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Abstract  

No embedded system is possible without a memory inside as memory is important part of any 

system. So managing the memory is a crucial part of work in the System. That is why memory 

management is the most complex part of operating system. Whenever an operating system is 

decided for any devices the device memory and OS capabilities are matched. Choice of Android 

for the Mobile Phones give best combination of under lying hardware and software capabilities. 

In lined with the choice of OS, Android provides improved Memory Management than Linux. 

Android also provides the in build policy for handling with the low memory scenarios. But as the 

performance has no limit to achieve and daily user requirements for faster and bulky software 

needs further optimizations. Here in this thesis our aim is to focus on the RAM availability for 

the System. More system RAM means improved sluggish behavior with enhanced degree of 

multi programming and responsiveness. We studied various method of in kernel compression to 

achieve goal of improved RAM. These methods are Com-Cache, zSWAP, KSM. These methods 

are not in the proper shape to use with Android Operating System and Android Low Memory 

Policy situation. After deep analysis here to enhance the RAM availability we need to change the 

Android Low Memory Policy and modified com-cache and KSM implementations to suite the 

Mobile Phones. KSM utilizes the CPU heavily and drain out battery very fast and Com-Cache is 

not compatible with the LMK in its raw form. These techniques are modified and also changed 

Android Low memory Policy and these results in batter RAM availability to the system. 
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Chapter 1  
 

Introduction 
 
When we design an embedded system memory is integral part of it. There are several options for 

memory like NOR,NAND, eMMC ,PCM. Various types of RAM ( DDR1,DDR2, stacked, non 

stacked ). Every piece of software stored in some kind of memory. When a device is powered on 

if we are using NAND or PCM based devices software is first brought to the RAM and from 

there it starts executing. If NOR memory is used software can be directly executed form NOR 

without bringing it to the RAM unlike in NAND and PCM case. This is because of the XIP 

property of NOR memory. CPU is linearly addressable and NAND/eMMC etc are block devices 

so only block chunk is first read and then bring to RAM form there rest of software begin to 

execute. All most all the smart phones are NAND/eMMC based so RAM cannot be ignored. So 

if we have more RAM than more programs can be accessible without read from NAND/eMMC 

and makes the accessibility of application faster. Moreover RAM is faster than other FLASH 

memories. 

 

Motivation of the Work 
 

Selection of memory in case of Embedded system is most important as it impacts the BOM as 

well as performance. Before smart phones most of the phones were NOR based phones, to run all 

most all the available software 256MB of NOR with  512KB/1MB/2MB  of RAM was sufficient 

based on the requirements. But NOR cannot be used with the smart phones as Smart phone 

software quite complex and take more space as they are converging to TV technology, cloud 

computing and many more paradigm. As NOR is costlier than NAND so it is no more the cost 

effective solution. NAND is also being replaced by the eMMC, the problem is the File Transltion 

Layer required and if pure NAND is used all the operations are performed in the Software, 

eMMC gives a batter solution with inbuilt controller which is takes care of FTL operations. So 

all the Smart Phones of today’s are using the eMMC over SDIO interface. So when these 

technologies are used RAM usage is increased because if linear addressing scheme of the CPU. 
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The motivation of this work is to avail as much as possible RAM to the system so that new 

technologies for the Smart phones never lacks it. This is not 100% possible as software 

requirements for the main memory is always increasing. Other than the hardware factors as 

described above design of the operating system is another consideration. Android design is un 

doubtfully RAM Hungary. Android is so far used in hand held devices specifically for the 

Mobile Phones, which characterizes as the small screen ( 5”,7”, 10”) size seems sufficiently 

large when compared with old phones but as mobile is converging as TV or desktop so still very 

small. When we are using the phone and switch form one action to other says from watching 

moving to composing the SMS, media player is not killed but it goes to the background. Also 

form SMS to if one switch to reading the paper so SMS typing window is not destroyed. But 

being a short screen all these activities are not visible on the screen but remains in the 

background consuming the RAM. The phones with faster response always try to keep maximum 

number of applications in the Background but this is again limited by the availability of RAM. 

The Linux and Android already provided few techniques to take care of RAM availability 

pressure but still batter techniques can be developed. 

 

  

  

Related Work 
 

Many researchers have proposed the techniques for effective usage of RAM at the application 

level and at the System level. We are not considering the application based techniques as there 

life span ends with the popularity and day to day up gradation, target deployment device. Like in 

case of database designing there are various techniques for Oracle cannot be used for the Mobile. 

Different Video Players are designed for different requirements of the devices. So our focus was 

on understanding the System Level Optimization Techniques. 
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In the system side following techniques has been proposed  

 

Com Cache: in-memory compressed swapping : 

The concept of memory compression compress comparatively unused pages and store in main 

memory. This is simple concept and used from quite long in the Operating Systems. Here 

philosophy is to use compression, and reduce expensive disk I/O operation. This proves much 

effective than swapping pages to secondary storage. When a page is required again, it is passef 

through decompression and send back, which is, once again, much faster than going than swap. 

This idea is under implementation for Linux is with the name as the compcache project. Here a 

virtual device is created call it ramz swap which acts as swap disk. Pages are swapped to ramz 

swap disk after compression and stored in memory itself. The goal of the project is not just 

performance on swap less setups, it allows running applications that would otherwise simply fail 

due to lack of memory[1]. 

zswap compressed swap cache :  

Swapping means performance degradations as it involve the I/O operation form fast device to 

slow device and vice-versa. The I/O latency between RAM and swap, even with fastest SSD, is 

of the order of magnitude four. The throughput gap is of orders of magnitude two. In addition to 

the speed, storage on which a swap area resides is now a days can be more shared and virtualized 

environment, which can cause furtherl I/O latency and non deterministic performance. The 

zswap goal is to mitigate such undesirable effects of swapping through I/O activity reduction. 

“zswap” is a write-behind, lightweight cache compressed for swap pages. It selects pages which 

are being swapped out and it tries to compress them into a dynamically allocated RAM-based 

memory pool. If this process is successful, the write operation to the swap device is delayed and 

in most cases, can be avoided completely. It results in  significant I/O reduction and performance 

improvements for systems that has swapping capabilities[8].  
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Increasing Memory Density Using KSM:  
 

In case when we are having the same host an on that different virtual machines are running, with 

the possibility that they are handling the same software and data the possibility of RAM 

duplication is very high. KSM is implemented as the Linux kernel loadable module this allow 

sharing of anonymous memory across different virtual machines to be shared. KVM is treated as 

the another process in the Linux system not different a different process. So mmu notified and 

other things remains same  Guest physical memory is allocated as regular Linux anonymous 

memory mappings. KSM scope is not limited to the virtual machines[9]. 
 

The main task of KSM is to identify same pages from the system. For this it uses two red-black 

trees, one is called the stable tree the other is called the unstable tree. The stable one contains  

past shared pages and not frequently changed pages. The unstable red-black tree holds pages that 

are still not shared but are under the supervision of KSM. 
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Problem Statement 
 

Research Gap: 

 

The LMK in its present form kills the processes based on the algorithm of process priority. 

The killing order is Empty/Background App, Content Provider , Hidden App, Secondary 

Server, Visible App, Foreground App. No further options are explored in order to save the 

processes form being killed. if these processes  are  killed and in very next moment if 

processes are needed again they are started again so phone exhibit the sluggish behavior. 

The number of times the LMK is called is potential parameter for the sluggish behavior of 

the phone. The draw backs of the frequent LMK  and OOM execution are  

 

-  Phone exhibits the sluggish behavior. 

- During process loading the memory controller is accessed frequently this cause more     

current consumption 

-  Loading the complete process takes more time than bringing the process form back ground 

to foreground. 

 

If memory pressure is not controlled by the LMK then OOM is inevitable. The problems 

with OOM are more severe as 

 

- OOM process selection is not controllable form the Framework 

- If a system process is selected for the killing then system is going to hang surely 

- It does not care for the fore ground and background processes 

 

The ultimate goal of the thesis is to control the "memory pressure" on the system by 

increasing the available RAM to the system. As the in current Android System the LMK 

algorithm is used to counter the memory pressure. Here in this thesis LMK algorithms is 

modified and integrated with KSM and Com-Cache techniques and collectively gives the 

improved results to handle memory pressure. The KSM and com cache in the present form 

are not applicable on the Mobile phones because of the  
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- High CPU usage resulting to the battery draining up fast 

- Battery is one of the criteria for the Smart Phone 

-  High CPU usage also degrades the overall performance of the system 

  

The primary reason is the basic techniques used where each page is compared with rest of 

pages to find the similarity among the pages. Each page is 4K and the comparison method is 

memcmp, even we optimize this trivial function to extreme based on the platform used CPU 

usage is very high. So far it is not commercialized in the Mobile Phones indeed it good for 

saving the RAM. 

 

Story with the com cache is batter for CPU usage but the Android Low Memory Policy and 

Com-Cache are not compatible to use effectively. The calling point of Com-Cache should be 

in control of LMK and in which thread the compression and decompression is to be done so 

that rest of system is not impacted. Timing is also major concern. The important point still 

not answered in any research is relevant to in kernel compression does not answer reducing 

the LMK frequency count. 

