
Optimizing Time Quantum Of Round Robin Scheduling Using

Fuzzy Logic And Age Based Allocation

Dissertation submitted in

partial fulfilment of the requirement

for the award of the degree of

Master of Technology

in

Computer Science and Engineering

by

RAJENDRA SINGH NIKHURPA

University Roll No. 2K12/CSE/14

Under the Esteemed Guidance of

Mr. VINOD KUMAR

Associate Professor, Computer Engineering Department, DTU

2012-2014

COMPUTER ENGINEERING DEPARTMENT

DELHI TECHNOLOGICAL UNIVERSITY

DELHI – 110042, INDIA

i

 Computer Engineering Department

 Delhi Technological University

 Delhi-110042

 www.dce.edu

CERTIFICATE

This is to certify that the dissertation titled “Optimizing Time Quantum Of Round Robin

Scheduling Using Fuzzy Logic And Age Based Allocation” is a bonafide record of work

done by Rajendra Singh Nikhurpa, Roll No. 2K12/CSE/14 at Delhi

Technological University for partial fulfilment of the requirements for the degree of

Master of Technology in Computer Science & Engineering. This project was carried out

under my supervision and has not been submitted elsewhere, either in part or full, for the

award of any other degree or diploma to the best of my knowledge and belief.

 Mr. Vinod Kumar

 Associate Professor

Date: _____________ Department of Computer Engineering

 Delhi Technological University

ii

ACKNOWLEDGEMENT

First of all, I would like to express my deep sense of respect and gratitude to my

project supervisor Mr. Vinod Kumar for providing the opportunity of carrying out this project

and being the guiding force behind this work. I am deeply indebted to him for the support,

advice and encouragement he provided without which the project could not have been a

success.

Secondly, I am grateful to Dr. O.P.Verma, HOD, Computer Engineering Department,

DTU for his immense support. I would also like to acknowledge Delhi Technological

University for providing the right academic resources and environment for this work to be

carried out.

Last but not the least I would like to express sincere gratitude to my parents for

constantly encouraging me during the completion of work.

Rajendra Singh Nikhurpa

 University Roll no: 2K12/CSE/14

 M.Tech (Computer Science & Engineering)

 Department of Computer Engineering

 Delhi Technological University

Delhi – 110042

Date………………

iii

ABSTRACT

Now in the modern days computing requires effective use of resources and high work rate.

The operating system is software that manages the resources for the user and provides high

resource utilization. It helps to use the available resources in a effective way.

Processor or CPU is one of the most important resources in the machine. It executes the

processes and communicates for data. The modern day systems use multi-programmed

environment so as to keep more programs in the memory so as to effectively use the

processor. The major task now is to schedule the processes so as to give them processor

efficiently.

The scheduling of processor is done by program called scheduling algorithm. The function

of scheduling algorithm is to efficiently share the processor among the processes. The

scheduling algorithms used commonly are First come First Serve, Shortest job first, Round

robin scheduling, Priority scheduling. Among these the designer has to generally use one

according to the need of the system. Round robin is widely used because the task of finding

the next process to schedule is the one that is next in the queue. However the efficiency of

round robin algorithm is highly dependent on the time quantum chosen. Therefore, value of

time quantum must be chosen appropriately. However, optimal value is different with

different processes. Therefore, we propose a system to find the efficient value of time

quantum. The algorithm takes into consideration the quantity of processes. Also the average

burst time of the processes is seen. Depending on these values a efficient value of time

quantum is is decided. The decision is taken by the fuzzy decision system. To give more

time to the older processes the aging is also introduced in the model. The process with the

more age gets more proportion of the time quantum.

The model was implemented in simulation and the results were collected.

Key Words : Operating System, CPU Scheduling, Round Robin, Fuzzy Logic, Aging, Time

quantum.

iv

Table of Contents

Certificate i

Acknowledgment ii

Abstract iii

List of Figures vii

List Of Tables viii

Chapter 1

1. Introduction

 1.1.Operating System 1

1.2.Functions of operating system 2

 1.2.1.Memory Management 2

 1.2.2.Processor Management 2

 1.2.3.Device management 2

 1.2.4.File management 3

 1.2.5.Security 3

1.3.Types of operating system 3

 1.3.1.Batch operating system 3

 1.3.2.Time-sharing operating systems 4

 1.3..3.Distributed operating System 5

 1.3.4.Network operating System 6

 1.3.5.Real Time operating System 6

 i). Hard-real Time systems 7

 ii) .Soft-real Time systems 7

v

Chapter 2

2. Backround 9

 2.1.Process 9

 2.2.Process and programs 9

 2.3.Process Management or Process Scheduling 11

 2.4. Types of Processor Scheduling 12

 2.4.1. Long term scheduling 12

 2.4.2. Midterm scheduling 13

 2.4.3..Short Term Scheduling 13

 2.5 Scheduling Algorithm goals for Different Systems 14

 2.6 CPU Scheduling Criteria 15

 2.7 CPU Scheduling Algorithms 16

 2.8 Fuzzy Logic 17

 2.8.1 Fuzzy Sets and Crisp Sets 18

 2.8.2 Membership Functions 20

 2.8.3 Fuzzy Rules and Fuzzy Reasoning 22

 2.8.3.1 Fuzzy If-Then Rules 22

 2.8.3.2 Fuzzy Reasoning 22

Chapter 3

3. Related Work 23

 3.1 Computation of time quantum using FIS 23

 3.1.1 FIS Algorithm 24

 3.2 Minimization of context switching using simplex algorithm 25

 3.3 Selection of smart time slice using shortest burst time approach 26

 3.3.1 Adaptive Round Robin Pseudo code 27

 3.4 SRBRR Model 28

 3.5 NIRR Scheduling 29

vi

Chapter 4

4. Proposed Model 32

 4.1.Problem Statement And Proposed Model 32

 4.2.Proposed Algorithm 34

 4.3. Flow Chart 36

Chapter 5

5. Simulation And Results 38

 5.1 System Architecture 38

5.1.1 Prepare A Table For The Processes 38

5.1.2 Set Up The Counting Time 39

 5.2 Finding The Optimal Time Quantum For The Processes 38

 5.3 Setting Up Age Boundary To Find The Age Of The Process 39

 5.4 Finding Proportion Of Time Quantum To Be Given To Each

 Age Boundaries 40

 5.4.1 Procedure 40

 5.4.2 Comparison 41

 5.5 Finding The Optimal Fuzzy Values For The Input Categories 41

5.6 Result Analysis 44

Chapter 6

6.Conclusion And Future Work 46

References 47

vii

List of Figures

Figure 1: Operating System diagram 2

Figure 2: Figure 2: Batch operating system 5

Figure 3: Time sharing operating system 5

Figure 4: Distributed operating system 6

Figure 5: Network Operating System 7

Figure 6: Real-Time operating system 8

Figure 7: Process State Diagram 11

Figure 8: Process control block 12

Figure 9: Types of scheduler 15

Figure 10: Characteristic Function of a Crisp set 19

Figure 11: Characteristic Function of Fuzzy Set 20

Figure 12: Triangular membership function 21

Figure 13: Trapezoidal membership function 21

Figure 14: Bell membership function 22

Figure 15: Flow chart of algorithm 29

Figure 16: Flow chart of proposed model 37

viii

List of Tables

Table 1 : First configuration 42

Table 2 : Second configuration 42

Table 3 : Third configuration 43

Table 4 : Fourth configuration 43

Table 5 : Fifth configuration 44

Table 6 : Sixth configuration 44

Table 7 : Simluation-1 45

.

