
Decision Table based Model & its implementation for Automatic prevention of Unauthorized
Database Transactions by Trusted Database Users

1

Chapter 1

Introduction

1.1 Introduction

Data is an important asset for companies and organizations. Some of these data are

worth lacs and crores. The organizations need to take great care at controlling access

to such data, from the perspective of both internal users, within the organization, and

external users, outside the organization. The organization reputation and client's

beliefs lies with the confidentiality of these data. Thus, the development of Database

Management Systems (DBMSs) with high-assurance security is always a hot & spicy

research topic. Even though DBMSs provide access control mechanisms, these

mechanisms alone are not enough to guarantee data security.

Each database (DB) user is authorized to do particular transactions by performing a

sequence of queries. These queries perform operations (select, insert, update, delete)

on various attributes of different tables in RDBMS. However the sequence of queries,

attributes & tables authorized to User1 are not authorized to User2. User2 may be

authorized to perform a different sequence and types of queries. For example,

consider that a database user/application is authorized to access data related to HR

tables and only non financial attributes of tables as EMPLOYEE_ID, FIRST_NAME,

LAST_NAME, EMAIL, PHONE_NUMBER, HIRE_DATE, JOB_ID, etc. but

suddenly that user/application submits a SQL command to the DBMS that accesses

the records from the Finance Tables or access financial attributes as SALARY,

LAST_PAY, GROSSPAY etc. of tables. Such anomalous access pattern of the SQL

command may be the result of an SQL Injection vulnerability or privilege abuse by an

authorized user.

Decision Table based Model & its implementation for Automatic prevention of Unauthorized
Database Transactions by Trusted Database Users

2

Even the database administrators (DBAs) be monitored, and responded to if deemed

malicious. This is a difficult problem to address since the policies that specify a

response action need to be created for the DBAs who are, in turn, responsible for

managing the same policies. A Case study for the same is carried out for Oracle based

applications databases of Indian Railways and the solutions adopted. Oracle Vault

tool is used in which audit logs are maintained and administered by Oracle vault user

and DBA roles are also performed by DBA user with the persuasion of one or more

DBA users. Thus instead of one user, a combined persuasion of 2-3 users is required

for access. But the fact is that there is no automated solution for catching an

Unauthorized Transaction (UT) and responding to it with an Unauthorized

Transaction Response (UTR) for Database security purposes.

Here, we have tried to propose an automated approach through Decision Tables

created with the help of TQLC (Transaction Queries Log Crawler), Authorized Query

Indicator Array (AQIA), Transaction Query Sequence Analyzer Arrays (TQSAA),

Query Weight Analysis Algorithm and Quad Phase Verification Techniques.

1.2 Organization of the Thesis

This thesis is divided into eight chapters. A brief overview of all the chapters is as

follows:-

 Chapter 2, discusses the Literature review and related work done in the field.

 Chapter 3, consists of the methodology proposed in our model.

 Chapter 4, describes the Quad-Phase Verifier in detail.

 Chapter 5, focuses on Decision Tables and their usage.

 In Chapter 6, an Oracle-J2EE based implementation of the proposed model is

presented.

 In Chapter 7, the experimental results evaluation and analysis is presented.

 Chapter 8 concludes the methodology and future work scope.

Decision Table based Model & its implementation for Automatic prevention of Unauthorized
Database Transactions by Trusted Database Users

3

Chapter 2

Literature Survey

In 2005 Marco and Henrique [1] proposed a Database Malicious Transaction Detector

(DBMTD). DBMTD mechanism is a log based mechanism for the detection of

malicious transactions in DBMS. The detection model proposed in [1] is used to

detect the malicious transaction after the transaction has been committed. Lee et al.[2]

propose an approach for detecting illegitimate database accesses by finger-printing

every transaction, mainly by summarizing SQL statements into compact regular

expression finger prints. Mathew et al. [3] propose a data-centric approach for solving

the AD problem in a DBMS. They model users‟ access patterns by profiling the used

data points. [4] signifies that Anomaly Detection mechanisms are essential to detect

anomalies in data accesses by users. Such anomalies may be indicative of insider

attacks or compromised database user accounts. [5,6] proposes a methodology for

discovering user behaviour from web log data. The concept of Log Data Usage has

been derived from here. [7] covers important aspects of Oracle based auditing; from

basic configuration to advanced techniques which helped us in designing Log

Crawler.[8] proposes a Role Based Access Control (RBAC) methodology which helps

us in designing Parsing techniques for different arrays design..

 To the best of our knowledge, no work demonstrating use of Decision Tables with

the help of TQLC (Transaction Queries Log Crawler), Authorized Query Indicator

Arrays (AQIA), Transaction Query Sequence Analyzer Arrays (TQSAA), Query

Weight Analysis and Quad Phase Verification Techniques for prevention of UT and

responding with UTR for DBMS exists.

Decision Table based Model & its implementation for Automatic prevention of Unauthorized
Database Transactions by Trusted Database Users

4

Chapter 3

Proposed Methodology

Our methodology as shown in Fig 1 starts with the use of TQLC (Transaction Queries

Log Crawler). TQLC is a utility (can be implemented using PL/SQL procedures or

Java Code) which scans through the Database AUDIT logs and is responsible for

creating valid User Transaction Profiles i.e. User Authorized Transactions. All

available enterprise databases come bundled with some inbuilt audit mechanisms.

Oracle database has certain Audit tables in System schema which keeps the track of

executed queries for particular database users. TQLC collects last 6-10 transactions

performed by a User and analyze the queries involved in those transactions. The

authorized transactions will always have same set of queries in same sequence. TQLC

looks for such transactions and declare them as Authorized Transactions (AT). Such

ATs are identified user wise and an AT store is maintained. Each AT in AT store is

taken one by one and each query of an AT is parsed in specific ways to generate

AQIA and TQSAA.

