
1

Contents
Chapter 1 ... 7

Introduction ... 7

Motivation of the Work .. 7

Related Work .. 8

Problem Statement .. 11

Goals of Thesis ... 12

Chapter 2 ... 15

Related Work and Background Work ... 15

2.1 Android Memory management ... 15

2.1.1 How Linux manage memory .. 16

2.1.2 How Android Manages Memory ... 18

2.2.3 Optimization of Android memory management .. 19

2.2 SWAP ... 20

2.2.1 SWAP Code ... 20

2.4 Comcache ... 22

2.4.1 Compression Ratio and Time cost of comp-cache ... 27

2.4.2 The work flow of comp-cache .. 28

2.4.3 The comcache/ramz swap size verification .. 29

2.4.4 Comp-cache code ... 32

2.5 KSM (Kernel Same Pages) ... 35

2.5.1 Work Flow of KSM ... 35

2.5.2 KSM Tunable Parameters .. 37

2.6 Low Memory Killer .. 40

2.6.1 OOM Killer .. 40

2.6.2 Low Memory Killer ... 41

2.6.3 Summary of calling process in low memory status ... 43

2.6.4 Low Memory Killer Code .. 45

Chapter 3 ... 48

New Policy for cope up Low Memory Situation in Android Operating System .. 48

3.1 Drawback of Comp-cache & LMK & KSM ... 48

3.2 LMK and Com-Cache Optimization .. 50

2

3.3 KSM Optimization ... 58

3.3 Optimized low memory policy ... 60

Chapter 4 ... 65

Results and Analysis ... 65

4.1 System stability test for Com Cache ... 65

4.2 System performance test on Comcache .. 71

Result And Analysis of KSM ... 80

4.3 CPU Time for Scanning Page on KSM .. 80

4.4 Memory Saving with KSM various schemes ... 81

Chapter 5 ... 83

Conclusion and Future Work .. 83

References ... 84

3

List of Figures :

2-1 Samsung Android Mobile Phone Memory..(14)

2-2 Main Stream Application Memory Usage(14)

2-3 Virtual Address Vs. Physical Address ..(15)

2-4 Low Memory in Linux Kernel...(16)

2-5 Low Memory in Android...(18)

0-6 Swap Code Architecture..(22)

0-7 Com Cache Working scenario 2..(24)

2-8 Comp-cache Working Scenario 3..(25)

2-9 Comp-cache Read/Write Pages Time Cost & Compress Ratio.................................(26)

2-10 Comp-cache Working Flow...(27)

2-11 Memory Usage in Normal Status...(28)

2-12 Linux Swap Mechanism Scenario..(29)

2-13 Memory Usage After Comp-cache...(29)

2-14 Memory Usage Before Application Exit..(30)

2-15 Memory Usage After Application Exit...(30)

2-16 KSM Working Flow Chart..(36)

2-17 OOM Working Flow Chart...(40)

4

2-18 Android Process Priority...(41)

2-19 Threshold setting in Android..(41)

2-20 Android LMK Working Flow Chart..(42)

2-21 Android Low Memory Working Flowchart..(43)

3-3 Time Cost of Compress/De-compress One Page..(48)

3-2 New LMK Policy ...(51)

3-3 New LMK Policy Flow Chart...(52)

3-4 Comparison between Original Comp-cache & Optimized Comp-cache....................(53)

3-5 Compress & Swap for Dedicated Process...(53)

3-6 Sequence to Search Physical Pages I..(54)

1-7 Sequence to Search Physical Pages II..(55)

3-8 Reserve Mapping..(55)

 3-9 Swap Ratio for Dedicated Application..(56)

3- 10 Optimized Comp-cache Working Flowchart in Idle Status.....................................(60)

3-11 Optimized Comp-cache Working Flowchart in Low Memory Status......................(62)

4-1 Block Read/Write (4K)...(65)

4-2 Block Read/Write (8K)..(65)

5

4-3 Block Read/Write (16K)...(66)

4-4 Block Read/Write (32K)...(67)

4-5 Monkey Test Result (Optimized Comp-cache)..(68)

4-6 Monkey Test Result (Original Android)...(69)

4-7 Free Memory Test Result (Com Cache)...(71)

4-8 Free Memory Result (Com Cache Fish Demo)..(74)

4-9 Time Cost of Starting New Process...(75)

4-10 Time Cost of Restart Process..(76)

4-11 CPU Cost Per Page..(79)

4-12 KSM Free Memory..(80)

4-13 LMK Frequency………………………………………………………………… .(80)

6

Abstract

No embedded system is possible without a memory inside as memory is important part of any

system. So managing the memory is a crucial part of work in the System. That is why memory

management is the most complex part of operating system. Whenever an operating system is

decided for any devices the device memory and OS capabilities are matched. Choice of Android

for the Mobile Phones give best combination of under lying hardware and software capabilities.

In lined with the choice of OS, Android provides improved Memory Management than Linux.

Android also provides the in build policy for handling with the low memory scenarios. But as the

performance has no limit to achieve and daily user requirements for faster and bulky software

needs further optimizations. Here in this thesis our aim is to focus on the RAM availability for

the System. More system RAM means improved sluggish behavior with enhanced degree of

multi programming and responsiveness. We studied various method of in kernel compression to

achieve goal of improved RAM. These methods are Com-Cache, zSWAP, KSM. These methods

are not in the proper shape to use with Android Operating System and Android Low Memory

Policy situation. After deep analysis here to enhance the RAM availability we need to change the

Android Low Memory Policy and modified com-cache and KSM implementations to suite the

Mobile Phones. KSM utilizes the CPU heavily and drain out battery very fast and Com-Cache is

not compatible with the LMK in its raw form. These techniques are modified and also changed

Android Low memory Policy and these results in batter RAM availability to the system.

7

Chapter 1

Introduction

When we design an embedded system memory is integral part of it. There are several options for

memory like NOR,NAND, eMMC ,PCM. Various types of RAM (DDR1,DDR2, stacked, non

stacked). Every piece of software stored in some kind of memory. When a device is powered on

if we are using NAND or PCM based devices software is first brought to the RAM and from

there it starts executing. If NOR memory is used software can be directly executed form NOR

without bringing it to the RAM unlike in NAND and PCM case. This is because of the XIP

property of NOR memory. CPU is linearly addressable and NAND/eMMC etc are block devices

so only block chunk is first read and then bring to RAM form there rest of software begin to

execute. All most all the smart phones are NAND/eMMC based so RAM cannot be ignored. So

if we have more RAM than more programs can be accessible without read from NAND/eMMC

and makes the accessibility of application faster. Moreover RAM is faster than other FLASH

memories.

Motivation of the Work

Selection of memory in case of Embedded system is most important as it impacts the BOM as

well as performance. Before smart phones most of the phones were NOR based phones, to run all

most all the available software 256MB of NOR with 512KB/1MB/2MB of RAM was sufficient

based on the requirements. But NOR cannot be used with the smart phones as Smart phone

software quite complex and take more space as they are converging to TV technology, cloud

computing and many more paradigm. As NOR is costlier than NAND so it is no more the cost

effective solution. NAND is also being replaced by the eMMC, the problem is the File Transltion

Layer required and if pure NAND is used all the operations are performed in the Software,

eMMC gives a batter solution with inbuilt controller which is takes care of FTL operations. So

all the Smart Phones of today’s are using the eMMC over SDIO interface. So when these

technologies are used RAM usage is increased because if linear addressing scheme of the CPU.

8

The motivation of this work is to avail as much as possible RAM to the system so that new

technologies for the Smart phones never lacks it. This is not 100% possible as software

requirements for the main memory is always increasing. Other than the hardware factors as

described above design of the operating system is another consideration. Android design is un

doubtfully RAM Hungary. Android is so far used in hand held devices specifically for the

Mobile Phones, which characterizes as the small screen (5”,7”, 10”) size seems sufficiently

large when compared with old phones but as mobile is converging as TV or desktop so still very

small. When we are using the phone and switch form one action to other says from watching

moving to composing the SMS, media player is not killed but it goes to the background. Also

form SMS to if one switch to reading the paper so SMS typing window is not destroyed. But

being a short screen all these activities are not visible on the screen but remains in the

background consuming the RAM. The phones with faster response always try to keep maximum

number of applications in the Background but this is again limited by the availability of RAM.

The Linux and Android already provided few techniques to take care of RAM availability

pressure but still batter techniques can be developed.

Related Work

Many researchers have proposed the techniques for effective usage of RAM at the application

level and at the System level. We are not considering the application based techniques as there

life span ends with the popularity and day to day up gradation, target deployment device. Like in

case of database designing there are various techniques for Oracle cannot be used for the Mobile.

Different Video Players are designed for different requirements of the devices. So our focus was

on understanding the System Level Optimization Techniques.

9

In the system side following techniques has been proposed

Com Cache: in-memory compressed swapping :

The concept of memory compression compress comparatively unused pages and store in main

memory. This is simple concept and used from quite long in the Operating Systems. Here

philosophy is to use compression, and reduce expensive disk I/O operation. This proves much

effective than swapping pages to secondary storage. When a page is required again, it is passef

through decompression and send back, which is, once again, much faster than going than swap.