 

if we can improve LMK algorithm this can result to the batter availability of RAM with 

minimum impact on performance and degree of multiprogramming. Therefore problem 

statement is :  

 

Statement: 

“Proposing the modified Android Low memory handling policy to increase the RAM 

availability to the system with minimum impact of the performance without compromising 

degree of multiprogramming, and stability of the system.” 

 

 

Goals of Thesis  
 

Handling the memory pressure is one of the tedious takes of any Embedded System. This 

become more complex with ever increasing demand of quick responsive behavior form the 

system. Linux uses OOM killer to cope up memory pressure but this is not suitable for 
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android so Android uses LMK over OOM. The standard algorithms for the Android is 

merely based on the Android Process Management. This can be further improved as 

attempted in thesis with modified in kernel compression techniques such as KSM and Com 

Cache. 

 

Major Goals: 

 

1.  Studied various methods of in- kernel compression techniques such as com cache, zwap,  

KSM, CMA in Linux.  

2. To propose new LMK Policy to enhance RAM availability for Android Mobile Phone 

3. Modify Com Cache so that it works with LMK of the Android 

4. Modify KSM so that it can be used for the Android Mobile Phones and integration with 

LMK  

 
Under New LMK Policy processes and pages are identified for compression when the 

system is in idle state or the system is under memory pressure. Even after compression 

memory pressure is not reduced background processes are identified and they killed to make 

room for new processes. 

 

Com Cache is in kernel compression technique. Com Cache is modified with the Android 

System as the loadable module. Once LMK has identified the pages for compression com 

cache do the compression. 

 

Input to the KSM is modified. Instead of applying KSM on all the processes, it is applied 

only on the background processes and processes with same ancestors. As the pages of these 

processes are most likely identical. 
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Chapter 2 
 

Related Work and Background Work 
 

2.1 Android Memory management 
 

Android is the open platform and best for developing apps. More and more users prefr Android 

for the development of various applications. Memory requirements for the various apps are 

different some apps such as such as game, video player and so on, requires large memory, so the 

phone becomes slow with usage. The Figure <2-1> shows the Android phone memory 

requirements for different applications, and the Figure <2-2> shows the memory usage of most 

frequently used applications 

Model Total memory Memory usage for app 
I559 384 MB 286 MB 
I579 384 MB 286 MB 
I9000 512 MB 339 MB 
I9001 512 MB 352 MB 
I9100 1 GB 835 MB 

                                                         

        Figure 2-1 Samsung Android Mobile Phone Memory 

                   

App name Memory used 
Phone 23.4 MB 

UCweb 9.9 MB 
Angry birds 73 MB 

Plants vs. Zombies 76 MB 
Angry bots 75 MB 

Input method 19.4 MB 
Camera 8 MB 

Google map 12.7 MB 
Email 9.9 MB 
Gmail 9.5 MB 
Market 20.5 MB 

Music Player 19.6 MB 
Video Player (720 * 480) 23.2 MB 

     

    Figure 2-2 Main Stream Application Memory Usage 
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Android memory management design is different from the traditional operating systems: On 

exiting an application it will not free the memory allocated to it. When system is under memory 

pressure then application memory of  not in use application will be freed. So as we keep on using 

the phone for long time the count of such unused application will keep on increasing ultimately 

less memory will be available. In case if we now attempt to start a large memory consumption 

application in the low memory status, it will take long time to start the application. The solution 

in such a low memory scenarios is to be founded, Android is based on Linux kernel, it follows 

most of Linux kernel memory management[2]. 

 

2.1.1 How Linux manage memory 
 

Linux is virtual memory based operating system. Generally linux machines has small amount of 

RAM and Large Virtual Address space. Linux supports both hardware and software mechanism 

to make sure those programs can execute transparently without knowing the fact that small 

physical memory is used. Each process in the Linux has its own unique virtual address space. 

These virtual address spaces are isolated from each other, a process running one application 

cannot access another application. The basic unit of memory is page. The relationship between 

physical addresses and virtual addresses is given by page tables, and if a virtual address is 

referenced and there is no corresponding physical address, page fault occurs, this is handled by 

operating system. Hardware allows fixed page sizes[1]. 

 

   Figure 2-3 Virtual Address Vs. Physical Address 
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Accessing the code or data every time for the secondary memory is not efficient. Linux kernel 

uses caches concept to enhance system performance. Caches are termed here keeping the data in 

the RAM memory. From slow devices data is read and hold in RAM for short time, data still 

remains in RAM even if process is not active. So next attempt if process accesses the data, it is 

read directly from the RAM, without accessing the slow block device. When the system memory 

is under pressure first cache memory is freed slowly to make room for other processes to be 

loaded. SWAP increase the effective size of RAM so the total memory at disposal of the system 

is sum of RAM plus SWAP space. SWAP is used as extended RAM so that the effective size of 

memory grows with defining the SWAP space. The kernel will write the contents of a unused or 

inactive memory to the swap space making room to load other process. When the original 

contents are needed again, they are read back into memory. When in low memory case, if kernel 

needs more memory to start a process, but there is no swap space to swap in pages and no caches 

can be shrunk. In this situation, the higher application code instructs the OOM killer to kill the 

un-important process in the system to obtain large number of memory pages to load other 

processes. Refer to Figure<1-2>, the mechanism of swap, cache shrinkers and OOM killer will 

be start in sequence according to seriousness of low memory[4]. 

 

 

    Figure 2-4 Low Memory in Linux Kernel 
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2.1.2 How Android Manages Memory 
 

Android is based on Linux kernel; it uses the same Linux memory management, with little 

modification: 

– In Android phone, there is no swap space. The phone’s storage flash or eMMC card 

don’t read/write very frequently, Android does not support swap feature. 

– Android supports a kernel diver named Low Memory Killer (LMK) other than OOM 

killer that is standard Linux feature, when the system memory is lower, it kills less 

important application to free memory. 

Android process management is different than Linux, unlike other operating system in Android if 

user switches to another Android application, the process is not killed but left in memory as 

background process. So it will be an empty application or background application, it just sitting 

idle, does not use any CPU, battery, or network capacity. This design is very effective 

optimization so next time when user switches back to that application, it will be loaded 

immediately, without reloading the resources again. But there is situation when lots of 

applications changed their status to background app, the system will be out of memory. Here 

system requirement is to kill some applications to make room for new applications, but selection 

of the applications to be killed require some intelligent so LMK helps. The use of traditional Out 

of Memory (OOM) to kill the process has some drawbacks[4]. There are some points about this: 

When system lacks memory seriously then OOM killer is triggered. LMK is called far early 

when memory pressure increases the thresh hold. The LMK is registered in cache shrinker list, 

this is the list which reduces the cache when system is under memory pressure. LMK works with 

the cache srinker. 

– OOM killer cannot be controlled form the user space, there is no way to importance of 

Application can be registered with the System, so it is not guaranteed that OOM killer 

will kill least important application. Android framework divides the Android 

applications to various categories and LMK is aware of various categories of lass of 
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android application, and LMK follows the order of categories of applications starting 

from empty applications, content providers, background apps, fore ground apps[5].  

 

     Figure 2-5 Low Memory in Android 

2.2.3 Optimization of Android memory management 
 

With Android memory management, we can run applications as much as possible till the system 

fails to allocate pages. If we can increase main memory we can run more applications, it is good 

solution, and surely the mobile have more memory so run efficiently. Now, just think of SWAP 

feature, it is one of way to increase the physical memory size. Flash cannot be used in Mobile 

phone because of the NAND properties. Comp-cache/zRAM is a good solution of embedded 

system memory management. Comp-cache creates RAM based block device ( named 

Ramzswap) which acts as swap disk. Pages are swapped to this RAM area are compressed and 

stored .Compressed pages in RAM increases capacity. This allows many applications remain in 

memory.  
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For  Android to enable SWAP feature, LMK policy has to be defined working with swap, when 

system is in low memory situation, first it swap out pages ; if swap pages cannot free enough 

memory, Low Memory Killer (LMK) will be called.  

     

2.2 SWAP 
 

SWAP is basic concept of the most of modern Operating System. In SWAP implementation a 

small portion of the Hard-Disk is reserved. This space is used by the Memory Management Code 

to store the ready pages. RAM is the faster memory so Operating system will try to keep most of 

the data in the RAM. When the RAM is full the Memory Manager will move inactive pages, ie 

pages not in used for long time to the hard disk, freeing up RAM for the active processes. If any 

of this page from the hard disk needs to be accessed again, it will move back into RAM, and 

another inactive page from the RAM is identified and it is moved onto the hard disk ('swapped'). 

The SD cards and FLAH are considerably slower than physical RAM, so when some page needs 

to be swapped, there is a noticeable performance hit[2]. 

As swapping is the slow process, identification of pages to be swapped is major concern. Kernel 

requires an efficient algorithm to find the pages for system performance. 

 

 

2.2.1 SWAP Code 
 

As mentioned above SWAP policy should not lower the system performance. After moving the 

pages to SWAP page frames are freed for other processes, so it also called called page reclaim. 

