussian kernel function modulated by a sinusoidal 

plane wave[27]. 

 

Simple cells in the visual cortex of mammalian brains shall be modeled by Gabor 

functions.
 

Thus, image analysis with Gabor filters is thought to be similar to 

perception in the human visual system. Gabor filter impulse response is defined by a 

sinusoidal wave and by a plane wave for 2D Gabor filters [7], multiplied by a 

Gaussian function. Because of the multiplication-convolution property (Convolution 

theorem), the Fourier transform of a Gabor filter's impulse response is the convolution 

of the Fourier transform of the harmonic function and the Fourier transform of the 

Gaussian function. This filter have a real as well as an imaginary component 

representing both orthogonal directions. These components can be formed to make a 

complex number or used individually. 

 

Complex equation of the Gabor Filter [1] 

 

 
 

Real part 

 
 

Imaginary part 

 
 

Where the values of  

 
 

and 

 
 

In the above equation,  represents the wavelength of the sinusoidal factor,  

characterizes the orientation of the normal to the parallel stripes of a Gabor function, 

 represents the phase offset,  represents the sigma/standard deviation of the 

Gaussian envelope and  symbolized the spatial aspect ratio, and identifies the 

ellipticity of the support of the Gabor function. 

http://en.wikipedia.org/wiki/Image_analysis
http://en.wikipedia.org/wiki/Convolution
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4.2. FEATURE EXTRACTION 

 

A group of Gabor filters with distinct frequencies and orientations would be useful for 

extracting useful features from a face image. Gabor filters are widely used in pattern 

analysis applications.  

 

Four orientations are shown on the right 0°, 45°, 90° and 135°. The original character 

picture and the superposition of all four orientations are shown on the left. Gabor 

filters are directly related to Gabor wavelets, due to they shall be designed for a 

number of dilations and rotations. However, generally expansion is not applied for 

Gabor wavelets, meanwhile this requires computation of bi-orthogonal wavelets, 

which may be very time-consuming. Hence, typically, a filter bank consisting of 

Gabor filters [4] with various scales and rotations is created. The filters are convolved 

with the signal, resulting in a so-called Gabor space. This process is closely related to 

processes in the primary visual cortex. Jones and Palmer showed that the real part of 

the complex Gabor function is a good fit to the receptive field weight functions found 

in simple cells in a cat's striate cortex. Histogram of Gabor output can be taken for 

feature extraction [29]. 

 

The Gabor space is very useful in image processing applications such as optical 

character recognition, iris recognition and fingerprint recognition. Relationships 

among activations for a specific spatial location are very distinguishing between 

objects in an image. Moreover, significant initiations can be pull out from the Gabor 

space with the purpose of create a sparse object representation. 

 

4.3. GTP PATTERN DESCRIPTOR 

 
The detected regions must be normalized to a fixed size, a local descriptor is 
constructed within each region as follows: We first apply the Gabor filter to each 
image patch. We use Gabor filters because they provide good perception of local 
image structures and they are robust to illumination variations. The Gabor kernels [4] 
are defined as 

 

    (eq1) 
 
where   and   define the orientation and scale of the Gabor kernels, respectively, z 

= (x, y)
T
, and the wave vector k  ,  is defined as 

   (eq2) 

with kv = kma x /f
v
, kma x  =  /2, f  =  2 , and / 8  . Due to the relatively small 

region size (40 x 40 pixels) we process Gabor kernels at a single scale (v  = 0) and four 
orientations (  {0,2,4,6}, corresponding to 0, 45, 90, and 135 degrees) with   = 1 
are used. Furthermore, we only use the odd Gabor kernels (imaginary part), which are 
sensitive to edges and their locations. These four Gabor kernels are able to 
discriminate local details in the face image. Four Gabor filtered images for a local 
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patch. These four response images emphasize edges in four different orientations (0, 
45, 90, and 135 degrees). 

For each pixel (x, y) in the normalized keypoint region, there are four Gabor filter 
responses as follows: 

( , ) ( , )* ( , ), 0,1,2,3i if x y G x y I x y i     (eq3) 

 

where 
2 ,0( )i iG imag  is the i th odd Gabor kernel and * is the convolution operator. 

The responses of the four filters are combined as a ternary pattern: 

3

0

( , ) 3 [( ( , ) ) 2( ( , ) )],i

t i i

i

GTP x y f x y t f x y t


        (eq4) 

where t  is a small positive threshold (a value of 0.03 is used in our experiments). We 

call this local descriptor the GTP[1]. It encodes local structures from the responses of 

odd Gabor filters in four different orientations. The local ternary pattern provides a 

discriminative encoding of the four Gabor filters 

 

 

 
 

 

 

Figure shows Gabor Feature Extraction by creating GTP Pattern 
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CHAPTER-5 

 

SPARSE REPRESENTATION 

 
Automatically recognizing human faces from frontal views with varying expression 

and illumination, as well as occlusion and disguise is a complex problem. Design of 

the recognition problem as one of classifying among multiple linear regression models 

and claim this theory from sparse signal representation offers the strategy to 

addressing this problem. Based on a sparse representation computed by l1-

minimization [5], this introduces a common classification algorithm for face 

recognition. This framework offers new understandings into two critical problems in 

face recognition: feature extraction and robustness to occlusion. For feature extraction, 

we show that if sparsity in the recognition problem is properly coupled, the choice of 

features remains no longer critical. What is necessary is whether the number of 

features are sufficiently large and whether the sparse representation is appropriately 

calculated. Alternative features such as downsampled images and random projections 

works just as good as conventional features such as Eigenfaces and Laplacianfaces, if 

the dimension of the feature space exceeds certain threshold, predicted by the theory 

of sparse representation [4]. Then the framework can handle errors due to occlusion. 

