
A

Dissertation

On

Evaluation of symmetric key algorithms for Body Sensor Networks (BSN)

on Raspberry pi

Submitted in Partial fulfilment of the requirement

for the award of

MASTER OF TECHNOLOGY

(SOFTWARE ENGINEERING)

Submitted By:

Akash Chauhan

Roll No.- 2K12/SWE/02

Under the Guidance of:

Mrs. DivyaShikha Sethia

Delhi Technological University

Department Of Computer Engineering

Delhi Technological University

2012-2014

[ii]

DECLARATION

I hereby declare that the thesis entitled “Evaluation of symmetric key algorithms for Body

Sensor Networks (BSN) on Raspberry pi” which is being submitted to the Delhi

Technological University, in partial fulfillment of the requirements for the award of degree

of Master of Technology in Software Engineering is an authentic work carried out by me.

The material contained in this thesis has not been submitted to any university or institution for

the award of any degree.

AKASH CHAUHAN

Master of Technology

(Software Engineering)

College Roll No. 2K12/SWE/02

Department of Computer Engineering

Delhi Technological University,

Delhi.

[iii]

CERTIFICATE

DELHI TECHNOLOGICAL UNIVERSITY

(Govt. of National Capital Territory of Delhi)

BAWANA ROAD, DELHI-110042

Date:

This is to certify that the thesis entitled Evaluation of symmetric key algorithms for Body

Sensor Networks (BSN) on Raspberry pi submitted by Akash Chauhan (Roll Number:

2K12/SWE/02), in partial fulfillment of the requirements for the award of degree of Master of

Technology in Software Engineering, is an authentic work carried out by her under my

guidance. The content embodied in this thesis has not been submitted by her earlier to any

institution or organization for any degree or diploma to the best of my knowledge and belief.

Project Guide

Mrs. DivyaShikha Sethia

Assistant Professor

Department of Computer Engineering

Delhi Technological University, Delhi-110042

[iv]

ACKNOWLEDGEMENT

With due regards, I hereby take this opportunity to acknowledge a lot of people who have

supported me with their words and deeds in completion of my research work as part of this

course of Master of Technology in Software Engineering.

To start with I would like to thank the almighty for being with me in each and every step of

my life. Next, I thank my parents and family for their encouragement and persistent support.

I would like to express my deepest sense of gratitude and indebtedness to my guide and

motivator, Mrs. DivyaShikha Sethia, Assistant Professor, Department of Computer

Engineering, Delhi Technological University for her valuable guidance and support in all the

phases from conceptualization to final completion of the project.

I wish to convey my sincere gratitude to Prof. O.P. Verma, Head of Department, and all the

faculties and PhD. Scholars of Computer Engineering Department, Delhi Technological

University who have enlightened me during my project.

I humbly extend my grateful appreciation to my friends whose moral support made this

project possible.

Last but not the least; I would like to thank all the people directly and indirectly involved in

successfully completion of this project.

Akash Chauhan

Roll No. 2K12/SWE/02

[v]

PUBLICATIONS AND COMMUNICATIONS

Paper published in International Conference (IEEE)

Soham Banerjee, Divyashikha Sethia, Tanuj Mittal, Ujjwal Arora, Akash Chauhan, “Secure

Sensor Node with Raspberry Pi”, IEEE International Conference on Multimedia, Signal

Processing and Communication Technologies (IMPACT), 2013.

Paper in communication (IEEE Conference)

Akash Chauhan, Kanika Mathur, Divyashikha Sethia, “Evaluation of symmetric key

algorithms for Body Sensor Networks (BSN) on Raspberry pi”, IEEE INDICON, 2014.

[vi]

TABLE OF CONTENT
DECLARATION……………………………………………………………………………...……ii

CERTIFICATE………………….……………………………………………………………..….iii

ACKNOWLEDGEMENT……...………………………………………………………………....iv

PUBLICATIONS AND COMMUNICATIONS………...………………………………………..v

TABLE OF CONTENTS……………………………………………………………………...vi-vii

LIST OF FIGURES….…………………………………………………………………………..viii

 LIST OF TABLES………………………………………………………………………………...ix

 LIST OF GRAPHS…………………………………………………………………………………x

ABSTRACT………………………………………………………………………………………..xi

CHAPTER1: INTRODUCTION…………………………………………………...........................1

1.1. MOTIVATION OF THE WORK ... 2

1.2. PROBLEM STATEMENT ... 2

1.3. ORGANIZATION OF THE THESIS .. 3

CHAPTER 2: SURVVEY…………………………………………………………………………..5

2.1 CRYPTOGRAPHY……………………………………………………………………….5

2.2 LITERATURE SURVEY…………………………………………………………………………6

CHAPTER 3: PROTOTYPE……………………………………………………………………....9

3.1 RASPBERRY PI USED AS A PROTOTYPE…………………………………………..9

CHAPTER 4: IMPLEMENTATION…………………………………………………………….11

4.1. PREVIOUS WORK ... 11

4.2. PRAPOSAL ... 12

4.3. IMPLEMENTING BODY SENSOR NETWORK (BSN) ALGORITHMS ON

RASPBERRY PI…………………………………………………….....................................13

4.4. IMPLEMENTATION OF COMPARISON FACTROS .. 18

 4.4.1. EXECUTION TIME .. 18

 4.4.2. MEMORY OCCUPIED AT RUN TIME .. 19

 4.4.3. LOC .. 19

 4.4.4. CONTEXT SWITCHES PER SECOND (CSS) .. 20

[vii]

 4.4.5. PAGE FAULTS PER SECOND (PFS) ... 20

 4.4.6. CPU USAGE .. 20

 4.4.7. CPU TIME ... 21

 4.4.8. CACHE MISS RATE .. 21

 4.4.9. READ OPERATION PER SECOND (ROS) .. 21

 4.4.10. WRITE OPERATION PER SECOND (WOS) ... 22

 4.4.11. POWER CONSUMPTION .. 22

CHAPTER 5: TESTING AND RESULTS……………………………………………………….24

5.1. EXECUTION TIME.. …..24

5.2. MEMORY OCCUPIED AT RUN TIME ... 26

5.3. LOC .. 27

5.4. CONTEXT SWITCHES PER SECOND (CSS) ... 28

5.5. PAGE FAULTS PER SECOND (PFS) ... 29

5.6. CPU USAGE .. 30

5.7. CPU TIME ... 31

5.8. CACHE MISS RATE .. 32

5.9. READ OPERATION PER SECOND (ROS) .. 34

5.10. WRITE OPERATION PER SECOND (WOS)... 35

5.11. POWER CONSUMPTION ... 36

CHAPTER 6: ISSUES WITH BSN ALGORITHMS…………………………………………...38

6.1. SPECIAL CASE OF SENSOR NODES………………………………………………38

6.2. ISSUES WITH THE ENCRYPTION ALGORITHMS……………………………...38

6.3. SITUATION BASED USE……………………………………………………………..40

CHAPTER 7: CONCLUSIONS AND FUTURE WORK……………………………………….43

7.1 CONCLUSIONS………………………………………………………………………...43

7.2 FUTURE WORK………………………………………………………………………..45

REFERENCES……………………………………………………………………………………..46

APPENDIX…………………………………………………………………………………………50

[viii]

List of Figures

Figure 2.1: Hierarchical tree depicting types of cryptography algorithms…………………………….6

Figure 3.2: The Raspberry pi…………………………………………………………………………10

Figure 4.1 Flow diagram of body sensor [15]…………………………………………………...........11

Figure 4.2: A basic prototype of the implementation of BSN using the Raspberry pi………….……12

Figure 4.3: Feistal cipher structure for RC5 [39]…………………………………………………….15

Figure 4.4: Blowfish Encryption [36]………………………………………………...………………16

Figure 4.5: G permutation function [37]…………………………………………………..………….17

Figure 4.6: Setting rules for Skipjack (Pictorial representation) [37]………………………...............17

[ix]

 List of Tables

Table 3.1: Comparison of various single board computers [15]……………………………………...10

Table 5.1: Execution time for various algorithms (in ms) on variation of accelerometer reading…...24

Table 5.2: Memory occupied by various algorithms (in bytes)………………………………………26

Table 5.3: Lines of Code (LOC) for various algorithms……………………………………………..27

Table 5.4: Context switches for various algorithms on variation of accelerometer readings………...28

Table 5.5: Page faults per second for various algorithms on variation of accelerometer readings…..29

Table 5.6: CPU Usage for various algorithms on variation of accelerometer readings……………...30

Table 5.7: CPU time for various algorithms (in ms) on variation of accelerometer readings………..31

Table 5.8: Cache miss rate for various algorithms (ms) on variation of accelerometer readings.........32

Table 5.9: Read operations per second for various algorithms (in ms) on variation of accelerometer

readings……………………………………………………………………………………………….34

Table 5.10: Write operations per second for various algorithms (in ms) on variation of accelerometer

readings……………………………………………………………………………………………….35

Table 5.11: Power consumption for various algorithms (in watts) on variation of accelerometer

readings……………………………………………………………………………………………….36

Table 7.1: A complete summation table of all the results obtained…………………………………..43

[x]

 List of graphs

Graph 5.1: Execution times verses Accelerometer input for RC4, RC5 and Skipjack……………….24

Graph 5.2: Execution times verses Accelerometer input for Blowfish………………………………25

Graph 5.3: Memory occupied verses algorithm………………………………………………………26

Graph 5.4: Lines of code verses algorithm…………………………………………………………...27

Graph 5.5: Context switches per sec verses Accelerometer input for RC4, RC5, Skipjack and

Blowfish………………………………………………………………………………………………28

Graph 5.6: Page faults verses Accelerometer input for RC4, RC5, Skipjack and Blowfish…………29

Graph 5.7: CPU Load verses Accelerometer input for RC4, RC5, Skipjack and Blowfish………….30

Graph 5.8: CPU time verses Accelerometer input for RC4, RC5 and Skipjack……………………...31

Graph 5.9: CPU time verses Accelerometer input for Blowfish……………………………………..32

Graph 5.10: Cache miss rate verses Accelerometer input for RC4, RC5, Skipjack and

Blowfish………………………………………………………………………………………………33

Graph 5.11: Read operations per second verses Accelerometer input for RC4, RC5, Skipjack and

Blowfish………………………………………………………………………………………………34

Graph 5.12: Write operations per second verses Accelerometer input for RC4, RC5, Skipjack and

Blowfish………………………………………………………………………………………………35

Graph 5.13: Power consumption verses Accelerometer input for RC4, RC5, Skipjack and

Blowfish………………………………………………………………………………………………36

[xi]

ABSTRACT

 BSNs (Body sensor networks) have been widely implemented in medical environments.