SWAP implementation is one of the most complex part of the kernel. - “try_to_free_pages” This 

API is invoked when kernel finds extreme shortage of memory during execution of a process. It 

scans all pages active the current Memory Zone and frees least frequently used. 
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- There is a background thread known as “Kswapd” the job of this thread it to records memory 

usage at frequent intervals and identifies memory shortage. This data is used as input to swap out 

pages as a precaution before the kernel jumps into the situation of not sufficient memory. Source 

code is explained in the form of steps:     

Step1: “shrink_zone” is used for removing the pages from the memory. This method does two 

things: Its role is to maintain a balance between of active and inactive pages in a zone by 

transferring pages between the inactive and active lists with the use of shrink_active_list. 

shrink_zone decides number of pages of a  zone are to be swapped out and decides which pages. 

shrink_active_list is a supporting function called by the kernel to transfer pages between the 

inactive page and active lists. The function is given input parameter as the number of pages to be 

transferred between the active and inactive lists and then tries to select the active pages least 

used. shrink_active_list is responsible for deciding which pages are swapped subsequently out 

and which will remained. Here is policy part of page selection is implemented. 

Step2:”shrink_inactive_list” It removes  inactive pages from the inactive list from a specific zone 

and releases them to shrink_page_list, these pages are again reclaimed by specific requests to the 

backing stores to write data back free space in RAM. If for some unspecified reason, pages are 

not written back shrink_inactive_list must put them back on the list of inactive or active pages. 
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2.4  Comcache 
 

Comp-cache (compressed caching) is a technique to set aside some portion of the memory to 

reserve where compressed pages will be stored during swap out. Comp-cache do compression- 

decompression and store and retrieves the pages from RAM You effectively get more RAM from 

the compression[7]. 

To implement Comp-cache, Linux kernel will create RAM based block device acting as swap 

area (named Ramzswap). Developer can define the size of Ramzswap (the default value is 25% 

of total physical internal memory), this defined size of Ramzswap is just a upper limit for the 

swap area. It does not mean the size of Ramzswap is fixed, on the contrary, it is flexible: 

 

For example, the total internal memory is 800MB, define 200MB as the size of Ramzswap, 

- At initialization, system does not allocate all the memory (200MB) for Ramzswap as its pre-

defined size (only some initialization parameter, data structure are allocated); at this moment, 

system can allocate nearly all the 800MB internal memory to those active processes. 

- During Comp-cache working, system will allocate free physical pages to store those 

compressed swap pages, according to Comp-cache requested. (but the total size cannot exceed 

200MB, as we pre-defined the 200MB as the size of Ramzswap, it is the upper limit of 

Ramzswap) 

- When Comp-cache de-compress and swap out pages to internal memory, these pre-occupied 

pages in Ramzswap will be return to Linux kernel as free pages, and can be allocated to other 

active processes, when they request free pages. 

- When Ramzswap size reaches its upper limit (here, we defined as 200MB), Comp-cache will 

not swap any more pages to Ramzswap. 
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  Figure 0-6 Swap Code Architecture 
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Note: 

- The actual “used area”, “free area” is not continuous as this picture described. In actual 
physical memory, they are organized as physical frame page (each for 4KB); those un-used 
physical pages are “free area”, they locate discontinuous, those used physical pages are “used 
area”, they also locate discontinuous. Here we just make it easy to understand for memory area 
changing status. 
 
 
-“Ramzswap” is a logic name. All those physical memory that used for storing compressed pages 
are named as “Ramzswap”. These pages are also discontinuous, and they are part of the “used 
area”. 
 
Following diagram <Figure 2-7> is describing from a real physical frame page allocation, it will 
help for understanding the real memory distribution situation: 
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   Figure 0-7 Com Cache Working scenario 2 
 

As the Figure <2-8> show, when all the system memory is occupied by Application 1, 2 and 3, 

only 2 pages are free, (at this time, part of App 3’s pages are compressed and stay in Ramzswap) 

meanwhile Application 4 want to start, it request 4 pages. The system have no enough memory , 

then the kernel will swap out some inactive pages to get free memory, so some pages need to be 

swapped to Ramzswap. The Comp-cache will compress the pages before save them, for example 

, if swap out 4 pages, it only need 2 pages size to store in Ramzswap: 
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- System has 3 free pages. 

- 2 pages of App 2 are compressed to 1 page, and stored to “page A”, then “page A” is part of 

Ramzswap (assume the compress ratio as 50%). 

- Now we have 4 free pages, they are allocated to App 4. 

- App 3 occupies page 1/2/3/4/5, among them, page 2/3/4/5 is belong to Ramzswap; When App 3 

exits, all of the page 1/2/3/4/5 will be free, and return to system (page 2/3/4/5 are not belong to 

Ramzswap anymore); all of these pages can be used by others. 

 

 

                                    Figure 2-8 Comp-cache Working Scenario 3 
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2.4.1 Compression Ratio and Time cost of comp-cache 
 

As the I/O from RAM is much more faster than hard disk, Comp-cache is faster than hard swap 

disk even if compress/decompress take some times. The Figure <2-9> show test data of comp-

cache. We can see the average times of write one page to comp-cache is less than 300 us, 

average times of read one page from comp-cache is less than 150 us, and the compress ratio is 

good, it is less than 50%. Take last line in table for example, compress 38068 pages(152M) at 

45.2% compress ratio, we can save 83M. 

 

Item 1(Write pages) show the numbers of page that are written to comp-cache. 

Item 2(Write times) show the overall times of writing such number of pages to comp-cache. 

Item 3(Write a page times) show the average time of writing one page to comp-cache. 

Item 4(Compress ratio) show the ratio of the total number of bits after compression to the total 

number of bits before compression. (the compress performance is better than 50%) 

 

Write 
Pages 

Write time 
(us) 

Write a 
page time 
(us) 

Compress 
ratio 

Read 
Pages 

Read time 
(us) 

Read a 
page time 
(us) 

768 129480 169 33.9% 17 2025 119 
1819 310007 170 32.9% 57 5284 93 
2089 351905 168 33.4 621 42906 69 
3756 551668 147 30.9 821 57583 70 
4410 709815 161 34.7 1181 120811 102 
7459 1424428 190 35.4 1205 123241 102 
11218 2137130 190 38.4 1386 180097 130 
18718 3410624 182 40.9 2035 236825 116 
23710 4418848 186 39.3 7680 988406 128 
27399 5513179 201 39.7 8648 1055153 122 
30873 6503889 210 43.0 10275 1187398 115 
33328 6903785 207 43.4 12050 1333126 110 
38068 7995497 210 45.2 15257 1514065 99 

  
 Figure 2-9 Comp-cache Read/Write Pages Time Cost & Compress Ratio 
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Compress 
time (us) 

NAND 
write time 
(us) 

NAND 
read time 
(us) 

Decompress 
time (us) 

103.3 134.4 94.8 58.7 
Swap out Swap in 
237.7 155.5 

2.4.2  The work flow of comp-cache 
 

zRAM/Comp-cache has three major modules: Xvmalloc,Ramzswap , and LZO. Com-Cache is 

the driver initializes and creates RAM block device it act as swap disk, it will handle block I/O 

control. Allocator driver : Xvmalloc, used by the kernel when it swap one page to the RAM disk, 

it  allocates some space from the disk memory. LZO is decompress/compress library, when 

kernel swap pages to the RAM disks, it will compress before it store, and decompress the pages 

when read from RAM disk. Figure <2-10> show the comp-cache flow chart:  

 
    Figure 2-10 Comp-cache Working Flow 
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2.4.3 The comcache/ramz swap size verification 
 

To verify the flexible size of Ramzswap, we tested on GT-I9103. 

The total physical internal memory of G-I9103 is 1GB = 1000MB 

 

Including:  

Linux kernel available memory: about 150MB 

User space memory : about 850MB 

Set aprox 25% of User space size as Ram zswap size upper limit. 

In normal status: (Use “free” command in busy box) 

 
     
                                      Figure 2-11 Memory Usage in Normal Status 
 
 
 
 
Note: 

The memory that occupied by Linux kernel is not calculated in. 

“Mem” line: all the User space occupied memory is calculated; 

           “total column”: total size of User space---- around 866MB 

           “used column”: size of used memory in User space---- around 526MB 

           “free column”: size of un-used memory in User space----around 346MB 

           “Swap” line: memory status of Ramz swap 

            

Here, in “total column”, the value “213916”, only means the upper limit of Ram zswap. 

It does not mean system has allocated “213916”B for Ram zswap. “Total” line: in “comp-cache” 
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situation, this line has no meaning. Comp-cache is working on Linux SWAP mechanism; so, 

when we use “busybox/free”, it gives memory according to original Linux SWAP way; recall the 

SWAP diagram: 

 
   Figure 2-12 Linux Swap Mechanism Scenario 
 
In original Linux SWAP mechanism, Swap area is in outside hard disk; when system 

initialization, system will allocate swap area memory in outside hard disk; Under this situation, 

the “Total line” indicate the total size of internal “User space” memory size and outside swap 

disk size. So, in “Total line”, we find it indicate “1069600” = “855684”(Mem/total) + 

“213916”(Swap/total). But actually, this value (“1069600”) is no meaning; as: 

In Android system, there is no outside swap disk exist; only Ramzswap, which is not allocated 

pages at system initialization; 

The value of “Swap/total”(“213916”) is only a upper limit for Ramzswap; 

The “Total/total” value has exceed the real G-I9103 total internal physical memory size. 

