An Experimental Study on High FFA Kusum (Schleichera Oleosa) Oil Biodiesel Production and its Performance Testing

Major Dissertation submitted

in partial fulfillment of the requirements for the award of the degree of

Master of Technology

In Thermal Engineering

By

Naveen Kumar Garg

Roll No. 2K11/THE/25

Session 2011-14

Under the Supervision of

Dr. AMIT PAL

Department of Mechanical Engineering

Delhi Technological University

Delhi-110 042

STUDENT'S DECLARATION

I hereby declare that the major dissertation entitled "An Experimental Study on High FFA Kusum (Schleichera Oleosa) Oil Biodiesel Production and its Performance Testing", submitted to the Department of Mechanical Engineering, Delhi Technological University, Delhi, in partial fulfillment of the requirements for the award of the degree of Master of Technology in Mechanical Engineering (Thermal Engineering), is an authentic record of my own work, under the supervision of Dr. Amit Pal, Associate Professor, Mechanical Engineering Department, Delhi Technological University, Delhi.

It is also declared that I have not submitted the matter embodied in this major dissertation as whole or in part, to any other Institute / University for the award of any degree.

Date:

Naveen Kumar Garg Roll No. 2K11/THE/25 M.Tech.(Thermal Engg.) Session 2011-14

CERTIFICATE

This is to certify that the major dissertation entitled "An Experimental Study on High FFA Kusum (Schleichera Oleosa) Oil Biodiesel Production and its Performance Testing", submitted by Mr. Naveen Kumar Garg, bearing roll no. 2K11 / THE /25 in partial fulfillment of the requirement for the award of the Degree of Master of Technology in Thermal Engineering, during session 2011-2014 to the department of Mechanical Engineering, Delhi Technological University, Delhi, is an authentic work carried out by him under my guidance and supervision.

To the best of my knowledge, the matter embodied in this major dissertation has not been submitted to any other Institute / University for the award of any degree.

Date:

Dr. Amit Pal Associate Professor Department of Mechanical Engineering Delhi Technological University, Delhi

ACKNOWLEDGEMENT

It is distinct pleasure to express my deep sense of gratitude and indebtedness to my learned supervisor Dr. Amit Pal, Associate Professor in Department of Mechanical Engineering, Delhi Technological University, Delhi, for his invaluable guidance, encouragement and patient review. His continuous inspiration only has made me complete this major dissertation.

I am also thankful to Dr. Naveen Kumar, Professor and Head, Department of Mechanical Engineering, Delhi Technological University, Delhi, for his approval to utilise the equipment and infrastructure required for completion of this dissertation and for his inspiration during this work.

I am highly obliged to Professor S. Maji, Principal, G. B. Pant Engg. College and Sh. Deepak Sharma, Head, Department of Mechanical Engineering, G. B. Pant Engg. College, New Delhi, for permitting me to use the equipment and infrastructure required.

I am also thankful to Sh. A. V. Patil, Principal, G. B. Pant Polytechnic and Sh. I. P. Badola, Head, Department of Automobile Engineering, G. B. Pant Polytechnic, New Delhi, for their unconditional support and constant motivation, encouragement all through this work.

I would like to thank Sh. Lalit Kumar, Sh. Harjeet Singh & Sh. Vijay Kumar of I.C. Engine laboratory, for extending their kind support and sharing their valuable knowledge and time for completion of this dissertation.

It is a great opportunity for me to extend my heartiest gratitude to everybody who helped me throughout the course of this major dissertation.

> Naveen Kumar Garg Roll No. 2K11 /THE/ 25

<u>ABSTRACT</u>

Diesel is being used as a main fuel in the field of transportation and power generation in industries, agriculture etc. throughout the world. It is one of the highest consumable among petroleum products in India. In India almost 70% to 80% of the crude oil is being imported from different countries. It is expected that the remaining 20% of crude oil available in India will cease to exist within 30 to 40 years. Thus, there is an urgent need to expand the supply of alternative fuels, including bio-diesel to reduce the dependency on imported oil. Biodiesel is produced from vegetable oil (edible & non edible) and animal fats. The methylester of vegetable oil, known as biodiesel are becoming increasingly popular because of their low environmental impact and its potential as a green alternative fuel. They would not require any significant modification of existing diesel engine design. At present, biodiesel is commercially produced from the seeds of nonedible vegetables such as Thumba, Jatropha, Karanja etc.. The biodiesel is produced by esterification process either by adding acidic or alkaline or both (acidic & alkaline) catalysts.

The kusum seed oil is a nonedible feed stock, with high FFA content. In present experimental study biodiesel is produced from kusum seed oil, using two step esterification process which involves addition of acidic and alkaline catalysts. Further the present work investigates the performance of kusum biodiesel blends with petrodiesel in a four stroke, four cylinder, compression ignition (CI) engine.

The biodiesel blends showed higher brake specific fuel consumption, lower brake thermal efficiency and slightly lower brake power. Using kusum biodiesel blends with diesel or other conventional fossil fuels, reduces exhaust emissions such as carbon dioxide (CO_2), particulate matter (PM), carbon monoxide (CO), sulphur oxides (SO_x), and unburnt hydrocarbons (UHC).