Table 8 : Simluation-2 45

Table 9 : Simluation-3 45

Table 10 : Simluation-4 46

Table 11 : Simluation-5 46

Table 12 : Simluation-6 46

1

CHAPTER 1

INTRODUCTION

An operating System acts as an interface between users and hardware. It enables users so that

they can execute programs more conveniently and efficiently. Technically operating system

is a software managing available hardware. It is a program which is running all the times and

rest of the programs being executed as application programs. It acts as an manager which

allocates resources and services such as memory, processors, devices and information.

 Figure 1: Operating System diagram

To allocate resources and information, it has other programs which help OS in managing the

resources and information e.g. traffic controller, scheduler, memory manager, I/O programs,

and a file system.

2

1.2.Functions of Operating System

Operating system has following sets of key roles:

 Memory Management

 Processor Management

 Device Management

 File Management

 Security

1.2.1 Memory Management

Memory management manages the status of each and every allocated or free memory

location. It decides the memory allocation like how much memory a process should get, when

a process should receive it and which all processes will get the memory, among processes

which are competing against each other for resources. After memory allocation it decides the

memory locations for the processes. It also tracks when a memory location is getting freed up

and then updates the status.

1.2.2 Processor Management

Processor management in operating system decides which process gets the processor and the

time for which it is allowed to use the processor which in common terms is known as

scheduling and the program to ensure this is known as ―Scheduler‖. Scheduler ensures that

each process and application gets enough amount of processor’s time for proper functioning.

It also ensures that maximum processor utilization.

1.2.3 Device management

Device manager allows users to view and control the hardware attached to the computer.

Whenever a piece of hardware is not working properly, it is notified to the user so that the

same can be replaced by the user.

3

1.2.4 File management

File management unit controls how the data can be stored and its retrieval. Without it the

information placed in the storage is of no use as it also helps in determining where the

information is starting from and where it is ending. It separates data into small pieces and

gives each piece a name for easy identification. Each piece of information is known as ―file‖.

The rules and structure which are used to manage this information group is called ―file

system‖.

1.2.5 Security

Operating system provides access of the resources available to the processes which are

running. It decides which requests should be allowed to be processed and which are not

allowed to be processed. It achieves the same by identifying the requestor identity by user

name. It uses authentication process to establish the identity. Usually user name is associated

with a password for authentication but other methods like biometric can also be used for

authentication.

1.3 Types of Operating System

1.3.1 Batch operating system

In batch operating system users do not interact directly with the computer. Each user prepares

his job and submits it to the operator using an off-line device like punch cards. Operator

creates the batch of the programs with similar needs and run as a group to speed up

processing. Batch operating system lacks interaction between the user and the job. The CPU

utilization is very less as the I/O devices which are mechanical in nature are slower than

CPU. It is difficult to provide desired priority for jobs.

4

Figure 2: Batch operating system

1.3.2 Time-sharing operating systems

Time sharing operating system enables multiple users who are located at different terminals

to use a particular system at the same time. The processor is shared between multiple users

simultaneously. The objective of time sharing operating system is to minimize the response

time. Multiple jobs are executed by switching them very frequently between the processor

which in turn results in immediate response. These type of operating system uses scheduler

and multiprogramming to give each user a quantum of processor’s time. The advantages of

Timesharing operating systems are that they provide faster response and reduce processor

idle time. The disadvantages include reliability, security and integrity of user programs and

data.

Figure 3:Time sharing operating system

5

1.3.3 Distributed operating System

This type of operating system uses multiple processors to server multiple processes and users.

The jobs are distributed among the processors to the ones which can perform the job more

effectively. The processors communicate with one another through various mediums like

telephone lines. Processors in a distributed system may vary in size and function. These

processors are referred as sites, nodes, computers and so on. As these systems share resources

which each other, it enables the user who is present at one site to use the resources available

at another site. They can speed up the exchange of data with one another using electronic

mail. It provides better service to customers as, if one site fails then the other sites can

continue to operate. Distributed operating systems also help in reducing the load on the host

computer and in turn reduce delay in data processing.

Figure 4: Distributed operating system

6

1.3.4 Network operating System

These type of operating system runs on a server and equip server with the capability to

manage data, users, application and other networking functions. They allow shared file and

printer access to multiple computers in a network i.e. LAN or private network. Examples of

network operating systems are Microsoft Windows Server 2003, Microsoft Windows Server

2008, UNIX, Linux, Mac OS X, Novell NetWare, and BSD. These operating system runs on

centralized servers which are highly stable and securely managed. They are easily upgradable

to new technologies and hardware. They provide remote access to servers from different

locations. However the cost of buying and running a server is very high and they also comes

up with dependency on a central location for most of the operations. Maintenance and

updates are required on a very regular interval to run these operating systems.

Figure 5: Network Operating System

1.3.5 Real Time operating System

This type of operating system controls the environment as the time interval required to

process and respond to process the inputs is very small. Real time processing is always on

line whereas on line system need not be real time. Response time is the time taken by the

system to respond to an input and display of required updated information. So in this

operating system response time is very less as compared to the online processing. Real-time

systems are used when the requirement on the operation of processor or the flow of

information are very rigid e.g. Scientific experiments, medical imaging systems, home-

appliance controllers, Air traffic control system etc.

7

 Figure 6: Real-Time operating system

Real time operating systems are categorized in two types:

i). Hard-real Time Systems

These systems guarantee that critical tasks complete on time. Secondary storage is limited or

missing in these systems and are usually stored in ROM. Virtual memory is never found in

these systems.

ii). Soft-real Time Systems

Critical real-time task in these systems gets priority over other tasks and retains the priority

until it completes. They have limited utility than hard real-time systems e.g. Multimedia,

virtual reality, Advanced Scientific Projects like undersea exploration and planetary rovers

etc.

In Multiprocessing system, the multiprogramming is one of the most critical and important

aspects of operating systems. There are several processes which are to be kept

simultaneously in memory. The aim of which is to maximize the CPU utilization. If these

several processes which are in the memory and ready to run at the same time, then operating

system must choose which one among them to run first and it is responsibility of operating

system to make this happen very efficiently. To make this call we have several CPU

scheduling algorithms like first come first serve, shortest job first ,round robin etc. CPU

scheduling is the basis of multiprogramming systems. Hence operating system uses which

algorithm is going to be very suitable for current situation. It is made by part of operating

system called the scheduler, using a CPU scheduling algorithm.

8

Round Robin algorithm will allow the first process in the ready queue to run until its time

quantum expires, and then run the next process in the ready queue. In a situation where the

process needs more time, the process runs for the full length of the time quantum and then it

is preempted and then added to the tail of the queue. In Round Robin we faces large number

of context switches and there will be less throughput. Hence we worked on this problem by

optimizing time quantum of round robin and there is age based allocation of CPU among

processes.

.

9

CHAPTER 2

BACKGROUND

2.1 Process

 A process is sequential program in execution. A process defines the fundamental unit of

computation for the computer. Components of process are :

 Object Program

 Data

 Resources

 Status of the process execution.

 Object program i.e. code to be executed. Data is used for executing the program.

While executing program, it may requires some resources. Last component is used

for verifying the status of process execution. A process can run to complete execution

only when all of requested resources have been allocated to the process. Two or more

processes may be executing same program, each using their data and resources.