An example demonstrating the above discussed steps is presented for better

understanding of concept. Suppose an Oracle RDBMS instance having an Employee

centered schema with Relations (Tables) as EMPLOYEES, DEPARTMENTS,

JOB_HISTORY, JOBS, etc. The trusted users for the Database are User1, User2 &

User3. The Database Audit Tables are configured to store the Audit log records of all

SELECT, INSERT, UPDATE and DELETE commands executed over any trusted

user. TQLC reads the Audit Log Table records, recognize ATs and fill AT store. The

sample Audit data for a user extracted from Audit log tables is shown as Table 1:

Operation SQL Text Object User

SELECT Select ………. From

Employees

EMPLOYEES User1

Decision Table based Model & its implementation for Automatic prevention of Unauthorized
Database Transactions by Trusted Database Users

5

SELECT Select ………. From

JOB_History

JOB_HISTORY User1

INSERT Insert into JOB_History

() values (….)

JOB_HISTORY User1

INSERT Insert into Employees ()

values (….)

EMPLOYEES User1

SELECT Select ………. From

Employees

EMPLOYEES User1

SELECT Select ………. From

Jobs

JOBS User1

Table 1: Data from Audit Tables

The AT store entries populated with the help of above specified data extracted is

shown as Table 2:

Operation Referred

Attributes

Objects Query Serial in

Transaction

User

SELECT EmployeeID,

FirstName,

JobID…

Employees,

Job

1 User1

SELECT StartDate,

JobID

JobHistory 2 User1

INSERT Employee,

Startdate…

JobHistory 3 User1

INSERT EmployeeID,

FirstName

Employees 4 User1

SELECT EmployeeID,

FirstName

Employees 5 User1

SELECT JobID, JobTitle Jobs 6 User1

Table 2: AT Store entries

Decision Table based Model & its implementation for Automatic prevention of Unauthorized
Database Transactions by Trusted Database Users

6

 AT Store

 AQIA

 OI - Operator Indicator

 RI- Relation Indicator

 AI- Attribute Indicator

 TQSAA

 QWA

 Quad Phase Verifier

Fig 1. Quad Phase Verifier

 Decision Table

 User Query Yes

 No

Database (DB)

Audit

Tables

TQLC

Authorized

Transactions (AT)

 T1

 T2

Audit Log

Scan

OI RI AI

Q1 Q2 Q3 Q4 Q5 ….

 RI AI

3 6 5 2 0 1 …

Phase-I
Operator

Verifier

Phase-II

Attribute/Relat
ion Verifier

Phase-III

Sequence
Verifier

Phase -IV

Weight
Algorithm
Verification

Condition Condition Values

Stub

Action Stub Action Values

Action Action Values

Stub

Is Authorized

Transaction
Action suggested

by Decision Table

Action suggested by

Decision Table

Decision Table based Model & its implementation for Automatic prevention of Unauthorized
Database Transactions by Trusted Database Users

7

Each entry in AT store for a Transaction is parsed to generate AQIA and TQSAA.

AQIA (Authorized Query Indicator Array) is a two dimensional array representation

of a Transaction.

3.1 AQIA (Authorized Query Indicator Array)

AQIA is an array of following arrays:-

1. OI (Operator Indicator)

2. RI (Relation Indicator)

3. AI (Attribute Indicator)

Suppose an AT taken from AT store consists of 6 queries in a particular sequence as

shown in Table 2. The value of 2 dimensional array AQIA is shown in tabular form.

Each AT store entry is represented in AQIA table e.g. First entry of AT store in Table

2 is:

Select -- EmployeeID, FirstName, JobID -- Employee, Job -- 1-- User1

The four DML (Data Manipulation Language) operators of SQL are – SELECT,

INSERT, UPDATE, DELETE. For OI representation in AQIA table, these operators

are symbolized as 0,1,2,3 respectively. Thus OI value for the sample query taken from

AT is 0.

Suppose the total number of Relations (tables) in the schema is 4. The sample query

taken uses two relations EMPLOYEES & JOBS. For RI representation, first of all a

bit stream equal to total number of tables is initialized with value 0 as

 0000

Decision Table based Model & its implementation for Automatic prevention of Unauthorized
Database Transactions by Trusted Database Users

8

Now the bit values of those tables which are referred should be set ON. If

EMPLOYEES & JOBS are the table numbers 2 and 4 in schema then bit

representation now becomes

 0101

Thus RI value for the sample query taken is 0101. The AI (Attribute Indicator) will

indicate the attributes of relations referred in the query. In the sample query taken,

there are two relations (tables) referred i.e. Employee (10 attributes) & Job (5

attributes). For AI representation, first of all a bit stream equal to total number of

attributes in the table is initialized with value 0 as

 0000000000 | 00000

Now the bit values of those attributes which are referred should be set ON. If

EmployeeID, FirstName are the attribute number 1, 2 in EMPLOYEES table and

JOB_ID is the attribute number 1 in Job table then bit representation now becomes

 1100000000 | 10000

On applying the similar pattern to all the AT queries for one AT, the AQIA table

obtained is shown as Table 3:-

OI RI AI

0 0101 1100000000|10000

0 0010 01010

1 0010 11000

1 0100 1100000000

0 0100 1100000000

0 0001 1100

Table 3: AQIA

Decision Table based Model & its implementation for Automatic prevention of Unauthorized
Database Transactions by Trusted Database Users

9

Random Weights has already been defined for each operation type on each database

schema table e.g. as shown in Table 4

Operation Table Weight

SELECT EMPLOYEE 24

INSERT EMPLOYEE 43

UPDATE EMPLOYEE 54

DELETE EMPLOYEE 20

Table 4: Weights Table

Each query in an AT is assigned a random weight during AT identification phase.

After this phase each transaction can also be viewed as a strict sequence of weights.

3.2 TQSAA (Transaction Query Sequence Analyzer

Array)

TQSAA (Transaction Query Sequence Analyzer Array) stores the sequence of queries

in ATs in the form of weights. Thus a TQSAA can look like

 24 56 71 43 32 53

TQSAA

Where all numeric values are the weights of queries at serial number 1 to 6.

An algorithm has also been proposed based on query weights to keep a check over

UTs and identify ATs. This algorithm is presented in next section.