Monitoring the patient health and helping in fast and timely data access and transfer, BSNs

pose a major reform in the field of medicine. There have been various techniques through

which BSNs have been implemented, one being that using the Raspberry pi, a single board

computer (SBC), which presented a new milestone in the field of sensor networks [15]. The

data being sent over these sensor devices is critical and with increasing software attacks,

comes the major challenge of providing a secure data transmission.

 The BSN implementation using the Raspberry pi incorporates the RC 4 encryption to

establish a secure communication. But situations have been witnessed where RC4 does not

suffice to the needs of the situation and in fact has detrimental overheads on the system.

 In this work, various symmetric key cryptography algorithms used in the BSNs has been

segregated namely RC4, RC5, Blowfish, and Skipjack. An implementation of these

algorithms has been carried out on the Raspberry pi. Further using available LINUX

packages/utilities, a comparison of these algorithms has been laid forth as to find the most

suited algorithm in a given situation.

 Also by simulating the values obtained for the algorithms on MATLAB, a proper graphical

analysis of the entire work has been depicted. A situational comparison of these algorithms

along with their weaknesses shown will help in segregating the use of these algorithms

according to the need of the time and situation.

Index Terms—BSN, encryption, Blowfish, RC4, RC5, Skipjack, Single Board

Computer, Raspberry pi, Accelerometer, LINUX package/utilities

Evaluation of symmetric key algorithms for Body Sensor Networks (BSN) on Raspberry pi 2014

1 Delhi Technological University

CHAPTER 1: INTRODUCTION

With the ever increasing incorporation of technology into healthcare, and with advances

being made regularly, one can imagine the future time nursing homes or hospitals running on

pervasive networks that can not only provide a continuous medical monitoring , but also a

medical data access and also emergency communication. The patient condition monitored

through sensor devices, can be sent to a doctor, who can prescribe the appropriate medication

to be provided. The diagnosis is done primarily through BSN (Body Sensor Network). A

BSN is a wireless ad hoc network that has sensors that are attached to a patient body and also

medical devices kept in close proximity. The data collected can further be transmitted to a

doctor‟s PDA who can take necessary actions as and when needed. Such sensor devices,

called body sensor devices, not only help improve the doctor-patient efficiency, but the use of

wireless technology enables doctors to monitor patients remotely and give them timely health

information, reminders, and support as and when required – thereby extending and improving

the reach of health care and thus making it available anywhere, anytime and for

anyone. Databases are created containing all patient records from which authenticated users

can access the records and at times of emergency, the patients can be rendered healthcare

facilities even remotely.

Various implementations of BSNs have been proposed. In our earlier work we have a

proposed a prototype of a Body Sensor using a Raspberry Pi [15] in which various sensors

can be attached to the pi to monitor vital health parameters of a patient.

As the case of sensor devices, data being sent and accessed remotely, any tampering with

patient statistics can lead to dangerous outcomes. Thus data security becomes an issue of

prime concern. Thus we need an efficient crypto system so as to securely transmit data.

For this we first analyze the basic cryptography algorithms. The use of an algorithm for BSN

is critical as these devices have constraints such as low processing power, less memory and

limited bandwidth. The algorithms are primarily categorized into two types, symmetric key

and asymmetric key. The various cryptography algorithms used in Body Sensor Networks

include RC4 [7], RC5 [2] etc.

But each algorithm has its own advantages and disadvantages. In the implementation of a

BSN using the raspberry pi, the entire model was made to use RC 4 for data encryption [15].

But in not all situations, do we find RC 4 to be the best suitable algorithm. Some researchers

agree on the fact that RC5 is the best algorithm for use, but this is not always true [11].

Evaluation of symmetric key algorithms for Body Sensor Networks (BSN) on Raspberry pi 2014

2 Delhi Technological University

Research comparison had done only on basis of space and time complexities are not enough

to predict the suitability of an algorithm. There are a lot more factors which can help

determine the feasibility of the use of the algorithm in Body Sensor Networks.

In our work, various symmetric key encryption algorithms used in BSNs have been

segregated. The reason behind using symmetric key algorithms is that since BSNs are low

computation devices, they need algorithms involving less amount of computation work which

is provided by these algorithms. Further a comparison concerning various factors of

performance such as execution time, CPU usage, Cache miss rate, Page faults has been

carried out. Later discussing the issues relating to the algorithms and determining situations

where these algorithms suit best, we present what is called situational use of the algorithms.

1.1. MOTIVATION OF THE WORK

As we know that security in data communication is a major issue to be considered. A security

work has been done [15] to make sure about security will retain in high priority in data

communication. Many cryptographic algorithms can be used to transfer data from Raspberry

pi to Android Based Phone. So RC4 algorithm [7] has been used to retain security in

communication [15]. To retain security in communication very few factors like time and

space have been considered in this work [15]. But wouldn‟t be right to say that RC4 [7] is

ideal algorithm for data communication or for all the situations. So this thing motivated us.

Hence we have done with analytical survey on various conferences and journals to find out

what are the most suitable algorithms for BSN. Then we found some other algorithms should

be considered in the picture. Now after all we have done with implementation of such

algorithms on Pi and then many comparison factors have been considered to compare these

algorithms while sensor readings attached to Raspberry pi are varying from 100 to 2000.

1.2. PROBLEM STATEMENT

From the beginning section we can conclude that security is the major issue to be considered

in data communications. As we have discussed above in motivation section also, a security

work has been done [15] to make sure about security will retain in high priority in data

communication. Hence RC4 algorithm [7] has used for this work [15]. But we can‟t say that

RC4 is the only algorithm in BSN which is most suitable for all the situations. Many

cryptographic algorithms are generally being used in BSN. Hence after a statistical survey on

Evaluation of symmetric key algorithms for Body Sensor Networks (BSN) on Raspberry pi 2014

3 Delhi Technological University

various journals and conferences, some cryptographic techniques have been found which are

most suitable for BSN. To know which algorithm is suitable for which situation a comparison

of these algorithms for possible comparison factors is needed to be done when a body sensor

device is connected to Raspberry pi and the readings of this sensor device are varying from

100 to 2000. In the proposed work we have implemented all these algorithms on Raspberry

pi and compared these algorithms according to some important comparison factors while

Accelerometer readings are varying. To understand the whole in a simple way the graph

comparison is need to be done. Hence MATLAB simulation work has also been done for

graph comparison. With graph simulation it‟s easy to understand what actually is varying

with what.

1.3. ORGANIZATION OF THE THESIS

This thesis is organized as follows:

Chapter 2 discussed about cryptography and security factors. This includes the extensive

study on various BSN‟s (Body Sensor Networks) algorithms that have been proposed in the

literature so far. It also highlights some of the most relevant works in the direction of field of

work presented in the thesis.

Chapter 3 discussed about Raspberry pi. This chapter also highlights various applications of

Raspberry pi, why we have chosen it for our work and why Raspberry pi is suitable SBC

(Single board Computer) among all.

Chapter 4 discussed about Implementation. It includes brief about proposed work,

Implementation of various BSN algorithms, various Linux based Utilities/Commands have

been included and implementation of all the parameters on Raspberry pi.

Chapter 5 presents a detailed analysis of the results obtained. This chapter also depicted the

results of comparison. It includes details about each individual result of comparison, tables

have been used to compare BSN algorithms and Matlab simulation has also been carried out

to generate comparison graphs.

Evaluation of symmetric key algorithms for Body Sensor Networks (BSN) on Raspberry pi 2014

4 Delhi Technological University

Chapter6 discussed about Special case of sensor nodes. This chapter also highlights various

Issues with the encryption algorithms and situation based use of these algorithms also

highlighted.

Chapter 7 presents the conclusions, summarization of the thesis and future work.

Evaluation of symmetric key algorithms for Body Sensor Networks (BSN) on Raspberry pi 2014

5 Delhi Technological University

CHAPTER 2: SURVEY

2.1. CRYPTOGRAPHY

Cryptography is defined as a technique of encrypting data at sender side and converting it

into cipher text using some algorithm (Encryption). This data then travels over the channel

and at receiver side the cipher text is converted back into plain text using the same algorithm

(Decryption). The plain text conversion into cipher text is the most important as this is what

travels over the channel. Better the strength of the encryption algorithm, less are the chances

of the intruder being able to decode the cipher text.

The security of data is bound to five factors: [5]

A) Authentication: Refers to assuring the receiver that the sender is actually an

authenticated one.

B) Data Integrity: Data received is same as that sent by the sender.

C) Access Control: Prevention of unauthorized access of resources.

D) Data Confidentiality: Keeping data secret with no outside access.

E) Non-Repudiation: Provides protection against denial by one of the entities involved in

communication.

All these factors should be taken into care while designing a technique for the security

of data. The case of BSN becomes all the more crucial since we have additional factors

to be taken into concern as they are low power devices and carry sensitive information.

We have limited storage, bandwidth and energy [1]. Also cost is a major issue that

needs to be addressed.

Thus we have analyzed the algorithms that are used for data security in sensor devices

and presented a detailed comparison. Also the algorithms have been separated

depending on their area of use in today‟s time.

Evaluation of symmetric key algorithms for Body Sensor Networks (BSN) on Raspberry pi 2014

6 Delhi Technological University

2.2. LITERATURE SURVEY

 Figure 2.1: Hierarchical tree depicting types of cryptography algorithms

A survey was conducted in the data security field to find out various cryptography algorithms

used in sensor devices and specifically those used in BSN. Summarizing the survey, we

conclude cryptography to be mainly divided into three types (Figure 2.1):

i) Public Key cryptography

ii) Private Key cryptography

iii) Cryptography using Protocols.

 The most popular Public key cryptography techniques are:

i) RSA [6]

ii) ECC [10]

iii) ECDH(Elliptic curve Diffie-Hellman) [10]

iv) IBE-Lite [10]

 Private Key cryptography further divided into Block encryption and Stream encryption.

The most popular Block encryption techniques

i) RC4 [11]

ii) RC5 [2]

iii) Blowfish [8]

Evaluation of symmetric key algorithms for Body Sensor Networks (BSN) on Raspberry pi 2014

7 Delhi Technological University

iv) Triple DES [8]

v) Skipjack [14].

Stream encryption technique includes RC4 [7]. Among cryptography protocols are SSL and

TLS. SSL and TLS use RC4 Algorithm [7] in web browsing.