This idea is under implementation for Linux is with the name as the compcache project. Here a

virtual device is created call it ramz swap which acts as swap disk. Pages are swapped to ramz

swap disk after compression and stored in memory itself. The goal of the project is not just

performance on swap less setups, it allows running applications that would otherwise simply fail

due to lack of memory[1].

zswap compressed swap cache :

Swapping means performance degradations as it involve the I/O operation form fast device to

slow device and vice-versa. The I/O latency between RAM and swap, even with fastest SSD, is

of the order of magnitude four. The throughput gap is of orders of magnitude two. In addition to

the speed, storage on which a swap area resides is now a days can be more shared and virtualized

environment, which can cause furtherl I/O latency and non deterministic performance. The

zswap goal is to mitigate such undesirable effects of swapping through I/O activity reduction.

“zswap” is a write-behind, lightweight cache compressed for swap pages. It selects pages which

are being swapped out and it tries to compress them into a dynamically allocated RAM-based

memory pool. If this process is successful, the write operation to the swap device is delayed and

in most cases, can be avoided completely. It results in significant I/O reduction and performance

improvements for systems that has swapping capabilities[8].

10

Increasing Memory Density Using KSM:

In case when we are having the same host an on that different virtual machines are running, with

the possibility that they are handling the same software and data the possibility of RAM

duplication is very high. KSM is implemented as the Linux kernel loadable module this allow

sharing of anonymous memory across different virtual machines to be shared. KVM is treated as

the another process in the Linux system not different a different process. So mmu notified and

other things remains same Guest physical memory is allocated as regular Linux anonymous

memory mappings. KSM scope is not limited to the virtual machines[9].

The main task of KSM is to identify same pages from the system. For this it uses two red-black

trees, one is called the stable tree the other is called the unstable tree. The stable one contains

past shared pages and not frequently changed pages. The unstable red-black tree holds pages that

are still not shared but are under the supervision of KSM.

11

Problem Statement

Research Gap:

The LMK in its present form kills the processes based on the algorithm of process priority.

The killing order is Empty/Background App, Content Provider , Hidden App, Secondary

Server, Visible App, Foreground App. No further options are explored in order to save the

processes form being killed. if these processes are killed and in very next moment if

processes are needed again they are started again so phone exhibit the sluggish behavior.

The number of times the LMK is called is potential parameter for the sluggish behavior of

the phone. The draw backs of the frequent LMK and OOM execution are

- Phone exhibits the sluggish behavior.

- During process loading the memory controller is accessed frequently this cause more

current consumption

- Loading the complete process takes more time than bringing the process form back ground

to foreground.

If memory pressure is not controlled by the LMK then OOM is inevitable. The problems

with OOM are more severe as

- OOM process selection is not controllable form the Framework

- If a system process is selected for the killing then system is going to hang surely

- It does not care for the fore ground and background processes

The ultimate goal of the thesis is to control the "memory pressure" on the system by

increasing the available RAM to the system. As the in current Android System the LMK

algorithm is used to counter the memory pressure. Here in this thesis LMK algorithms is

modified and integrated with KSM and Com-Cache techniques and collectively gives the

improved results to handle memory pressure. The KSM and com cache in the present form

are not applicable on the Mobile phones because of the

12

- High CPU usage resulting to the battery draining up fast

- Battery is one of the criteria for the Smart Phone

- High CPU usage also degrades the overall performance of the system

The primary reason is the basic techniques used where each page is compared with rest of

pages to find the similarity among the pages. Each page is 4K and the comparison method is

memcmp, even we optimize this trivial function to extreme based on the platform used CPU

usage is very high. So far it is not commercialized in the Mobile Phones indeed it good for

saving the RAM.

Story with the com cache is batter for CPU usage but the Android Low Memory Policy and

Com-Cache are not compatible to use effectively. The calling point of Com-Cache should be

in control of LMK and in which thread the compression and decompression is to be done so

that rest of system is not impacted. Timing is also major concern. The important point still

not answered in any research is relevant to in kernel compression does not answer reducing

the LMK frequency count.

if we can improve LMK algorithm this can result to the batter availability of RAM with

minimum impact on performance and degree of multiprogramming. Therefore problem

statement is :

Statement:

“Proposing the modified Android Low memory handling policy to increase the RAM

availability to the system with minimum impact of the performance without compromising

degree of multiprogramming, and stability of the system.”

Goals of Thesis

Handling the memory pressure is one of the tedious takes of any Embedded System. This

become more complex with ever increasing demand of quick responsive behavior form the

system. Linux uses OOM killer to cope up memory pressure but this is not suitable for

13

android so Android uses LMK over OOM. The standard algorithms for the Android is

merely based on the Android Process Management. This can be further improved as

attempted in thesis with modified in kernel compression techniques such as KSM and Com

Cache.

Major Goals:

1. Studied various methods of in- kernel compression techniques such as com cache, zwap,

KSM, CMA in Linux.

2. To propose new LMK Policy to enhance RAM availability for Android Mobile Phone

3. Modify Com Cache so that it works with LMK of the Android

4. Modify KSM so that it can be used for the Android Mobile Phones and integration with

LMK

Under New LMK Policy processes and pages are identified for compression when the

system is in idle state or the system is under memory pressure. Even after compression

memory pressure is not reduced background processes are identified and they killed to make

room for new processes.

Com Cache is in kernel compression technique. Com Cache is modified with the Android

System as the loadable module. Once LMK has identified the pages for compression com

cache do the compression.

Input to the KSM is modified. Instead of applying KSM on all the processes, it is applied

only on the background processes and processes with same ancestors. As the pages of these

processes are most likely identical.

14

15

Chapter 2

Related Work and Background Work

2.1 Android Memory management

Android is the open platform and best for developing apps. More and more users prefr Android

for the development of various applications. Memory requirements for the various apps are

different some apps such as such as game, video player and so on, requires large memory, so the

phone becomes slow with usage. The Figure <2-1> shows the Android phone memory

requirements for different applications, and the Figure <2-2> shows the memory usage of most

frequently used applications

Model Total memory Memory usage for app
I559 384 MB 286 MB
I579 384 MB 286 MB
I9000 512 MB 339 MB
I9001 512 MB 352 MB
I9100 1 GB 835 MB

 Figure 2-1 Samsung Android Mobile Phone Memory

App name Memory used
Phone 23.4 MB

UCweb 9.9 MB
Angry birds 73 MB

Plants vs. Zombies 76 MB
Angry bots 75 MB

Input method 19.4 MB
Camera 8 MB

Google map 12.7 MB
Email 9.9 MB
Gmail 9.5 MB
Market 20.5 MB

Music Player 19.6 MB
Video Player (720 * 480) 23.2 MB

 Figure 2-2 Main Stream Application Memory Usage

16

Android memory management design is different from the traditional operating systems: On

exiting an application it will not free the memory allocated to it. When system is under memory

pressure then application memory of not in use application will be freed. So as we keep on using

the phone for long time the count of such unused application will keep on increasing ultimately

less memory will be available. In case if we now attempt to start a large memory consumption

application in the low memory status, it will take long time to start the application. The solution

in such a low memory scenarios is to be founded, Android is based on Linux kernel, it follows

most of Linux kernel memory management[2].

2.1.1 How Linux manage memory

Linux is virtual memory based operating system. Generally linux machines has small amount of

RAM and Large Virtual Address space. Linux supports both hardware and software mechanism

to make sure those programs can execute transparently without knowing the fact that small

physical memory is used. Each process in the Linux has its own unique virtual address space.

These virtual address spaces are isolated from each other, a process running one application

cannot access another application. The basic unit of memory is page. The relationship between

physical addresses and virtual addresses is given by page tables, and if a virtual address is

referenced and there is no corresponding physical address, page fault occurs, this is handled by

operating system. Hardware allows fixed page sizes[1].

 Figure 2-3 Virtual Address Vs. Physical Address

17

Accessing the code or data every time for the secondary memory is not efficient. Linux kernel

uses caches concept to enhance system performance. Caches are termed here keeping the data in

the RAM memory. From slow devices data is read and hold in RAM for short time, data still

remains in RAM even if process is not active. So next attempt if process accesses the data, it is

read directly from the RAM, without accessing the slow block device. When the system memory

is under pressure first cache memory is freed slowly to make room for other processes to be

loaded. SWAP increase the effective size of RAM so the total memory at disposal of the system

is sum of RAM plus SWAP space. SWAP is used as extended RAM so that the effective size of

memory grows with defining the SWAP space. The kernel will write the contents of a unused or

inactive memory to the swap space making room to load other process. When the original

contents are needed again, they are read back into memory. When in low memory case, if kernel

needs more memory to start a process, but there is no swap space to swap in pages and no caches

can be shrunk. In this situation, the higher application code instructs the OOM killer to kill the

un-important process in the system to obtain large number of memory pages to load other

processes. Refer to Figure<1-2>, the mechanism of swap, cache shrinkers and OOM killer will

be start in sequence according to seriousness of low memory[4].

 Figure 2-4 Low Memory in Linux Kernel

18

2.1.2 How Android Manages Memory

Android is based on Linux kernel; it uses the same Linux memory management, with little

modification:

– In Android phone, there is no swap space. The phone’s storage flash or eMMC card

don’t read/write very frequently, Android does not support swap feature.

– Android supports a kernel diver named Low Memory Killer (LMK) other than OOM

killer that is standard Linux feature, when the system memory is lower, it kills less

important application to free memory.