When more Applications are running, the free memory will be less and less; until the free 

memory is lower, that the system is in “slight memory shortage” status, the Comp-cache starts; 

system compress & swap in-active pages in LRU list to Ramzswap: 

 

 
   
                                        Figure 2-13 Memory Usage After Comp-cache 
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Note: 

“Swap/used” means, current Ramz swap size is “13256”B; this value is part of the “Mem/used” 

(“839300”B) 

“Mem/free” means, currently, system has only “16256”B free memory 

“Swap/free” means, currently, system can compress & swap pages into “200360”B; But 

ATTENTION: it does not mean system still has “200360”B free memory; it only indicates how 

many memory can be used as Ramzswap. 

 

When any applications is exit from the system, system will free all allocated pages (including 

pages used as  Ram zswap and internal memory) used by these applications. All of these pages 

will be returned to kernel, and now can be used as normal memory. 

Before application exit: 

 
    
                         Figure 2-14 Memory Usage Before Application Exit 
 
In “Swap/used”, “154988”B is used as Ram zswap. “Mem/free” indicates there are “68388”B 

free memory. 

 
After application exit: 

 
     
                                     Figure 2-15 Memory Usage After Application Exit 
 
In “Swap/used”, “56540”B is used as Ram zswap, almost “100000”B memory are return to 

system; “Mem/free” is added to “153952”B, almost “100000”B free memory added; Means, the 

freed memory from Ramzswap, is return to the system free memory. 
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As a conclusion: 

- During Compile, define the Ram zswap size as the upper limit; 

- When system initialization, it will not allocate any physical memory to Ramzswap; 

- During Comp-cache, the Ramzswap size will increase, according to how many in-active pages 

are compressed & swap; 

- If the compressed pages are called by system again, they will be decompressed & swap out, 

those corresponding occupied pages    in Ramzswap will also be free, and return to system; 

(Ramzswap size is decreased)  

- When the application exits, the corresponding occupied pages in Ramzswap will be free and 

return to system. (Ramzswap size is decreased) 

 

2.4.4 Comp-cache code 
 

Step1:  A virtual block device which cat as a swap disk is created. Pages moved to the created 
are compressed before it is stored in the memory. 

 

 

 

  

Kernel/drivers/staging/ramzswap [12]: 
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Step2 : Allocate one gendisk object (a physical block device data structure), and define the 
block device operations, add the IO control command. 

 

 

 

 

 

 

 

 

 

 

 

Step3: Comp-cache use kernel module named LZO to compress data. LZO is a real time data 
compression library. This exhibit real time compression and decompression and it is a portable 
lossless data compression. 

 

 

 

 

 

 

 

 

  

Kernel/drivers/staging/ramzswap [12]: 

Kernel/drivers/staging/ramzswap [12]: 
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Step 4:  When memory manager swap out pages to swap device, Xvmalloc will allocate 
memory for it. The memory needed for compressed pages is not pre-allocated; it shrinks and 
grows on demand. On initialization, zswap creates an Xvmalloc memory pool. If the memory 
pool does not have enough memory to satisfy an allocation request, it grows by allocating 
single (0-order) pages from kernel page allocator. On freeing an object, Xvmalloc merges it 
with adjacent free blocks in the same page. If the resulting free block size is equal to 
PAGE_SIZE, i.e. the page no longer contains any object; page is released back to the kernel. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Kernel/drivers/staging/ramzswap [12]: 
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2.5 KSM ( Kernel Same Pages ) 
 
It is basically conceived and developed for the Kernel-based Virtual Machine [KVM], it was first 

developed for the virtualized environments. But its usage is also found good for the embedded 

Linux systems. KSM is implemented in the Linux as a kernel thread in the kernel (called ksmd), 

actually a daemon, whose job is to perform page scans in regular interval to mark duplicate 

pages and it merges duplicates pages to single page to free pages for other uses. It is done in a 

way so that user is transparent from this activity[9]. In case one of the users of the page changes 

the content of the page for multiple or single reason, user will receive unique copy (same as in 

case of Copy on Write fashion). KSM depends on higher-level applications to provide instruction 

on for memory regions which are good candidates for merging. KSM simply scan all anonymous 

pages in the system, but it is will waste of CPU and memory. So efficient way is  that 

applications should register only those virtual areas that potentially contain duplicate pages. 

When KSM is enabled, it finds identical pages, keep one page in a write-protected "Copy On 

Write" fashion and then free for other uses. In the KSM, pages are managed using the technique 

of red-black trees, one is used as temporary. The first rb tree, is unstable tree, it is used to store 

new pages that are not yet stable. In other words, pages that are candidates for merging 

(unchanged for some period of time) are stored in the unstable tree. Pages kept in the unstable rb 

tree are not write protected. The second one, ie the stable rb tree, it stores those pages that have 

been found to be stable and merged by KSM.  

To find if a page is non-volatile or volatile, KSM uses a 32-bit checksum. After scanning a page, 

its checksum is calculated and stored along the page. On immediate next scan, if recently 

computed checksum not matching with previously generated checksum, the page contents is 

changing ie is is volatile and it is not a relevant for merging.  

2.5.1 Work Flow of KSM  
 

The KSM algorithm is based on rbtrees, one is stable tree and other one unstable tree. Using two 

trees is an enhancement  and it increases the chance of instantly sharing the pages that are good 

candidates for sharing as well as reduce the instability in the unstable tree.  

Kernel thread scans  every anonymous page scanned, and starts searching exact match in the 

stable tree which contains information of shared pages. If a match is found in the stable tree, the 
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anonymous page is merged with the KSM page found in the stable tree. If no match is found in 

the stable tree, KSM checks content is changed recently comparing the checksum[9].  

Bad case if the checksum changed since the last KSM succeeded, KSM updates the checksum 

and will defer the search of the unstable tree to the next KSM cycle (in anticipation that the 

checksum won’t change again). This save CPU by avoiding adding or merging to the unstable 

tree pages whose contents are volatile ie changes quite often. If checksum remains constant  

KSM attempts searching  unstable tree that  contains anonymous pages scanned in previous cycle 

but not merged by KSM. If a match is found in the unstable tree KSM merges the anonymous 

page, with the anonymous page in the unstable tree, and the resulting KSM merged page is added 

to the stable tree (the anonymous page found in the unstable tree is removed from the unstable 

tree and freed). If  match is not there in the unstable tree KSM adds the page to the unstable 

tree[6]. 

 

This “checksum” is nothing to do with the KSM algorithm. The “checksum” is only an heuristic 

to keep the unstable tree more stable and to avoid wasting CPU time with un matching 

candidates. Even if we don’t use the checksum, the algorithm would work. If a page  its content  

frequently, we’ll likely only waste CPU. It is because a copy-on-write page fault will happen 

immediately loosing the benefits of sharing[6]. 

A bit by bit memory pages comparison is a CPU intensive task. Memory scanning frequency 

needs to meet the workload demand, otherwise it will lead to high CPU load. there are few 

parameters which if tuned properly will control the CPU load and hence the power performance. 

These are described in next section. 
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                           Figure 2-16 KSM Working Flow Chart 

 

2.5.2 KSM Tunable Parameters 
 

After loading the KSM module, KSM becomes operational. Relevant statistics of the KSM are 

located at the location /sys/kernel/mm/ksm directory. Within this directory there is separate file 

for each parameter specifying the current state of each parameter. The performance of KSM 

depends on the understanding of relation among these parameters [10]. 

full_scans: For memory areas for which duplications is to be indentified needs to be registered. 

These areas are frequently  scanned. full_scans indicates the number of times memory areas has 

been scanned. if this number is changing and other parameter pages_shared remains same, it 

means we are doing useless scanning as CPU utilized in comparison but no new areas are with 

common pages are identified. 

pages_shared:  In KSM for the duplicated copies of the pages unique copy is actually given the 

memory. Like process A and B have five pages which are having common contents ( no other 

process in the system has common contents)then pages_shared count is 5. This gives us count of 
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shared pool pages. If count is N and page size is PAGE_SIZE then NxPAGE_SIZE gives us the 

total size that KSM is using. 

pages_sharing: Number of common pages corresponding to pages_shared. This value is indicator 

of numbers of pages shared using KSM. A high ratio of pages_sharing vs pages_shared means 

KSM is working effectively. For eg zeroed pages can be shared many times but pages with 

encrypted data or randomized are shared few times. 

pages_to_scan: As mentioned above to memory regions register them self for identification of 

duplicated pages. Pages in these regions are  scanned periodically by ksmd. pages_to_san 

parametes is count of number of pages that will be scanned by KSM in each pass ie in each 

periodic scanning. 

pages_unshared : This gives the pages which cannot be shared that is they are unique. This is 

indicator of that KSM effort wasted in scanning of those pages. 

pages_volatile: This value indicate the number of pages that have content which is changing with 

high frequency. If this count is high it is indication that running process are not good candidate 

of memory sharing. 
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2.6 Low Memory Killer 
   

LMK(Low memory killer) is a driver that android add in kernel, the mechanism is very similar to 

kernel’s OOM killer. They will kill least important process to free memory when in low memory 

case.  