Public key encryption methods have not been much successful on bio sensor nodes as these

devices have a low computation power [10]. The new Public key encryption algorithm

developed IBE-Lite is also not so suitable for BSN since no proper authentication is provided

and it is susceptible to node duplication attacks [10]. Despite its use in BSN‟s today, Public

key encryption methods are not so desirable for the BSN as separate keys are required which

makes implementation difficult on these low power and computation devices.

Moving to Private Key encryption (symmetric key), it is widely used for BSN; however

symmetric key ciphers can also be expensive to implement on some target platforms. Private

key cipher(- divided into Stream and Block Cipher), Stream ciphers (RC 4, RC5 etc.) have a

simple architecture and a fast encryption rate and are thus considered more suitable for

sensors having limited memory and computing resources as compared to block ciphers (AES,

DES etc) [6].

Various research works indicate that the most commonly used algorithm for BSN is RC-5.

According to the Gawali and Wadhai 2012, the RC5 Algorithm [2] is good choice on the

basis of its overall performance [2]. Amini, Verhoeven, Lukkien and Chen 2011, considered

that the RC4 algorithm [7] is a good option to use for small size messages in BSN. RC5 can

be considered as one of the best ciphers in terms of overall performance, when used in nodes

with limited memory and processing capabilities [2]. But various tradeoffs to this exist.

Situations having message/input data not large enough, use RC4 [7], whereas those needing

block encryption, use RC5 [2].

Also other algorithms include DES, Triple DES [8], AES [2], Blowfish, Skipjack, SHA

1(secure hash algorithm), MD5 (for message digests), A5, RC-4 [7] and RC- 6. AES [2] is

also widespread, having inbuilt hardware support for some platforms. Comparing the energy

consumption of AES, RC-5 and DES, we find RC-5 to consume lower energy [2]. RC5 is

better than DES in security strength and implementation efficiency [2]. RC-4 and Skipjack

can be used to provide lightweight message confidentiality for our security system [7].

Evaluation of symmetric key algorithms for Body Sensor Networks (BSN) on Raspberry pi 2014

8 Delhi Technological University

Elminaam, Kader, and Hadhoud 2010, conclude that Blowfish [8] has a comparatively better

performance than AES [2], DES [2], Triple DES [8], RC6 and RC2.

Additionally Daniel Tze Huei Lai, Rezaul Begg, Marimuthu Palaniswami in their

publication- Healthcare sensor networks challenges toward practical implementation stated

that Skipjack algorithm is also in great use in BSN [14].

Skipjack is a symmetric key cipher and its use in BSN has increased in the recent times. It is

very efficient in terms of security.

Evaluation of symmetric key algorithms for Body Sensor Networks (BSN) on Raspberry pi 2014

9 Delhi Technological University

CHAPTER 3: PROTOTYPE

3.1 RASPBERRY PI USED AS A PROTOTYPE

Raspberry pi is a commonly used Single Board Computer (SBC) in many applications such

as: [3]

1. Web server (-LAMP-Linux Apache Mysql PHP)

2. Household appliance control center(its automation)

3. 3G modem or GPS system

4. Arcade Game

5. Audio Book player

6. Super computer

7. Configure green energy charging devices

8. Transmit messages from a mobile device to a printer or appliance

9. Wearable computer

10. Body sensor devices.

As far as BSN are concerned, raspberry Pi offers a good choice. We also have other Single

Board Computers available such as Beagle Bone and Panda Board. Similar to the Raspberry

Pi, both are exposed boards with ARM processors with HD video capability. But we prefer

using Raspberry Pi in body sensor devices due to several reasons [4]:

A) The Raspberry Pi is a very compact and portable device. It can be assumed to be a

complete working computer. Inserting SD card containing the OS, and connecting the

peripherals and power, it becomes ready to use. Beagle Boards and Panda Boards

require hookup to a host computer for initial setup, and though they have similar

processing capabilities, they take a little more know-how to get them fully functional.

B) The area it requires is least among all the Single Board Computers and uses an

average RAM

C) Also keeping the cost factor as of prime importance, Raspberry Pi is the best possible

choice for developing our Body Sensor Device.

A comparison is shown between the Raspberry pi and other Single Board Computers table-

3.1.

Evaluation of symmetric key algorithms for Body Sensor Networks (BSN) on Raspberry pi 2014

10 Delhi Technological University

Table 3.1: Comparison of various single board computers [15]

 Figure 3.2: the Raspberry pi

As we have discussed above that Raspberry pi is a good choice among all Single Board

Computers. We can use Raspberry pi as a prototype for this kind of work. Raspberry pi can

be attached to various Body Sensor Devices like Accelerometer for fall detection,

Thermometer for temperature measurement, etc. A python Script can be useful to sense data

from these Body Sensor Devices [15]. Also it has been implemented on Raspberry pi [15] to

stream the sensor readings to the medical professional‟s mobile device through

communication interfaces like Bluetooth, NFC etc.

Also security in Body Sensor Networks (BSN) is of top priority since the patient data should

be preserved and should not be accessed by any unauthorized person.

Various encryption algorithms have been implemented for secure data transmission by the

Raspberry pi. The main issue encountered with the sensor devices is that the entire system

needs to be cost efficient. In the task to make a secure connection between the Raspberry pi

and the Android Based Phone, we need a time efficient algorithm. Various researches have

been carried out to device such algorithms.

Evaluation of symmetric key algorithms for Body Sensor Networks (BSN) on Raspberry pi 2014

11 Delhi Technological University

CHAPTER 4: IMPLEMETATION

4.1. PREVIOUS WORK

 Figure 4.1: Flow diagram of body sensor [15]

The figure 4.1 depicts a basic prototype of the implementation of BSN using the Raspberry pi

[15]. Figure 4.1 contains an accelerometer (connected to the Raspberry pi) which is a BSD

(Body Sensor Device) that gives the position of a person in the 3D co-ordinate system. The

function of accelerometer is to keep track of fall detection for elderly people. A python script

is written which contains code for stabilizing the automated Bluetooth connection between

the Raspberry PI and android based phone. A Bluetooth module was used for this. The

python script is basically helps in the automation task. The python script also accesses data

from the accelerometer and correspondingly saves it onto the Raspberry pi board [15].

Succinctly the aim was to get the accelerometer readings on android based phone. Now as the

implementation task is completed, care must be taken that the data being send from the

Raspberry pi to android based phone must be secure. Also any unauthorized access is

undesirable. So an efficient cryptography algorithm was needed. A survey was carried out to

find which algorithm is most suitable for this work (keeping time and space as the main

Evaluation of symmetric key algorithms for Body Sensor Networks (BSN) on Raspberry pi 2014

12 Delhi Technological University

constraints). On the basis of the survey, RC4 algorithm was concluded to be the best choice

[15]. But even later, owing to a few more constraints taken into consideration for sensor

devices such as power or CPU usage, the conclusion of RC 4 being the best came into doubt.

Situations were witnessed where few other algorithms fared better than RC 4. Thus a need

was felt for algorithms to be segregated depending on the feasibility, given constraints of the

system.

Thus the work was initiated with a survey to find out the most popular algorithms being used

in BSN. Results obtained included RC4, RC5, skipjack and blowfish (focus was laid only on

symmetric key algorithms as they offer comparatively low computation as is required by

sensor devices). Later a comparison was laid forth considering these algorithms on the basis

of various constraints such as power consumption, CPU usage and Cache miss rate.

4.2. PROPOSAL

 Figure 4.2: A basic prototype of the implementation of BSN using the Raspberry pi

The Accelerometer senses the readings of the Pi, which are accessed by the pi using python-

scripts (written on it while programming it) [15]. After the execution of these scripts on pi,

the data is stored in certain text files. (Refer Figure 4.2)

Evaluation of symmetric key algorithms for Body Sensor Networks (BSN) on Raspberry pi 2014

13 Delhi Technological University

Three such text files have been considered, which include 10, 100 and 1000 readings from

the accelerometer respectively. Now, beginning with the comparison work:

 An Accelerometer Body sensor device is connected to Raspberry pi and a python

script helps us to sense sensor readings and then store these readings into text file

[15].

 These readings have to be communicated out through Bluetooth to a mobile device in

a secure manner. For this purpose various encryption algorithms like RC4, RC5,

Skipjack and Blowfish have implemented in C language.

 First we have implemented all these algorithms on Raspberry pi. Here Raspberry pi is

considered as a prototype only. Then all the comparison factors have implemented for

all these algorithms and vary size of sensor readings.

 Both encryption and decryption are being deployed on Raspberry pi only because we

wanted to check the performance of these algorithms for different comparison factors

and sensor readings are varying, when Raspberry pi is being used as a prototype only.

 The performance of individual algorithms is then stored in text files for different size

of input data and for different comparison factors.

 Furthermore the various factor comparisons, results and statistics have been

simulated on MATLAB to present a better distinction between the algorithms.

Thus the algorithms have been compared and the best has been recommended according to

given resources and situation.

Also a situational comparison has been put forth wherein the algorithm best suited in a

particular scenario (apart from their use in body area network) has been shown. This will

provide ease of use as to which algorithm should be implemented under a given situation.

4.3. IMPLEMENTING BODY SENSOR NETWORK (BSN)

ALGORITHMS ON RASPBERRY PI:

After a detailed survey of the research work carried out in the field of BSNs, the

cryptography algorithms used have been segregated as RC4, RC5, Skipjack and Blowfish. As

discussed earlier a Small Board Computer (SBC), Raspberry pi has been used as a prototype

Evaluation of symmetric key algorithms for Body Sensor Networks (BSN) on Raspberry pi 2014

14 Delhi Technological University

for the work. All these algorithms have been implemented on the Raspberry pi. The major

drawback in case of the Raspberry pi is its instability; the operating system may crash if

proper precaution is not taken. Raspbian Operating system has been used for this work. It is

slightly different from Ubuntu, the similarity being that both are Linux based. All the

algorithms have been coded in C Language on Raspberry pi. Our main aim was to measure

the performances of these algorithms for varying sizes of Accelerometer input. Once these

algorithms have been implemented, their performance has been measured for various

comparison factors given in chapter 5.

The various security algorithms implemented are:

A) RC-4: RC-4 is a stream cipher which uses byte oriented operations. The data stream

undergoes XOR together with a series of generated keys. The output is then XOR-ed

together with the stream of data in order to generate a newly-encrypted data.

Pseudo code for RC4 [33]

The Pseudo code for RC4 is included in appendix 5.