The t sparse representation aids to forecast how much occlusion the recognition 

procedure be able to handle and how to pick the training images to make best use of 

robustness to occlusion.  

 

We achieve the discriminative Characteristics of sparse representation to perform 

classification. Rather than using the nonspecific dictionaries, we represent the test 

sample in an overcomplete dictionary those base elements are the training samples 

themselves. If enough training samples are existing from each class, there is a 

possibility to denote the test samples as a linear mixture of just those training samples 

from the same class. This representation is naturally sparse, including only a minor 

portion of the overall training database. We debate that in various problems of 

interest, this is in fact the sparsest linear representation of the test sample in terms of 

this dictionary and can be recovered well via ℓ
1
 -minimization. Looking for the 

sparsest representation hence automatically differentiates between the various classes 

existing in the training set. Sparse representation too provides an easy and 

unexpectedly effective way of rejecting invalid test samples not arising from any class 

in the training database. These samples' sparsest representations be subject to involve 

many dictionary elements, covering multiple classes. 

 

In place of using sparsity to classify appropriate model or appropriate features that can 

far ahead be used for classifying all test samples, it uses the sparse representation of 

each individual test sample directly for classification, adaptively selecting the training 

samples those give the maximum compact representation. The suggested classifier 

will be considered a generalization of widely used classifiers such as nearest neighbor 

(NN) and nearest subspace (NS) (i.e., least distance to the subspace spanned all 

training samples from every object class). NN classifies the test sample based on the 

best representation in relations to a single training sample, however NS classifies 

based on the best linear representation in relations to all the training samples in each 

class. The nearest feature line (NFL) algorithm makes a balance among these two 

extremes, classifying based on the best affine representation is related to a pair of 
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training samples. This method strikes a similar balance but considers all possible 

supports (within each class or across multiple classes) and adaptively selects the 

minimal amount of training samples needed to represent each test sample. 

 

Motivating and studying this approach for classification inside the context of 

automatic face recognition. Human faces are perhaps the most broadly studied object 

in image-based recognition. This is because of the notable face recognition capability 

of the human visual system and also because of a large amount of important 

applications for face recognition. Additionally, technical issues associated with face 

recognition are representative of object recognition and even data classification in 

general. On the other hand, the theory of sparse representation and compressed 

sensing lead to new visions into two crucial issues in automatic face recognition: the 

feature extraction and the occlusion. 

 

Feature extraction 

Low-dimensional features of an object image are the most appropriate or useful for 

classification is a dominant issue in face recognition and in object recognition in 

general. An huge volume of works has been devoted to investigate various data-

dependent feature transformations for projecting the high-dimensional test image into 

lower dimensional feature spaces: For example include Eigenfaces, Laplacianfaces, 

Fisherfaces etc. Using so many offered features and so little consensus about which 

are better or worse, there is absence of procedures to decide which features to use. 

Though, in our suggested framework, the theory of compressed sensing implies that 

the exact choice of feature space is no longer precarious: Even random features hold 

enough information to recover the sparse representation and hence correctly classify 

any test image. What is critical is that the dimension of the feature space is sufficiently 

large and that the sparse representation is correctly computed. 

 

Occlusion handling 

Occlusion poses a major difficulty to robust real-world face recognition. This trouble 

is mainly because of the random nature of the error experienced by occlusion. This 

may affect any part of the image and may be arbitrarily enormous in magnitude. 

However, this error naturally corrupts only a fraction of the image pixels and is hence 

sparse in the usual basis given by individual pixels. While the error has such a sparse 

representation, it can be handled uniformly with this framework. The center in which 

the error is sparse can be treated as a distinct class of training samples. The succeeding 

sparse representation of an occluded test image pertaining to this prolonged dictionary 

(training images plus error basis) naturally split up the component of the test image 

arising due to occlusion from the component arising from the identity of the test 

subject. In this context, the concept of sparse representation and compressed sensing 

illustrates when such source-and- error separation can take place and consequently 

how much occlusion the resulting recognition algorithm can bear. 

 

The proposed system is of extensively concern to object recognition in general, the 

studies and experimental results in this are confined to human frontal face recognition. 

 

Working of Sparse Representation Classifier 
An elementary difficulty in object recognition is to use labeled training samples from 

k different object classes to properly determine the class to which a new test sample 

belongs. We arrange the given ni training samples from the ith class as columns of a 

matrix A= [vi,l, vi,2,..., vi,ni]  IR
mxni

. In the context of face recognition, we will 
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identify a w x h grayscale image with the vector v IR
m

 (m = wh) given by stacking 

its columns; the columns of Ai are then the training face images of the ith subject. 

Test Sample as a Sparse Linear Combination of Training Samples 

 

A vast variety of statistical, generative, or discriminative models have been offered for 

take advantage of the structure of the Ai for recognition. One particularly easy and 

effective style of models the samples from a single class as lying on a linear subspace. 