 

2.6.1 OOM Killer  
 

When after shrink cache and swap out pages, the system also has not enough memory, it is under 

tight memory situations, the out-of-memory killer (OOM)  will be activated  and selects a 

process to killing.  User  have no control over the process chosen for killing. From system 

prospective the process selected for killing might be the one should always be in the main 

memory. The process killed may a system process. To prevent highly needed process from 

killing,  a greater degree of control is required over OOM. 

The application developer always wants so ways to tell the kernel the importance of the process 

to be selected for killing. To give batter control the /proc/<pid>/oom_adj  parameter  was created 

under proc file system to prevent important processes  from being killed by the system and 

define a policy for the process selection to be killed. The policy defines the ranges from -17 to 

+15. These ranges are the possible values for the OOM control parameter oom_adj. Higher 

score, means most likely hood of the process to bee selected by the OOM-killer to be killed. If  

parameter oom_adj is set to -17, the process is never selected by kernel for OOM-killing.  

 

oom_adj as mentioned is the tuning node just to inform the OOM-killer for the desire ability to 

keep in memory. "Badness Score is the ultimate parameter to decide for the selection by OOM-

killer. The candidate process selected for killing in an out-of-memory situation is selected based 

on its badness score. The badness score is reflected in /proc/<pid>/oom_score. 

 

This value is determined on the basis that the system loses the minimum amount of work done, 

recovers a large amount of memory, doesn't kill any innocent process eating tons of memory, 

and kills the minimum number of processes (if possible limited to one)[4]. Parameters for the 

badness score are original memory size of the process, CPU time (utime + stime), the run time 
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(uptime - start time) and oom_adj value. The longer a process live smaller the score and more 

memory the process uses, the higher the score.  

. 
 

 

Figure 2-17 OOM Working Flow Chart 

 

 

2.6.2 Low Memory Killer 
 

OOM-killer is not sufficient solution for devices involving high degree of multiprogramming 

such as Mobile Phones. On Mobile Phones we have very limited size screen and only few 

processes can be in for ground .Back Ground processes keep supporting the for ground 

processes. Algorithmic criteria of calculating the badness is not sufficient to predict the right 

process to be killed. Moreover Android wants the greater flexibility to be given to the user via 

Android Framework. This way Android proposes a new philosophy of LMK which handles the 

low memory situations effectively. On low memory situation LMK handles the memory pressure 

without invoking the OOM-killer. LMK deferred the OOM-killer participation and keep great 

degree of control in the hand of Framework. LMK is implemented as the kernel driver in 

Android. LMK defines the user adjustable threshold values of the memory pressure and 
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categories the Android Processes as shown in the table below. When the first threshold is 

encountered LMK kills the Empty Applications. If memory pressure is further increased LMK 

checks for the other processes in order from highest to lowest. Foreground apps has the lowest 

weight and are last to be picked in the order. 

 

The low memory killer will kill process according to process LMK adjustments as below, the 

higher the LMK value, more likely the associated process is to be killed. 

Name Weight Note 

FOREGROUND_APP 0 Show in screen or some system process 

VISIBLE_APP 1 User visible but not foreground (widget, IME) 

SECONDARY_SERVER 2 System service (Gmail internal memory, contactor internal memory) 

HIDDEN_APP 7 Background process (browser, reader) 

CONTENT_PROVIDER 14 Content provider, used for other process 

EMPTY_APP 15 Empty app, without service/content providing 

    Figure 2-18 Android Process Priority 

The thresholds of low memory is set in file : /sys/module/lowmemorykiller/parameters/minfree.  

 

    Figure 2-19 Threshold setting in Android 

The 6 value is memory thresholds for 6 types applications, take empty app for instance, the value 

is 8192, so when the phone’s free memory is less than 32M(8192 pages), the LMK will kill 

empty app to get enough memory. 
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    Figure 2-20 Android  LMK Working Flow Chart 

 

 

 

 

 

 

 

 

2.6.3 Summary of calling process in low memory status 
When system finds it’s hard to allocate memory for each process requesting, system is in low 

memory status. Everything start from function----“allocate_pages()”. 
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               Figure 2-21 Android Low Memory Working Flowchart 
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2.6.4 Low Memory Killer Code 
 

Low memory killer is a shrinker driver that register in kernel shrinker list. In Linux kernel, 

Swapping the pages of user space applications is not the kernel’s single method of freeing 

memory space. Caches shrinking often results in batter gains.  

 Step 1:Shrinker methods are the functions in the kernel and these are registered dynamically. 

When memory is under pressure the kernel invokes the shrinker registered functions to free the 

memory.Low memory killer register in the kernel shrinker list when the module initialize. 

 

 

 

 

 

 

 

Step 2:A daemon thread (Kswapd) runs in the background, it will do nothing when internal free 

memory is enough. When the system is in shortage of memory situation, this daemon thread 

(Kswapd) will be wake up; after that, Kswapd thread will call balance_pgdat() to reclaim pages. 

(swap out pages and shrink cache…) 

  

Kernel/drivers/staging/android/lowmemorykiller.c [12]: 
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Step 3:The function of shrink_slab() will call each shrink functions in shrinker list to shrink cache. 

 

 

 

 

 

 

 

Step 4:Then the low memory killer shrinker will be called. It will kill less important application 

according to OOM value and memory usage. 

 

 

 

 

 

 

 

Kernel/mm/vmscan.c [12]: 

Kernel/mm/vmscan.c [12]: 

Kernel/drivers/staging/android/lowmemorykiller.c [12]: 
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Chapter 3 
 

New Policy for cope up Low Memory Situation in Android Operating System 
 

In the previous chapters we developed the understanding of the Linux and Android Memory 

Management, how Android utilizes the LMK in case of memory pressure. But frequency of 

calling LMK itself is an overhead. As it removes the background applications from the memory 

and if second time application is re-entered it takes longer time causing sluggish behavior. So 

here we are defining the new LMK algorithm which ensures that frequency of LMK is reduced 

and always sufficient RAM is available. The new LMK Policy takes the benefits of the Com 

Cache and KSM techniques. These techniques was originally proposed for different purposes, 

like KSM was proposed for memory saving in the Virtualized environment and Com Cache was 

proposed for reducing the OMM killer optimization. The New LMK policy improvements are 

done at the three levels , in first level KSM major drawback of the CPU utilization is reduced by 

selection of the processes which have good probability of the same pages. KSM is modified to 

work well with Android. In second level Com Cache pages with compression ration more than 

0.5 is selected and in final level LMK new policy is proposed with incorporates the advantages 

of the in kernel memory compression techniques. 

 

 

3.1 Drawback of Comp-cache & LMK & KSM  
 

When we use comp-cache to extend android phone physical memory, the swap feature need to be 

enabled in kernel. The swap will work with comp-cache, if the android system is in acute 

memory shortage, the kernel will swap out pages to comp-cache.But Linux kernel swap in-active 

pages from LRU list, regardless which process does this page belong to. Some in-active pages 

are swapped in, but later, they will be used again and swap out; It will cost 

compress/decompress, swap in/out time. 
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Following table shows the time cost for one page compress/de-compress: 

 

Function Time 
Compress 49us 

De-compress 27us 
    
   Figure 3-1 Time Cost of Compress/De-compress One Page 

 

Comp-cache compress & swap in-active pages from LRU list: 

In Android, these pages can be from an “empty process” or an “active process”; 

– Comp-cache just picks the most in-active pages from LRU list; 

– Comp-cache doesn’t know which process these pages belong to. 

Consider that one in-active page (A) is belong to an active process: 

– “Page A” is picked by Comp-cache, and be swapped; 

– After a while, “Page A” is needed by the process to be active again; 

– “Page A” will be firstly decompressed, then, swap out; 

– Extra decompress, swap out time are needed to access “Page A”. 

To improve the user experience, Android keeps closed application as “Empty process”, 

(whereas, original Linux kernel, just kill the corresponding process, and free the physical 

memory to system), it makes memory easily using out. More and more applications are running 

& closed, more and more memory is used out. 

 

When Android system is in low memory status, LMK will be invoked to kill low priority 

process, free the memory to system: 

– “Empty process” will be killed firstly, leading to: 

 Android cannot start corresponding “closed application” quickly at next time; 

 It’s meaningless for Android to keep “empty process” for “closed application”. 
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– Then, “active process” will be killed according to priority: 

 Some applications will be closed unexpected for user; 

 Take a bad user experience. 

 

 When KSM is enabled in the Android System it performs following in the idle thread 

  

– Initializes stable and unstable tree 

– Identify all the processes in the systm 

– Identify page to be scanned  

– Search it in the Stable Tree 

– if match is not found in the stable tree , its check sum is calculated 

– checksum calculated does match with the previous checksum search in unstable tree 

– if found in unstable tree merge pages and moves to stable tree 

– checksum calculated does not match insert it in in unstable tree 

– Viewing the Figure < 2-21> is good to understand the above steps 

 

The above steps execution is not free it consumes lot of CPU, and drains the battery not 

acceptable for the  Mobile Phones, the out of RAM saves is much smaller then CPU 

usage. 