Working [34]:

A variable-length key (ranging from 1 to 256 bytes) initializes a 256-byte state vector S, with

elements S [0], S [1], …, S [255]. For encryption and decryption, a byte k is generated from S

by choosing one of the 255 entries in a systematic manner. With each generated value of k,

entries in S are once again permuted. For the purpose of encryption, the value of k is XORed

with the next byte of plaintext. For decryption, XOR the value k with the next byte of cipher

text.

B) RC-5: RC-5 is a symmetric key block cipher. It has variable block sizes such as 32, 64

or 128 bits. Its encryption and decryption routines are like Feistal cipher structure

involving XOR and modular addition operations.

Pseudo code for RC5 [38]:

The Pseudo code for RC5 is included in appendix 6.

Evaluation of symmetric key algorithms for Body Sensor Networks (BSN) on Raspberry pi 2014

15 Delhi Technological University

Working [38]:

The input to RC5 consists of two w-bit words which denoted by A and B.

RC5 uses an expanded key table S[0...t-1], consisting of t = 2(r-1) w-bit words, where r is the

number of rounds. The first step is Key Expansion which expands the user's secret key K to

fill the expanded key array S. The algorithm uses two magic constants and consists of three

simple algorithmic parts –defining the magic constants (Pw and Qw), conversion of the

Secret Key from Bytes to Words, initialization of the Array S. Later the secret key is mixed

followed by encryption.

Figure 4.3: Feistal cipher structure for RC5 [39]

C) Blowfish: Blowfish is a symmetric key block cipher, having 64 bit block size using

variable length key size. It also follows Feistal cipher structure with 16 rounds and key

dependent S boxes.

Pseudo code for Blowfish [35]:

The Pseudo code for Blowfish is included in appendix 8.

Working [35]:

The Blowfish symmetric block cipher algorithm encrypts block data of 64-bits at a time. It

follows the feistel network and main working of the algorithm can be divided into two parts

namely Key expansion and data encryption.

Evaluation of symmetric key algorithms for Body Sensor Networks (BSN) on Raspberry pi 2014

16 Delhi Technological University

The key expansion part converts a key of at most 448 bits into several sub key

arrays. Blowfish uses large number of sub keys and these keys are generated before any data

encryption or decryption. Total, 521 iterations are required to generate all sub keys.

The data encryption has a function to iterate 16 times in a network. Each round has key-

dependent permutations and a key and various data-dependent substitutions. All operations

are XORs and additions on 32-bit words. The only additional operations are four indexed

array data lookup tables for each round.

Figure 4.4: Blowfish Encryption [36]

D) Skipjack: Skipjack is a block cipher. A symmetric key encryption algorithm, it does

encryption or decryption of 64 bit data blocks using an 80-bit key. It uses an

unbalanced Feistal cipher structure with 32 rounds.

 Pseudo code for Skipjack [37]:

 The Pseudo code for Skipjack is included in appendix 7.

http://en.wikipedia.org/wiki/Key_size
http://en.wikipedia.org/wiki/Key_(cryptography)

Evaluation of symmetric key algorithms for Body Sensor Networks (BSN) on Raspberry pi 2014

17 Delhi Technological University

Figure 4.5: G permutation function [37]

 Figure 4.6: Stepping rules for Skipjack (pictorial representation) [37]

 Working [37]:

The SkipJack algorithm uses an 80 bit key which is broken up into 10 bytes, with four bytes

used in each round. SkipJack iterates through 32 rounds, 8 rounds of round A, 8 of round B

and then repeats the same loop again. Each round permutes the 64-bit plain text and passes

16-bits of it through a substitution function (the G function). The G function uses a static 8 bit

substitution table (the F table) and a Feistel cipher structure to manipulate the input bits

further. All functions used are reversible, and SkipJack decryption is carried out in just the

opposite way. To decrypt a cipher text, the key schedule is reversed and the order of the

Evaluation of symmetric key algorithms for Body Sensor Networks (BSN) on Raspberry pi 2014

18 Delhi Technological University

rounds and all the arrows in the Feistel structure are also reversed. The plain text is obtained

from the cipher text using just the opposite procedure.

4.4. IMPLEMENTATION OF COMPARISON FACTORS:

The main difficulty encountered in the entire work that it is comparatively easy to measure

the performance factors for process while the same task poses challenges in case of

processes. This is because program being passive entities run only for a very small fraction of

time, so calculating all performance metrics in that short time span is a bit difficult. Several

tools and commands can be used to measure performance of a process, but it not same for

programs. If we have to check the performance of a program, then various kernel level

commands/packages have to be used. Thus we have calculated the performance metrics for a

program by working with several kernel level package/tool/command. Now we describe the

procedure used to calculate each performance metric, various packages and commands used

have also been described.

4.4.1. EXECUTION TIME:

C language has a function named clock () used to measure the current time of the system

clock. The same has been used to measure times before and after the program execution. The

difference in values of two clock () functions gives execution time for a program. The time.h

library and Clock_t data type have been used to incorporate the clock () function into the

program.

#Clock_t start;

#..........

#...........

#...........

#...........

#Clock_t finish;

#Time= (float) (finish-stop)/CLOCKS_PER_SEC;

Evaluation of symmetric key algorithms for Body Sensor Networks (BSN) on Raspberry pi 2014

19 Delhi Technological University

In the above example, „Time‟ indicates the amount of time required by the portion of the

program (in seconds). The same has been repeated for all algorithms, varying the

accelerometer inputs from 100 to 2000.

This gives the final execution time for various algorithms.

4.4.2. MEMORY OCCUPIED AT RUN TIME:

Linux based utility has been used to measure the amount of memory occupied at run time for

a program. The “size” command is used giving the final output in bytes. The executable file

name of a program has been used along with the size commands. It looks like this on

terminal:

#size “executable file name of program”

#size ./abc

**The same has been repeated for the executable files of all algorithms. This finally gives the

amount of memory occupation. Memory Consumed (MC) at run time does not vary with the

Accelerometer Input.

4.4.3. LOC:

Linux based utility have been used to find out number of lines in a program. The “nl”

command gives information about how many lines of code a program contains. As discussed

earlier, all algorithms have their code in C. While using the nl command, the source file name

along with its extension is added. It looks like this on terminal:

#nl “source code file name with extension”

#nl abc.c

** The above code returns the number of lines of code a program has used. We did this for all

the algorithms. Thus we obtain the number of lines of code used by RC4, RC5, Skipjack and

Blowfish algorithm. Lines of Code (LOC) don‟t vary with Accelerometer Input.

4.4.4. CONTEXT SWITCHES PER SECOND (CSS):

Once again Linux based utility commands have been used to find out the number of Context

Switches occurring per Second in a program. Colin King, a well known kernel Engineer, first

Evaluation of symmetric key algorithms for Body Sensor Networks (BSN) on Raspberry pi 2014

20 Delhi Technological University

introduced this linux based package named health-check. [28] We have also taken reference

from git clone [30] to install this package on the Raspberry pi. Before the installation of this

package, another package was installed namely libjson0-dev. Thus the sequence of package

installation is libjson0-dev first and then health-check. After completing the installation of

packages, the following commands were run on the terminal:

#make

sudo ./health-check -d 60 -c -f -p “execution file name of program”

sudo ./health-check -d 60 -c -f -p ./abc

** In the above example abc is the executable file. The above commands generate a lot of

information, but our main focus here is on the Context Switches occurring per second for a

program. The same has been repeated for all algorithms, for 100 to 2000 Accelerometer

Inputs. Thus we got the context switches occurring per second for all the algorithms.

4.4.5. PAGE FAULTS PER SECOND (PFS):

Linux based utility has been used to find out the number of Page Faults occurring per Second

for a program. The procedure is same as that used for context switches occurring per second.

The commands used are:

#make

sudo ./health-check -d 60 -c -f -p “execution file name of program”

sudo ./health-check -d 60 -c -f -p ./abc

** In above example abc is the executable file. A lot of information is generated using the

above commands out of which we have extracted the Page faults occurring per second.

Repeating the same procedure for all algorithms, we get results for all algorithms.

4.4.6. CPU USAGE:

We have used Linux based utility to find out CPU usage by a program. The procedure used is

same as that for context switches occurring per second.

#make

sudo ./health-check -d 60 -c -f -p “execution file name of program”

sudo ./health-check -d 60 -c -f -p ./abc

Evaluation of symmetric key algorithms for Body Sensor Networks (BSN) on Raspberry pi 2014

21 Delhi Technological University

** In above example abc is the executable file. From the information generated, we use the

CPU usage values.

4.4.7. CPU TIME:

Linux based utility has been used. The procedure is same as that for Context switches per

second. The commands written on terminal are:

#make

sudo ./health-check -d 60 -c -f -p “execution file name of program”

sudo ./health-check -d 60 -c -f -p ./abc

** In above example abc is the executable file. From the information obtained, we extract the

total CPU time consumed by the program. We did the same for all algorithms and for 100 to

2000 Accelerometer Input.

4.4.8. CACHE MISS RATE:

Linux based utility has been used to find out the Cache Miss Rate (CMR) for a program. For

this valgrind linux based package has to be installed. Then we have use some commands to

get information about Cache Miss Rate (CMR) as given below:

#valgrind –tool=cachegrind “source code file name with extension”

valgrind –tool=cachegrind ./abc

** In above example abc is the executable file. This gives us information about Cache Miss

Rate (CMR) for all type of caches like I1, LLi, D1, LLD and LL. We did the same for all

algorithms and for 100 to 2000 Accelerometer Input to get values for all algorithms.

4.4.9. READ OPERATIONS PER SECOND:

We have used Linux based utility to find out number of Read Operations occur per Second

for a program. The procedure used is the same as that for Context switches occurring per

second. The terminal commands are given below.

#make

sudo ./health-check -d 60 -c -f -p “execution file name of program”

sudo ./health-check -d 60 -c -f -p ./abc

Evaluation of symmetric key algorithms for Body Sensor Networks (BSN) on Raspberry pi 2014

22 Delhi Technological University

** In above example abc is the executable file. From the information we get, we mainly focus

on Read Operations occurring per second for a program. We did the same for all algorithms

and for 100 to 2000 Accelerometer Input to get values for all algorithms.

4.4.10. WRITE OPERATIONS PER SECOND:

Linux based utility has been used to find out the number of Write Operations occurring per

Second for a program. The procedure used is same as is in context switch occurring per

seconds. Finally running the following commands on the terminal give us the Write

operations per second:

#make

sudo ./health-check -d 60 -c -f -p “execution file name of program”

sudo ./health-check -d 60 -c -f -p ./abc

 Here abc is the executable file. Obtaining the number of write operations per second for one

algorithm, we repeated the same for all algorithms with varying accelerometer inputs.