Subspace models are flexible sufficient to capture abundant of the dissimilarity in real 

data sets and are specifically well motivated from the perspective of face recognition, 

wherever it has been observed that the images of faces in varying lighting and 

expression lie on a special low-dimensional subspace, is called a face subspace. Even 

though the proposed framework and algorithm may also put on to multimodal or 

nonlinear distributions, for simplicity of presentation, we first assume that the training 

samples from a only class do lie on a subspace. This is the individual former 

knowledge about the training samples we will be using in our solution. 

 

Specified essential training samples of the ith object class, Ai = [vi,l, vi,2,..., vi,ni]  

IR
mxni, some different (test) sample y  IR

m
 from the same class will approximately 

lie in the linear span of the training samples related with object i: 

Y= i,l, vi,l+ i,2, vi,2+…..+ i,ni, vi,ni  (eq1) 

for some scalars,  i,j  IR, j = l 2, ...,n 

 

Meanwhile the membership i of the test sample is firstly unknown, we will define a 

matrix A for the entire training set as the concatenation of the n training samples of all 

k object classes: 

A= [Ai,A2, ... , Ak] = [vi,l, vi,2,..., vk,nk]  (eq2) 

 

Formerly, the linear representation of y can be rewritten in terms of all training 

samples as 

y = Ax0 IR
m

     (eq3) 

 

here x0 = [0, --, 0,  i,l,+ i,2+…..+ i,ni, 0,..., 0]
T
  IR

n 
is a coefficient vector whose 

entries are zero except those associated with the ith class. 

 

In accordance with the entries of the vector x0 coded the identity of the test sample y, 

it is tempting to try to obtain it by solving the linear system of equations y = Ax. 

Notice, that using the whole training set to solve for x characterizes a most important 

departure from a sample or a class at a time methods such as NN and NS. Later we 

claim that one may achieve a more discriminative classifier from such a global 

representation. We have demonstrate its superiority over these local methods (NN or 

NS) both for categorizing objects represented in the training set and for discarding 

samples different class that do not arise from any of the classes existing in the training 

set. The benefits can come without an increase in the order of growth of the 

calculation: hence, the complexity remnants linear in the size of training set. 

 

Clearly, if m > n, the system of equations y = Ax is overdetermined, and the correct x0 

can usually be found as its unique solution. However, in robust face recognition, the 

system y = Ax is usually underdetermined, and so, its solution is not unique.  

Conventionally, this problem can be resolved by selecting the minimumα ℓ
2
 -norm 

solution: 

(ℓ
2
) : x̂ 2 = arg min ||x||2 subject to Ax = y. (eq4) 
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Although this optimization problem can be simply resolved (via the pseudoinverse of 

A), the solution x̂ 2 is not specially informative for recognizing the test sample y. As 

presented in Example 1, x̂ 2 is in general dense, with large nonzero entries 

corresponding to training samples from numerous dissimilar classes. To solve this 

difficulty, we as an alternative exploit the following simple observation: A valid test 

sample y may be appropriately characterized using only the training samples from the 

same class. This representation is naturally sparse if the number of object classes k is 

reasonably enormous. For example, if k = 20, only 5 % of the entries of the desired x0 

should be nonzero. The sparser the recovered x0, the easier will it be to precisely 

conclude the identity of the test sample y.  

 

This will inspires us to look for the sparsest solution to y = Ax, solving the following 

optimization problem: 

(ℓ0) : x̂ 0 = arg min ||x||0 subject to Ax = y, (eq5) 

 

Here ||. ||0 denotes the ℓ
0
-norm, which counts the number of nonzero entries in a 

vector. Actually, when the columns of A in general position, then at any time y = Ax 

for some x with less than m/2 nonzeros, x is the unique sparsest solution: x0 = x. 

Though, the problem of finding the sparsest solution of an underdetermined system of 

linear equations is NP-hard and tough even to approximate: Usually, no known 

technique for finding the sparsest solution is significantly more effective than 

exhausting all subsets of the entries for x. 

2.2 Sparse Solution via ℓ1-Minimization 

 

Fig. 2. Geometry of sparse representation via ℓ1 -minimization. The 

ℓ
1
-minimization determines which facet (of the lowest dimension) of the polytope 

A(Pα). The test sample vector y is represented as a linear combination of just the 

vertices of that facet, with coefficients x0.That if the solution x0 sought is sparse 

sufficient, the solution of the ℓ
0
-minimization problem (eq5) is equal to the solution to 

the succeeding ℓ1 -minimization problem: 

(ℓ1) : x̂ 1 = arg min ||x||1 subject to Ax = y. (eq6) 

This difficulty can be resolved in polynomial time by standard linear programming 

methods. Even more effective procedures are available while the solution is known to 

be very sparse. For example, homotopy algorithms recover solutions with t nonzeros 

in O(t3 + n) time, linear in the size of the training set . 

 

Geometric Interpretation 

Geometric interpretation of minimizing the ℓ1 -norm correctly recovers sufficiently 

sparse solutions. Let Po denote the ℓ1 -ball (or crosspolytope) of radius α: 

Po={x : ||x||1 < α} C IR
n
. (eq7) 

 

In the unit ℓ1 -ball P1 is mapped to the polytope P=A(P1 ) C IR
m

, consisting of all y 

that satisfy y = Ax for some x whose ℓ1 -norm is < 1. 