2.2 Processes and Program

Process is a dynamic entity, that is a program in execution. A process is a sequence of

information executions. Process exists in a limited span of time. Two or more processes could

be executing the same program, each using their own data and resources. Program is a static

entity made up of program statement. Program contains the instructions. A program exists at

single place in space and continues to exist. A program does not perform the action by itself.

When a process executes, it changes its state. Process state is defined as the current activity of

the process. Fig. 2 shows the general form of the process state transition diagram. Process

state contains five states. Each process is in one of the states.

10

The states are listed below.

1. New : A process that just been created.

2. Ready : Ready processes are the processes which waiting to get CPU.

3. Running : The process that is currently being executed. A running process possesses all the

resources needed for its execution, including the processor.

4. Waiting : A process that can not execute until some event occurs such as

completion of I/O operation. The running process goes to suspended by invoking an I/O

module.

5. Terminated : A process that has been released from the pool of executable

processes by the operating system.

Figure 7: Process State Diagram

11

2.3 Process Management or Process Scheduling:

 In a multi-programmed system multiple processes competing for the CPU at the same

time. When more than one process is in the ready state and there is only one CPU available,

the operating system must decide which process to run first. The part of operating system that

makes the choice is called short term scheduler or CPU scheduler and scheduling algorithm is

used to schedule these processes in a efficient way so that CPU utilization is maximum and to

schedule we have several scheduling algorithms. Different scheduling algorithms have

different properties and the choice of a particular algorithm may favour one class of processes

over another and we can say that these are condition dependent i.e. we can't say in particular

that such algorithm is best algorithm in any condition. Many criteria have been suggested for

comparing CPU scheduling algorithms and deciding which one is the best algorithm[1].

A process in an operating system is represented by a data structure known as a process

control block (PCB) or process descriptor. The PCB contains important information about the

specific process including:

Process state: The state may be new, ready, running, waiting, halted, and so on. Program

counter. The counter indicates the address of the next instruction to be executed for this

process.

CPU registers: The registers vary in number and type, depending on the computer

architecture. They include accumulators, index registers, stack pointers, and general-purpose

registers, plus any condition-code information.

CPU scheduling information: This information includes a process priority, pointers to

scheduling queues, and any other scheduling parameters.

Memory management information: This information may include such information as the

value of the base and limit registers, the page tables, or the segment tables, depending on the

memory system used by the OS.

Accounting information: This information includes the amount of CPU and real time used,

time limits, account numbers, job or process numbers, and so on.

I/O status information: This information includes the list of I/O devices allocated to the

process, a list of open files, and so on.

12

Figure 8: process control block

2.4 Types of Processor Scheduling

 The aim of processor scheduling is to assign processes to be executed by the processor in a

way that meets system objectives, such as response time, throughput, and processor

efficiency. In many systems, this scheduling activity is broken into three separate functions

(i) Long term scheduling

(ii) Medium term scheduling

(iii) Short term scheduling

2.4.1 Long Term Scheduling

The long term scheduler determines which programs are admitted to the systems for

processing, thus, it controls the degree of multiprogramming [1]. Once admitted, a job or user

program becomes a process and is added to the queue for the short term scheduler. In a batch

system, long term scheduler creates processes and forms the queue wherever it is possible.

The more processes are created; the smaller is the percentage of time for which each process

can be executed. Long term schedulers may limit the degree of multiprogramming to provide

satisfactory service to the current set of processes.

13

2.4.2 Midterm Scheduling

The scheduling of processes is mainly based on the requirement of the resources. It is

essentially concern with memory management and often design as a memory management

subsystem of an operating system [2,3]. It temporarily removes a process from the main

memory which is of low priority or has been inactive for a long time. This is known as

"swamping out" of a process. The scheduler may decide to swamp out the process which is

frequently page-faulting or a process which is taking large amount of memory. Its efficient

interaction with the short term scheduler is very essential for the performance of the systems

with virtual memory.

2.4.3 Short Term Scheduling

In terms of frequency of execution, the long term scheduler executes relatively infrequently

and makes the coarse grained decision of whether or not to take on a new process and which

one to take. Short term scheduler is invoked whenever an event occurs that may lead to the

blocking of the current process that may provide an opportunity to preempt a currently

running process in favor of another. CPU scheduling decisions can occur on the given

conditions:

(a) either the running process changes from running to waiting state or when the running

 process terminates.

(b) The waiting process becomes ready.

(c) The current process switches from running to ready state.

14

Figure 9 : Types of scheduler

2.5 Scheduling Algorithm goals for Different Systems:

 There are some goals that must be achieved in order to perfectly schedule the task on the

processor. Some of these goals are mentioned below:

 (i) Fairness : Fairness is important under all circumstances. A scheduler makes sure that

each process gets its fair share of the CPU and no process suffer indefinite postponement.

Note that giving equivalent or equal time is not fair [3].

 (ii) Policy Enforcement : The scheduler has to make sure that system's policy is enforced.

For example, if the local policy is safety then the safety control processes must be able to run

whenever they want to, even if it means delay in payroll processes.

 (iii) Efficiency: Scheduler should keep the system busy cent percent of the time when

possible. If the CPU and the entire input/output device run for entire time, more work gets

done per second [3].

 (iv) Meeting deadlines: Scheduler should finish all its processes before the deadline of

process otherwise catastrophic results can occur [4].

The CPU scheduling can be defined as the art of determining which processes run on the

CPU when there are multiple running processes. Also, it is the problem of deciding which

computer process in the ready queue (in other words, which particular programs need some

15

processing and are ready and waiting for it) is to be allocated to the CPU for processing.CPU

scheduling is one of several system components that make a whole multimedia system.

Scheduling problems of resources in general has significance in understanding CPU

scheduling. Scheduling implies multiplexing a resource among several tasks to ensure all

throughput requirements are met. For batch or interactive processes, secondary storage or

CPU cycles can be scheduling using a round robin or first-come first-serve policy.

o CPU Utilization: Keep CPU utilization as high as possible.

o Throughput: number of processes completed per unit time.

o Turnaround Time: mean time from submission to completion of process.

o Waiting Time: Amount of time spent ready to run but not running.

o Response Time: Time between submission of requests and first response to the request.

2.6 CPU Scheduling Criteria

CPU scheduling criteria are the basis on which the performance of CPU scheduling

algorithms is evaluated. There are many possible criteria:

o CPU Utilization : This is a measure of how busy the CPU is. Usually, the goal is to

maximize the CPU utilization.

o Throughput : This is the number of processes completed per unit time. Usually, the goal

is to maximize the throughput.

o Turnaround Time : This is the amount of time from submission to completion of

process. Usually, the goal is to minimize the turnaround time.

o Waiting Time : This is the amount of time spent ready to run but not running. It is the

difference in start time and ready time. Usually, the goal is to minimize the waiting time.

o Response Time : This is the amount of time between submission of requests and first

response to the request. Usually, the goal is to minimize the response time.

16

2.7 CPU Scheduling Algorithms

 Four algorithms commonly used in CPU scheduling are discussed below :

o First-Come First-Served (FCFS) : In this algorithm CPU is allocated to the process

which requests the CPU first. This algorithm is easily implemented with a FIFO queue.