4.4.11. POWER CONSUMPTION:

Linux based utilities are used to find out how much power is required by a program. We tried

to use the packages introduced by Colin King, namely power-calibrate and health-check on

the Raspberry Pi. [28]. But unfortunately the power-calibrate package did not work out on the

Raspberry pi. The power-calibrate package actually requires Direct Current (DC) supply. It

measures the amount of battery power a program consumes. All possible efforts had been

tried to give Direct Current (DC) supply to the Raspberry pi. When using the portable USB

bank to provide the DC supply, we observed the Raspberry pi operating nicely but the power-

calibrate package still not working. Thus all these steps to add external DC source went in

vain.

Evaluation of symmetric key algorithms for Body Sensor Networks (BSN) on Raspberry pi 2014

23 Delhi Technological University

So another way was devised to help run the power calibrate package. We used Ubuntu to

calculate the power consumption. The laptop battery was used to give Direct Current (DC)

and thus facilitate the working of power calibrate package. We have used reference from git

clone [30] to install this package on Ubuntu. After all this the following commands were run

on the terminal.

#make

#Sudo ./power-calibrate -c –C

**In above example -c flag calibrates how much power is consumed to use just 1% of the

CPU and -C flag calibrates how much power is consumed in carrying out 1 context switch,

on the machine. The package works only when the machine is running in Direct Current

(DC).

Along with this we have to install another package name health-check package. The

remaining procedure is the same as in case if calculating context switches occurring per

second. The terminal commands are:

#make

sudo ./health-check -d 60 -c -f -p “execution file name of program”

sudo ./health-check -d 60 -c -f -p ./abc

** In above example abc is the executable file. This gives us lot if information‟s, but we

focused on Write Operations occur per second for a program.

After all this, we get power consumed in doing 1 context switch and power consumed to use

just 1% of the CPU. After running the health-check package, we obtained the number of

Context Switches occurring per second and total CPU usage. After simple multiplications,

power consumption for a program is obtained. We did the same for all algorithms and for 100

to 2000 Accelerometer Input. Thus the power is obtained for all algorithms using the same

way for all.

Evaluation of symmetric key algorithms for Body Sensor Networks (BSN) on Raspberry pi 2014

24 Delhi Technological University

CHAPTER 5: TESTING AND RESULTS

Assumption:

The Accelerometer readings vary from 100 to 2000 Input entries. Each individual input of the

Accelerometer is a depiction of the position of a person (in 3D co-ordinate system).

5.1. EXECUTION TIME

Table 5.1: Execution time for various algorithms (in ms) on variation of accelerometer

readings

Evaluation of symmetric key algorithms for Body Sensor Networks (BSN) on Raspberry pi 2014

25 Delhi Technological University

 Graph 5.1: Execution times verses Accelerometer input for RC4, RC5 and Skipjack

 Graph 5.2: Execution times verses Accelerometer input for Blowfish

As is eminent from the graph 5.1 and 5.2, Blowfish takes a time that is far more than the rest

of the algorithms. Also RC4 algorithm requires the minimum time as compared to the rest

(for all sizes of Input data.) In Body Sensor Network (BSN), where the time consumption is a

major constraint, we find RC4 to be the best suitable choice.

Evaluation of symmetric key algorithms for Body Sensor Networks (BSN) on Raspberry pi 2014

26 Delhi Technological University

5.2. MEMORY OCCUPIED AT RUNTIME

 Table 5.2: Memory occupied by various algorithms (in bytes)

 Graph 5.3: Memory occupied verses algorithm

As is seen from the graph 5.3, Skipjack algorithm uses a larger amount of memory space as

compared to the rest of the algorithms; whereas RC4 occupies minimum memory at run time.

In BSN where memory management is necessary, we can say RC4 is a good choice.

Evaluation of symmetric key algorithms for Body Sensor Networks (BSN) on Raspberry pi 2014

27 Delhi Technological University

5.3. LOC (LINES OF CODE)

 Table 5.3: Lines of Code (LOC) for various algorithms

 Graph 5.4: Lines of code verses algorithm

 As graph 5.4 shows, Skipjack has maximum Lines of Code (LOC) than all the other

Algorithms and RC4 has minimum Lines of Code (LOC). Since BSN have less storage space,

less number of Lines of Code (LOC) is preferred, which justifies RC4 to be a good choice.

Evaluation of symmetric key algorithms for Body Sensor Networks (BSN) on Raspberry pi 2014

28 Delhi Technological University

5.4. CONTEXT SWITCHES PER SECOND

Table 5.4: Context switches for various algorithms on variation of accelerometer

readings

Graph 5.5: Context switches per sec verses Accelerometer input for RC4, RC5,

Skipjack and Blowfish

We conclude from the graph 5.5 that maximum Context Switches per Second (CSS) occur for

RC4 algorithm whereas Minimum Context Switches per Second (CSS) occurs for Blowfish.

Evaluation of symmetric key algorithms for Body Sensor Networks (BSN) on Raspberry pi 2014

29 Delhi Technological University

Thus the performance of Blowfish algorithm in terms of Context Switches per Second (CSS)

is better than all other algorithms. So in Body Sensor Network (BSN), we can say that

Blowfish algorithm is a good choice.

5.5. PAGE FAULTS PER SECOND

Table 5.5: Page faults per second for various algorithms on variation of

accelerometer readings

Graph 5.6: Page faults verses Accelerometer input for RC4, RC5, Skipjack and

Blowfish

Evaluation of symmetric key algorithms for Body Sensor Networks (BSN) on Raspberry pi 2014

30 Delhi Technological University

As we can see in above table 5.5 and graph 5.6, minimum Page Faults per Second (PFS)

occur for Blowfish algorithm for all sizes of input and maximum Page Faults per Second

(PFS) occur for skipjack algorithm. But as value of inputs increase, we find the maximum

Page Faults per Second (PFS) occurring in case of RC4 algorithm. Thus, as far as Page Faults

per Second (PFS) are concerned, we conclude that Blowfish Algorithm is the best suitable

algorithm. RC4 is not suitable when the amount of input data becomes large.

5.6. CPU USAGE

Table 5.6: CPU Usage for various algorithms on variation of accelerometer readings

Graph 5.7: CPU Load verses Accelerometer input for RC4, RC5, Skipjack and Blowfish

Evaluation of symmetric key algorithms for Body Sensor Networks (BSN) on Raspberry pi 2014

31 Delhi Technological University

We observe that the maximum load on CPU is incurred in case of Blowfish algorithm and the

minimum load is for RC4 algorithm for all sizes of input data. Hence, the performance of

RC4 Algorithm in terms of CPU load is better than all other algorithms. In all the cases where

CPU load is a constraint, we conclude the use of RC4 algorithm to be the best.

5.7. CPU TIME

Table 5.7: CPU time for various algorithms (in ms) on variation of accelerometer

readings

Graph 5.8: CPU time verses Accelerometer input for RC4, RC5 and Skipjack

Evaluation of symmetric key algorithms for Body Sensor Networks (BSN) on Raspberry pi 2014

32 Delhi Technological University

Graph 5.9: CPU time verses Accelerometer input for Blowfish

As is seen from the graphs 5.8 and 5.9, Blowfish Algorithm takes maximum CPU time. We

also observe Skipjack algorithm taking minimum CPU time for small sizes of Input data. If

the size of input is increased, the performance of RC4 gets better. We thus conclude that at all

places where CPU time is a constraint, the use of algorithm can be decided depending on

amount of data. If we work for small amounts of data, Skipjack is a good choice but as the

amount of data keeps increasing, the performance of RC4 keeps getting better and it poses a

better alternative. Blowfish in all cases is not considered a good choice.

5.8. CACHE MISS RATE

Table 5.8: Cache miss rate for various algorithms (in ms) on variation of accelerometer

readings

Evaluation of symmetric key algorithms for Body Sensor Networks (BSN) on Raspberry pi 2014

33 Delhi Technological University

Graph 5.10: Cache miss rate verses Accelerometer input for RC4, RC5, Skipjack and

Blowfish

Here we focus on all the different kinds of caches. Considering the statistics of I1 cache, we

conclude, the maximum Cache Miss Rate (CMR) to be for Skipjack algorithm and minimum

for Blowfish Algorithm which is closely followed by RC5 Algorithm. For the case of LLi

cache, we observe the maximum Cache Miss Rate (CMR) for RC4 Algorithm and minimum

for Blowfish Algorithm which is succeeded by RC5 Algorithm. For D1 cache, the maximum

Cache Miss Rate (CMR) is for RC4 Algorithm and minimum for Blowfish Algorithm after

which is RC5 algorithm. If we consider LLD cache, we find the maximum Cache Miss Rate

(CMR) to be for RC4 Algorithm and minimum for Blowfish Algorithm after which is the

RC5 Algorithm. For the statistics of LL cache, the maximum Cache Miss Rate (CMR) is for

RC4 Algorithm and minimum is for Blowfish and RC5 Algorithm which is followed by RC4

Algorithm.

 Hence we reach the conclusion; the Cache Miss Rate (CMR) for Blowfish Algorithm is 0

percent for all type of caches. In terms of Cache Miss Rate (CMR), the worst choice for I1

cache is skipjack Algorithm, for LLi cache is RC4 Algorithm, for D1 cache is RC4

Algorithm, for LLD cache is RC4 Algorithm, and for LL cache is RC4 Algorithm. In all

Evaluation of symmetric key algorithms for Body Sensor Networks (BSN) on Raspberry pi 2014

34 Delhi Technological University

cases where the cache miss rate (CMR) is a major constraint, the best choice considering all

types of caches is Blowfish algorithm followed by RC5.

5.9. READ OPERATIONS PER SECOND

Table 5.9: Read operations per second for various algorithms (in ms) on variation of

accelerometer readings

Graph 5.11: Read operations per second verses Accelerometer input for RC4, RC5,

Skipjack and Blowfish

Evaluation of symmetric key algorithms for Body Sensor Networks (BSN) on Raspberry pi 2014

35 Delhi Technological University

Considering the Read Operations per Second (ROS) vs. Accelerometer-Input, we find the

maximum Read Operations per Second (ROS) to be for RC4 Algorithm and minimum for

Blowfish Algorithm for any size of Accelerometer-Input. Also greater the number of Read

operations per second easier it is for processor to Read the whole content in lesser time. In

BSN where Read Operations per Second (ROS) is major issue, the best choice in terms of

Read Operations per Second (ROS) is RC4 algorithm and worst choice is Blowfish algorithm

for all sizes of Accelerometer-Input.