 

The geometric relationship between Pα and the polytope A(Pα) is invariant to scaling. 

That is, if we scale Pα, its image under multiplication by A is also scaled by the same 

amount. Geometrically, finding the minimum ℓ1 -norm solution x1 to (eq6) is 

equivalent to expanding the ℓ1 -ball Pα until the polytope A(Pα) first touches y. The 

value of o at which this occurs is precisely ||x||1. 
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At present, assume that y = Ax0 for some sparse x0. We want to know while solving 

(eq6) correctly recovers x0. This may easily resolved from the geometry Since x1 is 

found by expanding both Pα and A(Pα) until a point of A(Pα) touches y, the ℓ1 -

minimizer x1 must generate a point Ax1 on the boundary of P. 

 

Thus, x1 = x0 if and only if the point A(x0/||x0||1) lies on the boundary of the polytope 

P. For the example shown in Fig. 2, it is easy to see that the ℓ1 -minimization recovers 

all x0 with only one nonzero entry. This equivalence holds because all of the vertices 

of P1 map to points on the boundary of P. 

 

In general, if A maps all t-dimensional facets of P1 to facets of P, the polytope P is 

referred to as (centrally) t-neighborly . From the above, we see that the ℓ1 -

minimization (eq6) correctly recovers all x0 with < t + 1 nonzeros if and only if P is t-

neighborly, in which case, it is Unfortunately, there is no known algorithm for 

efficiently verifying the neighborliness of a given polytope P. The best known 

algorithm is combinatorial, and therefore, only practical when the dimension m is 

moderate. When m is large, it is known that with overwhelming probability, the 

neighborliness of a randomly chosen polytope P is loosely bounded between 

c . m < t < [(m + 1)/3], (eq8) 

 

for some small constant c > 0. Roughly speaking, if the number of nonzero entries of 

x0 is a small fraction of the dimension m, ℓ1 -minimization may recover xo. 

Dealing with Small Dense Noise 

 

Before this, we have assumed that (eq3) holds exactly. Meanwhile real data are noisy, 

it would not be possible to express the test sample precisely as a sparse superposition 

of the training samples. The model (eq3) can be modified to explicitly account for 

small possibly dense noise by writing 

y = Axo + z, (eq9) 

 

where z  IR
m 

is a noise term with bounded energy ||z||2 < e. The sparse solution xo 

can still be approximately recovered by solving the following stable ℓ1 -minimization 

problem: 

(ℓ
1

s) : x̂ 1 = arg min ||x||1 subject to ||Ax — y||2 < e. (eq10) 

 

This convex optimization problem can be efficiently solved via second-order cone 

programming. The solution of (ℓ1) is guaranteed to approximately recovery sparse 

solutions in ensembles of random matrices A : There are constants p and ζ such that 

with overwhelming probability, if ||xo||o < pm and ||z||2 < e, then the computed x1 

satisfies 

||x1 — x0||2 < ζε (eq11) 

 

Classification Based on Sparse Representation 

Given a new test sample y from one of the classes in the training set, we first compute 

its sparse representation x1 via (eq6) or (eq10). Ideally, the nonzero entries in the 

estimate x1 will all be associated with the columns of A from a single object class i, 

and we can easily assign the test sample y to that class. However, noise and modeling 

error may lead to small nonzero entries associated with multiple object classes (see 

Fig. 3). Based on the global sparse representation, one can design many possible 

classifiers to resolve this. For instance, we can simply assign y to the object class with 

the single largest entry in x1. However, such heuristics do not harness the subspace 
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structure associated with images in face recognition. To better harness such linear 

structure, we instead classify y based on how well the coefficients associated with all 

training samples of each object reproduce y. 

 

For each class i, let δi : IR
n
 ―> IR

n
 be the characteristic function that selects the 

coefficients associated with the lth class. For x  IR
n
, δi (x)  IR

n
 is a new vector 

whose only nonzero entries are the entries in x that are associated with class i. Using 

only the coefficients associated with the ith class, one can approximate the given test 

sample y as yl = A δi ( x̂ 1). We then classify y based on these approximations by 

assigning it to the object class that minimizes the residual between y and yl: 

min ri(y) = ||y — A δi|| ( x̂ 1) ||2. (eq12) 

 

Algorithm 1 below summarizes the complete recognition procedure. Our 

implementation minimizes the ℓ1-norm via a primal-dual algorithm for linear 

programming based on  and . 

Algorithm 1. Sparse Representation-based Classification (SRC) 

1: Input: a matrix of training samples 

A = [Al, A2,..., Ak]  IR
mxn

 for k classes, a test sample  

y  IR
m

, (and an optional error tolerance ε > 0.) 

2: Normalize the columns of A to have unit ℓ
2
-norm. 

3: Solve the ℓ 
1
-minimization problem: 

x̂ 1 = arg minx ||x||1 subject to Ax = y. (eq13) 

(Or alternatively, solve x̂ 1 = arg minx ||x||1 subject to ||Ax—y||2 < ε.) 

4: Compute the residuals ri(y) = ||y — A δi|| ( x̂ 1) ||2 for i = 1,... ,k. 

5: Output: identity (y) = arg mini ri (y). 