CONTENTS

S.No.	Description	Page No.(s)
1.	1. CHAPTER – 1	
	INTRODUCTION	
	1.1. Petroleum Sector in India at a Glance	
	1.2. Major Petroleum Dependant Sectors	
	1.3. Diesel	
	1.4. What is Biodiesel?	
	1.5. Problem Statement	
	1.6. Scope of Present Work	
2.	CHAPTER - 2	10-20
	LITERATURE REVIEW	
	2.1 Production Related Reviews	
	2.2 Factors Affecting the Production of Biodiesel/Transesterification	
	2.2.1 The effect of Reaction Temperature	
	2.2.2 The effect of Molar Ratio	
	2.2.3 The effect of Catalyst	
	2.2.4 The effect of Reaction Time	
	2.2.5 The effect of Moisture and FFA	
	2.3 Performance and Emission Related Reviews	
3.	CHAPTER-3	21-32
	BIODIESEL CHARACTERISTICS & PRODUCTION	
	TECHNIQUES	
	3.1 Chemistry of Biodiesel	
	3.2 Biodiesel Characteristics	
	3.2.1 Calorific Value or Heat of Combustion	
	3.2.2 Pour Point	
	3.2.3 Cloud Point	
	3.2.4 Flash Point	
	3.2.5 Iodine Value	

- 3.2.6 Viscosity
- 3.2.7 Cetane Number
- 3.2.8 Density
- 3.2.9 Ash Percentage
- 3.3 Processes Overview
 - 3.3.1 Direct use and blending
 - 3.3.2 Microemulsions
 - 3.3.3 Thermal Cracking (Pyrolysis)
 - 3.3.4 Transesterification
 - (A) Alkali-catalyzed Transesterification
 - (B) Acid Catalyzed Pretreatment
 - (C) Lipase as Catalyst
- 3.4 Conventional Mechanical Stirring Method
- 3.5 Cavitation Methods
 - 3.5.1 Ultrasonic Cavitation Method
 - 3.5.2 Hydrodynamic Cavitation Method
 - 3.5.3 Suprcritical & Co-solvent Method

4. CHAPTER-4

PRESENT WORK

- 4.1 Experimental Setup for Biodiesel Production from Kusum Seed Oil
 - 4.1.1 Mechanical Stirring Method
 - 4.1.2 Acid Catalyzed Esterification Process
 - 4.1.3 Alkali Catalyzed Transesterification
 - 4.1.4 Purification
- 4.2 Experimental Results of Kusum Biodiesel Production
- 4.3 Performance Testing on a Multi Cylinder CI Engine
 - 4.3.1 Preparation of Biodiesel Blends
 - 4.3.2 Experimental Setup for Performance Testing
- 4.4 Emission Measuring Equipments

4.4.1 Smoke Meter

4.4.2 Exhaust Gas Analyser

4.5 Formulation Used for Calculation of Various Parameters

33-49

	4.6 Experimental Procedure for Measuring Biodiesel Performance	
5.	CHAPTER - 5	50-62
	RESULT and DISCUSSION	
	5.1 Result of the Kusum Biodiesel Production	
	5.2 Result of the Performance Testing	
	5.2.1 Brake Power Vs Engine RPM	
	5.2.2 Brake Specific Fuel Consumption (Bsfc) Vs Engine RPM	
	5.2.3 Brake Specific Energy Consumption (BSEC) Vs Engine RPM	
	5.2.4 Brake Thermal Efficiency Vs Engine RPM	
	5.3 Result of the Emission Testing	
	5.3.1 Carbon Monoxide Vs Engine RPM	
	5.3.2 Unburnt Hydrocarbon Vs Engine RPM	
	5.3.3 Oxides of Nitrogen Vs Engine RPM	
	5.3.4 Smoke Opacity Vs Engine RPM	
6.	CHAPTER - 6	63-64
	CONCLUSIONS	

7.	CHAPTER - 7	
	SCOPE FOR THE FUTURE WORK	
8.	REFERENCES	66-70

LIST OF TABLES

Table No.	Description		
1.	Available Potential of Tree-Borne Oilseeds (TBO's) in India	No. 6	
2.	Summary of Proposed Standards for Biodiesel by Bureau of Indian Standards	20	
3.	Amount of Kusum Oil, Methanol, Catalyst Used During Experiment and Acid @1.0%	36	
4.	Yield Observed at Different Reaction Times for Molar Ratio of 4.5:1 (Catalyst 0.5 wt %)	36	
5.	Yield Observed at Different Reaction Times for Molar Ratio of 4.5:1 (Catalyst 0.75 wt %)	37	
6.	Yield Observed at Different Reaction Times for Molar Ratio of 4.5:1 (Catalyst 1.0 wt %)	37	
7.	Yield Observed at Different Reaction Times for Molar Ratio of 6:1 (Catalyst 0.5 wt %)	37	
8.	Yield Observed at Different Reaction Times for Molar Ratio of 6:1 (Catalyst 0.75 wt %)	37	
9.	Yield Observed at Different Reaction Times for Molar Ratio of 6:1 (Catalyst 1.0 wt %)	38	
10.	Yield Observed at Different Reaction Times for Molar Ratio of 9:1 (Catalyst 0.5 Wt %)	38	
11.	Yield Observed at Different Reaction Times for Molar Ratio of 9:1 (Catalyst 0.75 wt %)	38	
12.	Yield Observed at Various Reaction Times for Molar Ratio of 9:1 (Catalyst 1.0 wt %)	38	
13.	Comparison of Physico-Chemical Properties of Neat Petrodiesel, Kusum Oil and Kusum Biodiesel	39	
14.	Specifications of the Experimental Setup	42	
15.	General Specification of AVL 437 Smoke Meter	44	
16.	General Specifications of AVL Di-Gas Analyser	45	
17.	Measurement Ranges of AVL Di-Gas Analyser	45	