Android process management is different than Linux, unlike other operating system in Android if

user switches to another Android application, the process is not killed but left in memory as

background process. So it will be an empty application or background application, it just sitting

idle, does not use any CPU, battery, or network capacity. This design is very effective

optimization so next time when user switches back to that application, it will be loaded

immediately, without reloading the resources again. But there is situation when lots of

applications changed their status to background app, the system will be out of memory. Here

system requirement is to kill some applications to make room for new applications, but selection

of the applications to be killed require some intelligent so LMK helps. The use of traditional Out

of Memory (OOM) to kill the process has some drawbacks[4]. There are some points about this:

When system lacks memory seriously then OOM killer is triggered. LMK is called far early

when memory pressure increases the thresh hold. The LMK is registered in cache shrinker list,

this is the list which reduces the cache when system is under memory pressure. LMK works with

the cache srinker.

– OOM killer cannot be controlled form the user space, there is no way to importance of

Application can be registered with the System, so it is not guaranteed that OOM killer

will kill least important application. Android framework divides the Android

applications to various categories and LMK is aware of various categories of lass of

19

android application, and LMK follows the order of categories of applications starting

from empty applications, content providers, background apps, fore ground apps[5].

 Figure 2-5 Low Memory in Android

2.2.3 Optimization of Android memory management

With Android memory management, we can run applications as much as possible till the system

fails to allocate pages. If we can increase main memory we can run more applications, it is good

solution, and surely the mobile have more memory so run efficiently. Now, just think of SWAP

feature, it is one of way to increase the physical memory size. Flash cannot be used in Mobile

phone because of the NAND properties. Comp-cache/zRAM is a good solution of embedded

system memory management. Comp-cache creates RAM based block device (named

Ramzswap) which acts as swap disk. Pages are swapped to this RAM area are compressed and

stored .Compressed pages in RAM increases capacity. This allows many applications remain in

memory.

20

For Android to enable SWAP feature, LMK policy has to be defined working with swap, when

system is in low memory situation, first it swap out pages ; if swap pages cannot free enough

memory, Low Memory Killer (LMK) will be called.

2.2 SWAP

SWAP is basic concept of the most of modern Operating System. In SWAP implementation a

small portion of the Hard-Disk is reserved. This space is used by the Memory Management Code

to store the ready pages. RAM is the faster memory so Operating system will try to keep most of

the data in the RAM. When the RAM is full the Memory Manager will move inactive pages, ie

pages not in used for long time to the hard disk, freeing up RAM for the active processes. If any

of this page from the hard disk needs to be accessed again, it will move back into RAM, and

another inactive page from the RAM is identified and it is moved onto the hard disk ('swapped').

The SD cards and FLAH are considerably slower than physical RAM, so when some page needs

to be swapped, there is a noticeable performance hit[2].

As swapping is the slow process, identification of pages to be swapped is major concern. Kernel

requires an efficient algorithm to find the pages for system performance.

2.2.1 SWAP Code

As mentioned above SWAP policy should not lower the system performance. After moving the

pages to SWAP page frames are freed for other processes, so it also called called page reclaim.

SWAP implementation is one of the most complex part of the kernel. - “try_to_free_pages” This

API is invoked when kernel finds extreme shortage of memory during execution of a process. It

scans all pages active the current Memory Zone and frees least frequently used.

21

- There is a background thread known as “Kswapd” the job of this thread it to records memory

usage at frequent intervals and identifies memory shortage. This data is used as input to swap out

pages as a precaution before the kernel jumps into the situation of not sufficient memory. Source

code is explained in the form of steps:

Step1: “shrink_zone” is used for removing the pages from the memory. This method does two

things: Its role is to maintain a balance between of active and inactive pages in a zone by

transferring pages between the inactive and active lists with the use of shrink_active_list.

shrink_zone decides number of pages of a zone are to be swapped out and decides which pages.

shrink_active_list is a supporting function called by the kernel to transfer pages between the

inactive page and active lists. The function is given input parameter as the number of pages to be

transferred between the active and inactive lists and then tries to select the active pages least

used. shrink_active_list is responsible for deciding which pages are swapped subsequently out

and which will remained. Here is policy part of page selection is implemented.

Step2:”shrink_inactive_list” It removes inactive pages from the inactive list from a specific zone

and releases them to shrink_page_list, these pages are again reclaimed by specific requests to the

backing stores to write data back free space in RAM. If for some unspecified reason, pages are

not written back shrink_inactive_list must put them back on the list of inactive or active pages.

22

2.4 Comcache

Comp-cache (compressed caching) is a technique to set aside some portion of the memory to

reserve where compressed pages will be stored during swap out. Comp-cache do compression-

decompression and store and retrieves the pages from RAM You effectively get more RAM from

the compression[7].

To implement Comp-cache, Linux kernel will create RAM based block device acting as swap

area (named Ramzswap). Developer can define the size of Ramzswap (the default value is 25%

of total physical internal memory), this defined size of Ramzswap is just a upper limit for the

swap area. It does not mean the size of Ramzswap is fixed, on the contrary, it is flexible:

For example, the total internal memory is 800MB, define 200MB as the size of Ramzswap,

- At initialization, system does not allocate all the memory (200MB) for Ramzswap as its pre-

defined size (only some initialization parameter, data structure are allocated); at this moment,

system can allocate nearly all the 800MB internal memory to those active processes.

- During Comp-cache working, system will allocate free physical pages to store those

compressed swap pages, according to Comp-cache requested. (but the total size cannot exceed

200MB, as we pre-defined the 200MB as the size of Ramzswap, it is the upper limit of

Ramzswap)

- When Comp-cache de-compress and swap out pages to internal memory, these pre-occupied

pages in Ramzswap will be return to Linux kernel as free pages, and can be allocated to other

active processes, when they request free pages.

- When Ramzswap size reaches its upper limit (here, we defined as 200MB), Comp-cache will

not swap any more pages to Ramzswap.

23

 Figure 0-6 Swap Code Architecture

24

Note:

- The actual “used area”, “free area” is not continuous as this picture described. In actual
physical memory, they are organized as physical frame page (each for 4KB); those un-used
physical pages are “free area”, they locate discontinuous, those used physical pages are “used
area”, they also locate discontinuous. Here we just make it easy to understand for memory area
changing status.

-“Ramzswap” is a logic name. All those physical memory that used for storing compressed pages
are named as “Ramzswap”. These pages are also discontinuous, and they are part of the “used
area”.

Following diagram <Figure 2-7> is describing from a real physical frame page allocation, it will
help for understanding the real memory distribution situation:

25

 Figure 0-7 Com Cache Working scenario 2

As the Figure <2-8> show, when all the system memory is occupied by Application 1, 2 and 3,

only 2 pages are free, (at this time, part of App 3’s pages are compressed and stay in Ramzswap)

meanwhile Application 4 want to start, it request 4 pages. The system have no enough memory ,

then the kernel will swap out some inactive pages to get free memory, so some pages need to be

swapped to Ramzswap. The Comp-cache will compress the pages before save them, for example

, if swap out 4 pages, it only need 2 pages size to store in Ramzswap:

26

- System has 3 free pages.

- 2 pages of App 2 are compressed to 1 page, and stored to “page A”, then “page A” is part of

Ramzswap (assume the compress ratio as 50%).

- Now we have 4 free pages, they are allocated to App 4.

- App 3 occupies page 1/2/3/4/5, among them, page 2/3/4/5 is belong to Ramzswap; When App 3

exits, all of the page 1/2/3/4/5 will be free, and return to system (page 2/3/4/5 are not belong to

Ramzswap anymore); all of these pages can be used by others.

 Figure 2-8 Comp-cache Working Scenario 3

27

2.4.1 Compression Ratio and Time cost of comp-cache

As the I/O from RAM is much more faster than hard disk, Comp-cache is faster than hard swap

disk even if compress/decompress take some times. The Figure <2-9> show test data of comp-

cache. We can see the average times of write one page to comp-cache is less than 300 us,

average times of read one page from comp-cache is less than 150 us, and the compress ratio is

good, it is less than 50%. Take last line in table for example, compress 38068 pages(152M) at

45.2% compress ratio, we can save 83M.

Item 1(Write pages) show the numbers of page that are written to comp-cache.

Item 2(Write times) show the overall times of writing such number of pages to comp-cache.

Item 3(Write a page times) show the average time of writing one page to comp-cache.

Item 4(Compress ratio) show the ratio of the total number of bits after compression to the total

number of bits before compression. (the compress performance is better than 50%)

Write
Pages

Write time
(us)

Write a
page time
(us)

Compress
ratio

Read
Pages

Read time
(us)

Read a
page time
(us)

768 129480 169 33.9% 17 2025 119
1819 310007 170 32.9% 57 5284 93
2089 351905 168 33.4 621 42906 69
3756 551668 147 30.9 821 57583 70
4410 709815 161 34.7 1181 120811 102
7459 1424428 190 35.4 1205 123241 102
11218 2137130 190 38.4 1386 180097 130
18718 3410624 182 40.9 2035 236825 116
23710 4418848 186 39.3 7680 988406 128
27399 5513179 201 39.7 8648 1055153 122
30873 6503889 210 43.0 10275 1187398 115
33328 6903785 207 43.4 12050 1333126 110
38068 7995497 210 45.2 15257 1514065 99

 Figure 2-9 Comp-cache Read/Write Pages Time Cost & Compress Ratio

28

Compress
time (us)

NAND
write time
(us)

NAND
read time
(us)

Decompress
time (us)

103.3 134.4 94.8 58.7
Swap out Swap in
237.7 155.5

2.4.2 The work flow of comp-cache

zRAM/Comp-cache has three major modules: Xvmalloc,Ramzswap , and LZO. Com-Cache is

the driver initializes and creates RAM block device it act as swap disk, it will handle block I/O

control. Allocator driver : Xvmalloc, used by the kernel when it swap one page to the RAM disk,

it allocates some space from the disk memory. LZO is decompress/compress library, when

kernel swap pages to the RAM disks, it will compress before it store, and decompress the pages

when read from RAM disk. Figure <2-10> show the comp-cache flow chart:

 Figure 2-10 Comp-cache Working Flow

29

2.4.3 The comcache/ramz swap size verification

To verify the flexible size of Ramzswap, we tested on GT-I9103.