Decision Table based Model & its implementation for Automatic prevention of Unauthorized
Database Transactions by Trusted Database Users

10

3.3 QWA (Query Weight Analysis) Algorithm

In this algorithm, there is a Hashed Query Weight Counter, Hash functions &

Weighted Queries. Hashed Query Weight Counter is initialized with all zero bits.

Each query in an AT has already been assigned a random weight during AT

identification phase. A particular number of Hash functions are applied one by one to

each query weight of AT. The corresponding hashed values are obtained and the

obtained hashed value‟th bit in Hashed Query Weight Counter is incremented. After

applying all query weights, the counter reaches a particular value. This is called as

Transaction Weight.

Suppose the counter is initialized as

0 0 0 0 0

The Hash functions used are:

H1(x) = x % 5

H2(x) = (2x + 5) % 5

The query weights for the selected queries in an AT taken above for example are

24, 56, 71, 43, 32, 53

Applying 24 to H1(x) 4

Applying 24 to H2(x) 3

Hence after applying first query weight (24), the counter value becomes

0 0 0 1 1

Decision Table based Model & its implementation for Automatic prevention of Unauthorized
Database Transactions by Trusted Database Users

11

Applying 56 to H1(x) 1

Applying 56 to H2(x) 2

The counter value after applying second query weight (56) the counter value becomes

0 1 2 1 1

Applying 71 to H1(x) 1

Applying 71 to H2(x) 2

The counter value after applying second query weight (71) the counter value becomes

0 2 3 1 1

Applying 43 to H1(x) 3

Applying 43 to H2(x) 1

The counter value after applying second query weight (43) the counter value becomes

0 3 3 2 1

Applying 32 to H1(x) 2

Applying 32 to H2(x) 4

The counter value after applying second query weight (32) the counter value becomes

0 3 4 2 2

Decision Table based Model & its implementation for Automatic prevention of Unauthorized
Database Transactions by Trusted Database Users

12

Applying 53 to H1(x) 3

Applying 53 to H2(x) 1

The counter value after applying second query weight (53) the counter value becomes

0 4 4 3 2

The number of hash functions & the number of bits in counter are kept at optimal

level to achieve best output. Thus the transaction weight for AT-1 becomes as above.

Decision Table based Model & its implementation for Automatic prevention of Unauthorized
Database Transactions by Trusted Database Users

13

Chapter 4

QUAD PHASE VERIFIER

Quad-Phase Verifier is a vital component of the proposed model. This component is

responsible for accepting the real time transaction from a trusted User, check the

authorization of submitted transaction against the specified parameters and respond to

it as mentioned in the Decision Tables.

An organization can design a Decision Table suitable to their policies & standards

after discussions with Database owner, Security experts, Domain Analyzers,

Technical experts, etc. This Decision Table will pave the way for Quad Phase Verifier

usage and respond to UTs by suitable UTRs. A detailed description of Decision

Tables will be covered in next section.

Quad-Phase Verifier, as the name suggests, comprises of four verification phases.

These phases verify the submitted transaction by a user against the AT profile of that

user and declare the transaction as UT or AT.

As mentioned in the Introduction section, our model is also equipped with the feature

of "Customization in Implementation" i.e. during implementation of proposed model;

an organization is not bound to use all the verification phases of Quad-Phase Verifier.

The organizations can select to activate only those phases of Quad-Phase Verifier

which they think are more suitable and worthy for their organizational needs. The

Quad-Phase verifier will then suppress the unselected phases and continue to work on

selected phases only.

The four phases of Quad-Phase Verifier are:-

1. Phase-I Operator Verifier

2. Phase-II Relations/Attributes Verifier

3. Phase-III Sequence Verifier

Decision Table based Model & its implementation for Automatic prevention of Unauthorized
Database Transactions by Trusted Database Users

14

4. Phase-IV Weight Algorithm Verifier

Suppose a Trusted User submits a real time Transaction. Suppose the real time

submitted transactions‟ query are

1. SELECT FIRST_NAME from EMPLOYEES;

2. INSERT into JOB_HISTORY values ('1750',sysdate,'J1');

3. UPDATE EMPLOYEES set PHONE_NUMBER=‟111111111‟;

4. SELECT EMPLOYEE_ID from JOB_HISTORY;

5. DELETE from EMPLOYEES where EMP_ID=‟001‟;

6. SELECT JOB_ID,JOB_TITLE from JOBS;

 The queries from this transaction are parsed and needs to be verified to declare the

transaction as AT/UT.

4.1 Phase I - Operator Verifier

Phase-I is termed as the Operator Verifier phase. This phase verifies the submitted

query in terms of Operators‟ correctness. This can be achieved by using the AQIA‟s

OI array. For the example specified above, the OI array value for AT is

0 0

0 1

1 2

1 0

0 3

0 0

 OI for AT OI for Submitted Transaction

Decision Table based Model & its implementation for Automatic prevention of Unauthorized
Database Transactions by Trusted Database Users

15

Now the OI array for the real time submitted transactions‟ query is also computed.

Hence OI Array computed for this transaction is as shown in table 2. Thus OI array

value for real time submitted transactions‟ query doesn‟t match with OI Array value

of AT. Hence Phase-I will declare this submitted transaction as UT. However, if both

OI arrays would have same values then it could have been declared as AT.

4.2 Phase II – Relations/Attributes Verifier

Phase-II is termed as the Relations/Attributes Verifier phase. This phase verifies the

submitted query in terms of Relations‟ (Tables) & Attributes‟ correctness. This can be

achieved by using the AQIA‟s RI & AI array. For the example specified above, the RI

array & AI array values for AT are

0101 1100000000|10000

0010 01010

0010 11000

0100 1100000000

0100 1100000000

0001 1100

RI AI

Now the RI & AI array for the real time submitted transactions‟ query is also

computed Hence RI & AI Arrays computed for this transaction are

0100 0100000000

0010 11100

0100 0000000001

Decision Table based Model & its implementation for Automatic prevention of Unauthorized
Database Transactions by Trusted Database Users

16

0010 1000000000

0100 0000000000

0001 1100

RI AI

Thus RI & AI array value for real time submitted transactions‟ query doesn‟t match

with RI & AI Array value of AT. Hence Phase-II will declare this submitted

transaction as UT. However, if both RI & AI arrays would have same values then it

could have been declared as AT.