New process which enters into the queue joins the tail of the queue and leaves from the

head of the queue (when the process is allocated to the CPU). The processes are allocated

to the CPU as they arrive in queue. Once the CPU is allocated to the process, it is then

removed from the queue.

o Shortest Job First (SJF) : The SJF algorithm completely depends on the length of the

next CPU burst with each process in a manner that the processes that have the smallest

CPU burst and they have been allocated the CPU first. If there is a conflict i.e. if two or

more processes have same burst time then they will be processed as they arrived i.e.

according to their arrival time. The SJF algorithm can be further subdivided into two

categories i.e. as either preemptive or non-preemptive algorithms. When currently

running process is interrupted in order to give the CPU to a new process with a shorter

next CPU burst, it is known as preemptive SJF. On the other hand, the non-preemptive

SJF will allow that the currently running process to finish its CPU burst before a new

process is allocated to the CPU.

o Priority Scheduling (PS) : The Priority Scheduling algorithm associates with each

process a priority and the CPU is allocated to the process based on their priorities.

Usually, lower numbers are used to represent higher priorities. The process with the

highest priority is allocated first. If there are multiple processes with same priority,

typically the FCFS is used to break tie.

o Round Robin (RR) : The RR algorithm is designed especially for time-sharing systems

and is similar to the FCFS algorithm. Here, a small unit of time (called time quantum or

time slice) is defined. A time quantum is generally from 10-100 milliseconds. So, the RR

algorithm will allow the first process in the queue to run until it expires its quantum (i.e.

runs for as long as the time quantum), then run the next process in the queue for the

duration of the same time quantum. The RR keeps the ready processes as a FIFO queue.

So, new processes are added to the tail of the queue. Depending on the time quantum and

the CPU burst requirement of each process, a process may need less than or more than a

time quantum to execute on the CPU. In a situation where the process need more than a

17

time quantum, the process runs for the full length of the time quantum and then it is pre-

empted. The pre-empted process is then added to the tail of the queue again but with its

CPU burst now a time quantum less than its previous CPU burst. This continues until the

execution of the process is completed). The RR algorithm is naturally pre-emptive.

2.8. Fuzzy Logic

Fuzzy Logic was introduced in 1965 [5], [6], [7], by Lotfi A. Zadeh , professor for computer

science at the University of California in Berkeley. Basically, Fuzzy Logic (FL) is a multi-

valued logic, that allows linguistic values to be clear between conventional evaluations like

true or false, yes or no, high or low, etc i.e. only partial truth. Phrase like rather tall or very

fast may be formulated mathematically and processed by computers, in order to relate a more

human like manner of thinking in the programming of computers [8]. Fuzzy systems is an

traditional notions alternative for set membership and logic that has origins in ancient Greek

philosophy. Precision of mathematics owe its success in greater part to efforts of Aristotle

and philosophers who preceded him. In their efforts to plan a concise theory of logic, and

later mathematics the so called ‖Laws of Thought‖ were proposed [9]. One of these is ‖Law

of the Excluded Middle,‖ which states that every proposition must either be True or False.

and then when Parminedes proposed his first version of this law (around 400 B.C.). There

were strong and gradual objections: for example, Heraclitus projected that things could be

simultaneously True and not the whole Truth. It was Plato who laid the foundation for what

would become the fuzzy logic, indicating that there is a third region (beyond True and False)

where the opposites ‖tumbled about.‖ Other, more modern philosophers echo his sentiments,

particularly Hegel, Marx, and Engels. But it was Lukasiewicz who was first to proposed a

systematic alternative to the bi valued logic of Aristotle [10]. Even in present time some

Greeks are still terrific examples for fussiness. Fuzzy Logic has emerge as a gainful tool for

controlling and steering of system and complex industrial processes, as well as for household

and entertainment electronics, as well as for extra expert systems and applications like the

classification of data.

18

2.8.1 Fuzzy Sets and Crisp Sets

The very basic notation of fuzzy systems is a fuzzy sub set. In classical mathematics we are

familiar with what we call this as crisp sets. For example, the possible interfere metric

coherence g values are set of X of all real numbers between 0 and 1. From this set X a

subset A which can be defined, (e.g. all values 0 ≤ g ≤ 0.2). The characteristic function of A,

(i.e. this function assigns a number 1 or 0 to every element in X, depending upon whether the

element is in the subset A or not) is shown in Fig.12. The elements which have been given

the number 1 can be interpreted as elements which are in the set A and elements which have

assigned the number 0 as the elements that are not in the set A.

Fig. 10:Characteristic Function of a Crisp set

This concept is sufficient for many areas of applications, but it can be seen, which is lacks in

flexibility for some applications similar to classification of remotely sensed data analysis. For

example it is well known that water shows low inter ferometric coherence g in SAR images.

Since g starts at 0, the lower range of this set ought to be clear. The upper range, on the other

hand, is rather hard to define. As a first attempt, we set the upper range to 0.2. Therefore we

get B as a crisp interval B=[0,0.2]. But by means of that a g value of 0.20 is low but a g value

of 0.21 not. Obviously, this was a structural problem, for if we moved towards the upper

boundary of the range from g =0.20 to an arbitrary point we can pose the same question. A

more natural way to construct the set B would be to relax the strict separation between low

and not low. This can be done by allowing not only the (crisp) decision Yes/No, but more

flexible rules like ‖ fairly low‖. A fuzzy set allows us to define such a notion. The aim is to

19

use fuzzy sets in order to make computers more ’intelligent’, therefore, the idea above has to

be coded more formally. In the example, all the elements were coded with 0 or 1. A straight

way to generalize this concept, is to allow more values between 0 and 1. In fact, infinitely

many alternatives can be allowed between the boundaries 0 and 1, namely the unit interval I

= [0, 1]. The interpretation of the numbers, now assigned to all elements is much more

difficult. Of course, again the number 1 assigned to an element means, that the element is in

the set B and 0 means that the element is definitely not in the set B. All other values mean a

gradual membership to the set B. This is shown in Fig. 2. The membership function is a

graphical representation of the magnitude of participation of each input. It associates a

weighting with each of the inputs that are processed, define functional overlap between

inputs, and ultimately determines an output response. The rules use the input membership

values as weighting factors to determine their influence on the fuzzy output sets of the final

output conclusion.

 The membership function, operating in this case on the fuzzy set of interferometric

coherence g, returns a value between 0.0 and 1.0. For example, an interferometric coherence

g of 0.3 has a membership of 0.5 to the set low coherence (see Fig. 2). It is important to point

out the distinction between fuzzy logic and probability. Both operate over the same numeric

range, and have similar values: 0.0 representing False (or non-membership), and 1.0

representing True (or full-membership). However, there is a distinction to be made between

the two statements: The probabilistic approach yields the natural-language statement, ‖There

is an 50% chance that g is low,‖ while the fuzzy terminology corresponds to ‖g’s degree of

membership within the set of low interferometric coherence is 0.50.‖ The semantic difference

is significant: the first view supposes that g is or is not low; it is just that we only have an

50% chance of knowing which set it is in. By contrast, fuzzy terminology supposes that g is

‖more or less‖ low, or in some other term corresponding to the value of 0.50.