The total physical internal memory of G-I9103 is 1GB = 1000MB

Including:

Linux kernel available memory: about 150MB

User space memory : about 850MB

Set aprox 25% of User space size as Ram zswap size upper limit.

In normal status: (Use “free” command in busy box)

 Figure 2-11 Memory Usage in Normal Status

Note:

The memory that occupied by Linux kernel is not calculated in.

“Mem” line: all the User space occupied memory is calculated;

 “total column”: total size of User space---- around 866MB

 “used column”: size of used memory in User space---- around 526MB

 “free column”: size of un-used memory in User space----around 346MB

 “Swap” line: memory status of Ramz swap

Here, in “total column”, the value “213916”, only means the upper limit of Ram zswap.

It does not mean system has allocated “213916”B for Ram zswap. “Total” line: in “comp-cache”

30

situation, this line has no meaning. Comp-cache is working on Linux SWAP mechanism; so,

when we use “busybox/free”, it gives memory according to original Linux SWAP way; recall the

SWAP diagram:

 Figure 2-12 Linux Swap Mechanism Scenario

In original Linux SWAP mechanism, Swap area is in outside hard disk; when system

initialization, system will allocate swap area memory in outside hard disk; Under this situation,

the “Total line” indicate the total size of internal “User space” memory size and outside swap

disk size. So, in “Total line”, we find it indicate “1069600” = “855684”(Mem/total) +

“213916”(Swap/total). But actually, this value (“1069600”) is no meaning; as:

In Android system, there is no outside swap disk exist; only Ramzswap, which is not allocated

pages at system initialization;

The value of “Swap/total”(“213916”) is only a upper limit for Ramzswap;

The “Total/total” value has exceed the real G-I9103 total internal physical memory size.

When more Applications are running, the free memory will be less and less; until the free

memory is lower, that the system is in “slight memory shortage” status, the Comp-cache starts;

system compress & swap in-active pages in LRU list to Ramzswap:

 Figure 2-13 Memory Usage After Comp-cache

31

Note:

“Swap/used” means, current Ramz swap size is “13256”B; this value is part of the “Mem/used”

(“839300”B)

“Mem/free” means, currently, system has only “16256”B free memory

“Swap/free” means, currently, system can compress & swap pages into “200360”B; But

ATTENTION: it does not mean system still has “200360”B free memory; it only indicates how

many memory can be used as Ramzswap.

When any applications is exit from the system, system will free all allocated pages (including

pages used as Ram zswap and internal memory) used by these applications. All of these pages

will be returned to kernel, and now can be used as normal memory.

Before application exit:

 Figure 2-14 Memory Usage Before Application Exit

In “Swap/used”, “154988”B is used as Ram zswap. “Mem/free” indicates there are “68388”B

free memory.

After application exit:

 Figure 2-15 Memory Usage After Application Exit

In “Swap/used”, “56540”B is used as Ram zswap, almost “100000”B memory are return to

system; “Mem/free” is added to “153952”B, almost “100000”B free memory added; Means, the

freed memory from Ramzswap, is return to the system free memory.

32

As a conclusion:

- During Compile, define the Ram zswap size as the upper limit;

- When system initialization, it will not allocate any physical memory to Ramzswap;

- During Comp-cache, the Ramzswap size will increase, according to how many in-active pages

are compressed & swap;

- If the compressed pages are called by system again, they will be decompressed & swap out,

those corresponding occupied pages in Ramzswap will also be free, and return to system;

(Ramzswap size is decreased)

- When the application exits, the corresponding occupied pages in Ramzswap will be free and

return to system. (Ramzswap size is decreased)

2.4.4 Comp-cache code

Step1: A virtual block device which cat as a swap disk is created. Pages moved to the created
are compressed before it is stored in the memory.

Kernel/drivers/staging/ramzswap [12]:

33

Step2 : Allocate one gendisk object (a physical block device data structure), and define the
block device operations, add the IO control command.

Step3: Comp-cache use kernel module named LZO to compress data. LZO is a real time data
compression library. This exhibit real time compression and decompression and it is a portable
lossless data compression.

Kernel/drivers/staging/ramzswap [12]:

Kernel/drivers/staging/ramzswap [12]:

34

Step 4: When memory manager swap out pages to swap device, Xvmalloc will allocate
memory for it. The memory needed for compressed pages is not pre-allocated; it shrinks and
grows on demand. On initialization, zswap creates an Xvmalloc memory pool. If the memory
pool does not have enough memory to satisfy an allocation request, it grows by allocating
single (0-order) pages from kernel page allocator. On freeing an object, Xvmalloc merges it
with adjacent free blocks in the same page. If the resulting free block size is equal to
PAGE_SIZE, i.e. the page no longer contains any object; page is released back to the kernel.

Kernel/drivers/staging/ramzswap [12]:

35

2.5 KSM (Kernel Same Pages)

It is basically conceived and developed for the Kernel-based Virtual Machine [KVM], it was first

developed for the virtualized environments. But its usage is also found good for the embedded

Linux systems. KSM is implemented in the Linux as a kernel thread in the kernel (called ksmd),

actually a daemon, whose job is to perform page scans in regular interval to mark duplicate

pages and it merges duplicates pages to single page to free pages for other uses. It is done in a

way so that user is transparent from this activity[9]. In case one of the users of the page changes

the content of the page for multiple or single reason, user will receive unique copy (same as in

case of Copy on Write fashion). KSM depends on higher-level applications to provide instruction

on for memory regions which are good candidates for merging. KSM simply scan all anonymous

pages in the system, but it is will waste of CPU and memory. So efficient way is that

applications should register only those virtual areas that potentially contain duplicate pages.

When KSM is enabled, it finds identical pages, keep one page in a write-protected "Copy On

Write" fashion and then free for other uses. In the KSM, pages are managed using the technique

of red-black trees, one is used as temporary. The first rb tree, is unstable tree, it is used to store

new pages that are not yet stable. In other words, pages that are candidates for merging

(unchanged for some period of time) are stored in the unstable tree. Pages kept in the unstable rb

tree are not write protected. The second one, ie the stable rb tree, it stores those pages that have

been found to be stable and merged by KSM.

To find if a page is non-volatile or volatile, KSM uses a 32-bit checksum. After scanning a page,

its checksum is calculated and stored along the page. On immediate next scan, if recently

computed checksum not matching with previously generated checksum, the page contents is

changing ie is is volatile and it is not a relevant for merging.

2.5.1 Work Flow of KSM

The KSM algorithm is based on rbtrees, one is stable tree and other one unstable tree. Using two

trees is an enhancement and it increases the chance of instantly sharing the pages that are good

candidates for sharing as well as reduce the instability in the unstable tree.

Kernel thread scans every anonymous page scanned, and starts searching exact match in the

stable tree which contains information of shared pages. If a match is found in the stable tree, the

36

anonymous page is merged with the KSM page found in the stable tree. If no match is found in

the stable tree, KSM checks content is changed recently comparing the checksum[9].

Bad case if the checksum changed since the last KSM succeeded, KSM updates the checksum

and will defer the search of the unstable tree to the next KSM cycle (in anticipation that the

checksum won’t change again). This save CPU by avoiding adding or merging to the unstable

tree pages whose contents are volatile ie changes quite often. If checksum remains constant

KSM attempts searching unstable tree that contains anonymous pages scanned in previous cycle

but not merged by KSM. If a match is found in the unstable tree KSM merges the anonymous

page, with the anonymous page in the unstable tree, and the resulting KSM merged page is added

to the stable tree (the anonymous page found in the unstable tree is removed from the unstable

tree and freed). If match is not there in the unstable tree KSM adds the page to the unstable

tree[6].

This “checksum” is nothing to do with the KSM algorithm. The “checksum” is only an heuristic

to keep the unstable tree more stable and to avoid wasting CPU time with un matching

candidates. Even if we don’t use the checksum, the algorithm would work. If a page its content

frequently, we’ll likely only waste CPU. It is because a copy-on-write page fault will happen

immediately loosing the benefits of sharing[6].

A bit by bit memory pages comparison is a CPU intensive task. Memory scanning frequency

needs to meet the workload demand, otherwise it will lead to high CPU load. there are few

parameters which if tuned properly will control the CPU load and hence the power performance.

These are described in next section.

37

 Figure 2-16 KSM Working Flow Chart

2.5.2 KSM Tunable Parameters

After loading the KSM module, KSM becomes operational. Relevant statistics of the KSM are

located at the location /sys/kernel/mm/ksm directory. Within this directory there is separate file

for each parameter specifying the current state of each parameter. The performance of KSM

depends on the understanding of relation among these parameters [10].

full_scans: For memory areas for which duplications is to be indentified needs to be registered.