1 C1 -minimization versus ℓ2-minimization).  

 

To illustrate how Algorithm 1 works, we randomly select half of the 2,414 images in 

the Extended Yale B database as the training set and the rest for testing. In this 

example, we subsample the images from the original 192 x 168 to size 12 x 10. The 

pixel values of the downsampled image are used as 120-D feature- s—stacked as 

columns of the matrix A in the algorithm. Hence, matrix A has size 120 x 1,207, and 

the system y = Ax is underdetermined. Fig. 3a illustrates the sparse coefficients 

recovered by Algorithm 1 for a test image from the first subject. The figure also shows 

the features and the original images that correspond to the two largest coefficients. 

The two largest coefficients are both associated with training samples from subject 1. 

Fig. 3b shows the residuals with respect to the 38 projected coefficients Si(X1), i = 1, 

2,38. With 12 x 10 downsampled images as features, Algorithm 1 achieves an overall 

recognition rate of 92.1 percent across the Extended Yale B database. (See Section 4 

for details and performance with other features such as Eigenfaces and Fisherfaces, as 

well as comparison with other methods.) Whereas the more conventional minimum 

ℓ2-norm solution to the underdetermined system y = Ax is typically quite dense, 

minimizing the ℓ1-norm favors sparse solutions and provably recovers the sparsest 

solution when this solution is sufficiently sparse. To illustrate this contrast, Fig. 4a 

shows the coefficients of the same test image given by the conventional ℓ2-

minimization (eq4), and Fig. 4b shows the corresponding residuals with respect to the 

38 subjects. The coefficients are much less sparse than those given by ℓ1 -

minimization (in Fig. 3), and the dominant coefficients are not associated with subject 

1. As a result, the smallest residual in Fig. 4 does not correspond to the correct subject 

(subject 1). 2.4 Validation Based on Sparse Representation 
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Before classifying a given test sample, we must first decide if it is a valid sample from 

one of the classes in the data set. The ability to detect and then reject invalid test 

samples, or “outliers," is crucial for recognition systems to work in real- world 

situations. A face recognition system, for example, could be given a face image of a 

subject that is not in the database or an image that is not a face at all. 

Systems based on conventional classifiers such as NN or NS, often use the residuals ri 

(y) for validation, in addition to identification. That is, the algorithm accepts or rejects 

a test sample based on how small the smallest residual is. However, each residual ri( 

y) is computed without any knowledge of images of other object classes in the training 

data set and only measures similarity between the test sample and each individual 

class. 

 

In the sparse representation paradigm, the coefficients X1 are computed globally, in 

terms of images of all classes. In a sense, it can harness the joint distribution of all 

classes for validation. We contend that the coefficients X are better statistics for 

validation than the residuals. Let us first see this through an example. 

 

concentration of sparse coefficients   

We randomly select an irrelevant image from Google and downsample it to 12 x 10. 

We then compute the sparse representation of the image against the same Extended 

Yale B training data, as in Example 1. Fig. 5a plots the obtained coefficients, and Fig. 

5b plots the corresponding residuals. Compared to the coefficients of a valid test 

image in Fig. 3, notice that the coefficients X here are not concentrated on any one 

subject and instead spread widely across the entire training set. Thus, the distribution 

of the estimated sparse coefficients X contains important information about the 

validity of the test image: A valid test image should have a sparse representation 

whose nonzero entries concentrate mostly on one subject, whereas an invalid image 

has sparse coefficients spread widely among multiple subjects. 

For quantifying this observation, we define the following measure of how 

concentrated the coefficients are on a single class in the data set: 

sparsity concentration index (SCI): 

 The SCI of a coefficient vector x IR
n
 is defined as 

SCI( x̂ )=(kmaxi||x||1/||x||1)/(k-1)   [0,1], (eq14) 

 

For a solution X found by Algorithm 1, if SCI( x̂ ) = 1, the test image is represented 

using only images from a single object, and if SCI( x̂ ) = 0, the sparse coefficients are 

spread evenly over all classes. We select a threshold T  (0,1) and accept a test image 

as valid if  

SCI( x̂ ) ≥ T; (eq15) 

and otherwise reject as invalid. In step 5 of Algorithm 1, one may choose to output the 

identity of y only if it passes this criterion. 

 

Unlike NN or NS, this new rule avoids the use of the residuals r (y) for validation. 

Notice, even for a non face image, with a large training set, the smallest residual of the 

invalid test image is not so large. Instead of relying on a single statistic for both 

validation and identification, our method separates the information requisite for these 

tasks: the residuals for identification and the sparse coefficients for validation.  In this 

sense, the residual measures how good the representation approximates the test image; 

and the sparsity concentration index measures how good the representation itself is, in 

terms of localization. 
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One advantage to this method to validation is enhanced performance against generic 

objects those are similar to multiple object classes. For instance, in face recognition, a 

generic face could be somewhat similar to some of the subjects in the data set and may 

have small residuals regarding their training images. By means of residuals for 

validation may to be expected leads a false positive. Though, a generic face is not 

likely to pass the new validation rule as a good representation of it typically needs 

involvement from images of multiple subjects in the data set. Therefore, the new rule 

can better judge whether the test image is a generic face or the face of one specific 

subject in the data set. The new validation rule outperforms the NN and NS methods, 

with as much as 10-20 percent improvement in verification rate for a given false 

accept rate  

 

Two Fundamental Issues in Face Recognition 

we study the implications of general classification framework for two critical issues in 

face recognition: 1) the selection of feature transformation, and 2) robustness to 

corruption, occlusion, and disguise. 

