A

Dissertation

On

Energy Preserving Adhoc On-Demand Distance Vector

Submitted in Partial Fulfillment of the Requirement

For the Award of the Degree of

Master of Technology

in

Computer Science and Engineering

Submitted By

JATIN ARORA

University Roll No. 2K12/CSE/07

Under the Esteemed Guidance of

Mr. R.K YADAV

Assistant Professor, Computer Engineering Department, DTU, Delhi

2012-2014

COMPUTER ENGINEERING DEPARTMENT

DELHI TECHNOLOGICAL UNIVERSITY
DELHI – 110042, INDIA

CERTIFICATE

This is to certify that the dissertation titled "Energy Preserving Adhoc On-Demand Distance Vector" is a bonafide record of work done at Delhi Technological University by Jatin Arora, Roll No. 2K12/CSE/07 for partial fulfilment of the requirements for the degree of Master of Technology in Computer Science & Engineering. This project was carried out under my supervision and has not been submitted elsewhere, either in part or full, for the award of any other degree or diploma to the best of my knowledge and belief.

	(Mr. R.K. Yadav)
	Assistant Professor & Project Guide
Date:	Department of Computer Engineering
	Delhi Technological University

<u>ACKNOWLEDGEMENT</u>

I would like to express my deepest gratitude to all the people who have supported and

encouraged me during the course of this project without which, this work could not have been

accomplished.

First of all, I am very grateful to my project supervisor Mr. R.K.Yadav for providing the

opportunity of carrying out this project under his guidance. I am deeply indebted to him for

the support, advice and encouragement he provided without which the project could not have

been a success. I am also grateful to Dr. (Mr.) Rajiv Kapoor, HOD, Computer Science, DTU

for his immense support. I am also thankful to my parents for being there for me at all times.

Last but not the least; I am grateful to Delhi Technological University for providing the right

resources and environment for this work to be carried out.

Jatin Arora

University Roll no: 2K12/CSE/07

M.Tech (Computer Science & Engineering)

Department of Computer Engineering

Delhi Technological University

Delhi – 110042

iii

ABSTRACT

Wireless devices use has been increased drastically in the last decade. To provide communication between the node which are mobile in nature and using wireless network some protocols were developed to provide faster transmission between the nodes in the network. But most of them lack in conserving the energy of the nodes to maximize the network lifetime. Energy is the main constraint in a wireless network. Each network device is running on the battery which is always limited source of energy. Hence the routing protocol should take energy of nodes as a valuable metric to perform routing which results in maximum network lifetime. Several protocols were already developed for routing in Mobile Adhoc Network (MANET) in this dissertation we enhance the Adhoc On-Demand Distance Vector (AODV) and Distance Sequenced Distance Vector (DSDV) which is widely used for routing in MANET's. This dissertation improves AODV, DSDV protocol to optimize the routing which preserves energy to increase the network lifetime.

TABLE OF CONTENTS

TITLE	PAGE NO.
Certificate	ii
Acknowledgment	iii
Abstract	iv
List of Figures	viii
List of Abbreviations	X
1. Introduction	1
2. Source of Inspiration	2
3. Proposed Model	3
4. Network Simulator	5
4.1 NS-2	5
4.2 NAM	6
4.3 Nodes in NS-2	6
4.4 Post Simulation Tracing	7
5. Types of Routing	8
5.1 Link state Routing	8
5.2 Distance Vector Routing	8
6. Types of Protocols	9
6.1 Proactive Protocols	9
6.2 Reactive Protocols	9

7. AODV Protocol	
7.1 AODV	10
7.2 Message Formats	12
7.2.1 RREQ Format	12
7.2.2 RREP Format	13
7.2.3 RERR Format	15
7.3 Working of AODV	16
8. PROPOSED EPAODV PROTOCOL	17
8.1 EPAODV	17
8.2 Message Format	20
8.2.1 RREQ Format	20
8.2.2 RREP Format	21
8.2.3 RERR Format	23
8.3 Working of EPAODV	24
8.4 Simulation of EPAODV	25
9. DSDV Protocol	
9.1 DSDV	28
9.2 DSDV Packet	30
9.3 Working of DSDV	31
10. PROPOSED EPDSDV PROTOCOL	
10.1 EPDSDV	32

13. References	42
12. Future Work	
11. Conclusion	
10.4 Simulation of EPDSDV	37
10.3 Working of EPDSDV	36
10.2 EPDSDV Packet	35

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE NO.
FIG 3.1:	Proposed Model	4
FIG 4.1:	User View of NS-2	5
FIG 4.2:	A View of Nam	6
FIG 4.3:	Types of Nodes in NS-2	7
FIG 4.4:	A Sample Trace File of NS-2	7
FIG 7.3.1:	Working of AODV	16
FIG 8.3.1:	Working of EPAODV	24
FIG 8.4.1:	Total Energy in Network (EPAODV VS AODV)	25
FIG 8.4.2:	Data Transferred in the Network (EPAODV VS AODV)	26
FIG 8.4.3:	Energy with Data Transferred (EPAODV VS AODV)	26
FIG 8.4.4:	Numbers of alive Nodes (EPAODV VS AODV)	27
FIG 9.2.1:	A Packet class object (DSDV)	30
FIG 9.3.1:	Working of DSDV	31
FIG 10.2.1:	A Packet class object (EPDSDV)	35
FIG 10.3.1:	Working of EPDSDV	36

Fig 10.4.1:	Total Energy in Network	37
	(EPDSDV VS DSDV)	
Fig 10.4.2:	Data Transferred in the Network	38
	(EPDSDV VS DSDV)	
Fig 10.4.3:	Energy with Data Transferred	38
	(EPDSDV VS DSDV)	
Fig 10.4.4:	Numbers of alive Nodes	39
	(EPDSDV VS DSDV)	

LIST OF ABBERIVATIONS

ACRONYM DEFINATION

AODV Adhoc On-Demand Distance Vector.

DSDV Distance Sequenced Distance Vector.

EPAODV Energy Preserving Adhoc on-Demand Distance Vector.

EPDSDV Energy Preserving Distance Sequenced Distance Vector.

NS Network Simulator.

MANET Mobile Adhoc Network.

EPV Energy Preserving Value.

EPVT Energy Preserving Value Total.

NAM Network Animator.

RREQ Route Request.

RREP Route Reply.

RERR Route Error.