These areas are frequently scanned. full_scans indicates the number of times memory areas has

been scanned. if this number is changing and other parameter pages_shared remains same, it

means we are doing useless scanning as CPU utilized in comparison but no new areas are with

common pages are identified.

pages_shared: In KSM for the duplicated copies of the pages unique copy is actually given the

memory. Like process A and B have five pages which are having common contents (no other

process in the system has common contents)then pages_shared count is 5. This gives us count of

38

shared pool pages. If count is N and page size is PAGE_SIZE then NxPAGE_SIZE gives us the

total size that KSM is using.

pages_sharing: Number of common pages corresponding to pages_shared. This value is indicator

of numbers of pages shared using KSM. A high ratio of pages_sharing vs pages_shared means

KSM is working effectively. For eg zeroed pages can be shared many times but pages with

encrypted data or randomized are shared few times.

pages_to_scan: As mentioned above to memory regions register them self for identification of

duplicated pages. Pages in these regions are scanned periodically by ksmd. pages_to_san

parametes is count of number of pages that will be scanned by KSM in each pass ie in each

periodic scanning.

pages_unshared : This gives the pages which cannot be shared that is they are unique. This is

indicator of that KSM effort wasted in scanning of those pages.

pages_volatile: This value indicate the number of pages that have content which is changing with

high frequency. If this count is high it is indication that running process are not good candidate

of memory sharing.

39

40

2.6 Low Memory Killer

LMK(Low memory killer) is a driver that android add in kernel, the mechanism is very similar to

kernel’s OOM killer. They will kill least important process to free memory when in low memory

case.

2.6.1 OOM Killer

When after shrink cache and swap out pages, the system also has not enough memory, it is under

tight memory situations, the out-of-memory killer (OOM) will be activated and selects a

process to killing. User have no control over the process chosen for killing. From system

prospective the process selected for killing might be the one should always be in the main

memory. The process killed may a system process. To prevent highly needed process from

killing, a greater degree of control is required over OOM.

The application developer always wants so ways to tell the kernel the importance of the process

to be selected for killing. To give batter control the /proc/<pid>/oom_adj parameter was created

under proc file system to prevent important processes from being killed by the system and

define a policy for the process selection to be killed. The policy defines the ranges from -17 to

+15. These ranges are the possible values for the OOM control parameter oom_adj. Higher

score, means most likely hood of the process to bee selected by the OOM-killer to be killed. If

parameter oom_adj is set to -17, the process is never selected by kernel for OOM-killing.

oom_adj as mentioned is the tuning node just to inform the OOM-killer for the desire ability to

keep in memory. "Badness Score is the ultimate parameter to decide for the selection by OOM-

killer. The candidate process selected for killing in an out-of-memory situation is selected based

on its badness score. The badness score is reflected in /proc/<pid>/oom_score.

This value is determined on the basis that the system loses the minimum amount of work done,

recovers a large amount of memory, doesn't kill any innocent process eating tons of memory,

and kills the minimum number of processes (if possible limited to one)[4]. Parameters for the

badness score are original memory size of the process, CPU time (utime + stime), the run time

41

(uptime - start time) and oom_adj value. The longer a process live smaller the score and more

memory the process uses, the higher the score.

.

Figure 2-17 OOM Working Flow Chart

2.6.2 Low Memory Killer

OOM-killer is not sufficient solution for devices involving high degree of multiprogramming

such as Mobile Phones. On Mobile Phones we have very limited size screen and only few

processes can be in for ground .Back Ground processes keep supporting the for ground

processes. Algorithmic criteria of calculating the badness is not sufficient to predict the right

process to be killed. Moreover Android wants the greater flexibility to be given to the user via

Android Framework. This way Android proposes a new philosophy of LMK which handles the

low memory situations effectively. On low memory situation LMK handles the memory pressure

without invoking the OOM-killer. LMK deferred the OOM-killer participation and keep great

degree of control in the hand of Framework. LMK is implemented as the kernel driver in

Android. LMK defines the user adjustable threshold values of the memory pressure and

42

categories the Android Processes as shown in the table below. When the first threshold is

encountered LMK kills the Empty Applications. If memory pressure is further increased LMK

checks for the other processes in order from highest to lowest. Foreground apps has the lowest

weight and are last to be picked in the order.

The low memory killer will kill process according to process LMK adjustments as below, the

higher the LMK value, more likely the associated process is to be killed.

Name Weight Note

FOREGROUND_APP 0 Show in screen or some system process

VISIBLE_APP 1 User visible but not foreground (widget, IME)

SECONDARY_SERVER 2 System service (Gmail internal memory, contactor internal memory)

HIDDEN_APP 7 Background process (browser, reader)

CONTENT_PROVIDER 14 Content provider, used for other process

EMPTY_APP 15 Empty app, without service/content providing

 Figure 2-18 Android Process Priority

The thresholds of low memory is set in file : /sys/module/lowmemorykiller/parameters/minfree.

 Figure 2-19 Threshold setting in Android

The 6 value is memory thresholds for 6 types applications, take empty app for instance, the value

is 8192, so when the phone’s free memory is less than 32M(8192 pages), the LMK will kill

empty app to get enough memory.

43

 Figure 2-20 Android LMK Working Flow Chart

2.6.3 Summary of calling process in low memory status
When system finds it’s hard to allocate memory for each process requesting, system is in low

memory status. Everything start from function----“allocate_pages()”.

44

 Figure 2-21 Android Low Memory Working Flowchart

45

2.6.4 Low Memory Killer Code

Low memory killer is a shrinker driver that register in kernel shrinker list. In Linux kernel,

Swapping the pages of user space applications is not the kernel’s single method of freeing

memory space. Caches shrinking often results in batter gains.

 Step 1:Shrinker methods are the functions in the kernel and these are registered dynamically.

When memory is under pressure the kernel invokes the shrinker registered functions to free the

memory.Low memory killer register in the kernel shrinker list when the module initialize.

Step 2:A daemon thread (Kswapd) runs in the background, it will do nothing when internal free

memory is enough. When the system is in shortage of memory situation, this daemon thread

(Kswapd) will be wake up; after that, Kswapd thread will call balance_pgdat() to reclaim pages.

(swap out pages and shrink cache…)

Kernel/drivers/staging/android/lowmemorykiller.c [12]:

46

Step 3:The function of shrink_slab() will call each shrink functions in shrinker list to shrink cache.

Step 4:Then the low memory killer shrinker will be called. It will kill less important application

according to OOM value and memory usage.

Kernel/mm/vmscan.c [12]:

Kernel/mm/vmscan.c [12]:

Kernel/drivers/staging/android/lowmemorykiller.c [12]:

47

48

Chapter 3

New Policy for cope up Low Memory Situation in Android Operating System

In the previous chapters we developed the understanding of the Linux and Android Memory

Management, how Android utilizes the LMK in case of memory pressure. But frequency of

calling LMK itself is an overhead. As it removes the background applications from the memory

and if second time application is re-entered it takes longer time causing sluggish behavior. So

here we are defining the new LMK algorithm which ensures that frequency of LMK is reduced

and always sufficient RAM is available. The new LMK Policy takes the benefits of the Com

Cache and KSM techniques. These techniques was originally proposed for different purposes,

like KSM was proposed for memory saving in the Virtualized environment and Com Cache was

proposed for reducing the OMM killer optimization. The New LMK policy improvements are

done at the three levels , in first level KSM major drawback of the CPU utilization is reduced by

selection of the processes which have good probability of the same pages. KSM is modified to

work well with Android. In second level Com Cache pages with compression ration more than

0.5 is selected and in final level LMK new policy is proposed with incorporates the advantages

of the in kernel memory compression techniques.

3.1 Drawback of Comp-cache & LMK & KSM

When we use comp-cache to extend android phone physical memory, the swap feature need to be

enabled in kernel. The swap will work with comp-cache, if the android system is in acute

memory shortage, the kernel will swap out pages to comp-cache.But Linux kernel swap in-active

pages from LRU list, regardless which process does this page belong to. Some in-active pages

are swapped in, but later, they will be used again and swap out; It will cost

compress/decompress, swap in/out time.

49

Following table shows the time cost for one page compress/de-compress:

Function Time
Compress 49us

De-compress 27us

 Figure 3-1 Time Cost of Compress/De-compress One Page

Comp-cache compress & swap in-active pages from LRU list:

In Android, these pages can be from an “empty process” or an “active process”;

– Comp-cache just picks the most in-active pages from LRU list;

– Comp-cache doesn’t know which process these pages belong to.

Consider that one in-active page (A) is belong to an active process:

– “Page A” is picked by Comp-cache, and be swapped;

– After a while, “Page A” is needed by the process to be active again;

– “Page A” will be firstly decompressed, then, swap out;

– Extra decompress, swap out time are needed to access “Page A”.

To improve the user experience, Android keeps closed application as “Empty process”,

(whereas, original Linux kernel, just kill the corresponding process, and free the physical

memory to system), it makes memory easily using out. More and more applications are running

& closed, more and more memory is used out.

When Android system is in low memory status, LMK will be invoked to kill low priority

process, free the memory to system:

– “Empty process” will be killed firstly, leading to:

 Android cannot start corresponding “closed application” quickly at next time;

 It’s meaningless for Android to keep “empty process” for “closed application”.

50

– Then, “active process” will be killed according to priority:

 Some applications will be closed unexpected for user;

 Take a bad user experience.