4.3 Phase III – Sequence Verifier

Phase-III is termed as the Sequence Verifier phase. This phase verifies the submitted

query in terms of Query Sequence correctness. This can be achieved by using the

TQSAA array. For the example specified above, the TQSAA array value for AT is

24 56 71 43 32 53

Now the TQSAA array for the real time submitted transactions‟ query is also

computed. Hence TQSAA Array value computed for this transaction is

12 29 25 43 31 53

Thus TQSAA array value for real time submitted transactions‟ query doesn‟t match

with TQSAA Array value of AT. Hence Phase-III will declare this submitted

transaction as UT. However, if both TQSAA arrays would have same values then it

could have been declared as AT.

Decision Table based Model & its implementation for Automatic prevention of Unauthorized
Database Transactions by Trusted Database Users

17

4.4 Phase IV – Weight Algorithm Verifier

Phase-IV is termed as the Weight Algorithm Verifier phase. This phase verifies the

submitted query though a Query Weight based algorithm. This can be achieved by

using the QWA array. For the example specified above, the QWA array values

computed above for AT are

0 4 4 3 2

This is ultimately the hashed value representation of query weights. Now the Query

Weight Analysis Algorithm is applied to the submitted transaction queries to declare a

transaction as UT/AT.

4.4.1 Query Weight Analysis Algorithm

QUERY_WEIGHT_ANALYSIS_ALGORITHM (ATWeight [], SubTWeight [], Hashfunctions [])

1 Load ATWeight []

2 For 0 to SubTWeight.length

3 For 0 to Hashfunctions.length

4 hashedval <-Apply Hashfunction [index] to SubTWeight [index]

5 ATWeight [hashedval] = ATWeight [hashedval]-1

6 End For;

7 End For;

8 For 0 to ATWeight.length

9 IF ATweight [index]!=0

10 Declare Transaction is UT

11 Exit

13 ENDIF

14 Declare Transaction is AT

15 End For

16 End

Suppose the user enter correct sequence of commands then how

QUERY_WEIGHT_ANALYSIS_ALGORITHM () algorithm with two hash

functions will identify it is shown below.

 ATWeight Loaded

Decision Table based Model & its implementation for Automatic prevention of Unauthorized
Database Transactions by Trusted Database Users

18

0 4 4 3 2

Use 12: 0 0 1 0 1

AT Weight

0 4 3 3 1

Use 29: 0 0 0 1 1

AT Weight

0 4 3 2 0

Use 25: 2 0 0 0 0

AT Weight

-2 4 3 2 0

Use 43: 0 1 0 1 0

AT Weight

-2 3 3 1 0

Use 31: 0 1 1 0 0

AT Weight

-2 2 2 1 0

Use 53: 0 1 0 1 0

Decision Table based Model & its implementation for Automatic prevention of Unauthorized
Database Transactions by Trusted Database Users

19

AT Weight

-2 1 2 0 0

At the end of Algorithm, if all the values of ATWeight array become zero, then it

signifies that the submitted transaction is AT. But if, the ATWeight array is non zero,

then the transaction is UT.

Decision Table based Model & its implementation for Automatic prevention of Unauthorized
Database Transactions by Trusted Database Users

20

Chapter 5

Decision Table

5.1 Background

A Decision table is basically a four quadrant structure

Conditions Condition Alternatives

Actions Action Entries

Each decision corresponds to a variable, relation or predicate whose possible values

are listed among the condition alternatives. Each action is a procedure or operation to

perform, and the entries specify whether (or in what order) the action is to be

performed for the set of condition Many decision tables include in their condition

alternatives the don't care symbol, a hyphen. Using don't cares can simplify decision

tables, especially when a given condition has little influence on the actions to be

performed alternatives the entry corresponds to. Decision Table works like an

instructor in the proposed model. This Decision Table works like an Instruction Sheet

to guide our model how to deal the real time submitted transaction queries.

5.2 Decision Table based Model

http://en.wikipedia.org/wiki/Don%27t-care_term

Decision Table based Model & its implementation for Automatic prevention of Unauthorized
Database Transactions by Trusted Database Users

21

As discussed above, the Quad-Phase Verifier consists of four phases that can be

applied together, individually or in any combination to declare a submitted transaction

as AT/UT. As mentioned in the Introduction section, our model is equipped with the

feature of "Customization in Implementation" i.e. during implementation of proposed

model, an organization is not bound to use all the verification phases of Quad-Phase

Verifier. The organizations can select any combination of those phases of Quad-Phase

Verifier which they think are more suitable and worthy for their organizational needs.

The Quad-Phase verifier will then suppress the unselected phases and continue to

work on selected phases only.

Our model proposes use of two decision tables-

1. Decision Table 1 demonstrated as Fig2 indicates which array values to be

computed for real time submitted transaction queries & compared with AT Arrays

values based on the selected combination of phases of Quad-Phase verifier.

2. Decision Table 2 demonstrated as Fig3 indicates what response to be generated

(UTR or some other) based on the result of comparison of various array values of

real time submitted transaction with AT arrays values.

The use of Decision tables is the basis of high performance of this model. In the

absence of these decision tables, all the array values for real time submitted

transaction queries would have been computed, and then according to the selected

phases the required array values would be compared with AT array values and a

customized message for different types of results to be generated as response by the

system. All these activities would have been completed dynamically (at run time).

However, with the use of decision tables, first we have static guidance available that

for a selected combination of phases, which array values to be computed and

compared. Thus no need to compute all array values. Second, we have static guidance

available that what response action to be taken for what phase and what comparison

result. The use of static decision tables instead of Dynamic computation proves

greatly time and cost effective in nature.