5.10. WRITE OPERATIONS PER SECOND

Table 5.10: Write operations per second for various algorithms (in ms) on variation of

accelerometer readings

Evaluation of symmetric key algorithms for Body Sensor Networks (BSN) on Raspberry pi 2014

36 Delhi Technological University

Graph 5.12: Write operations per second verses Accelerometer input for RC4, RC5,

Skipjack and Blowfish

Focusing on the statistics for Write Operations per Second (WOS) vs. Accelerometer-Input,

we find the maximum Write Operations per Second (WOS) to be for RC5 algorithm and

minimum for Blowfish algorithm for any sizes of Accelerometer-Input. Also greater the

number of write operations occurring per second, easier it is for processor to write the whole

content in less time. In cases where Write Operations per Second (WOS) is major constraint,

we conclude the best choice to be RC5 algorithm and worst to be Blowfish algorithm for all

sizes of Accelerometer-Input.

5.11. POWER CONSUMPTION

Table 5.11: Power consumption for various algorithms (in watts) on variation of

accelerometer readings

Evaluation of symmetric key algorithms for Body Sensor Networks (BSN) on Raspberry pi 2014

37 Delhi Technological University

Graph 5.13: Power consumption verses Accelerometer input for RC4, RC5, Skipjack

and Blowfish

Laying a focus on the statistics for Power Consumption (PC) vs. Accelerometer-Input, we

observe the maximum power consumed to be by Blowfish Algorithm for any size of

Accelerometer-Input. Also RC5 algorithm consumes minimum power for almost every

Accelerometer-Input, except when the input is 1000 and 2000. This is because with increase

in the size of input, the number of context switches per second decreases and the CPU load

increases. For the input case of 1000, the CPU load is minimum and Skipjack Algorithm

consumes minimum power. Further increasing the input, the CPU load increases as usual and

thus consumes extra power. When the Accelerometer-Input is 2000, the power consumed by

RC4 Algorithm, is minimum. Also an important factor to consider is that lesser the power, an

Algorithm consumes, the more suitable it becomes for Small Board Computers (SBC). In

BSN, where Power Consumption (PC) is a major constraint as BSNs are low power devices,

the best choice as far as Power Consumption is concerned is RC5 algorithm for small size of

input data and RC4 algorithm for large sizes of input data. The worst choice in terms of

Power Consumption (PC) is Blowfish algorithm for all sizes of Accelerometer input.

Evaluation of symmetric key algorithms for Body Sensor Networks (BSN) on Raspberry pi 2014

38 Delhi Technological University

CHAPTER 6: ISSUES WITH BSN ALGORITHMS

6.1. SPECIAL CASE OF SENSOR NODES

Security in sensor devices is different from normal cases as sensor devices are special in a

variety of ways. Also implementing security of data for these devices should be done keeping

in mind the type of device and its resource and computational limitations.

i) The fact that separates sensor node data encryption from normal ones is its limited

battery. The sensor node battery cannot be recharged and hence for encrypting

data, if the sensor nodes remain open for a long time, the battery gets fully

discharged and will not be able send any signal further to any other node. Thus

such an optimization is a challenging problem.

ii) Also since data to be sent over the sensor device is small a very large block size is

not desirables.

iii) The sensor devices have a low memory and thus even need a memory efficient

algorithm [11].

iv) Transmission of data is one of the most energy consuming tasks undergone by a

node - using data compression to reduce the number of bits sent reduces energy

expended for transmission. Data compression which highly reduces the

communication overhead by aggregating and compressing data packets is

performed at intermediate sensor nodes [12].

 6.2. ISSUES WITH THE ENCRYPTION ALGORITHMS

I) The symmetric key algorithms such as DES etc can be used but the major

drawback they face is that their key needs to be secret.

II) Also Symmetric encryption algorithms seem to be inherently well suited to low-

end devices, because they offer a relatively low overhead [2].

III) For public key encryption techniques used, we have to do massive computation

for encrypting any plain text. Also sometimes these methods may not be also

suitable sensor networks [11].

IV) RC-4

i) It is considered to be efficient if key length is greater than 128 bits [24].

Evaluation of symmetric key algorithms for Body Sensor Networks (BSN) on Raspberry pi 2014

39 Delhi Technological University

ii) Also the implementation of RC4 in WEP (Wired equivalent privacy), to secure

wireless sensor networks, is not considered to be too efficient. The problem there is

not the RC 4 algorithm but the way in which it is used [24].

iii) RC4 also is not able to match the standards set by cryptographers for a secure cipher

in various ways, and thus is not recommended for use in new applications [24].

iv) Unlike a modern stream cipher, RC4 does not take a separate nonce along with the

key. So if a single long-term key is to be used to encrypt multiple streams, the

cryptosystem must specify how to combine the nonce and the long-term key to

generate the stream key in case of RC4. *One way of tackling this is by generating a

"new" RC4 key by hashing a long-term key with a nonce. Still many applications

using RC4 concatenate the key and nonce and RC4's weak key schedule then gives

rise to a variety of serious problems. [24]

v) The bytes RC4 produces are not always random- they contain small biases. From the

point of view of cryptography, this is not at all desired. Encrypting the same message

(plaintext) with many different RC4 keys should give a new cipher text each time.

But there are biases which can help the intruder to break into the cipher text [16].

vi) Because RC4 is a stream cipher, it is more prone than common block ciphers. If a

strong message authentication code (MAC) is not added with it, then the cipher text

is vulnerable to a bit-flipping attack. Incorrect implementation can also lead to

a stream cipher attack. Furthermore, it can happen that a double encryption of the

message with the same key may output the plaintext again rather than cipher text

because of the fact that the XOR function would result in the second operation

reversing the first [17].

vii) In 2013, a new attack was proposed by AlFardan, Bernstein, Paterson, Poettering and

Schuldt that could use new statistical biases in RC4 key table to recover plaintext

with large number of TLS encryptions [17].

V) BLOWFISH

i) Blowfish is known to be susceptible to attacks on weak keys [27].

ii) Blowfish is one of the fastest block ciphers; the problem arises only when changing

keys. Each new key requires a pre-processing to be done which is equivalent to

encrypting about 4 kilobytes of text, this is comparatively very slow .This prevents its

use in certain applications, but is not a problem in others, such as Splash ID [27].

Evaluation of symmetric key algorithms for Body Sensor Networks (BSN) on Raspberry pi 2014

40 Delhi Technological University

iii) The problem also arises as it must give a key to the person involved in transmission

specifically not through the unsecured transmission channel. Each pair of users needs

a unique key, so as the numbers of users are increased, key management becomes

more and more complicated. For example N*(N-1)/2 keys required. It also has a

weakness in the decryption process over other algorithms in terms of the time

consumption and serially in throughput [27].

VI) RC-5

i) In the case of a sensor network, the costs of call setup and return outweigh the

costs of the RC5 itself [1].

ii) RC5 is word-oriented. In comparison with RC4, RC5 consumes more code

memory size [1].

iii) It also needs a pre-computed key schedule to be stored in memory, which leads to

occupation of significant bytes of memory for each key [1].

iv) Even though the RC5 algorithm can be small, the common RC5 libraries are too

large to fit on a platform [1].

VII) SKIPJACK

i) Its susceptibility to shortcut attacks, wherein the intruder can exploit some

property of the encryption algorithm from which the key or plaintext can be

determined in much less time than by exhaustive search, leads to a challenge in its

use today [18].

ii) The key length is longer making brute force attacks millions of times slower;

however 80 bits can also be prone to brute force attacks [19].

 6.3. SITUATION BASED USE

A. RC-4

i) Rc4 is extremely efficient in software implementations since only byte operations

are used [24].

ii) It can be considered secure if keys of length higher than 128 bits are used [24].

iii) In WEP, RC4 in combination with a particular method for generating its keys was

broken [24].

Evaluation of symmetric key algorithms for Body Sensor Networks (BSN) on Raspberry pi 2014

41 Delhi Technological University

iv) If RC4 is used (i.e. any stream cipher technique) instead of DES (i.e. block cipher

technique) in the output feedback mode, the net encryption and decryption time

decreases at sensor node [24].

v) RC4 is an extremely popular cipher for SSL/TLS connections. There are two main

reasons for it namely -RC4 does not need a padding or IV (Initialization vectors),

which implies it's immune to recent TLS attacks like BEAST and Lucky13. Also

RC4 is very fast. Thus a fast encryption implies a less computation and therefore

lower hardware requirements which are beneficial for service providers like

Google [25].

B. BLOWFISH

i) Blowfish is considered to be suitable for wireless network application which

exchange packets of comparatively small sizes [25].

ii) The password-hashing method used in Open BSD uses an algorithm derived from

Blowfish which uses the slow key schedule; the basic purpose of using it is that

the extra computational effort required provides the much needed protection

against dictionary attacks [27].

iii) Also Blowfish is free for use to anyone. This helps increase its usage and

popularity in today‟s time [27].

iv) Blowfish is said to be efficient in software, at least on some software platforms (it

uses key-dependent lookup table; hence the performance depends on how the

platform will handle memory and caches) [32].

C. RC-5

i) RC5 is patented by RSA and can be used as a replacement for DES with block

size=64 bit and key size =56 bits [26].

ii) It is used in IPSec Encapsulating Security Payload (ESP).It is used here in the

CBC mode [20].

iii) It is even a good potential for use in Wireless Body sensor networks [2].

iv) It is used to provide security connections in LSWN (Low speed wireless

networks) [31].

http://www.net-security.org/article.php?id=1638
http://blog.cryptographyengineering.com/2013/02/attack-of-week-tls-timing-oracles.html

Evaluation of symmetric key algorithms for Body Sensor Networks (BSN) on Raspberry pi 2014

42 Delhi Technological University

D. SKIPJACK

i) The algorithm was developed to be used in voice, fax and secure telephones, such

as the AT&T TSD-3600. It was also used in the first Fortezza Crypto Card. (By

US Govt) [21].

ii) Skipjack is said to be immune to exhaustive search for time to come till the time

we don‟t have further improvements in the exhaustive search techniques [22].

iii) Also the key of the Skipjack algorithm offers a greater margin of security than

single encryption DES, but this margin is comparatively small and is overcome by

the purely economic and technical considerations. Also an important factor to

consider is that the increasing key size in Skipjack does not necessarily increase

costs as in single encryption DES [22].

iv) It can also be used for data encryption in computer networks (Defense dept uses it

in defense messaging system.) [23].

http://www.cryptomuseum.com/crypto/att/tsd3600/index.htm
http://www.cryptomuseum.com/crypto/usa/fortezza/index.htm

Evaluation of symmetric key algorithms for Body Sensor Networks (BSN) on Raspberry pi 2014

43 Delhi Technological University

CHAPTER 7: CONCLUSIONS AND FUTURE WORK

7.1. CONCLUSIONS

Table 7.1: A complete summation table of all the results obtained.