 When KSM is enabled in the Android System it performs following in the idle thread

– Initializes stable and unstable tree

– Identify all the processes in the systm

– Identify page to be scanned

– Search it in the Stable Tree

– if match is not found in the stable tree , its check sum is calculated

– checksum calculated does match with the previous checksum search in unstable tree

– if found in unstable tree merge pages and moves to stable tree

– checksum calculated does not match insert it in in unstable tree

– Viewing the Figure < 2-21> is good to understand the above steps

The above steps execution is not free it consumes lot of CPU, and drains the battery not

acceptable for the Mobile Phones, the out of RAM saves is much smaller then CPU

usage.

3.2 LMK and Com-Cache Optimization

Android LMK as originally introduce to combat the memory pressure. In its present form it good
but this can be further improved with the ideas as described in the figure below. As shown in the
figure a module describing "New Policy" is introduced. This policy is shown as separate
module in the figure below. Implementation wise LMK and New Policy module are integrated
one. The working of the policy is described in the form of the steps:

Step1: When the memoty processor is increased in the system first of all system shrinks the

caches. Android maintain the caches as the pre allocated structures of the frequently used objexts

such as inodes, process control block, thread, Virtual memory areas. The pre allocation is done to

fast the execution.

51

Step 2 : If system is not able to recover form the memory pressure after shrinking the caches

LMK is called.

Step 3 : LMK Algorithm is executed based on the new policy, The new policy integrate the KSM

and Com Cache techniques to counter the memory pressure first then decides for killing the

Step 4 : Comcache compresses the pages using LZO algorithms. It takes the 4KB pages contents

and apply LZO to compress them to save the meory

Step 5 :Checks the Physical pages of the procees in RAM and compress them using the

comcache. If comression is more than 0.5 swap them to the "Ramswap" the block of memory

resrved to store the compressed pages.The details algorithms for identification of pages of the

processes are described separtely below.

Step 6: Selected pages are stored in the "Ramzswap"

Step 7: Even after the compression of pages if memory pressure is not reduced the the normal

LMK algorithm of killing the processes is executed , with order of killing started form

backgrount processes, providers processes , hidden app, secondary server and finally foreground

processes.

Step 8: Calling OOM is the last option, LMK is introduced in the Android to avoid the OOM

execution. This is used as the last option to counter memory pressure. When modified LMK

failed to reduce the memory pressure OOM is called.

52

 Figure 3-2 New LMK Policy

– Virtually enlarge internal memory by compress & swap in-active physical pages;

– Reduce the time cost effect caused by compress & swap;

– Keep empty process in memory as long as possible (keep the benefit of empty process);

– Always firstly compress & swap all physical pages of empty process;

 After compression, empty processes only occupy little memory area;

 Meanwhile, keep empty process in memory can restart corresponding application more quickly;

 An empty process will only be killed at the very last second;

 Physical pages that belong to an empty process will not be re-active again, it can reduce the

decompress/swap time for a page;

– New LMK & Comp-cache policy;

 Compress & swap empty process when system is in idle state; As soon as an empty process

exists, system will compress & swap it;

 Avoiding the situation that: compress/swap take extra time/CPU working cost

53

 When LMK begin to kill process, keep all memory is occupied by active process; which improve

utilization of memory resource.

LMK Modified Algorithm is as followed:

 Figure 3-3 New LMK Policy Flow Chart

The optimization of comp-cache and swap is to compress & swap physical pages based on

process level. The difference is shown in Figure <3-4>

54

Solution Benefit Shortage

Original Enlarge internal memory
virtually

Cost compress/decompress,
swap in/out time

Optimized

Enlarge internal memory
virtually
Swap empty app firstly, reduce
the time cost by swap in/out
Keep Android & Comp-cache’s
benefit at same time

The code of swap will be more
complex

 Figure 3-4 Comparison between Original Comp-cache & Optimized Comp-cache

New mechanism that can swap all physical pages that belong to a dedicated process should

follow following steps:

– Search “Empty process”;

– Search all physical pages belong to a dedicated “Empty process”;

– Search the shared pages in those physical pages;

– Define new swap page list;

– Update LRU list.

 Figure 3-5 Compress & Swap for Dedicated Process

Figure <3-5> show the work flow of swap pages to comp-cache based on android application

priority. Firstly, create a empty application table, it stores all of the empty applications. When the

system is in idle status, invokes the search mechanism to find out the pages of empty application,

then unmap the pages, finally update the LRU list and swap pages to disk.

55

Figure 3-6 Sequence to Search Physical Pages I

1st step: to search all existing “Empty process” in Android system:

– When Android application exits, it will change the oom_adj value to 15, but not free the

memory;

– Android has a process record list to store all Android applications information, scan this list, can

search out all available Empty process;

– The sample code is like below, check the process’s oomAdj, if it is equal or greater than

EMPTY_APP_ADJ (15), it should be empty process.

2nd step: Search all physical pages belong to a dedicated process:

We will use the process structure to find the page table, then find the application pages that in

physical memory.

– Find out the mm_struct with the empty process’s task_struct;

– Use the mm_struct to find the process’s virtual address (vm_area_struct);

– The process’s virtual address can get the (PGD) Page Global Directory

– Use the PGD and virtual address can find (PUD) Page Upper Directory

– Then find the Page Middle Directory (PMD) by using PUD and virtual address;

– Find the Page Table (PTE) by using PMD, and get the physical page finally.

56

Figure 1-7 Sequence to Search Physical Pages II

3rd step: Find all referenced logical pages of a dedicated physical page:

We will use the kernel function of try_to_unmap(), it will check all the page’s mapping tables, if

the page is not locked, the page can swap out. Before swap , the system will release the page

mapping connection from all process’ s page table.

Figure 3-8 Reserve Mapping

57

4th step: Setup swap page list, update in-active LRU list:

We can set the PG_active and PG_reference to 0, then call the kernel function of

lru_cache_add() to update LRU list, finally invoke swap mechanism.

– If the page is in LRU list and can be moveable, delete the page from the list;

– Add the page into new temporary list;

– Enable the swap mechanism, swap the pages in new temporary list to swap disk;

– If the pages swap to disk failed, delete from the temporary list, then give back to LRU list.

As a result, we test the ratio that how many physical pages in a process can be compress & swap

to Ramzswap. As each process can consist different shared library, shared data, these pages

cannot be compress & swap, so the ratio of compressed pages of a process is different to each

other

Application Total
pages

Compress & Swap
pages Swap Ratio Compress

Ratio
Wow fish 6687 3169 47.4% 41.4%

Angry birds 11283 6323 56% 56.9%
Plants Vs
Zombies 24023 7955 33.1% 52%

Trial X 11991 8433 70.3% 51.8%
Cut the rope 18574 11799 63.5% 28.4%
Angry bots 23587 20401 86.5% 55.9%

Total 96145 58080 60.4% 47.73%

Figure 3-9 Swap Ratio for Dedicated Application

Note:

– Swap Ratio: (Compress & Swap pages) / (Total pages)

– Compress Ratio: the average compress ratio for one page

58

3.3 KSM Optimization

As software for mobile phones becomes more complex the amount of needed random memory

(ram) increases, too. While enlarging ram-size of common desktop computers is unproblematic

and cheap, it is difficult for mobile device as it effects two of their important attributes: power

consumption and size. Ram is a constant power consumer; even when a mobile phone is in

standby mode its ram must be powered. For small amounts of ram its power consumption is low

compared to other components. Nevertheless increasing RAM size raises the power consumption

of mobile devices and increases their size, in case of using a larger battery. As the single parts of

mobile devices are packed together extremely narrowly, adding a single (memory) chip might

imply a larger housing in any case. Multitasking operating systems are prone to load the same

pieces of data into multiple physical pages (page duplication) as lots of programs, accessing

partially equal data, run in parallel. Reducing page duplication yields a reduction of memory

consumption, as all but one page containing the duplicated page content can be freed. In this

theses we investigate the KSM on Android mobile phones and analyze the memory saving

potential.

As mentioned above when discussed the drawbacks of the KSM. For Android if we exploit the

Android Process Management, we can find something interesting. For KSM algorithm to work

effectively it is important that we reduce the number of scans and get maximum duplicated

pages. This is only possible if scanning is performed on the process whose pages are :

– Less Volatile means does not change in the subsequent scanning

– Processes which have high tendency to be similar

With the exploitation of the above characteristics we are proposing a scheme that decreases the

CPU cost incurred in computation. All these experiments are performed on the Galaxy Nexsus

with proper real Workload.

59

Optimization #1

As mentioned in Chapter 2 , the Android Framework provides one foreground application and

many background applications. Since phone/tablet is maximum 10'' not the complete TV , so

only one application is active in foreground rest of applications are not inert but in background.

One important consideration form the memory point of view is that background applications are

changing their contents from the memory point of view it is only the foreground application

which is updating their memory content frequently. So this helps in identifying the volatile pages

process.

If KSM only targets the background processes, the process pages only need to be scanned once

as till the time process is in background its memory contents are not going to be changed. So

during subsequent round the page is not scanned.

The results are shown in Chapter 4 , it shows 98% CPU saving with the same amount of

memory saved without adopting the Optimization #1

Optimization # 2

Android Zygote Model : All the processes in the Android are derived from the Zygote. The

concept is introduced for the fast creation of process.

 Zygote is daemon process whose only task is to launch applications. So Zygote is the parent of

all App process. When app_process launches Zygote, it first creates DVM and then it calls

Zygote’s main () method. On starting the Zygote it loads all required Java classes and other

resources, it starts "System Server" and opens /dev/socket/zygote socket which listen for requests

for other starting applications. System Server is a complete detached process from its parent.