Decision Tables 1 & 2 are shown on next page. Decision Table 1 has four conditions

about selection of Verifier Phases. There are five actions specified in the table. Each

combination of condition values (True or False) result in zero or more actions from

Decision Table based Model & its implementation for Automatic prevention of Unauthorized
Database Transactions by Trusted Database Users

22

the action list e.g. If condition values are FFFF i.e. no phase is selected then no action

will be performed. If condition values are FTTT i.e. Phase I, II & III are selected and

Phase IV not selected then action 1, 2, 3 & 4 will be performed and so on.

The output of Decision Table 1 is fed as input to the Decision Table 2. The output of

Decision Table 1 will be a five bit value which indicates the Selected actions of

Decision Table 1 e.g. If condition values for Decision Table 1 are FTTT i.e. Phase I,

II & III are selected and Phase IV not selected then action 1, 2, 3 & 4 will be

performed and the result obtained from Actions values will be like a bit stream as

shown

* * * * -

This bit stream has first four bits as * and fifth bit as „-„. The „-„ indicates “don‟t care”

and the „*‟ indicates that this bit needs to be considered. This bit stream is the input to

Decision Table 2.

Decision Table 2 has five conditions about selection of bits in the bit stream obtained

from Decision Table 1. There are twelve actions specified in the table. Each

combination of condition values (True or False) result in one or more actions from the

action list e.g. If the bit stream obtained from decision table 1 is

-**--

Decision Table based Model & its implementation for Automatic prevention of Unauthorized
Database Transactions by Trusted Database Users

23

Fig 2. Decision Table 1

Fig 3. Decision Table 2

Decision Table based Model & its implementation for Automatic prevention of Unauthorized
Database Transactions by Trusted Database Users

24

It means bit 2 and 3 are * (to be considered) and bit 1, 4, 5 are – (don‟t care).

Referring the Decision Table 2 for the bit stream mentioned, the values of * bit values

are to be considered. Bit 2 and Bit 3 are * and there are four possible combinations of

bit2 & bit 3 i.e. FF, FT, TF, TT. These are shown in Condition values of Decision

Table 2 for bit stream -**--. Depending on the value of these bits, the particular

actions from the Action list can be selected e.g. If the bit values are TT for bit stream -

**--, then it means that RI & AI arrays have been matched perfectly for the Real time

submitted transaction with that of AT, hence the action taken selected from the Action

List of Decision Table 2 are

 Declare Transaction as AT

 Declare AI Phase as successful.

 Declare RI Phase as successful

Thus at the end of Decision Table 2, it can be stated whether Real time submitted

transaction is AT/UT based on success of which phases verification.

Decision Table based Model & its implementation for Automatic prevention of Unauthorized
Database Transactions by Trusted Database Users

25

Chapter 6

Oracle-J2EE Implementation

6.1 Enabling Database Audit setup

We have implemented the proposed model using Oracle DBMS, integrated with a

J2EE based application. During the implementation, our audience has been given the

choice of selecting the Quad-Phase Verifier phases.

Auditing is a default feature of the Oracle RDBMS. Auditing is disabled by default,

but can be enabled by setting the AUDIT_TRAIL static parameter.

The system table which keeps the Audit records is “DBA_AUDIT_TRAIL”.

To enable auditing and direct audit records to the database audit trail, the commands

executed are:

SQL> ALTER SYSTEM SET audit_trail=db SCOPE=SPFILE;

System altered.

SQL> SHUTDOWN

Database closed.

Database dismounted.

ORACLE instance shut down.

SQL> STARTUP

ORACLE instance started.

Total System Global Area 289406976 bytes

Decision Table based Model & its implementation for Automatic prevention of Unauthorized
Database Transactions by Trusted Database Users

26

Fixed Size 1248600 bytes

Variable Size 71303848 bytes

Database Buffers 213909504 bytes

Redo Buffers 2945024 bytes

Database mounted.

Database opened.

SQL>

Suppose there are three users User1, User2, User3 created in Oracle. Now we need to

Audit all DMLs (SELECT, INSERT, UPDATE, DELETE) executed by these users.

To enable this, the commands executed are:

CONNECT sys/password AS SYSDBA

SQL> AUDIT SELECT TABLE, UPDATE TABLE, INSERT TABLE, DELETE TABLE BY

User1 BY ACCESS;

SQL> AUDIT SELECT TABLE, UPDATE TABLE, INSERT TABLE, DELETE TABLE BY

User2 BY ACCESS;

SQL> AUDIT SELECT TABLE, UPDATE TABLE, INSERT TABLE, DELETE TABLE BY

User3 BY ACCESS;

Now all the DML activities performed by Users User1, User2 and User3 will be

audited and recorded in table DBA_AUDIT_TRAIL.

6.2 TQLC Implementation

TQLC (Transaction Query Log Crawler) utility is implemented using SQL

queries executed through a JDBC connection from the J2EE Application. These

queries perform a SELECT over DBA_AUDIT_TRAIL tables for the specified

user and analyze them over different transaction ids.

CONNECT sys/password AS SYSDBA

SQL> SELECT OPERATIONTYPE, SQLTEXT, OBJECT, TRANSACTIONID FROM

DBA_AUDIT_TRAIL WHERE USERNAME=’USER1’ ORDER BY TRANSACTIONID;

Decision Table based Model & its implementation for Automatic prevention of Unauthorized
Database Transactions by Trusted Database Users

27

SQL> SELECT OPERATIONTYPE, SQLTEXT, OBJECT, TRANSACTIONID FROM

DBA_AUDIT_TRAIL WHERE USERNAME=’USER2’ ORDER BY TRANSACTIONID;

SQL> SELECT OPERATIONTYPE, SQLTEXT, OBJECT, TRANSACTIONID FROM

DBA_AUDIT_TRAIL WHERE USERNAME=’USER3’ ORDER BY TRANSACTIONID;

6.3 AQIA Implementation

AT store entries are created by the output analysis of these queries. For each AT

store entry, the TQIA [OI, RI, AI] & TQSAA needs to be evaluated. OI array is

computed by using OPERATIONTYPE attribute of AT store entry. For RI & AI,

the total number of tables in the schema and total number of attributes in that

table needs to be known. Following query is executed for this:

CONNECT sys/password AS SYSDBA

SQL> SELECT table_name FROM dba_tables where owner=’USER1’;

SQL> SELECT table_name FROM dba_tables where owner=’USER2’;

SQL> SELECT table_name FROM dba_tables where owner=’USER3’;

For each table_name obtained, the query executed is:

SQL> SELECT count (column_name) FROM USER_TAB_COLUMNS

whereTABLE_NAME=?