 

The Role of Feature Extraction 

Numerous feature extraction schemes have been examined for finding projections that 

better distinct the classes in lower dimensional spaces, those are often referred to as 

feature spaces. A class of approaches extracts holistic face features such as Eigen- 

faces, Fisherfaces , and Laplacianfaces . Another class of approaches tries to extract 

meaningful partial facial features (e.g., patches around eyes or nose). Usually, when 

feature extraction is used in conjunction with simple classifiers such as NN and NS, 

the choice of feature transformation is considered critical to the success of the 

algorithm. This has led to the development of a wide variety of increasingly complex 

feature extraction methods, including nonlinear and kernel features , . In this section, 

we reexamine the role of feature extraction within the new sparse representation 

framework for face recognition. 

 

One benefit of feature extraction, which carries over to the proposed sparse 

representation framework, is reduced data dimension and computational cost. For raw 

face images, the corresponding linear system y = Ax is very large. For instance, if the 

face images are given at the typical resolution, 640 x 480 pixels, the dimension m is in 

the order of 105. Although Algorithm 1 relies on scalable methods such as linear 

programming, directly applying it to such high-resolution images is still beyond the 

capability of regular computers. 

 

Meanwhile utmost feature transformations involve only linear operations (or 

approximately so), the projection from the image space to the feature space may be 

represented as a matrix R  IR
dxm

 with d<<m sides of (eq3) yields 

y  = Ry = RAx0  IR
d
. (eq16) 

 

Actually, the dimension d of the feature space is normally selected to be much smaller 

than n. Here, the system of equations y  = RAx  IR
d 

is underdetermined in the 

unknown x  IR
n
. Yet, as the desired solution xo is sparse, we can hope to recover it 

by solving the following reduced ℓ1 -minimization problem: 

(ℓ
1

r) : x̂ 1 = arg minx ||x||1 subject to ||RAx - y ||2  ≤e, (eq17) 

 

for a given error tolerance e > 0. Thus, in Algorithm 1, the matrix A of training images 

is now replaced by the matrix 
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On behalf of existent face recognition approaches, experimental studies have shown 

that increasing the dimension d of the feature space usually improves the recognition 

rate, till the distribution of features RAi does not turn into degenerate . Degeneracy is 

not an issue for ℓ1-minimization, because it merely requires that y be in or near the 

range of RAi —it does not depend on the covariance E = A
T

iR
T
RAi being nonsingular 

such as in classical discriminant analysis. The stable version of ℓ1 -minimization 

(eq10) or (eq17) is known in statistical literature as the Lasso. It efficiently regularizes 

highly underdetermined linear regression when the anticipated solution is sparse and 

has also been proven consistent in some noisy overdetermined settings. 

 

For our sparse representation approach to recognition, we must have to understand 

how the selection of the feature extraction R affects the ability of the ℓ1 -minimization 

(eq17) to recover the correct sparse solution xo. From the geometric explanation of ℓ1 

-minimization, the answer to this be influenced by on whether the related new 

polytope P = RA(P;l) remains sufficiently neighborly. It is easy to show that the 

neighborliness of the polytope P = RA(P1) increases with d , . ℓ1 -minimization, in 

particular, the stable version (eq17), to recover sparse representations for face 

recognition using a variety of features. This proposes that most data- reliant features 

popular in face recognition (e.g., eigenfaces and Laplacian- faces) may indeed give 

highly neighborly polytopes P. 

 

More analysis of high-dimensional polytope geometry may revealed a to a certain 

extent surprising phenomenon: if the solution xo is sparse sufficient, then with 

overwhelming possibility, it may be appropriately recovered via ℓ1 -minimization 

from any sufficiently large number d of linear measurements y = RAx0. More exactly, 

if x0 has t << n nonzeros, then with overwhelming probability 

d ≥ 2t log(n/d) (eq18) 

 

random linear measurements are sufficient for ℓ1 -minimization (eq17) to recover the 

correct sparse solution x0 . This amazing occurrence has been dubbed the "blessing of 

dimensionality". Random features may be observed as a less-structured corresponding 

item to classical face features such as Eigenfaces or Fisherfaces. Consequently, we 

call the linear projection generated by a Gaussian random matrix Randomfaces. 

 

The main benefit of Randomfaces is that they are extremely effective to generate, as 

the transformation R is autonomous of the training data set. This advantage would be 

significant for a face recognition system, where we cannot be able to attain a complete 

database of all subjects of concern to precompute data-dependent transformations for 

example Eigenfaces, or the subjects in the database may modified over time. In this 

cases, there is no necessity for re-computing the random transformation R. 

 

Till the correct sparse solution x0 will be recovered, Algorithm 1 will every time give 

the same classification outcome, regardless of the feature actually used. Therefore, 

when the dimension of feature d go beyond the above bound (eq18), one would expect 

that the recognition performance of Algorithm 1 with different features rapidly 

converges, and the selection of an "optimal" feature transformation is no more critical: 

even if random projections or downsampled images would perform well like other 

wisely engineered features. 