Once it is created it keeps on initializing all various System Services and it starts the Activity

Manager . This is how it works, this information was important to understand how KSM can

effectively use it.

60

From /dev/socket/zygote , "zygote receive a request to launch an application. On receiving

request fork() is called. Here lies the important stuff. When a process forks, a clone of its is

created. It means replicating itself in some another memory space. This is done in a special way.

Zygote, first creates an exactly same new DVM, preloaded all necessary resources and classes

required Application. This really makes the process of creating a VM and load resources pretty

efficient. Android uses the modified Linux kernel. The Linux Kernel implements Copy On

Write (COW)strategy.This means is that during the fork process, no memory is actually copy to

another space. It is shared and marked as copy-on-write. So all the libraries at the same virual

addresses are same. So if KSM know these then these pages are guaranteed candidate od page

sharing. [5]

3.3 Optimized low memory policy

In Android low memory solution, optimized Comp-cache will be invoked in two situation.

– When system is in idle status, system will scan for empty process, compress & swap

them (optimized Comp-cache);

– When system is in low memory status, optimized Comp-cache & LMK will work.

System Idle status: When screen turns off (or press power key), optimized Comp-cache will

start. It will firstly search empty process in system, then, compress & swap these empty

process. In idle status, system will always compress & swap empty process, until the swap area

is full. The working flowchart is described as following diagram:

61

Figure 3- 10 Optimized Comp-cache Working Flowchart in Idle Status

System low memory status: When system memory is in “slight memory shortage” status, the

optimized Comp-cache will start (combined with LMK). It will firstly search the empty process

in system, then, compress & swap 32 pages of the process every time. If the free memory is

still low, system will start LMK, to kill process according to process priority and memory cost.

Detail working flowchart is described as following:

62

As software for mobile phones becomes more complex the amount of needed random memory

(ram) increases, too. While enlarging ram-size of common desktop computers is unproblematic

and cheap, it is difficult for mobile device as it effects two of their important attributes: power

consumption and size. Ram is a constant power consumer; even when a mobile phone is in

standby mode its ram must be powered. For small amounts of ram its power consumption is low

compared to other components. Nevertheless increasing RAM size raises the power consumption

of mobile devices and increases their size, in case of using a larger battery. As the single parts of

mobile devices are packed together extremely narrowly, adding a single (memory) chip might

imply a larger housing in any case. Multitasking operating systems are prone to load the same

pieces of data into multiple physical pages (page duplication) as lots of programs, accessing

partially equal data, run in parallel. Reducing page duplication yields a reduction of memory

consumption, as all but one page containing the duplicated page content can be freed. In this

theses we investigate the KSM on Android mobile phones and analyze the memory saving

potential.

63

Figure 3-11 Optimized Comp-cache Working Flowchart in Low Memory Status

For KSM there is not specialized change in the calling algorithm. Only change is the input to the

ksmd daemon. When it scan the process Virtual address ranges as described in Optimization #2

and selection of processes as described in Optimization #1 . So selection of input to be

processed giving the good results.

64

65

Chapter 4

Results and Analysis

After developing the new LMK solution for the Android System, testing the stability of the
system with new algorithm is also an important task. To test the stability of the system with the
new solution we are using the standard benchmark test cases. With this new algorithm we are
keen to judge the stability and performance. Android provide the monkey test suite to judge the
stability of the system. This test randomly launch the application in the mobile phone, start the
activities , kill activities, fires intents and do number of operations on each applications to make
sure system is stable. For performance tests we used the IOZONE that is memory read write test,

The final performance evaluation will cover to main area:

– The system stability test;
– The system performance test

4.1 System stability test for Com Cache

The system stability test includes two part:

– Linux IOZONE test
– Android Monkey test

For IOZONE test, the benchmark result is as following:

HW Platform: G-I9103;
SW Platform: Original Android + Optimized Comp-cache;
Block size = 4KB File size = 300MB

Test target Write
(Kbytes/s)

Re-write
(Kbytes/s)

Read(Kbytes/
s)

Re-read
(Kbytes/s)

optimized 15974 13899 428161 518079
un-
optimized 15999 14527 447303 533059

66

Figure 4-1 Block Read/Write (4K)

Block size = 8KB File size = 300MB

Test target Write
(Kbytes/s)

Re-write
(Kbytes/s)

Read(Kbytes/
s)

Re-read
(Kbytes/s)

optimized 15983 14443 466141 568768
un-

optimized 15721 13983 512293 585576

Figure 4-2 Block Read/Write (8K)

67

Block size = 16KB File size = 300MB

Test target Write
(Kbytes/s)

Re-write
(Kbytes/s)

Read(Kbytes/
s)

Re-read
(Kbytes/s)

optimized 16413 14766 508073 619928
un-

optimized 16854 14491 541209 619606

Figure 4-3 Block Read/Write (16K)

Block size = 32KB File size = 300MB

Test target Write
(Kbytes/s)

Re-write
(Kbytes/s)

Read(Kbytes/
s)

Re-read
(Kbytes/s)

optimized 14481 15603 537463 624593
un-

optimized 14395 14057 553960 634622

68

Figure 4-4 Block Read/Write (32K)

From the IOZONE test result, optimized Comp-cache does not bring side effect to system
overall stability.

For Monkey test, the benchmark test result is as following:

HW Platform: G-I9103;

Two SW platforms are tested for comparison:

– Original Android + Optimized Comp-cache
– Original Android (get from P4)

The switch application test is set as 40% in whole monkey test event.

SW Platform 1000 event 2000 event 5000 event 10000 event
Original Android +
Optimized Comp-

cache
Pass Pass Pass Pass

Original Android Pass Pass Pass Pass

69

Original Android + Optimized Comp-cache

Figure 4-5 Monkey Test Result (Optimized Comp-cache)

70

Original Android

Figure 4-6 Monkey Test Result (Original Android)

From the Monkey test result, optimized Comp-cache and KSM does not bring side effect to
system overall stability.

71

4.2 System performance test on Comcache

The performance test environment is defined as below:

HW Platform: G-I9103; (835MB user space memory)

SW Platform:

Three kinds of SW platform will be tested for the performance comparison:

– Code1: Original Android (no Comp-cache)

– Code2: Original Android + Original Comp-cache

– Code3: Original Android + Optimized Comp-cache

1st test scenarios are defined as below (Free Memory Test):

– Run same quantity process on Original Comp-cache & Optimized Comp-cache platform,

compare the memory cost.

– The Ramzswap size is defined as 25% of user space size----200MB

Test result is shown as following:

To test the free memory performance of original Comp-cache & optimized Comp-cache; 6

processes are created, each process will cost 100MB memory. After original Comp-cache &

optimized Comp-cache works, the free memory in two system are compared.

72

Platform Free memory (MB)
Original Comp-cache 18.9358

Optimized Comp-cache 147.6636

 Figure 4-7 Free Memory Test Result

In this test, 129MB internal memory are saved.

Analysis of the test result is as following:

After 6 processes is running, they will occupy 600MB, and with other basic process in kernel

occupying some memory, so,

– In original Comp-cache, system reaches low memory status; at this moment, if system

request more pages, original Comp-cache will start, to satisfy the system request pages;

– In optimized Comp-cache, as compress & swap will be start during system idle status, so

after running 6 processes (100MB memory for each), system still has 129MB free

memory;

– Finally, 129MB/835MB=15.44% internal memory can be saved.

73

2nd test scenarios are defined as below:

– “Fish demo” is chosen as the test target application, which will cost 50MB memory

– Two scenarios are tested:

 Normal status (system is in idle), there is enough memory in system in this scenario;

a) System free memory size (set the starting free size is 80MB);

b) Time cost to start a new process (test application, will request 30MB memory);

c) When test application is running, press “home” key, and restart it; check the

restart time cost;

 Low memory status, the free memory is lower (about 20MB);

a) System free memory size (set the starting free size is 20MB);

b) Time cost to start a new process (test application, will request 30MB memory);

c) When test application is running, press “home” key, and restart it; check the

restart time cost;

– The Ram zswap size is defined as 25% of user space size----200MB

– Each scenario is tested for 5 times, and the average value will be considered as the test

result.

Test result is shown as following:

Scenario Test Item No Comp-cache Original Comp-cache Optimized Comp-cache

Normal
status

Free memory ① 80MB 80MB 80MB/163.7MB ④
Start new process time

② 2080ms 2086ms 2083ms

Restart process time � 267ms 264ms 304ms

Low
memory

status

Free memory (Initial
time) � 20.5MB 20.5MB 20.5MB/104.3MB �

Free memory (time at
the beginning of new

process start) �
90MB � 70.2MB � 104.3MB �

Free memory (After
new process totally

starts) �
46.1MB � 22.6MB � 57.4MB �

Start new process time 2315ms 2730ms 2014ms
Restart process time 2061ms 298ms 306ms

74

Note:

– � Free memory: current system free memory;

– � Start a new process time: The time cost that system starts a new process;

– � Restart process time: for the test application, press home key, and then restart it, the time

cost of restart the test application;

– � 80MB/163.7MB: the initial status is 80MB, after screen off, optimized Comp-cache

works in system idle status, and the free memory becomes 163.7MB;

– � Free memory (initial time): the initial status is 20.5MB for each platform, after the “fish

demo” (process costs 30MB and other related service 20MB, totally costs 50MB) starts,

system will be in low memory status

– � Free memory (time at the beginning of new process starts): at this point of time, new

process requests free memory to system, and each platform will do different action. (No

Comp-cache will start LMK to kill process; Original Comp-cache will begin to

compress/swap in-active pages; Optimized Comp-cache has enough free memory, so it will

just allocate memory for new process) This line show the free memory status at this point of

time.