 
3.2 LMK and  Com-Cache Optimization 
 
Android LMK as originally introduce to combat the memory pressure. In its present form it good 
but this can be further improved with the ideas as described in the figure below. As shown in the 
figure  a module describing  "New Policy" is introduced. This policy is shown as separate 
module in the figure below. Implementation wise  LMK and New Policy module are integrated 
one. The working of the policy is described in the form of the steps: 

Step1: When the memoty processor is increased in the system first of all system shrinks the 

caches. Android maintain the caches as the pre allocated structures of the frequently used objexts 

such as inodes, process control block, thread, Virtual memory areas. The pre allocation is done to 

fast the execution. 
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Step 2 : If system is not able to recover form the memory pressure after shrinking the caches 

LMK is called. 

Step 3 : LMK Algorithm is executed based on the new policy, The new policy integrate the KSM 

and  Com Cache techniques to counter the memory pressure first then decides for killing the  

Step 4 : Comcache compresses the pages using LZO algorithms. It takes the 4KB pages contents 

and apply LZO to compress them to save the meory 

Step 5 :Checks the Physical pages of the procees in RAM and compress them using the 

comcache. If comression is more than 0.5 swap them to the "Ramswap" the block of memory 

resrved to store the compressed pages.The details algorithms for identification of pages of the 

processes are described separtely below. 

Step 6: Selected pages are stored in the "Ramzswap" 

Step 7: Even after the compression of pages if memory pressure is not reduced the the normal 

LMK algorithm of killing the processes is executed , with order of killing started form 

backgrount processes, providers processes , hidden app, secondary server and finally foreground 

processes. 

 

Step 8: Calling OOM is the last option, LMK is introduced in the Android to avoid the OOM 

execution. This is used as the last option to counter memory pressure. When modified LMK 

failed to reduce the memory pressure OOM is called. 
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                                                         Figure 3-2 New LMK Policy  

 

– Virtually enlarge internal memory by compress & swap in-active physical pages; 

– Reduce the time cost effect caused by compress & swap; 

– Keep empty process in memory as long as possible (keep the benefit of empty process); 

– Always firstly compress & swap all physical pages of empty process; 

 After compression, empty processes only occupy little memory area; 

 Meanwhile, keep empty process in memory can restart corresponding application more quickly; 

 An empty process will only be killed at the very last second; 

 Physical pages that belong to an empty process will not be re-active again, it can reduce the 

decompress/swap time for a page; 

– New LMK & Comp-cache policy; 

 Compress & swap empty process when system is in idle state; As soon as an empty process 

exists, system will compress & swap it; 

 Avoiding the situation that: compress/swap take extra time/CPU working cost 



53 
 

 When LMK begin to kill process, keep all memory is occupied by active process; which improve 

utilization of memory resource. 

 

LMK Modified Algorithm is as followed:  

 

                Figure 3-3 New LMK Policy Flow Chart 

 

The optimization of comp-cache and swap is to compress & swap physical pages based on 

process level. The difference is shown in Figure <3-4> 
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Solution Benefit Shortage 

Original Enlarge internal memory 
virtually 

Cost compress/decompress,  
swap in/out time 

Optimized 

Enlarge internal memory 
virtually 
Swap empty app firstly, reduce 
the time cost by swap in/out 
Keep Android & Comp-cache’s 
benefit at same time 

The code of swap will be more 
complex 

  
                   Figure 3-4 Comparison between Original Comp-cache & Optimized Comp-cache 
 

New mechanism that can swap all physical pages that belong to a dedicated process should 

follow following steps: 

– Search “Empty process”; 

– Search all physical pages belong to a dedicated “Empty process”; 

– Search the shared pages in those physical pages; 

– Define new swap page list; 

– Update LRU list. 

 

    Figure 3-5 Compress & Swap for Dedicated Process 

Figure <3-5> show the work flow of swap pages to comp-cache based on android application 

priority. Firstly, create a empty application table, it stores all of the empty applications. When the 

system is in idle status, invokes the search mechanism to find out the pages of empty application, 

then unmap the pages, finally update the LRU list and swap pages to disk.   
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Figure 3-6 Sequence to Search Physical Pages I 

 

1st step: to search all existing “Empty process” in Android system: 

– When Android application exits, it will change the oom_adj value to 15, but not free the 

memory; 

– Android has a process record list to store all Android applications information, scan this list, can 

search out all available Empty process; 

– The sample code is like below, check the process’s oomAdj, if it is equal or greater than 

EMPTY_APP_ADJ (15), it should be empty process. 

 

2nd step: Search all physical pages belong to a dedicated process: 

We will use the process structure to find the page table, then find the application pages that in 

physical memory. 

– Find out the mm_struct with the empty process’s task_struct; 

– Use the mm_struct to find the process’s virtual address (vm_area_struct); 

– The process’s virtual address can get the (PGD) Page Global Directory  

– Use the PGD and virtual address can find ( PUD) Page Upper Directory  

– Then find the Page Middle Directory (PMD) by using PUD and virtual address; 

– Find the Page Table (PTE) by using PMD, and get the physical page finally. 
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Figure 1-7  Sequence to Search Physical Pages II 

 

3rd step: Find all referenced logical pages of a dedicated physical page: 

We will use the kernel function of try_to_unmap(), it will check all the page’s mapping tables, if 

the page is not locked, the page can swap out. Before swap , the system will release the page 

mapping connection from all process’ s page table. 

 

Figure 3-8 Reserve Mapping 
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4th step: Setup swap page list, update in-active LRU list: 

We can set the PG_active and PG_reference to 0, then call the kernel function of 

lru_cache_add() to update LRU list, finally invoke swap mechanism. 

– If the page is in LRU list and can be moveable, delete the page from the list; 

– Add the page into new temporary list; 

– Enable the swap mechanism, swap the pages in new temporary list to swap disk; 

– If the pages swap to disk failed, delete from the temporary list, then give back to LRU list. 

 

As a result, we test the ratio that how many physical pages in a process can be compress & swap 

to Ramzswap. As each process can consist different shared library, shared data, these pages 

cannot be compress & swap, so the ratio of compressed pages of a process is different to each 

other 

Application Total 
pages 

Compress & Swap 
pages Swap Ratio Compress 

Ratio 
Wow fish 6687 3169 47.4% 41.4% 

Angry birds 11283 6323 56% 56.9% 
Plants Vs 
Zombies 24023 7955 33.1% 52% 

Trial X 11991 8433 70.3% 51.8% 
Cut the rope 18574 11799 63.5% 28.4% 
Angry bots 23587 20401 86.5% 55.9% 

Total 96145 58080 60.4% 47.73% 
 

Figure  3-9 Swap Ratio for Dedicated Application 

 

Note: 

– Swap Ratio: (Compress & Swap pages) / (Total pages) 

– Compress Ratio: the average compress ratio for one page 
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3.3  KSM Optimization 
 

As software for mobile phones becomes more complex the amount of needed random memory 

(ram) increases, too. While enlarging ram-size of common desktop computers is unproblematic 

and cheap, it is difficult for mobile device as it effects two of their important attributes: power 

consumption and size. Ram is a constant power consumer; even when a mobile phone is in 

standby mode its ram must be powered. For small amounts of ram its power consumption is low 

compared to other components. Nevertheless increasing RAM size raises the power consumption 

of mobile devices and increases their size, in case of using a larger battery. As the single parts of 

mobile devices are packed together extremely narrowly, adding a single (memory) chip might 

imply a larger housing in any case. Multitasking operating systems are prone to load the same 

pieces of data into multiple physical pages (page duplication) as lots of programs, accessing 

partially equal data, run in parallel. Reducing page duplication yields a reduction of memory 

consumption, as all but one page containing the duplicated page content can be freed. In this 

theses we investigate the KSM on Android mobile phones and analyze the memory saving 

potential. 

As mentioned above when discussed the drawbacks of the KSM. For Android if we exploit the 

Android Process Management, we can find something interesting. For KSM algorithm to work 

effectively it is important that we reduce the number of scans and get maximum duplicated 

pages. This is only possible if scanning is performed on the process whose pages are : 

– Less Volatile means does not change in the subsequent scanning 

– Processes which have high tendency to be similar 

 

With the exploitation of the above characteristics we are proposing a scheme that decreases the 

CPU cost incurred in computation. All these experiments are performed on the Galaxy Nexsus 

with proper real Workload. 
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Optimization #1 

 

As mentioned in Chapter 2 , the Android Framework provides one foreground application and 

many background applications. Since phone/tablet is maximum  10'' not the complete TV , so 

only one application is active in foreground rest of applications are not inert but in background. 

One important consideration form the memory point of view is that background applications are 

changing their contents from the memory point of view it is only the foreground application 

which is updating their memory content frequently. So this helps in identifying the volatile pages 

process. 

 

If KSM only targets the background processes, the process pages only need to be scanned once 

as till the time process is in background its memory contents are not going to be changed. So 

during subsequent round the page is not scanned. 

 

The results are shown in Chapter 4 , it shows 98%  CPU saving with the same amount of 

memory saved without adopting the  Optimization #1 

 

Optimization # 2 

 

Android Zygote Model : All the processes in the Android are derived from the Zygote. The 

concept is introduced for the fast creation of process. 

 Zygote is daemon process whose only task is to launch applications. So Zygote is the parent of 

all App process. When app_process launches Zygote, it first creates DVM and then it calls 

Zygote’s main () method. On starting the  Zygote  it loads all required Java classes and other 

resources, it starts "System Server" and opens /dev/socket/zygote socket which listen for requests 

for other starting applications. System Server is a complete detached process from its parent. 