The best and worst choice of algorithms has been depicted depending on the comparison

factor considered. Small and large indicate the inputs of accelerometer (which algorithm is

best and worst for small accelerometer reading and which for large). In the Cache miss rate, a

distinction has been shown for various types of caches and the best and worst algorithm for

cache miss rate of a particular type of cache.

Secure and efficient encryption algorithms are very important for the proper working of BSN.

Various factors need to be addressed depending on the situation. In the paper, we first

reviewed the common algorithms used for providing a secure data transmission and then

selected symmetric key cryptography algorithms for the comparison task. Symmetric key

algorithms were used as they offered comparatively less computation.

Evaluation of symmetric key algorithms for Body Sensor Networks (BSN) on Raspberry pi 2014

44 Delhi Technological University

 As per the experiments conducted, various conclusions were drawn about the performance of

the algorithms (Refer Table 7.1). From Table 7.1, we inferred that the execution time for

Blowfish algorithm is the maximum, while it is minimum for RC 4. In BSN where execution

time needs to be minimum, RC4 is the best suitable choice.

Also the LOC and memory occupation of RC4 is minimum which is beneficial in case we

have a memory limitation.

For other cases when we consider the context switches per second or the page faults

occurring per second, we get Blowfish as a better option than others. All the places where

load on CPU is a constraint, CPU usage and CPU time are best in case of RC4. For the cache

miss rate, we consider all the types of caches namely I1, LLi, D1, LLD, LL cache. The cache

miss rate is 0% in all cases for Blowfish and thus increases speed to a great deal. The

corresponding Read and Write operations per second have RC4 and RC5 respectively as the

best algorithms.

The last factor of power consumption gives results that tell us that for small number of inputs

RC5 is a good choice and as the number of inputs increase, the choice shifts from RC5 to

RC4.

Further we even conclude that RC4 is efficient in software implementations and its security

increases further if the key size is increased to greater than 128 bits. The biggest drawback of

RC4 lies in the fact that the cipher text it produces contains biases which can prove to be

detrimental to sensitive information being sent.

Blowfish algorithm is said to be a bit slower than the rest but is extremely beneficial for small

packets sent over the wireless networks. It is free to use and this feature further increases its

popularity.

As far as RC5 algorithm is concerned, its code memory size is greater as compared to rest of

the algorithms. Also the libraries required to implement it are sometimes too large to fit on a

platform. Despite all this is works decently find for wireless system security.

Skipjack algorithm is comparatively a new algorithm. Its key size being 80 bits is sometimes

said to be susceptible to Brute force attacks. On the whole it is said to be immune to

Evaluation of symmetric key algorithms for Body Sensor Networks (BSN) on Raspberry pi 2014

45 Delhi Technological University

exhaustive search and is also for data encryption in Computer networks. Skipjack being a

new algorithm is not so widely used but has a great potential to securely transmit data.

Through this work, we established a comparison among various symmetric key algorithms

used in BSN. Also we have put forth a comparison which will help decide which algorithm is

best suited for which kind of situation.

7.2. FUTURE WORK

As of now all the algorithms have been implemented and tested considering Raspberry pi as a

prototype. The entire code for encryption and decryption works on the pi and depending on

the results obtained we concluded which algorithm to be the best suited under a particular

performance metric. In future, we plan to implement the encryption part on the Raspberry pi

and decryption part on the android based phone. This will help us track an algorithm‟s

performance under conditions (such as their execution time, CPU usage, Cache miss rate,

Page faults, Context Switches, Read Operations per Second, Write Operations per Second,

and Power Consumption etc) taking the entire system under consideration. The results

obtained can be used to obtain an algorithm‟s performance during actual data

communication. In sensor devices, where a secure transmission of data is a need of the time,

the work will be extremely useful.

Evaluation of symmetric key algorithms for Body Sensor Networks (BSN) on Raspberry pi 2014

46 Delhi Technological University

REFERENCES

1. Adrian Perrig, Robert Szewczyk, Victor Wen, David Culler, J. D. Tygar, “SPINS:

Security Protocols for Sensor Networks”, Mobile Computing and Networking, Rome,

Italy, 2001.

2. Dhanashri H. Gawali and Vijay M. Wadhai, “rc5 algorithm: potential cipher solution

for security in wireless body sensor networks (wbsn)”, International Journal Of

Advanced Smart Sensor Network Systems, July 2012.

3. Cool Pi Projects, Cool Pi Projects| IT2Pi Programming inventors and expo, Greenville

SC 2013, http://www.raspi-greenville.org/cool-pi-projects/ (July 2, 2014)

4. Bernadette Johnson, How the Raspberry Pi works, (HowStuffworks-How the

Raspberry pi works), http://computer.howstuffworks.com/raspberry-pi4.htm (July 2,

2014)

5. William Stallings, Cryptography and network security, third edition, Pearson, 2002.

6. Yao Minglin, TangShan Coll., Tangshan, Ma Junshuang, “Stream Ciphers on wireless

sensor networks”, Third International Conference on Measuring Technology and

Mechatronics Automation, January 2011.

7. Shervin Amini, Richard Verhoeven, Johan Lukkien, Shudong Chen, “Toward a

Security Model for a Body Sensor Platform”, IEEE International Conference on

Consumer Electronics, 2011.

8. Diaa Salama Abd Elminaam, Hatem Mohamed Abdual Kader, and Mohiy Mohamed

Hadhoud, “Evaluating The Performance of Symmetric Encryption Algorithms”,

International Journal of Network Security, May 2010.

9. Antonopoulos, C.P., Petropoulos, C, Antonopoulos, K Triantafyllou, V Voros, N.S,

“The effect of symmetric block ciphers on WSN performance and behavior”,

International Conference on Wireless and Mobile Computing, Networking and

Communications, October 2012.

10. Daojing He, Sammy Chan, Shaohua Tang, “A Novel and Lightweight System to

Secure Wireless Medical Sensor Networks”, Ieee journal of biomedical and health

informatics, January 2014.

11. Xiaohua Luo, Kougen Zheng, Yunhe Pan, Zhaohui Wu, “Encryption algorithms

comparisons for wireless networked sensors”, IEEE international Conference on

Systems, Man and Cybernetics, 2004.

http://www.raspi-greenville.org/cool-pi-projects/
http://computer.howstuffworks.com/hsw-contact.htm
http://computer.howstuffworks.com/raspberry-pi4.htm

Evaluation of symmetric key algorithms for Body Sensor Networks (BSN) on Raspberry pi 2014

47 Delhi Technological University

12. A.Praveena, S.Devasena, K.M. Arivu Chelvan, “Achieving Energy Efficient and

Secure Communication in Wireless Sensor Networks”, In proceeding of: Wireless and

Optical Communications Networks, 2006 IFIP International Conference on,

Bangalore, 2006

13. Nachiketh R. Potlapally, Srivaths Ravi, Anand Raghunathan, Niraj K. Jha, “A Study

of the Energy Consumption Characteristics of Cryptographic Algorithms and Security

Protocols”, Mobile Computing, IEEE Transactions on, December 2005.

14. Daniel Tze Huei Lai, Rezaul Begg, Marimuthu Palaniswami, “Healthcare sensor

networks-Challenges towards practical implementation”, CRC Press Taylor &.

Francis Group

15. Soham Banerjee, Divyashikha Sethia, Tanuj Mittal, Ujjwal Arora, Akash Chauhan,

“Secure Sensor Node with Raspberry Pi”, Impact 2013, 2013.

16. Mathew Greens, Attack of the week: RC4 is kind of broken in TLS, A Few thoughts

on Cryptogaphic engineering: Attack of the week:RC4 is a kind of broken in TLS,

(March 12, 2013), http://blog.cryptographyengineering.com/2013/03/attack-of-week-

rc4-is-kind-of-broken-in.html (July 2, 2014)

17. RC4, RC4-Wikipedia-the free encyclopedia, http://en.wikipedia.org/wiki/RC4, (July

2, 2014)

18. Skipjack Review, Skipjack Review, http://www.austinlinks.com/Crypto/skipjack-

review.html, (July 3, 2014)

19. Skipjack, Skipjack-everything2.com, http://everything2.com/title/Skipjack, (April 29,

2014)

20. The esp cbc-mode cipher algorithms, draft-ietf-ipsec-ciph-cbc-01: The esp cbc-mode

cipher algorithms, (July 2, 1997) http://tools.ietf.org/html/draft-ietf-ipsec-ciph-rc5-

cbc-00, (July 2, 2014)

21. Skipjack, Skipjack, http://www.cryptomuseum.com/crypto/usa/skipjack.htm (July 2,

2014)

22. Kenneth W Dam, Herbert S Lin, “Cryptography's Role in Securing the Information

Society”, By Committee to Study National Cryptography Policy, Computer Science

and Telecommunications Board, Division on Engineering and Physical Sciences,

National Research Council,1996

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=7755
http://blog.cryptographyengineering.com/2013/03/attack-of-week-rc4-is-kind-of-broken-in.html
http://blog.cryptographyengineering.com/2013/03/attack-of-week-rc4-is-kind-of-broken-in.html
http://en.wikipedia.org/wiki/RC4
http://www.austinlinks.com/Crypto/skipjack-review.html
http://www.austinlinks.com/Crypto/skipjack-review.html
http://everything2.com/title/Skipjack
http://tools.ietf.org/html/draft-ietf-ipsec-ciph-cbc-01
http://tools.ietf.org/html/draft-ietf-ipsec-ciph-rc5-cbc-00
http://tools.ietf.org/html/draft-ietf-ipsec-ciph-rc5-cbc-00
http://www.cryptomuseum.com/crypto/usa/skipjack.htm

Evaluation of symmetric key algorithms for Body Sensor Networks (BSN) on Raspberry pi 2014

48 Delhi Technological University

23. US Congress, Office of Technology Assessment, “Issue Update on Information

Security and Privacy in Network Environments”, By DIANE Publishing Company,

September 1995

24. Shish Ahmad, Mohd. Rizwan beg, Qamar Abbas, “Energy Efficient Sensor Network

Security Using Stream Cipher Mode of Operation”, Int‟l Conf. on Computer &

Communication Technology, 2010

25. Tingyuan Nie, Chuanwang Song, Xulong Zhi, “Performance Evaluation of DES and

blowfish”, Biomedical Engineering and Computer Science (ICBECS), 2010

International Conference on, 2010.