– � Free memory (after new process totally starts): After new process totally starts, this

process will cost some memory. This line show the free memory at this point of time.

– � In No Comp-cache, when system has only 20.5MB, the “fish demo” starts (it will cost

totally 50MB), system is in low memory status; system will firstly call LMK to kill a process

to free enough memory (in this test, the “Angry bot” is killed), 70MB memory is free by

LMK, so at this moment, free memory is 90MB. (Attention, in this case, a process is killed,

but for other 2 platform, no process will be killed.) ;

 And after “fish demo” totally start, as it cost around 50MB, now, the system has only

46.1MB.

– � In Original Comp-cache, when system has only 20.5MB, the “fish demo” starts (it will

75

cost totally 50MB), system is in low memory status; original Comp-cache starts; it will

compress/swap pages according to how many pages system requests; totally 50MB will be

free by original Comp-cache during its compress/swap, so at this point of time, system free

memory is around 70.2MB;

 And after “fish demo” totally start, as it cost around 50MB, now, the system has only 22.6

MB.

– � At the initial time, for Optimized Comp-cache, the free memory is 20.5MB, and then,

press power key, optimized Comp-cache will start, system will have totally 104.3MB. So,

when “fish demo” starts, system has enough free memory to run it. And after “fish demo”

totally start, as it cost around 50MB, now, the system has only 57.4 MB.

Free memory compare:

 Figure 4-8 Free Memory Result

76

Time cost of start a new process:

Figure 4-9 Time Cost of Starting New Process

77

Time cost of restart a process:

Figure 4-10 Time Cost of Restart Process

Analysis of the test result is as following:

In normal status (system is idle),

– Free memory:

(Optimized Comp-cache(163.7MB)>Original Comp-cache(80MB)=No Comp-

cache(80MB))

After screen off, Optimized Comp-cache solution has more free memory; and at this

status, no Comp-cache solution and original Comp-cache solution has same free memory,

less than Optimized Comp-cache;

– Start new process:

(Optimized Comp-cache(2083ms)=Original Comp-cache(2086ms)= o Comp-

cache(2080ms))

As the free memory is enough in all 3 platform (80MB, 80MB, 163.7MB), CPU is in idle

status, so, the time cost to start a new process is almost same.

– Restart process:

(Optimized Comp-cache(304ms)>Original Comp-cache(264ms)=No Comp-

cache(267ms))

For no Comp-cache & original Comp-cache, at this status, the test application’s all pages

78

are located in internal memory, without any compressed page, these two will restart

applications very quickly, almost same time; but for optimized Comp-cache, at this

status, almost all the test application’s pages are compress & swap to Ramzswap, to

restart it will cost extra decompress & swap time, so the restart time in optimized Comp-

cache case, will be larger.

In low memory status (system free memory left only 20MB),

– Free memory:

After screen off, Optimized Comp-cache solution has more free memory; and at this

status, no Comp-cache solution and original Comp-cache solution has same free

memory, less than Optimized Comp-cache;

– Start new process,

(Original Comp-cache(2730ms)>No Comp-cache(2315ms)>Optimized Comp-

cache(2014))

 No Comp-cache: when system is in low memory status, to start a new process, need

more free memory, so, system need to firstly do LMK, kill other not important

process to free memory, then, finish starting a new process. It will cost more time.

As kill a process and free corresponding memory will not cost too much time, No

Comp-cache case will cost less time than Original Comp-cache;

 Original Comp-cache: when system is in low memory status, to start a new process,

need more free memory, system need to do Comp-cache firstly, free some memory,

then, finish starting a new process. It will cost more time.

 Optimized Comp-cache: in this situation, there is enough memory in system, system

will start a new process as normally. Optimized Comp-cache case will cost less time

than other two cases.

– Restart process:

(No Comp-cache(2061ms)>Optimized Comp-cache(306ms)=Original Comp-

cache(298ms))

For this case, system will firstly start other process, and then check the test process

79

 No Comp-cache: in low memory status, start other process, system will firstly start

LMK, the test application will be killed by LMK, then, restart the test application, it

will cost much time (same as start a new one, as the test application has been killed)

 Original Comp-cache: in low memory status, after press “home” key, the test

application will be compress & swap, to restart it, it will cost time to decompress &

swap some page (but as it is only restart, it will not cost much time)

 Optimized Comp-cache: in this status, system still has enough memory, the time

cost is focus on decompress & swap all physical pages of the test process. As it is

restarted, not all the pages are needed, it’s time cost is only a little bit large than the

original Comp-cache.

Conclusion:

– Optimized Comp-cache makes more free memory for whole Android platform

 In 835MB user space internal memory, 15.44% memory can be saved (from the test

result);

 In another way, we can keep more processes exist in memory, for a even better

system performance; it also means that, optimized Comp-cache can delay the system

low memory status coming as later as possible.

– At the same time, enabling optimized Comp-cache also will not bring bad side effect to

whole system stability performance.

80

Result And Analysis of KSM

4.3 CPU Time for Scanning Page on KSM

The modified KSM scheme is tested with all the flavors of the KSM. For this 10 processes each
consuming memory from 60~80MB is started. In KSM pages are compared to find the same
pages, and cost per page in term of time is calculated using the pages_to_scan and time taken.

Figure 4-11 CPU Cost Per Page

Analysis of the above result

When the KSM is applied only on the back ground processes the improvement is far batter than
the normal KSM. Next point of analysis required do different amount of memory is freed when
with each of the scheme. This is done below.

81

 4.4 Memory Saving with KSM various schemes

Below we have taken the statistics of the free memory in each of the case and it is observed that
memory saving is all most same in each of the case.

 Figure 4-12 KSM Free Memory

So far we have analyzed the Com Cache and KSM, separately and drawn the various charts of

the improvements. Both of the techniques we mentioned analyzed, modified and evaluated and

integrated with modified LMK ultimately improves the system RAM. When the system is RAM

is improved situation of memory pressure is batter. This is proved form the below chart which

evaluates the calling frequency of LMK with both algorithms.

 Figure 4-13 LMK Frequency

82

83

Chapter 5

Conclusion and Future Work

Modern devices with no swap space results in killing of process at low memory situations which
was the case in Android. LMK is used in Android to kill the processes at low memory situation.
In this thesis existing LMK is improved using in kernel compression techniques such as KSM
and Com Cache. Using part of a RAM as swap space will increase the effective memory usage of
main memory and it avoids killing of process to some extend at low memory situations. Modern
embedded system where flash is used as secondary storage will suffers from performance when
conventional virtual memory system is used. Hence integration of in kernel memory
compression techniques such as Com Cache to increase the efficiency. Com Cache integration
with the LMK is solved by changing the data structure and changing the make files. Calling the
LMK at system idle time and when system is under memory pressure is successfully changed.
All the above changes results in the higher RAM availability to the system. Other approach of
keeping unique pages in case of duplicate pages ie KSM suffers from high CPU usage is solved
with the proper selection of input processes. The similarity page ratio is improved with the
selection of processes originated from the same ancestors.

For a mobile phone user the time taken to launch an application ie initial entry and re-entry time
of the application are important, both are affected by the available RAM. This improved RAM
availability has increased the system performance and Degree of Multi-programming. With this
improvement the Smart Phone user feels improvement in usability and can open more
applications simultaneously.

In this improved LMK incorporated two techniques, available. Another good idea is to improve
on dedicated memory allocation like in case of Camera and Decoders separate memory is
reserved dedicatedly. This dedicated memory allocation wastes lot of RAM particular in the
situation when all the functions for which memory is reserved is not used simultaneously. Shared
memory pool and changes in the memory management scheme can further improve the available
RAM for the system.

84

References

[1]. Robert Love , Linux Kernel Development

[2]. Daniel P. Bovet, Understanding the Linux Kernel

[3]. Marko, Marakana Android Internals

 [4]. Goldwyn Rodrigues, Taming the OOM Killer, lwn.net/Articles/317814/

[5]. Anatomy of Android , http://anatomyofandroid.com/2013/10/15/zygote/

[6]. https://www.ibm.com/developerworks/linux/library/l-kernel-shared-memory/

[7]. Nitin Gupta Anderson Farias Briglia, Allan Bezerra. Evaluating effects of cache memory

compression on embedded systems. 2007 Linux Symposium, 2007.

 [8]. Jennings, The zswap compressed swap cache, http://lwn.net/Articles/537422/

 [9]. A. Arcangeli, I. Eidus and C. Wright, “Increasing memory density by using KSM”, In
Proceedings of the Linux Symposium, (2009) July 13-17; Montreal, Canada

[10]. Red Hat Chapter 8 , https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/6/html/Virtualization_Administration_Guide/chap-KSM.html

[11]. Senthilkumaran R, Hash Based KSM,
http://www.cse.iitb.ac.in/synerg/lib/exe/fetch.php?media=public:students:senthil:report.pdf

[12]. https://www.kernel.org/

[13]. Activity Life cycle. http://developer.android.com/reference/android/app/activity.html,
last accessed March 2013

[14]. Ramani Yellapragada. Linux Memory Management. 2003.

[15]. M.I. Vuskovic. Virtual memory in operating system lecture notes, last accessed
October 2012.