20

Figure 11: Characteristic Function of Fuzzy Set

2.8.2 Membership Functions

For representation of the membership functions, we can use the following functions:

• Triangular Membership Functions

A triangular MF, as shown in Figure 2.7 (a), is a function with 3 parameters defined by

 triangle(x ; a ,b ,c) = max(min(
𝑥−𝑎

𝑏−𝑎
,
𝑐−𝑥

𝑐−𝑏
),0)

• Trapezoidal Membership Functions

A Trapezoidal MF, as shown in Figure 2.7 (b), is a function with 4 parameters defined by

 trapezoid(x ; a ,b ,c ,d) = max(min(
𝑥−𝑎

𝑏−𝑎
, 1,

𝑑−𝑥

𝑑−𝑐
),0)

Figure 12: Triangular membership function

Figure13: Trapezoidal membership function

21

• Gaussian Membership Functions

A Gaussian MF is a function with two parameters defined by

 gaussian(x ; σ ,c) = 𝑒
−(𝑥−𝑐)2

σ3

where c is the center and σ is the width of membership function

 Figure14: Bell membership function

• Bell Membership Functions

A bell MF, as shown in Figure 2.8, is a function with two parameters defined by

 bell(x ; a ,b ,c) =
1

1+|
(𝑥−𝑐)2𝑏

𝑎
|

• Sigmoidal Membership Function

A Sigmoid MF is a function with two parameters defined by

 sigmoid(x; k ,c)=
1

1+ 𝑒−k (x−c)

where parameter k influences sharpness of function in the point where a = c. If k >0 the

function is open on right site, on the other hand, if k<0 the function is open on left site and

therefore this function can be use for describing conceptions like ―very big‖ or ―very small‖.

Sigmoid function is very often used in Neural Networks like activation function.

22

2.8.3 Fuzzy Rules and Fuzzy Reasoning

Fuzzy rules and fuzzy reasoning are the backbone of fuzzy inference systems, which are the

most important modeling tool based on fuzzy set theory. They have been applied to a wide

range of real-world problems, such as expert systems, pattern recognition, and data

classification. A detailed discussion about fuzzy inference systems is provided in [11].

2.8.3.1 Fuzzy If-Then Rules

Fuzzy if-then rules (also known as fuzzy conditional statements) are expressions of the form

 If x is A , then y is B

where A and B are linguistic labels defined by fuzzy sets on universe of discourse X and Y,

respectively. Often ―x is A‖ is called the antecedent or premise, while ―y is B‖ is called the

consequence or conclusion. Due to their concise form, fuzzy if-then rules are often used to

capture the imprecise modes of reasoning and play an essential role in the human ability to

make decisions in an environment of uncertainty and imprecision. Fuzzy if-then rules have

been used extensively in both modelling and control. From another angle, due to the

qualifiers on the premise parts, each fuzzy if-then rule can be viewed as a local description of

the system under consideration.

2.8.3.2 Fuzzy Reasoning

Fuzzy reasoning, also known as approximate reasoning, is an inference procedure that derives

conclusions from a set of fuzzy if-then rules and known facts.

23

CHAPTER 3

RELATED WORK

Round-robin (RR) is one of the scheduling algorithms to schedule processes in a system. In

RR time slices i.e. time quantum is assigned to each process in equally and in circular order,

handling all processes without precedence. Round-robin scheduling is simple and easy to

implement and also processes doesn't suffer from starvation.

The RR Scheduling has certain disadvantages which are longer average waiting time, higher

context switches, higher turnaround time and low throughput. In Round Robin Scheduling the

time quantum play a very important role for scheduling, because if time quantum is very

large then Round Robin Scheduling Algorithm is same as the FCFS Scheduling. If the time

quantum is extremely too small then Round Robin Scheduling is called as Processor Sharing

Algorithm and number of context switches is very high. So there are many researches have

been done related to RR improvement and they have shown that RR works very efficiently in

certain circumstances.

In these past years many researchers have done lots of works and have presented their ideas

to reduce the context switching and to improve the time quantum of Round Robin scheduling

algorithm.

3.1 Computation of time quantum using FIS

They have proposed an algorithm to improve the time quantum of round robin scheduling

algorithm using fuzzy inference system. They have chosen number of processes and average

burst time as input and on that basis they have generated the time quantum which is good

enough to reduce context switching between the processes and hence efficient throughput.

 An Fuzzy inference engine consists of three stages commonly known as input , processing,

and output stages. The first stage i.e. The input stage maps into the inputs such as deadline,

execution time, and average waiting time etc to the corresponding membership function and

their truth values. The second stage i.e. processing stage which invokes each relative rule and

thus generates a result for each. It then combines the results of the rules. Last stage i.e. output

24

stage converts the all results into a specific output value [12]. As processing stage, which is

known as the inference engine is based on a collection of logic rules in the form of if-then

statements where if part is called antecedent and the then part is called the consequent.

Typical fuzzy inference systems includes dozens of rules. These rules are stored in a

knowledgebase. An example of fuzzy if-then rules: IF number of users is high then time

quantum is low, in which number of user and time quantum are linguistics variables and high

and low are linguistics terms. The five steps toward a fuzzy inference are as follows:

o Raking fuzzying inputs

o Apply fuzzy operators

o Apply implication methods

o Aggregate outputs

o Defuzzyfying results

3.1.1. FIS Algorithm

On the basis of fuzzy logic they have proposed the following algorithm [13]

1. Find ABT, the average burst time of the processes.

 2.Give N, the number of users and ABT to the FIS designed above.

 3.Take output of FIS as the time quantum.

 4.Invoke Round Robin Scheduling Algorithm.

25

3.2 Minimization Of Context Switching Using Simplex Algorithm

Mahesh Kumar M R , Renuka Rajendra B , Sreenatha M , Niranjan C K[14] proposed the

simplex algorithm to reduce context switching between processes and their algorith as

follows:

1. They have converted given problem into Linear Programming Models to form objective

function which is containing process burst time.

2. Constraints consist of waiting time and turnaround time of each process and average

waiting time and average turnaround time as right side of the constraints.

3.Introduce slack variables to convert Linear Programming Models into standard form

 Z=10X1+1X2+2X3+1X4+5X+0S1+0S2

Subject to constraints

 9X1+1X2+5X3+3X4+9X5+1S1=27

 9X1+2X2+7X3+4X4+14X5+1S2=46

4. Obtain starting basic feasible solution to create simplex table.

5. Compute net value of Zj – Cj to identify entering and leaving variable in simplex table.

6. Repeat above steps until we get all values of Zj – Cj are positive.

7. Once we get all values are positive now check the values of Zj this will gives us a new

quantum time is 2 for our problem.

 Z=10X1+1X2+2X3+1X4+5X+0S1+0S2

Subject to constraints

 9X1+1X2+5X3+3X4+9X5+1S1=27

 19X1+2X2+7X3+4X4+14X5+1S2=46

8. Calculate waiting time and turnaround time for each process using new quantum size.

26

3.3 Selection Of Smart Time Slice Using Shortest Burst Time Approach

Saroj Hiranwal, Dr. K.C.Roy[15], they have introduced the Intelligent Time Slice for

Adaptive Round Robin. And proposed algorithm which eliminates the defects of

implementing simple Round Robin scheduling algorithm in operating system by developing a

concept called smart time slicing which depends on priority, average CPU burst or mid

process CPU burst, and context switch avoidance time. The proposed algorithm allows the

user to issue priority to the system based on execution time or burst time. They have

evaluated smart time slice that will be based on all CPU burst of currently new running

processes. The smart time slice evaluated according to the processes burst time; if the number

of processes are placed into the ready queue are odd in number then the smart time slice will

be the medium process burst time else the number of processes are even in number then in

ready queue the smart time slice is average of all processes burst time is given to the

processes. The new proposed algorithm called Adaptive Round Robin Scheduling using

Shortest Burst Approach Based on Smart Time Slice[13]. It is a Priority Driven Scheduling

algorithm based upon burst time of processes. First of all we may arrange the processes

according to the execution time or burst time in increasing order that is smallest the burst

time have higher priority of the running process. The next idea of this approach is to choose

the smart time slice (STS) which is mainly depends upon number of processes. The smart

time slice is equal to the medium process burst time of all CPU burst time which when the

number of process given odd. If number of process given even then we choose the time

quantum which is according to the average CPU burst of all running processes. Based on the

experiments and calculations the proposed algorithm radically evaluated the fixed time

quantum problem which is considered as a challenge for Round Robin Scheduling Algorithm.