Once it is created it keeps on  initializing all various System Services and it starts the Activity 

Manager . This is how it works, this information was important to understand how KSM can 

effectively use it. 
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From /dev/socket/zygote , "zygote receive a request to launch an application. On receiving 

request fork() is called. Here lies the important stuff. When a process forks, a clone of its is 

created. It means replicating itself in some another memory space. This is done in a special way.  

Zygote, first creates an exactly same new DVM, preloaded all necessary resources and classes 

required Application. This really makes the process of creating a VM and load resources pretty 

efficient. Android uses the modified Linux kernel. The Linux Kernel implements Copy On 

Write (COW)strategy.This means is that during the fork process, no memory is actually copy to 

another space. It is shared and marked as copy-on-write. So all the libraries at the same virual 

addresses are same. So if KSM know these then these pages are guaranteed candidate od page 

sharing. [5] 

 

3.3 Optimized low memory policy 
 

In Android low memory solution, optimized Comp-cache will be invoked in two situation.  

– When system is in idle status, system will scan for empty process, compress & swap 

them (optimized Comp-cache); 

– When system is in low memory status, optimized Comp-cache & LMK will work.  

 

System Idle status: When screen turns off (or press power key), optimized Comp-cache will 

start. It will firstly search empty process in system, then, compress & swap these empty 

process. In idle status, system will always compress & swap empty process, until the swap area 

is full. The working flowchart is described as following diagram: 
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Figure 3- 10 Optimized Comp-cache Working Flowchart in Idle Status 

 

System low memory status: When system memory is in “slight memory shortage” status, the 

optimized Comp-cache will start (combined with LMK). It will firstly search the empty process 

in system, then, compress & swap 32 pages of the process every time. If the free memory is 

still low, system will start LMK, to kill process according to process priority and memory cost. 

Detail working flowchart is described as following: 
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As software for mobile phones becomes more complex the amount of needed random memory 

(ram) increases, too. While enlarging ram-size of common desktop computers is unproblematic 

and cheap, it is difficult for mobile device as it effects two of their important attributes: power 

consumption and size. Ram is a constant power consumer; even when a mobile phone is in 

standby mode its ram must be powered. For small amounts of ram its power consumption is low 

compared to other components. Nevertheless increasing RAM size raises the power consumption 

of mobile devices and increases their size, in case of using a larger battery. As the single parts of 

mobile devices are packed together extremely narrowly, adding a single (memory) chip might 

imply a larger housing in any case. Multitasking operating systems are prone to load the same 

pieces of data into multiple physical pages (page duplication) as lots of programs, accessing 

partially equal data, run in parallel. Reducing page duplication yields a reduction of memory 

consumption, as all but one page containing the duplicated page content can be freed. In this 

theses we investigate the KSM on Android mobile phones and analyze the memory saving 

potential. 
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Figure 3-11 Optimized Comp-cache Working Flowchart in Low Memory Status 

 

 

For KSM there is not specialized change in the calling algorithm. Only change is the input to the 

ksmd daemon. When it scan the process Virtual address ranges as described in Optimization #2 

and selection of  processes as described in Optimization #1 . So selection of input to be 

processed giving the good results. 

 



64 
 

 



65 
 

Chapter 4 

Results and Analysis   
 

After  developing the new LMK solution for the Android System, testing the stability of the 
system with new algorithm is also an important task. To test the stability of the system with the 
new solution we are using the standard benchmark test cases. With this new algorithm we are 
keen to judge the stability and performance. Android provide the monkey test suite to judge the 
stability of the system. This test randomly launch the application in the mobile phone, start the 
activities , kill activities, fires intents and do number of operations on each applications to make 
sure system is stable. For performance tests we used the IOZONE that is memory read write test,  

 

The final performance evaluation will cover to main area: 

– The system stability test; 
– The system performance test 

 
4.1 System stability test for Com Cache 
 

The system stability test includes two part: 

– Linux IOZONE test 
– Android Monkey test 

 
For IOZONE test, the benchmark result is as following: 

HW Platform: G-I9103; 
SW Platform: Original Android + Optimized Comp-cache; 
Block size = 4KB File size = 300MB 

Test target Write 
(Kbytes/s) 

Re-write 
(Kbytes/s) 

Read(Kbytes/
s) 

Re-read 
(Kbytes/s) 

optimized 15974 13899 428161 518079 
un-
optimized 15999 14527 447303 533059 
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Figure 4-1 Block Read/Write (4K) 

 

 

Block size = 8KB File size = 300MB 

Test target Write 
(Kbytes/s) 

Re-write 
(Kbytes/s) 

Read(Kbytes/
s) 

Re-read 
(Kbytes/s) 

optimized 15983 14443 466141 568768 
un-

optimized 15721 13983 512293 585576 

 

 

Figure 4-2  Block Read/Write (8K) 
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Block size = 16KB File size = 300MB 

Test target Write 
(Kbytes/s) 

Re-write 
(Kbytes/s) 

Read(Kbytes/
s) 

Re-read 
(Kbytes/s) 

optimized 16413 14766 508073 619928 
un-

optimized 16854 14491 541209 619606 

 

 

Figure 4-3 Block Read/Write (16K) 

Block size = 32KB File size = 300MB 

Test target Write 
(Kbytes/s) 

Re-write 
(Kbytes/s) 

Read(Kbytes/
s) 

Re-read 
(Kbytes/s) 

optimized 14481 15603 537463 624593 
un-

optimized 14395 14057 553960 634622 
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Figure 4-4 Block Read/Write (32K) 

From the IOZONE test result, optimized Comp-cache does not bring side effect to system 
overall stability. 

For Monkey test, the benchmark test result is as following: 

HW Platform: G-I9103; 

Two SW platforms are tested for comparison: 

– Original Android + Optimized Comp-cache 
– Original Android (get from P4) 

The switch application test is set as 40% in whole monkey test event. 

SW Platform 1000 event 2000 event 5000 event 10000 event 
Original Android + 
Optimized Comp-

cache 
Pass Pass Pass Pass 

Original Android Pass Pass Pass Pass 
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Original Android + Optimized Comp-cache 

 

 

 

 

Figure 4-5 Monkey Test Result (Optimized Comp-cache) 
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Original Android  

 

Figure 4-6 Monkey Test Result (Original Android) 

 

 

From the Monkey test result, optimized Comp-cache and KSM does not bring side effect to 
system overall stability. 
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4.2 System performance test on Comcache 
 

The performance test environment is defined as below: 

HW Platform: G-I9103; (835MB user space memory) 

SW Platform: 

Three kinds of SW platform will be tested for the performance comparison: 

– Code1: Original Android (no Comp-cache) 

– Code2: Original Android + Original Comp-cache 

– Code3: Original Android + Optimized Comp-cache 

 

1st test scenarios are defined as below ( Free Memory Test ): 

– Run same quantity process on Original Comp-cache & Optimized Comp-cache platform, 

compare the memory cost. 

– The Ramzswap size is defined as 25% of user space size----200MB 

Test result is shown as following: 

To test the free memory performance of original Comp-cache & optimized Comp-cache; 6 

processes are created, each process will cost 100MB memory. After original Comp-cache & 

optimized Comp-cache works, the free memory in two system are compared. 
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Platform Free memory (MB) 
Original Comp-cache 18.9358 

Optimized Comp-cache 147.6636 
 

 

 Figure 4-7  Free Memory Test Result 

In this test, 129MB internal memory are saved. 

Analysis of the test result is as following: 

After 6 processes is running, they will occupy 600MB, and with other basic process in kernel 

occupying some memory, so, 

– In original Comp-cache, system reaches low memory status; at this moment, if system 

request more pages, original Comp-cache will start, to satisfy the system request pages;  

– In optimized Comp-cache, as compress & swap will be start during system idle status, so 

after running 6 processes (100MB memory for each), system still has 129MB free 

memory; 

– Finally, 129MB/835MB=15.44% internal memory can be saved. 
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2nd test scenarios are defined as below: 

– “Fish demo” is chosen as the test target application, which will cost 50MB memory 

– Two scenarios are tested: 

 Normal status (system is in idle), there is enough memory in system in this scenario; 

a) System free memory size (set the starting free size is 80MB); 

b) Time cost to start a new process ( test application, will request 30MB memory); 

c) When test application is running, press “home” key, and restart it; check the 

restart time cost; 

 Low memory status, the free memory is lower (about 20MB); 

a) System free memory size (set the starting free size is 20MB); 

b) Time cost to start a new process ( test application, will request 30MB memory); 

c) When test application is running, press “home” key, and restart it; check the 

restart time cost; 

– The Ram zswap size is defined as 25% of user space size----200MB 

– Each scenario is tested for 5 times, and the average value will be considered as the test 

result. 