A database master table is created with records inserted for each operation type

for each table in schema assigned with a random weight e.g.

SELECT EMPLOYEE 35

INSERT JOBS 54

Each AT store entry refers this table to create TQSAA array and QWA weights

Array. The initial setup activities are completed now.

For evaluation of the proposed model and its implementation, a user specified

number of random transactions is generated automatically through different

combinations of Operators & Tables for different users. The user selects which

phases of Quad-Phase verifier to be used. The decision table1 is referred

accordingly and corresponding Arrays values are computed for each random

Decision Table based Model & its implementation for Automatic prevention of Unauthorized
Database Transactions by Trusted Database Users

28

generated transaction and matched with array values of AT computed during

setup. The output of decision table 1 is referred to decision table 2 & final action

is performed.

Decision tables are referred twice for each transaction. For optimal performance,

Decision tables are made as Static Java Classes. These are loaded in memory

once on start up and will be referred directly from there for every instance.

Decision Table based Model & its implementation for Automatic prevention of Unauthorized
Database Transactions by Trusted Database Users

29

Chapter 7

Experimental Evaluation

The efficiency of our model can be characterized by following measures:

 Decision Table Reference Time (Time taken to refer decision table 1 + decision

table 2 and generating final response) depicted in Fig 4.

 False Negatives (number of UTs identified as AT) depicted in Fig 5, 6, 7, 8

 Coverage (number of UTs detected * 100 / number of UTs submitted) depicted in

Fig 9

 For experimental evaluation, 1000 random dummy transactions are generated

automatically and above mentioned parameters are calculated and a graphical

comparison and evaluation is done.

7.1 Decision Table Reference Time

Fig 4 Decision Table Reference Time Vs No. of Phases

Decision Table based Model & its implementation for Automatic prevention of Unauthorized
Database Transactions by Trusted Database Users

30

7.2 False Negatives

7.2.1 False Negatives % Vs Single Phases

selection

Fig 5 False Negatives % Vs Single Phases selection

7.2.2 False Negatives % Vs Double Phases

selection

Fig 6 False Negatives % Vs Double Phases selection

Decision Table based Model & its implementation for Automatic prevention of Unauthorized
Database Transactions by Trusted Database Users

31

7.2.3 False Negatives % Vs Triple Phases

selection

Fig 7 False Negatives % Vs Triple Phases selection

7.2.4 False Negatives % Vs Quad Phases

selection

Fig 8 False Negatives % Vs Quad Phases selection

Decision Table based Model & its implementation for Automatic prevention of Unauthorized
Database Transactions by Trusted Database Users

32

7.3 Coverage

Fig 9 Coverage Vs Quad Phases phase selection

Decision Table based Model & its implementation for Automatic prevention of Unauthorized
Database Transactions by Trusted Database Users

33

Chapter 8

Conclusion and Future Work

8.1 Conclusion

In this thesis, we have demonstrated the design and implementation of a Decision

Table based model for automatic prevention of Unauthorized Database Transactions

by trusted Database users. The model is implemented using J2EE & Oracle RDBMS.

We have developed an application interface for the audience to interact and evaluate

our system. Based

on the experimental evaluation done in the previous section, it has been concluded

that the Decision Table Reference Time is directly proportional to the number of

phases. The results show that 99% of the UTs can be detected and responded if best

combination of Quad Phase Verifier Phases is selected. Also the False Negatives (no.

of UTs identified as ATs) can be kept close to 0.2% if all the four phases of Verifier

are used. False Negatives can be kept between 3 to 8% by selected combinations of 2

to 3 phases also. Thus, organizations implementing the solution can implement with

those combinations also thereby reducing the Decision Table Reference Time &

computation involved.

8.2 Scope for future work

As future work, extension of this model to handle DDL statements is planned.

Another complementary area for future research is to enable this model for handling

multiple joins, sub-queries, decode etc enable queries by assigning suitable weights

for every component.

Decision Table based Model & its implementation for Automatic prevention of Unauthorized
Database Transactions by Trusted Database Users

34

References

[1] Marco Vieira and Henrique Madeira, “Detection of Malicious Transactions in

DBMS”, IEEE Proceedings- 11th Pacific Rim International Symposium on

Dependable Computing, Dec 12-14, 2005.

[2] S. Y. Lee, W. L. Low, and P. Y. Wong. Learning fingerprints for a database

intrusion detection system. In Proceedings of the 7th European Symposium on

Research in Computer Security, ESORICS ‟02, pages 264–280, London, UK, UK,

2002. Springer-Verlag.

[3] S. Mathew, M. Petropoulos, H. Q. Ngo, and S. Upadhyaya. A data-centric

approach to insider attack detection in database systems. In Proceedings of the 13th

international conference on Recent advances in intrusion detection, RAID‟10, pages

382–401, Berlin, Heidelberg, 2010. Springer-Verlag.

[4] E. Bertino. Data Protection from Insider Threats. Synthesis Lectures on Data

Management. Morgan & Claypool Publishers, 2012

[5] Navin Kumar Tyagi and A.K. Solanki, “Prediction of Users Behavior through

Correlation Rules”, (IJACSA) International Journal of Advanced Computer Science

and Applications, Vol. 2, No. 9, 2011.

[6] L.K.J. Grace, V. Maheshwari, D. Nagamalai “Analysis of web logs and web user

in web mining” International journal of Network Security & its

Applications(IJNSA),Vol.3,No1.January(2011).

[7] Mike Dean, “All About Oracle Auditing – A White Paper”, February 2013

[8] Ashish Kamra, Evimaria Terzi, Elisa Bertino, “Detecting anomalous access

patterns in relational databases” The VLDB Journal Springer-Verlag 2007.