The use of scheduling algorithm is to increased the performance as well as stability of the

operating system and supporting the building of an self-adaptation operating system, which

means that the system that will adapt itself as per the requirements of the user and not vice

versa.

The Adaptive Round Robin Scheduling Algorithm[13] focuses on the drawbacks of simple

Round Robin Algorithm which will give equal portion of time to all the processes (processes

are scheduled in first come first serve manner) because of all the drawbacks in Round Robin

Algorithm which is not efficient for processes having smaller CPU burst. This will lead to the

increase in waiting time and response time of processes which decreases the system

27

throughput. The proposed algorithm eliminates the drawbacks of implementing a simple

round robin algorithm in by scheduling of processes based on the CPU execution time. The

allocated processor used to reduce the burden of the main processor which is given to

processes according to the priority, the smaller CPU burst of the process, higher the priority.

The proposed algorithm solves the problem of higher average waiting time, turnaround time,

response time and more context switches thereby improving the system performance.

 Smart Time Slice = Mid Process Burst Time (If number of processes are odd)

or

 Smart Time Slice = Average Burst Time (If number of processes are even)

Then processes are executing according to the smart time slice and give superior result

comparison to existing simple Round Robin Scheduling Algorithm and can be implemented

in operating system.

 3.3.1 Adaptive Round Robin Pseudo Code

1. First of all check ready queue is empty

 2. When ready queue is empty then all the processes are assigned into the ready queue.

 3. All the processes are rearranged in increasing order that means smaller burst time process

get higher priority and larger burst time process get lower priority.

 4. While (ready queue != NULL)

 5. Calculate smart Time Slice:

 If (Number of process%2= = 0)

STS = average CPU burst time of all processes

 Else

 STS = mid process burst time

 6. Assign smart time slice to the i
th

 process:

 Pi <- STS

 7. If (i < Number of process) then go to step 6.

 8. If a new process is arrived update the ready queue, go to step 2.

 9. End of While

28

10. Calculate average waiting time, turnaround time, context switches and throughput.

11. End

3.4 SRBRR Model

P.Surendra Varma ,Vijayawada, have proposed an algorithm which applicable in uni-

processor and all processes are independent of each other and they have also worked on

Shortest Remaining Burst Round Robin in order to give better turnaround time, average

waiting time and minimizes context switch and there proposed algorithm works as follow:

1. All processes present in ready queue are sorted in increasing order.

2. While (ready queue! = NULL)

 TQ = Ceil (sqrt (median * highest Burst time)).

3. Assign TQ to process Pi ->TQ.

4. If (i < n) then go to step 3.

5. If a new process is arrived, Update the counter n and go to step1 End of while.

6.Average waiting time, average turnaround time and Number of context switches are

calculated.

7. End.

Figure 15: Flow Chart Of Algorithm

29

3.5 NIRR Scheduling

Abdulrazaq Abdulrahim, Saleh E Abdullahi , Junaidu B. Sahalu[16] they have proposed an

CPU scheduling algorithm is a modification of the algorithm. It assumes another queue called

the ARRIVE queue which holds processes according to their arrival times while there are

other processes in the ready queue (say REQUEST) waiting for CPU allocation.

Algorithm takes to the REQUEST queue, in the first step process (i.e.pr[1]) that enters in the

ARRIVE queue, and which allocates the CPU to it for the period of burst time (i.e.bt[1]).

Processes that arrives while the CPU is executing this process will be added in the end of the

ARRIVE queue as they their arrival time. After execution of the process, all the processes

which are in the ARRIVE queue so they will be moved to the REQUEST queue and arranged

in increasing order of burst times. The algorithm take ceiling of average burst time of all the

processes in the REQUEST queue as the time quantum and allocates the CPU to first process

in REQUEST queue for time quantum. When the time quantum for the process finished, the

algorithm checks on the remaining CPU burst time of the currently running process. If the left

over CPU burst time is less than or equal to half of the time quantum, then CPU will again

be allocated to currently running process for the remaining CPU burst time. In this case, this

process will finish its execution and will be removed from the REQUEST queue. Otherwise,

if the left behind CPU burst time of the currently running process is longer than half of time

quantum, the process will be moved to ARRIVE queue. CPU scheduler will then proceed to

next process in REQUEST queue. During execution of processes in REQUEST queue, any

process that arrives the system will be placed in the ARRIVE queue. These activities

continue until no process is available in the REQUEST queue.

After execution of the processes in REQUEST queue, transferred processes from REQUEST

queue to ARRIVE queue in previous execution cycle and recently arrived processes in

ARRIVE queue will be queued to REQUEST queue in increasing order of burst times and a

new time quantum will be calculated (i.e. the ceiling of average of burst times of the

processes). CPU will be allocated to processes in REQUEST queue as usual using the

recently determined time quantum. These activities continue until no process is available in

the REQUEST and ARRIVE queues.

30

The algorithm as follows:

1.Start

 2.Create ARRIVE queue, where processes will be placed when they arrive the system before

 they are moved to the ready queue.

3. Create a ready queue, REQUEST

4. Do

5: If (procees_index= 1)

 {

 time_quantum =burst_time[1]

 Move the first process (pr [1]) to REQUEST queue

 }

 Else

 {

 Move all processes in ARRIVE queue to REQUEST queue in ascending burst

 time order

 }

 6. Do

7. Allocate the CPU to the first process in REQUEST queue for a period of 1 time quantum.

8.If the remaining CPU burst time of the currently running process is less than or equal to

half time quantum then allocate the CPU again to the currently running process for remaining

31

CPU burst time. After completion of execution, remove the process from the ready queue and

go to step 7.

9. If the remaining CPU burst time of the currently running process is longer than half time

quantum, remove the process from the REQUEST queue and put it in the ARRIVE queue and

go to step 7.

10. If a new process arrives the system, it is placed in the ARRIVE queue.

11.WHILE queue REQUEST is not empty.

12.WHILE queue ARRIVE is not empty.

13. Calculate AWT, ATAT, ART and NCS.

14. END

32

CHAPTER 4

PROPOSED MODEL

4.1 Problem Statement And Proposed Model

As seen from the various scheduling algorithms the criteria for scheduling determine the

applicability of the algorithm. However, it was seen that the Round Robin scheduling

algorithm is good for variety of situations. Its have features like lesser starvation, upper

bound on waiting time, high CPU utilization and constant time for scheduling to do task.

However, the performance of this algorithm is highly dependent on time quantum we choose.

By choosing large time quantum leads to less context switches but have large waiting time

and if the time quantum is less then there will be more context switches and which will lead

to decrease the performance i.e. throughput will be less.