18.	Observation Table for B0	48
19.	Observation Table for B5	48
20.	Observation Table for B10	49
21.	Observation Table for B15	49
22.	Observation Table for B20	49
23.	Yield Vs Reaction Time at Different Molar Ratio(s) & Catalyst (KOH) Percentage(s)	50

LIST OF FIGURES

Figure No.	Description	Page No.	
1.	Trends in Consumption of Diesel in India	2	
2.	India's End-use Share (%) of Diesel in Retail and Direct Sales Combined	3	
3.	Mature Kusum Tree and Different Parts of a Kusum Plant	8	
4.	Process Flow Schematic for Biodiesel Production	27	
5.	Conventional Mechanical Stirring Setup	33	
6.	Acid Catalyzed Esterification Process	34	
7.	Alkali Catalyzed Esterification Process	35	
8.	Kusum Biodiesel after Purification Process	35	
9.	Schematic Diagram of the Experimental Setup	41	
10.	Actual Experimental Setup for Performance Testing (ENGINE)	41	
11.	Actual Experimental Setup for Performance Testing (with Air and Fuel Flow Measurements)		
12.	AVL Smoker Meter	44	
13.	AVL Exhaust Gas Analyser	45	
14.	(a): Yield Vs Reaction Time at 4.5:1 Molar Ratio		
	(b): Yield Vs Reaction Time at 6:1 Molar Ratio	51-54	
	(c): Yield Vs Reaction Time at 9:1 Molar Ratio		
	(d): Comparison for Yield Vs Reaction Time at Different Molar		
	Ratio(s) & Catalyst (KOH) Percentage(s)		
15.	Brake Power Vs Engine RPM	55	
16.	Brake Specific Fuel Consumption Vs Engine RPM	56	
17.	Brake Specific Energy Consumption Vs Engine RPM	57	
18.	Brake Thermal Efficiency Vs Engine RPM	57	
19.	Carbon Monoxide Vs Engine RPM	59	
20.	Unburnt Hydrocarbon Vs Engine RPM	59	
21.	Oxides of Nitrogen Vs Engine RPM	61	
22.	Smoke Opacity Vs Engine RPM	61	

LIST OF ABBREVIATIONS

S.No.	Abbreviations	Description
1.	\$	US Dollars
2.	%	Percent
3.	°C	Degree Celcius/ degree centigrade
4.	ASTM	American Society for Testing of Materials
5.	bbl	Barrels
6.	BIS	Bureau of Indian Standards
7.	BSEC	Brake Specific Energy Consumption
8.	Bsfc	Brake Specific Fuel Consumption
9.	CAGR	Compound Annual Growth Rate
10.	CI	Compression Ignition
11.	CN	Cetane number
12.	СО	Carbon Monoxide
13.	CO_2	Carbon Di-oxide
14.	CSTR	Continuous Stirred-Tank Reactors
15.	CY	Calendar Year
16.	DEE	Diethyl ether
17.	DI	Direct Injection
18.	EN	European Nations
19.	FFA	Free Fatty Acid
20.	g/gm	Grams
21.	g/kWh	Gram per kilo Watt hour
22.	H_2SO_4	Sulphuric Acid
23.	HC	Hydro carbon
24.	HSD	High Speed Diesel
25.	IV	Iodine Value
26.	JBD	Jatropha Bio Diesel
27.	KBD	Karanja Bio Diesel
28.	КОН	Potassium Hydroxide
29.	KOME	Kusum Oil Methyl Ester
30.	kW	Kilowatt

31.	LPG	Liquefied Petroleum Gas
32.	MJ/kWh	Mega Joule per kilo Watt hour
33.	MMT	Million Metric Tonnes
34.	MT	Metric Tonnes
35.	NaOH	Sodiun Hydroxide
36.	NOx	Oxides of Nitrogen
37.	PM	Particulate Matter
38.	ppm	Parts per million
39.	RPM	Revolutions per Minutes
40.	SOx	Oxides of Sulphur
41.	TBOs	Tree-Borne Oilseeds
42.	TDC	Top Dead Centre
43.	TMT	Trillion Metric Tonnes
44.	UHC	Unburnt Hydrocarbons
45.	Vol	Volume
46.	wt%	Weight Percent