Decision Table based Model & its implementation for Automatic prevention of Unauthorized
Database Transactions by Trusted Database Users

35

Publications from the Work

A research paper titled as “Decision Table based Model & its implementation for

Automatic prevention of Unauthorized Database Transactions by Trusted Database

Users” has been accepted and published in IJESIT (International Journal of

Engineering Science and Innovative Technology) ISSN: 2319-5967 Journal Vol.3

Issue 3 May 2014 with paper-id IJESIT1909201403_1773.

Decision Table based Model & its implementation for Automatic prevention of Unauthorized
Database Transactions by Trusted Database Users

36

APPENDIX-I Source Code

1. QueryCrawler.java

package files;

import java.sql.ResultSet;

import java.util.ArrayList;

 public class QueryCrawler {

public ArrayList qaia(ArrayList arr,String username)

{

//ArrayList qaia=new ArrayList();

ArrayList retarr=new ArrayList();

DBConnection dbcon=new DBConnection();

try{

String query="";

dbcon.openConnection();

for(int j=0; j<6;j++)

{

ArrayList qaia=new ArrayList();

query="select upper(column_name) from all_tab_columns where

owner='"+username+"' and

table_name='"+((CommonBean)arr.get(j)).getField3().toString()+"'"

+ " order by column_id";

System.out.println(query);

ResultSet rs1=dbcon.select(query);

int i=0;

while(rs1.next())

{

i++;

qaia.add(rs1.getString(1)!=null?rs1.getString(1):"");

Decision Table based Model & its implementation for Automatic prevention of Unauthorized
Database Transactions by Trusted Database Users

37

}

int[] result=new int[i];

String querytxt=((CommonBean)arr.get(j)).getField2().toString().toUpperCase();

String attributetxt="";

String[] attributearray=null;

if(querytxt.startsWith("SELECT"))

{

attributetxt=(querytxt.substring(6,querytxt.indexOf("FROM"))).trim();

attributearray=attributetxt.split(",");

}

else if(querytxt.startsWith("INSERT"))

{

attributetxt=(querytxt.substring(querytxt.indexOf("(")+1,querytxt.indexOf(")"))).trim(

);

attributearray=attributetxt.split(",");

}

else if(querytxt.startsWith("UPDATE"))

{

attributetxt=(querytxt.substring(querytxt.indexOf("SET")+4,querytxt.indexOf("WHE

RE"))).trim();

attributearray=attributetxt.split(",");

}

System.out.println("attribute array length is :"+attributearray.length);

for(int l=0;l<attributearray.length;l++)

{

System.out.println("------"+attributearray[l]);

for(int k=0;k<qaia.size();k++)

{

result[k]+=(attributearray[l]).equals(qaia.get(k).toString())?1:0;

//System.out.println("k loop is :"+k);

}

}

retarr.add(result);

Decision Table based Model & its implementation for Automatic prevention of Unauthorized
Database Transactions by Trusted Database Users

38

}

// System.out.println("size of retarr is :"+retarr.size());

}

catch(Exception e)

{

e.printStackTrace();

}

finally

{

dbcon.closeConnection();

}

return retarr;

}

public ArrayList qria(ArrayList arr,String username)

{

ArrayList qria=new ArrayList();

ArrayList retarr=new ArrayList();

DBConnection dbcon=new DBConnection();

try{

String query="";

dbcon.openConnection();

query="select table_name from all_tables where owner='"+username+"' order by

rownum";

System.out.println(query);

ResultSet rs1=dbcon.select(query);

int i=0;

while(rs1.next())

{

i++;

qria.add(rs1.getString(1)!=null?rs1.getString(1):"");

}

Decision Table based Model & its implementation for Automatic prevention of Unauthorized
Database Transactions by Trusted Database Users

39

for(int j=0; j<6;j++)

{

int[] result=new int[i];

for(int k=0;k<qria.size();k++)

{

result[k]+=(((CommonBean)arr.get(j)).getField3().toString()).equals(qria.get(k).toStri

ng())?1:0;

}

retarr.add(result);

}

}

catch(Exception e)

{

e.printStackTrace();

}

finally

{

dbcon.closeConnection();

}

return retarr;

}

public ArrayList qoia(ArrayList arr)

{

ArrayList qoia=new ArrayList();

DBConnection dbcon=new DBConnection();

try{

String query="";

dbcon.openConnection();

for(int i=0; i<6;i++)

{

Decision Table based Model & its implementation for Automatic prevention of Unauthorized
Database Transactions by Trusted Database Users

40

query="SELECT

DECODE('"+((CommonBean)arr.get(i)).getField1()+"','SELECT','1','INSERT','2','UP

DATE','3','DELETE','4','0') from dual";

System.out.println(query);

ResultSet rs1=dbcon.select(query);

if(rs1.next())

{

qoia.add(rs1.getString(1)!=null?rs1.getString(1):"");

}

}

//transactionlist.add(queries);

}

catch(Exception e)

{

e.printStackTrace();

}

finally

{

dbcon.closeConnection();

}

return qoia;

}

public ArrayList startCrawler(String username)

{

String msg="";

DBConnection dbcon=new DBConnection();

ArrayList transactionlist=new ArrayList();

ArrayList queries=new ArrayList();

try{

String query="";

if("USER1".equals(username))

{

Decision Table based Model & its implementation for Automatic prevention of Unauthorized
Database Transactions by Trusted Database Users

41

DBConnectionUser1 dbconuser1=new DBConnectionUser1();

dbconuser1.openConnection();

query="SELECT JOB_ID,JOB_TITLE FROM JOBS";

dbconuser1.select(query);

dbconuser1.commit();

query=" SELECT

EMPLOYEE_ID,FIRST_NAME,LAST_NAME,EMAIL,PHONE_NUMBER,HIRE_

DATE,JOB_ID FROM EMPLOYEES";

dbconuser1.select(query);

dbconuser1.commit();

query=" INSERT INTO

EMPLOYEES(EMPLOYEE_ID,FIRST_NAME,LAST_NAME,EMAIL,PHONE_N

UMBER,HIRE_DATE,JOB_ID) VALUES

('1750','Rohit','Jain','xyz@gmail.com','111111',sysdate,'J1')";

dbconuser1.insert(query);

dbconuser1.commit();

query="INSERT INTO JOB_HISTORY(EMPLOYEE_ID,START_DATE,JOB_ID)