 

Robustness to Occlusion or Corruption 
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In numerous real-world face recognition circumstances, the test image y might be 

partially corrupted or occluded. In this situation, the overhead linear model (eq3) must 

be adapted as 

y = y0 + e0 = A x0 + e0, (eq19) 

 

Where e0  IR
m

 is a vector of errors—a portion, p, of its entries are nonzero. The 

nonzero entries of e0 model which pixels in y are degraded or occluded. The positions 

of corruption may be different for dissimilar test images and are not known to the 

computer. The errors can poses random magnitude and thus cannot be ignored or 

treated with procedures designed for small noise. 

 

Basic principle of coding theory is redundancy in the measurement is essential to 

sensing and fixing gross errors. Redundancy arises in object recognition for the reason 

that the number of image pixels is usually far greater than the number of subjects that 

have created the images. In that situation, even if a fraction of the pixels are entirely 

corrupted by occlusion, recognition would yet be possible using the remaining pixels. 

Alternatively, feature extraction schemes deliberated in the previous section may 

reject valuable information that would support pay off for the occlusion. In this way, 

no representation is more redundant, robust, or informative than the original images. 

Thus, when dealing with occlusion and corruption, we must always work with the 

maximum possible resolution, carrying out downsampling or feature extraction so 

long as the resolution of the original images is too high to process. 

 

Obviously, redundancy should be of no use short of efficient computational tools for 

take advantage of the info coded in the redundant data. The trouble in directly 

harnessing the redundancy in degraded raw images has led researchers to as an 

alternative focus on spatial locality as a guiding principle for strong recognition. Local 

features work out from simply a small fraction of the image pixels are clearly less 

likely to be corrupted by occlusion than holistic features. Face recognition, approaches 

such as ICA and LNMF exploit this observation by adaptively selecting filter bases 

that are locally focused. Local Binary Patterns and Gabor wavelets have analogous 

properties, meanwhile they are also computed from local image regions. An 

interrelated method partitions the image into fixed regions and computes features for 

each region. Notice, and yet, that projecting onto locally focused bases transforms the 

domain of the occlusion problem, rather than excluding the occlusion. Mistakes on the 

original pixels become errors in the transformed domain and can even become less 

local. The role of feature extraction in accomplishing spatial locality is therefore 

disputed, since no bases or features can more spatially localized than the original 

image pixels themselves. Actually, the most widespread approach to robustifying 

feature- based methods is based on arbitrarily sampling individual pixels, sometimes 

in conjunction with statistical methods such as multivariate trimming. 

 

Now, let us express how the proposed sparse representation classification framework 

may be extended to treat with occlusion. Let us assume that the degraded pixels are a 

comparatively lesser portion of the image. The error vector e0, like the vector x0, then 

has sparse nonzero entries. Since y0 = Ax0, we can rewrite (eq19) as 

y = [A, I] =Bw0 

 

Here, B = [A, I]  IR
mx(n+m)

, so the method y = Bw is always underdetermined and 

does not have a unique solution for w. On the other hand, from the above discussion 
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about the sparsity of x0 and e0, the exact producing w0 = [x0, e0] has at most ni + ρm 

nonzeros. We might then expect to recover w0 as the sparsest solution to the system y 

= Bw. In fact, if the matrix B is in general position, then as long as y = Bw for some w 

with less than m/2 nonzeros, w  is the unique sparsest solution. Thus, if the occlusion 

e covers less than (m-ni)/2 pixels, approximately 50 % of the image, the sparsest 

solution w to y = Bw is the true generator, wo = [x0, e0]. 

 

More commonly, we assume that the corrupting error e0 has a sparse representation 

wrt some basis Ae  IR
mxne

. That is, e0 = Aeuo for some sparse vector u0  IR
m

. Now, 

we have chosen the special case Ae = I  IR
mxm

 as e0 is supposed to be sparse with 

respect to the natural pixel coordinates. If the error e0 is as an alternative more sparse 

with respect to another basis, e.g., Fourier or Haar, we can easily re-define the matrix 

B by appending Ae (instead of the identity I) to A and instead seek the sparsest 

solution w0 to the equation: 

y = Bw with B =[A, Ae]  IR
mx(n+ne) 

. (eq21) 

 

By this approach, the similar formulation can handle more general classes of (sparse) 

corruption. 

 

As already, we try to recover the sparsest explanation w0 from solving the following 

extended ℓ
1
-minimization difficulty: 

(ℓ
l
e) : ŵ 1 = arg min ||w||1 dependent on Bw=y.  (eq22) 

 

That is, in Algorithm 1, we now replace the image matrix A with the extended matrix 

B = [A, I] and x with w = [x, e]. 

 

Obviously, whether the sparse solution w0 may be recovered from the above ℓ
1
-

minimization be influenced by the neighborliness of the new polytope P = B(Pl) = [A, 

I](Pl). This polytope comprises vertices from both the training images A and the 

identity matrix I. The bounds specified in (eq8) indicate that if y is an image of subject 

i, the ℓ
1
-minimization (eq22) cannot promise to correctly recover w0 = [x0, e0] if 

ni + |support(e0)| > d/3. 

 

Usually, d >> ni, subsequently, (eq8) suggests that the highest fraction of occlusion in 

which we may expect to still achieve exact reconstruction is 33%. The bound is 

supported by our experimental results. 

 

For knowing exactly to what extent occlusion can be endured, we need more precise 

information about the neighborliness of the polytope P than a loose upper bound given 

by equation (eq8). To instance, we be interested to know for a given set of training 

images, what is the biggest amount of (worst possible) occlusion it can tolerate. 