Now what we have to do is to choose such a time quantum which is neither too large nor too

small and as we know that the time quantum is completely depend on which type of

processes are there in queue or which will be added next as they arrive.

Now we look at the various considerations that are to be responsible for choosing time

quantum. Now what we do we look into ready queue for processes which are there. We can

judge the later jobs or processes on the basis of first few jobs in ready queue. The reason for

this is locality of reference, we know that the same kind of processes coming from same

program with almost similar burst time. This will lead us to the time quantum which will be

appropriate for most of the processes hence, we propose that by factor of first few process to

find efficient time quantum. Therefore, we decided to choose time quantum based on first

10% of the processes in ready queue.

The factors to be considered as

1.Burst Time

2.Number of processes

33

1.Burst time

As we see that if the burst time is too small then there will be more context switches which

affect the performance of system. So as a result we consider that the efficient time quantum

should be proportional to average burst time of the processes.

2.Number of processes

Now we also consider that if the number of processes are large and the time quantum is also

large then this will lead to increase the waiting time for the processes. i.e. efficient time

quantum is inversely proportional to number of processes.

Now we see that there are contradicting situations i.e. if the average burst time and the

number of processes both are large and if the average burst time and the number of processes

both are small then we are not in a situation to choose efficient time quantum and hence we

stuck. Therefore, we introduces fuzzy logic here to resolve the problem probabilistically.

Fuzzy logic deals with partial truth i.e. degree of truth which is not the boolean(0/1) value

like crisp logic. We define three soft boundaries namely low, medium and high for both the

factors i.e. the average burst time and the number of processes.

S. No. Burst time No. of processes Time quantum

1 Low Low Low

2 Medium Low Medium

3 High Low High

4 Low Medium Low

5 Medium Medium Medium

6 High Medium Medium

7 Low High Low

8 Medium High Low

9 High High Medium

Table1:Representing time quantum

The process which have been in the system for long time should be given more priority.

Therefore, we have done here is that we assign CPU to processes for the portion of time

quantum i.e. directly proportional to the time it has been in system we called this as "aging

34

factor" and we also divide this into three categories same as previous ones i.e. low, medium,

high.

4.2 Proposed Algorithm

1. Get no. of processes and age boundary values.

2. Generate randomly arrival time and burst time and sort them according to arrival time and

resolve clashes by burst time.

3. Get the value of time_quantum.

4. Set currnet_time = first_arrival.

5.while(flag==1)

 {

 i Add unexecuted processes with arrival_time upto current_time to

 the queue.

 ii.while(queue!=empty)

 . {

 a. process_p=remove first element from queue.

 b. find age and get the value of allocated time quantum.

 c. if(burst_time[process_p]>allocated time quantum)

 {

 A. burst_time[process_p]= (burst_time[process_p]-

 allocated time quantum)

 B.current_time=current_time+allocated time quantum

 C.add process_p to queue.

 }

 d.else

35

 {

 A.current_time=(current_time+allocated time

 quantum-burst_time[process_p])

 B. burst_time[process_p].

 C. process_count++.

 }

 e. Add unexecuted processes with arrival_time upto current_time to

 the queue.

 }

 iii.if (process_count==processes)

 {

 a.(flag=-1)

 }

 iv.else

 {

 a. currrent_time=arrival time of next process

 b. Add unexecuted processes with arrival_time upto current_time to

 the queue.

 }

 }

6.Get statistics.

36

4.3 Flow Chart

 Yes

get input

randomly generate arrival time and burst

time and sort them

get the value of time quantum

set the current time to next arrival and

add to queue the processes upto current

time

get age and find allocated time quantum

allocate CPU for allocated time quantum

process_p= remove first process from

queue

IS THE

PROCESS

FINISHED

Update the data (burst time)and add to

queue

Update the data current time and add

processes with arrival time upto current

time to queue

ADD ONE T PROCESS

COUNT

37

 No

No

 Yes

yes

 No

 Figure 16:Flow chart of proposed model

IS THE QUEUE

EMPTY

Get statistics

process_count

<processes

38

CHAPTER 5

SIMULATION AND RESULTS

Now we look at the implementation of the model and test in on a variety of inputs.

 5.1 System Architecture

The proposed model was implemented on Java Platform. The input to the system were

I. Number Of Processes

Ii. Burst Time Of Each Process

Iii. Arrival Time Of Each Process.

Iv. Boundary Of The Ages Ranges.

The number of processes are to entered and the boundary for the age are also entered then the

system generates the arrival time and burst time of the process randomly using the function

available in the Java. The values being random are essential so as to completely test the

model against all the situations. Also the random values are important for comparing the

model with the existing systems and getting results in a normal way.

After generating the random inputs the system is setup to simulate the model on these inputs

as per the model. The important steps in doing so are

5.1.1 Prepare a table for the processes – This process table are prepared as storing table for

the given input. This table will be used to schedule the processes. The values used in the table

are

 Process id - Generated linearly according to the arrival of the process in the system.

 Arrival time – Generated Randomly.

 Burst time – Generated Randomly.

 Beparture time – To be calculated after the system is implemented.

Process Id Arrival Time Departure time Burst Time

.............

Process Table

39

5.1.2 Set up the counting time – This is the time which is used to keep track of the time and

is used to properly run the simulation. It is initialized to the first event in the system.

5.2 Finding The Optimal Time Quantum For The Processes

In this step we find optimal time quantum for the processes. We look at the first 10% of the

processes and calculate the factors. This is actually an indicator of the processes to come. The

factors used for the calculation of the time quantum are

 Number of the processes – This factor is the number of processes on which the system

has to function on.

 Average burst time – This is the average burst time of the processes under the

consideration and this is very important for the system.

The variables are classified in three categories and the time quantum is decided upon

categories of the variables

 Average Burst Time

 1. Low 2. Medium 3. Large

 Number Of Processes

 1. Low 2. Medium 3. Large

The value for the time quantum is decided by the following values

5.3 Setting Up Age Boundary To Find The Age Of The Process

In this step we decide the age boundaries to decide the age section of the process. The

boundaries are entered by the user. The age classified are

i). Low – Below the first parameter.

2). Medium – Between first and second parameter.

3). Large – Above the second parameter.

40

5.4 Finding Proportion Of Time Quantum To Be Given To Each Age

Boundaries

According to the of the process the process will get a proportion of the time quantum. The

decided time quantum for each age is

i) Low – 0.6

ii) Medium - 0.8

iii) Large – 1

5.4.1 Procedure

The system now sets the working conditions to simulate the model. Now the algorithm is ran

on the input. The algorithm will now act according to the input and the conditions. The output

is then collected and statistics are now calculated.

5.4.2 Comparison

The algorithm is compared against the standard algorithms

 First, we compare it with round robin scheduling of a particular quantum.

 Secondly, we compare it with round robin scheduling with another time quantum.

 Thirdly, we compare it with the First come First serve Algorithm.

41

5.5 Finding The Optimal Fuzzy Values For The Input Categories

Now we find the appropriate values for the fuzzy classes for the variables

i) Processes – Number of processes

ii) Average burst time – the average burst time of the processes

iii) Time quantum – the time quantum to be calculated

Now we find the values for the fuzzy classes LOW, MEDIUM, LARGE for every of the

inputs. The classes will then be used to classify the values into the numbers .The following

test cases were run to find the optimal values.