26. Introduction to cryptography, Introduction to cryptography,

http://www.infosectoday.com/Articles/Intro_to_Cryptography/Introduction_Encryptio

n_Algorithms.htm (June 28, 2014)

27. Blowfish(cipher), Blowfish(cipher) Wikipedia, the free encyclopedia,

http://en.wikipedia.org/wiki/Blowfish_(cipher) (july 2, 2014)

28. Coverity Scan: health-check, Coverity Scan-Static Analysis, (26 july 2013)

https://scan.coverity.com/projects/661, (June 2014)

29. Coverity Scan: power-calibrate, Coverity Scan- Static Analysis, (26 july 2013),

https://scan.coverity.com/projects/1732, (June 2014)

30. ColinKing, ColinKing-Ubuntu Wiki, (4 June 2014)

https://wiki.ubuntu.com/ColinKing/, (June 2014)

31. Chou Fan, Jin Tan, Peng Zheng, “Low Speed Wireless networks research and

simulation based on RC 5”, Wireless communications, Networking and mobile

computing, 2009, Wicom ‟09. 5th international conference on, September 2009.

32. A website www.stackoverflow.com,(July 2, 2014).

33. RC4 implementation from pseudocode, RC4 implementation from pseudocode,

http://lists.runrev.com/pipermail/use-livecode/2007-July/101334.html(july 6, 2014)

34. The Rc4 stream encryption algorithm, http://cse.spsu.edu/afaruque/it6833/RC4.pdf,

http://cse.spsu.edu/afaruque/it6833/RC4.pdf,

(July 8, 2014)

35. BLOWFISHENC: Blowfish Encryption Algorithm, BLOWFISHENC: Blowfish

Encryption Algorithm(Theory)FPGA & Digital Design Lab, Computer science and

engineering IIT Delhi Virtual Labs,

http://iitd.vlab.co.in/?sub=66&brch=184&sim=1147&cnt=1, (July 8, 2014)

http://www.infosectoday.com/Articles/Intro_to_Cryptography/Introduction_Encryption_Algorithms.htm
http://www.infosectoday.com/Articles/Intro_to_Cryptography/Introduction_Encryption_Algorithms.htm
http://en.wikipedia.org/wiki/Blowfish_(cipher)
https://scan.coverity.com/projects/661
https://scan.coverity.com/projects/1732
https://wiki.ubuntu.com/ColinKing/
http://www.stackoverflow.com/
http://lists.runrev.com/pipermail/use-livecode/2007-July/101334.html
http://cse.spsu.edu/afaruque/it6833/RC4.pdf
http://iitd.vlab.co.in/?sub=66&brch=184&sim=1147&cnt=1

Evaluation of symmetric key algorithms for Body Sensor Networks (BSN) on Raspberry pi 2014

49 Delhi Technological University

36. 0308feat2fig1.gif, 0308feat2fi,g1.gif(400*579)

http://i.cmpnet.com/embedded/gifs/2003/0308/0308feat2fig1.gif,(July 8, 2014)

37. Konstantinos Papadopoulos,“ Implementation of security algorithms for

wireless sensor networks using reconfigurable devices”, unpublished.

38. The Rc5 encryption algorithm, http://people.csail.mit.edu/rivest/Rivest-rc5.pdf,

http://people.csail.mit.edu/rivest/Rivest-rc5.pdf, (June 28,2014)

39. Upload.wikimedia.org,

http://upload.wikimedia.org/wikipedia/commons/7/7f/RC5_InfoBox_Diagram.svg(

July 10, 2014)

http://i.cmpnet.com/embedded/gifs/2003/0308/0308feat2fig1.gif
http://people.csail.mit.edu/rivest/Rivest-rc5.pdf
http://people.csail.mit.edu/rivest/Rivest-rc5.pdf
http://upload.wikimedia.org/wikipedia/commons/7/7f/RC5_InfoBox_Diagram.svg

Evaluation of symmetric key algorithms for Body Sensor Networks (BSN) on Raspberry pi 2014

50 Delhi Technological University

APPENDIX

Here we have included some important pseudo-codes which we have Implemented/Used in

this work.

1. Pseudo Code for RC4 Algorithm:

Function rc4 pText, pKey

 Initialize:

 repeat with i = 0 to 255

 put i into S1[i]

 end repeat

 put 0 into i

 repeat with n = 0 to 255

 add 1 to i

 if i > length(pkey) then put 1 into i

 put charToNum(char i of pKey) into S2[n]

 end repeat

 put 0 into j

 repeat with i = 0 to 255

 put (j + S1[i] + S2[i]) mod 256 into j

 put S1[i] into temp

 put S1[j] into S1[i]

 put temp into S1[j]

Evaluation of symmetric key algorithms for Body Sensor Networks (BSN) on Raspberry pi 2014

51 Delhi Technological University

 end repeat

 Encrypt/Decrypt:

 put 0 into i ; put 0 into j

 repeat for each char c in pText

 put charToNum(c) into tChar

 put (i + 1) mod 256 into i

 put (j + S1[i]) mod 256 into j

 put S1[i] into temp

 put S1[j] into S1[i]

 put temp into S1[j]

 put (S1[i] + S1[j]) mod 256 into t

 put S1[t] into K

 put numToChar(tChar bitXor K) after tOutput

 end repeat

 return binToHex(tOutput)

end rc4

function binToHex pString

Evaluation of symmetric key algorithms for Body Sensor Networks (BSN) on Raspberry pi 2014

52 Delhi Technological University

 repeat for each char c in pString

 get charToNum(c)

 put baseConvert(it,10,16) into tTemp

 if it < 16 then put "0" before tTemp

 put tTemp after tHex

 end repeat

 return tHex

end binToHex

2. Pseudo Code for RC5 Algorithm:

//Key expansion

// Define two word-sized binary constants Pw and Qw

//Converting the Secret Key K[0...b-1] from Bytes to Words

c = [max(b, 1) / u]

for i = b - 1 downto 0 do

L[i / u] = (L[i / u] <<< 8) + K[i]

// Initialising S

S[0] = Pw;

for i = 1 to t - 1 do

S[i] = S[i - 1] + Qw;

// Mixing the secret key

i = j = 0;

a = b = 0;

Evaluation of symmetric key algorithms for Body Sensor Networks (BSN) on Raspberry pi 2014

53 Delhi Technological University

do 3 * max(t, c) times:

a = S[i] = (S[i] + a + b) <<< 3;

b = L[i] = (L[j] + a + b) <<< (a + b);

i = (i + 1) mod (t);

j = (j + 1) mod (c);

Encryption:

A = A + S[0];

B = B + S[1];

for i = 1 to r do

A = ((A Xor B) <<< B) + S[2 * i]

B = ((B Xor A) <<< A) + S[2 * i + 1]

Decryption:

for i = r down to 1 do

B = ((B - S[2 * i + 1] >>> A) Xor A;

A = ((A - S[2 * i] >>> B) Xor B;

B = B - S[1];

A = A - S[0];

3. Pseudo Code for Skipjack Algorithm:

Function Skipjack

//G on a sub-word (4 bytes) is a 4 round feistal structure

Encryption:

Input wi
o
, 1<=i<=4;

Evaluation of symmetric key algorithms for Body Sensor Networks (BSN) on Raspberry pi 2014

54 Delhi Technological University

Counter=0;

Do counter =1 to 8;

Counter++;

Do counter=8 t0 16;

Counter++;

Do counter = 16 to 24;

Repeat Rule A;

Counter ++;

Do counter= 24 to 32;

Repeat Rule B;

Counter++;

Output=wi
32

,1<=i<=4;

Decryption

Input= wi
32

,1<=i<=4;

Evaluation of symmetric key algorithms for Body Sensor Networks (BSN) on Raspberry pi 2014

55 Delhi Technological University

Counter=32;

Do counter= 32 to 24;

Counter--;

Do counter= 24 to 16;

Counter--;

Do counter=16 to 8;

Repeat rule B
-1

;

Counter--;

Do counter= 8 to 0;

Repeat rule A
-1

;

Counter--;

Output= wi
o
, 1<=i<=4;

Evaluation of symmetric key algorithms for Body Sensor Networks (BSN) on Raspberry pi 2014

56 Delhi Technological University

4. Pseudo Code for Blowfish Algorithm:

//Key expansion-converts a key of at most 448 bits into several subkey arrays (total

4168 bytes)

Define P-array 18, 32-bit subkeys:P1,P2,………….,P18

Define Four 32-bit S-Boxes,256 entries each:

S1,0, S1,1,………. S1,255

S2,0, S2,1,……….. S2,255

S3,0, S3,1,……….. S3,255

S4,0, S4,1,..............S4,255

//Generating the Subkeys:

 Initialize P-array, initialise four S-boxes using string(value->hexadecimal digits of

pi(less the initial 3)) 1

P1 = 0x243f6a88, P2 = 0x85a308d3, P3 = 0x13198a2e, P4 = 0x03707344, etc. 1

 for all bits of key(repeat until all p array XORed with key) 2

P1 XOR (first) 32 bits of key2

P2 XOR (second)32-bits of the key2

 Encrypt the all-zero string with the Blowfish algorithm,(using the subkeys generated

in steps (1) and (2))3

 P1,P2=output of step (3).

 Encrypt output of step (3) using the Blowfish algorithm(with the modified

subkeys) 5

 P3,P4=output of step (5).

 repeat replacing all entries of the P array

Repeat for all four S-boxes

Encryption:

Rounds: 16

Input: 64 bit data element->x

Evaluation of symmetric key algorithms for Body Sensor Networks (BSN) on Raspberry pi 2014

57 Delhi Technological University

Divide x into two 32-bit halves: xL, xR.

Then, for i = 1 to 16:

xL = xL XOR Pi

xR = F(xL) XOR xR

Swap xL and xR

 After the sixteenth round, swap xL and xR again to undo the last swap.

Then, xR = xR XOR P17 and xL = xL XOR P18. Finally, recombine xL & xR

to get the cipher text