Although the best known algorithms for precisely figuring the neighborliness of a 

polytope are combinatorial in nature, close-fitting upper bounds can be acquired by 

constraining the search for intersections between the null space of B and the ℓ
1
-ball to 

a random subset of the t-faces of the ℓ
1
-ball. We use this method to estimate the 

neighborliness of all the training data sets considered in our experiments. 

Empirically, we got that the stable form (eq10) is only essential if we do not consider 

occlusion or corruption e0 in the model. After we explicitly account for gross errors by 

using B = [A, I] the extended ℓ
1
 -minimization (eq22) with the precise limit Bw = y is 

already stable within moderate noise. 
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As soon as the sparse solution ŵ i = [ x̂ 1, ê1] is figured out, setting yr = y - ê1 recovers a 

clear image of the object with occlusion or corruption compensated for. To recognize 

the subject, we slightly change the residual ri (y) in Algorithm 1, calculating it against 

the recovered image yr: 

ri(y) = ║yr- Aδi( x̂ 1 )║2= ║y - ê1-A( x̂ 1)║2 [eq23] 
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CHAPTER-6 

 

EXPERIMENTS AND RESULT 
 

6.1. EXPERIMENT WITH YALE B DATABASE 

In this experiment I have used the Yale B database. Yale database contains 38 

different person each person have 64 images. In this experiment we use 3 training 

images and all images as the testing image. For further increase the accuracy we may 

increase the training image but with increase in training image recognition time may 

also be increased so I have just set the no of training image to 3 

 

 
 

Figure 1: it shows the recognition in poses changing condition 

 
The above face recognition is in the condition of the varying pose condition first 

image is the person to be recognized second image is the recognized image. The 

above result of the experiment shows that the algorithm works in pose changing 

conditions.  
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 Figure 2: the above figure shows the recognition in condition of occlusion 

 

 
 

Figure 3: case of disguise to be recognized by proposed model 
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Figure 4: condition of misaligned Face recognition 

 

6.2. EXPERIMENT WITH ORL DATABASE 

 

Now we are checking the efficiency on the ORL database it have 40 person every 

person have 10 images we use limited database 20 person. We have used 1-6 as 

training image and 7-10 as testing image. 

 
 

Figure shows person recognized with different pose  
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Figure shows occluded face recognized by the system 

 

 
 

Figure shows the recognization under unaligned ocluded and disguied image 

recognition simultanuously 
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CMC Curve 

 

 

 

 
 

 

 Confusion Matrix 
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Result 

 

 
 

 

 Roc Curve 
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CHAPTER-7 

 

CONCLUSION AND FUTURE WORK 
 

In this report, I tried to check experimentally that exploiting sparsity is critical for the 

high-performance classification of high-dimensional data such as face images. With 

sparsity properly harnessed, the choice of features becomes less important than the 

number note of features used (in our face recognition example, approximately 100 are 

sufficient to make the difference negligible). However the choice of feature may 

improve the accuracy and efficiency of the system. 

 

Besides, occlusion and corruption may be handled uniformly and robustly within the 

same classification framework. One can achieve a striking recognition performance 

for severely occluded or corrupted images by a simple algorithm with no special 

engineering. 

 

Due to the vast verities of problem can be handled by using the sparse representation 

approach in this technique for example Illumination variation, pose change and 

expression variation, Disguise condition  We can develop systems for different 

purposes related to the real time such as for video surveillance, image searching for 

image on internet, robotics, industries by using sparse representation classifier. 

 

Video Surveillance  

Video surveillance can be done to capture a terrorist at crowdie places i.e. airports, 

train stations, bus stands, boarder of the country. It is not possible for human to 

remember to number of faces by only seeing picture for criminal more over it is also 

not possible to identify a face in large crowd And also it is not possible for 

government to hire too many employee to watch each and every corner of the place at 

same time due to the limited perception area and identifying speed because of the 

above mentioned problems the efficiency of the video surveillance can be achieved 

only by using the automatic surveillance systems. 

 

Image searching on internet 

This may be special application in which the person image can be searched on internet 

by image available instead of name. this may help to establish the system by which 

required person can be find out on the internet whether he change his name or not it 

will greatly help in finding out the persons those are doing fraud using the internet. 

Using many identities such as recently find out the many voters are find out using 

more than one identity and voting more than one time. Criminals may be find out 

using bank account with different names managed by the same person for hiding the 

black money collected by him by doing unfair works. To deceiving the police, income 

tax department and other government related organization. 

 

Robotics 

From many decades human is beyond developing robots and robotic machines. The 

invention of these machines is incomplete without the invention of the proper 
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identification system because the robots are those machines which can do work in 

replacement to the human this can be achieved if and only robots can identify the 

human perfectly as humans do in different conditions and uncontrolled scenarios due 

to robots are developed for working the real word to replace the human and in the real 

world conditions are always different for the different times and different places. For 

example day light conditions different from the night conditions, room conditions 

different from outside conditions, rainy conditions are different from the clear weather 

conditions. 

 

Industries and Companies 

In industries and companies some special secretes and area are available which must 

only be accessible only by the top level person or entry of the other persons may be 

permitted only with the help of the top level manage for example in bank cash is 

retained at the area where entry of other staff member is permitted only with the help 

of the manager this is a problem in the area called bio-metric.   
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