 

Test result is shown as following: 

Scenario Test Item No Comp-cache Original Comp-cache Optimized Comp-cache 

Normal 
status 

Free memory ① 80MB 80MB 80MB/163.7MB ④ 
Start new process time 

② 2080ms 2086ms 2083ms 

Restart process time � 267ms 264ms 304ms 

Low 
memory 

status 

Free memory (Initial 
time) � 20.5MB  20.5MB  20.5MB/104.3MB � 

Free memory (time at 
the beginning of new 

process start) � 
90MB � 70.2MB � 104.3MB � 

Free memory (After 
new process totally 

starts) � 
46.1MB � 22.6MB � 57.4MB � 

Start new process time 2315ms 2730ms 2014ms 
Restart process time 2061ms 298ms 306ms 
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Note: 

– � Free memory: current system free memory;  

– � Start a new process time: The time cost that system starts a new process;  

– � Restart process time: for the test application, press home key, and then restart it, the time 

cost of restart the test application;  

– � 80MB/163.7MB: the initial status is 80MB, after screen off, optimized Comp-cache 

works in system idle status, and the free memory becomes 163.7MB;  

– � Free memory (initial time): the initial status is 20.5MB for each platform, after the “fish 

demo” (process costs 30MB and other related service 20MB, totally costs 50MB) starts, 

system will be in low memory status  

– � Free memory (time at the beginning of new process starts): at this point of time, new 

process requests free memory to system, and each platform will do different action. (No 

Comp-cache will start LMK to kill process; Original Comp-cache will begin to 

compress/swap in-active pages; Optimized Comp-cache has enough free memory, so it will 

just allocate memory for new process ) This line show the free memory status at this point of 

time. 

– � Free memory (after new process totally starts): After new process totally starts, this 

process will cost some memory. This line show the free memory at this point of time. 

– � In No Comp-cache, when system has only 20.5MB, the “fish demo” starts (it will cost 

totally 50MB), system is in low memory status; system will firstly call LMK to kill a process 

to free enough memory (in this test, the “Angry bot” is killed), 70MB memory is free by 

LMK, so at this moment, free memory is 90MB. (Attention, in this case, a process is killed, 

but for other 2 platform, no process will be killed.) ; 

   And after “fish demo” totally start, as it cost around 50MB, now, the system has only 

46.1MB. 

– � In Original Comp-cache, when system has only 20.5MB, the “fish demo” starts (it will 
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cost totally 50MB), system is in low memory status; original Comp-cache starts; it will 

compress/swap pages according to how many pages system requests; totally 50MB will be 

free by original Comp-cache during its compress/swap, so at this point of time, system free 

memory is around 70.2MB; 

    And after “fish demo” totally start, as it cost around 50MB, now, the system has only 22.6 

MB. 

– � At the initial time, for Optimized Comp-cache, the free memory is 20.5MB, and then, 

press power key, optimized Comp-cache will start, system will have totally 104.3MB. So, 

when “fish demo” starts, system has enough free memory to run it.  And after “fish demo” 

totally start, as it cost around 50MB, now, the system has only 57.4 MB. 

 

 

 

Free memory compare: 

 

                              Figure 4-8 Free Memory Result 



76 
 

Time cost of start a new process:

 

 

Figure 4-9  Time Cost of Starting New Process 

 

 

 

 

 

 

 

 

 

 

 



77 
 

Time cost of restart a process: 

 

Figure 4-10 Time Cost of Restart Process 

Analysis of the test result is as following: 

In normal status (system is idle), 

– Free memory:  

(Optimized Comp-cache(163.7MB)>Original Comp-cache(80MB)=No Comp-

cache(80MB)) 

After screen off, Optimized Comp-cache solution has more free memory; and at this 

status, no Comp-cache solution and original Comp-cache solution has same free memory, 

less than Optimized Comp-cache;  

– Start new process: 

(Optimized Comp-cache(2083ms)=Original Comp-cache(2086ms)= o Comp-

cache(2080ms)) 

As the free memory is enough in all 3 platform (80MB, 80MB, 163.7MB), CPU is in idle 

status, so, the time cost to start a new process is almost same. 

– Restart process: 

(Optimized Comp-cache(304ms)>Original Comp-cache(264ms)=No Comp-

cache(267ms)) 

For no Comp-cache & original Comp-cache, at this status, the test application’s all pages 
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are located in internal memory, without any compressed page, these two will restart 

applications very quickly, almost same time; but for optimized Comp-cache, at this 

status, almost all the test application’s pages are compress & swap to Ramzswap, to 

restart it will cost extra decompress & swap time, so the restart time in optimized Comp-

cache case, will be larger.  

 

In low memory status (system free memory left only 20MB), 

– Free memory: 

After screen off, Optimized Comp-cache solution has more free memory; and at this 

status, no Comp-cache solution and original Comp-cache solution has same free 

memory, less than Optimized Comp-cache; 

– Start new process,  

(Original Comp-cache(2730ms)>No Comp-cache(2315ms)>Optimized Comp-

cache(2014)) 

 No Comp-cache: when system is in low memory status, to start a new process, need 

more free memory, so, system need to firstly do LMK, kill other not important 

process to free memory, then, finish starting a new process. It will cost more time. 

As kill a process and free corresponding memory will not cost too much time, No 

Comp-cache case will cost less time than Original Comp-cache; 

 Original Comp-cache: when system is in low memory status, to start a new process, 

need more free memory, system need to do Comp-cache firstly, free some memory, 

then, finish starting a new process. It will cost more time. 

 Optimized Comp-cache: in this situation, there is enough memory in system, system 

will start a new process as normally. Optimized Comp-cache case will cost less time 

than other two cases. 

 

– Restart process: 

(No Comp-cache(2061ms)>Optimized Comp-cache(306ms)=Original Comp-

cache(298ms)) 

For this case, system will firstly start other process, and then check the test process 
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 No Comp-cache: in low memory status, start other process, system will firstly start 

LMK, the test application will be killed by LMK, then, restart the test application, it 

will cost much time (same as start a new one, as the test application has been killed) 

 Original Comp-cache: in low memory status, after press “home” key, the test 

application will be compress & swap, to restart it, it will cost time to decompress & 

swap some page (but as it is only restart, it will not cost much time) 

 Optimized Comp-cache: in this status, system still has enough memory, the time 

cost is focus on decompress & swap all physical pages of the test process. As it is 

restarted, not all the pages are needed, it’s time cost is only a little bit large than the 

original Comp-cache.  

 

Conclusion: 

– Optimized Comp-cache makes more free memory for whole Android platform 

 In 835MB user space internal memory, 15.44% memory can be saved (from the test 

result);  

 In another way, we can keep more processes exist in memory, for a even better 

system performance; it also means that, optimized Comp-cache can delay the system 

low memory status coming as later as possible.  

– At the same time, enabling optimized Comp-cache also will not bring bad side effect to 

whole system stability performance.  
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Result And Analysis of KSM 
 

4.3 CPU Time for Scanning Page on KSM 
 

The modified KSM scheme is tested with all the flavors of the KSM. For this 10 processes each 
consuming memory from 60~80MB is started. In KSM pages are compared to find the same 
pages, and cost per page in term of time is calculated using the pages_to_scan and time taken. 

 

Figure 4-11  CPU Cost Per Page 

 

 

Analysis of the above result 

When the KSM is applied only on the back ground processes the improvement is far batter than 
the  normal KSM. Next point of analysis required do different amount of memory is freed when 
with each of the scheme. This is done below. 
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 4.4 Memory Saving with  KSM various schemes 
 
Below we have taken the statistics of the free memory in each of the case and it is observed that 
memory saving is all most same in each of the case. 
 

 

                    Figure 4-12  KSM Free Memory 

So far we have analyzed the Com Cache and KSM, separately and drawn the various charts of 

the improvements. Both of the techniques we mentioned analyzed, modified and evaluated and 

integrated with modified LMK ultimately improves the system RAM. When the system is RAM 

is improved situation of memory pressure is batter. This is proved form the below chart which 

evaluates the calling frequency of LMK with both algorithms.  

 

               Figure 4-13  LMK Frequency   
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Chapter 5 

Conclusion and Future Work  
 

Modern devices with no swap space results in killing of process at low memory situations which 
was the case in Android. LMK is used in Android to kill the processes at low memory situation. 
In this thesis existing LMK is improved using in kernel compression techniques such as KSM 
and Com Cache. Using part of a RAM as swap space will increase the effective memory usage of 
main memory and it avoids killing of process to some extend at low memory situations. Modern 
embedded system where flash is used as secondary storage will suffers from performance when 
conventional virtual memory system is used. Hence integration of in kernel memory 
compression techniques such as Com Cache to increase the efficiency. Com Cache integration 
with the LMK is solved by changing the data structure and changing the make files. Calling the 
LMK at system idle time and when system is under memory pressure is successfully changed. 
All the above changes results in the higher RAM availability to the system. Other approach of 
keeping unique pages in case of duplicate pages ie KSM suffers from high CPU usage is solved 
with the proper selection of input processes. The similarity page ratio is improved with the 
selection of processes originated from the same ancestors. 

For a mobile phone user the time taken to launch an application ie initial entry and re-entry time 
of the application are important, both are affected by the available RAM. This improved RAM 
availability has increased the system performance and Degree of Multi-programming. With this 
improvement the Smart Phone user feels improvement in usability and can open more 
applications simultaneously.  

In this improved LMK incorporated two techniques, available. Another good idea is to improve 
on dedicated memory allocation like in case of Camera and Decoders separate memory is 
reserved dedicatedly. This dedicated memory allocation wastes lot of RAM particular in the 
situation when all the functions for which memory is reserved is not used simultaneously. Shared 
memory pool and changes in the memory management scheme can further improve the available 
RAM for the system. 
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