LOW MEDIUM LARGE

No. of processes

0-50

50-80 >80

Average burst time

0-15

15-25 >25

Time quantum 15

25 30

Table 1 :First configuration

Average turnaround time = 459.54

LOW MEDIUM LARGE

No. of processes

0-50

50-80 >80

Average burst time

0-15

15-25 >25

Time quantum

20

25 30

Table 2 :Second configuration

Average turnaround time = 729.53

42

LOW MEDIUM LARGE

No. of processes 0-50 50-80 >80

Average burst time 0-15 15-25 >25

Time quantum 10 20 30

Table 3 :Third configuration

Average turnaround time =337.36

LOW MEDIUM LARGE

No. of processes 0-100

100-160 >160

Average burst time 0-25

25-50 >50

Time quantum 10

20 30

Table 4 : Fourth configuration

Average turnaround time = 1428.19

43

LOW MEDIUM LARGE

No. of processes 0-10

10-15 >15

Average burst time 0-25 25-50 >50

Time quantum 10

20 30

Table 5 : Fifth configuration

Average turnaround time = 1624.83

LOW MEDIUM LARGE

No. of processes 0-5 5-8 >8

Average burst time 0-5 5-10 >10

Time quantum 5 10 15

Table 6 : Sixth configuration

Average turnaround time = 308.33

The above results were obtained by running the configuration multiple times with different

aging boundaries.

As found out the optimal value for variables in the general case is the last one i.e. the sixth

configuration. As we take 10% of values the range specified is according to the requirement

of the system model these are good values.

Also the average burst time is optimal because it once processes have average burst time

greater than a value they get a good size of time quantum.

44

5.6 Results Analysis

Now we compare the results of the algorithm with the results of the existing algorithms.

 Proposed

algorithm

Round

Robin(5)

First Come

First Serve

Round

Robin(10)

Number of processes 10 10 10 10

Average Turnaround

time

10.1 15.7 10.5 20.9

Average waiting time 5.1 10.7 5.5 15.9

Table7 : Simulation-1

 Proposed

algorithm

Round

Robin(5)

First Come

First Serve

Round

Robin(10)

Number of processes 20 20 20 20

Average Turnaround

time

41.55 43.05 44.35 46.05

Average waiting time 36.94 38.44 39.75 41.44

Table 8 : Simulation -2

 Proposed

algorithm

Round

Robin(5)

First Come

First Serve

Round

Robin(10)

Number of processes 30 30 30 30

Average Turnaround

time

66.63 69.46 67.86 70.43

Average waiting time 61.46 64.3 62.69 65.26

Table 9 : Simulation -3

45

 Proposed

algorithm

Round

Robin(5)

First Come

First Serve

Round

Robin(10)

Number of processes 50 50 50 50

Average Turnaround

time

91.76 97.44 139.68 134.54

Average waiting time 85.9 91.58 133.82 128.67

Table 10 : Simulation -4

 Proposed

algorithm

Round

Robin(5)

First Come

First Serve

Round

Robin(10)

Number of processes 70 70 70 70

Average Turnaround

time

144.21 160.32 176.84 149.91

Average waiting time 139.0 155.111 171.62 144.7

Table 11 : Simulation -5

 Proposed

algorithm

Round

Robin(5)

First Come

First Serve

Round

Robin(10)

Number of processes 100 100 100 100

Average Turnaround

time

190.08 193.5 292.96 315.46

Average waiting time 184.18 187.6 287.06 309.56

Table 12 : Simulation -6

As we can see our algorithm is better than the others in most cases. This is because it judges

the requirement of the processes in advance and the fuzzy logic provides a good value

judging by few of the starting processes. Also the system model can be implemented in

modern system without much of extra computation. Also the priority is defined by the

process of aging. However, the aging parameter have not yet been completely defined. The

system would give better results if these parameters are defined.

46

CHAPTER 6

CONCLUSION AND FUTURE WORK

In this research work we try to propose a new scheduling algorithm. The algorithm used

round robin scheduling and was deciding the time quantum based on number of processes

and their burst time using fuzzy computation. Also to prioritize older processes, aging was

used.

The system was tested by implementing it as a simulation model. The results were compared

against some standard algorithms like round robin with fixed time quantum and first come

first serve and the results are gathered and the average turnaround time and average waiting

time were compared. The model was found out to be better in most of the cases. This was due

the fact that the time quantum was chosen according to processes. Also aging helped in better

scheduling.

In future a better process for calculating the aging factor, with respect to the processes will be

worked on. This will improve the performance of the system further by facilitating older

processes. Also there is scope of improvement in fuzzy rule.

47

References

[1] Franco Callari, "Types of Scheduling - Long Term and Medium Term Scheduling".

[2] Silberschatz, A., Peterson, J. L., and Galvin, P.B., Operating System Concepts, Addison

Wesley, 8th Edition.

[3] Daniel P. Bovet and Marco Cesati, "Understanding the Linux Kernel", O'Reilly Online

Catalogue, 2000.

[4] Giorgio C. Buttazzo, "Hard Real Time Computing Systems: Predictable Scheduling

Algorithms and Applications", Springer, Third edition.

[5] S. Vishwakarma and A. Agrawal, ―A survey on activity recognition and behavior

understanding in video surveillance,‖ The Visual Computer, 2012.

[6] S.-W. Joo and R. Chellappa, ―Attribute Grammar-Based Event Recognition and Anomaly

Detection,‖ in Computer Vision and Pattern Recognition Workshop, 2006. CVPRW ’06.

Conference on, pp. 107–107.

[7] J. C. San Miguel and J. M. Martinez, ―Robust unattended and stolen object detection by

fusing simple algorithms,‖ in Advanced Video and Signal Based Surveillance, 2008.

AVSS’08.IEEE Fifth International Conference on, pp. 18–25, IEEE, 2008.

[8] J. C. SanMiguel, M. Escudero-Vinolo, J. M. Martinez, and J. Bescós, ―Real-time

singleview video event recognition in controlled environments,‖ in Content-Based

Multimedia Indexing (CBMI), 2011 9th International Workshop on, pp. 91–96, IEEE, 2011.

[9] O. P. Popoola and K. Wang, ―Video-Based Abnormal Human Behavior Recognition— A

Review,‖ Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE

Transactions on, vol. 42, no. 6, pp. 865–878, 2012.

[10] V. Chandola, A. Banerjee, and V. Kumar, ―Anomaly detection: A survey,‖ ACM

Comput. Surv., vol. 41, pp. 1–58, July 2009.

[11] B. Zhao, L. Fei-Fei, and E. P. Xing, ―Online detection of unusual events in videos via

dynamic sparse coding,‖ in Computer Vision and Pattern Recognition (CVPR), 2011 IEEE

Conference on, pp. 3313–3320, 2011. 43 BIBLIOGRAPHY 44 .

[12]Wang Lie-Xin, A course in fuzzy systems and control, Prentice Hall, August 1996.

48

[13]Bashir Alam, 1M.N. Doja, R. Biswas,Finding Time Quantum of Round Robin CPU

Scheduling Algorithm Using Fuzzy Logic ,2008.

[15] Saroj Hiranwal, Dr. K.C.Roy, ―Adaptive Round Robin Scheduling using Shortest Burst

 Approach Based on Smart Time Slice,‖ International Journal of Data Engineering (IJDE),

 Volume 2, Issue 3.

[16] Abdulrazaq Abdulrahim, Saleh E Abdullahi , Junaidu B. Sahalu ,A New Improved

Round Robin (NIRR) CPU Scheduling Algorithm,2014.