VALUES ('1750',sysdate,'J1')";

dbconuser1.insert(query);

dbconuser1.commit();

query="SELECT EMPLOYEE_ID,START_DATE,JOB_ID FROM

JOB_HISTORY";

dbconuser1.select(query);

dbconuser1.commit();

query=" SELECT

EMPLOYEE_ID,FIRST_NAME,LAST_NAME,EMAIL,PHONE_NUMBER,HIRE_

DATE,JOB_ID FROM EMPLOYEES";

dbconuser1.select(query);

dbconuser1.commit();

dbconuser1.closeConnection();

}

else if("USER2".equals(username))

{

Decision Table based Model & its implementation for Automatic prevention of Unauthorized
Database Transactions by Trusted Database Users

42

DBConnectionUser2 dbconuser2=new DBConnectionUser2();

dbconuser2.openConnection();

query="SELECT

EMPLOYEE_ID,FIRST_NAME,LAST_NAME,EMAIL,PHONE_NUMBER,HIRE_

DATE,JOB_ID FROM EMPLOYEES";

dbconuser2.select(query);

query=" SELECT

DEPARTMENT_ID,DEPARTMENT_NAME,MANAGER_ID,LOCATION_ID

FROM DEPARTMENTS";

dbconuser2.select(query);

query=" UPDATE EMPLOYEES SET

SALARY='50000',MANAGER_ID='46',DEPARTMENT_ID='D1' WHERE

EMPLOYEE_ID='1750'";

dbconuser2.update(query);

query="SELECT

EMPLOYEE_ID,FIRST_NAME,LAST_NAME,EMAIL,PHONE_NUMBER,HIRE_

DATE,JOB_ID FROM EMPLOYEES";

dbconuser2.select(query);

query="UPDATE JOB_HISTORY SET DEPARTMENT_ID='D1' WHERE

EMPLOYEE_ID='1750'";

dbconuser2.update(query);

query=" SELECT EMPLOYEE_ID,START_DATE,JOB_ID,DEPARTMENT_ID

FROM JOB_HISTORY";

dbconuser2.select(query);

dbconuser2.commit();

dbconuser2.closeConnection();

}

else

{

DBConnectionUser3 dbconuser3=new DBConnectionUser3();

dbconuser3.openConnection();

Decision Table based Model & its implementation for Automatic prevention of Unauthorized
Database Transactions by Trusted Database Users

43

query="SELECT

DEPARTMENT_ID,DEPARTMENT_NAME,MANAGER_ID,LOCATION_ID

FROM DEPARTMENTS";

dbconuser3.select(query);

query=" SELECT

EMPLOYEE_ID,FIRST_NAME,LAST_NAME,EMAIL,PHONE_NUMBER,HIRE_

DATE,JOB_ID,SALARY,MANAGER_ID, department_id FROM EMPLOYEES";

dbconuser3.select(query);

query="SELECT JOB_ID,JOB_TITLE, min_salary, max_salary FROM JOBS";

dbconuser3.select(query);

query="UPDate jobs set min_salary='20000', max_salary='50000' where job_id='J1'";

dbconuser3.update(query);

query="SELECT JOB_ID,JOB_TITLE, min_salary, max_salary FROM JOBS";

dbconuser3.select(query);

query=" SELECT EMPLOYEE_ID,START_DATE, end_date, job_id, department_id

FROM JOB_HISTORY";

dbconuser3.select(query);

dbconuser3.commit();

dbconuser3.closeConnection();

}

dbcon.openConnection();

CommonBean bn=null;

/*query="SELECT distinct transactionid,session_id FROM

DBA_COMMON_AUDIT_TRAIL where db_user='"+username+"' ORDER BY

session_id desc";

System.out.println(query);

ResultSet rs=dbcon.select(query);

int i=0;

ArrayList arr=new ArrayList();

while(rs.next() && i<5)

{

arr.add(rs.getString(1)!=null?rs.getString(1):"");

i++;

Decision Table based Model & its implementation for Automatic prevention of Unauthorized
Database Transactions by Trusted Database Users

44

}

for(int j=0;j<arr.size();j++){*/

query="SELECT max(statement_type),max(sql_text), max(object_name) FROM

DBA_COMMON_AUDIT_TRAIL where object_schema='"+username+"' and"

+ " statement_type in ('SELECT','UPDATE','INSERT','DELETE') group by

extended_timestamp,SCN ORDER BY extended_timestamp desc,SCN DESC";

System.out.println(query);

ResultSet rs1=dbcon.select(query);

int i=0;

while(rs1.next() && i<30)

{

bn=new CommonBean();

bn.setField1(rs1.getString(1)!=null?rs1.getString(1):"");

bn.setField2(rs1.getString(2)!=null?rs1.getString(2):"");

bn.setField3(rs1.getString(3)!=null?rs1.getString(3):"");

queries.add(bn);

i++;

}

//transactionlist.add(queries);

}

catch(Exception e)

{

e.printStackTrace();

}

finally

{

dbcon.closeConnection();

}

return queries;

}

}

Decision Table based Model & its implementation for Automatic prevention of Unauthorized
Database Transactions by Trusted Database Users

45

2. BusinessLogic.java

package files;

import java.sql.ResultSet;

import java.util.ArrayList;

public class BusinessLogic {

public ArrayList graphcoveragehashfunction(int hashfunctionno)

{

String msg="";

String tid="1";

ArrayList arr=new ArrayList();

DBConnection db=null;

try{

db=new DBConnection();

db.openConnection();

String selquery="";

for(int i=4;i<10;i++)

{

selquery="select floor(((select count(*) from mstdummytransaction)-(select

count(*) from mstfalsenegatives where nvl(falsenegatives,'Y')='Y' "

+ "and counterbits="+i+" and hashfunctionno="+hashfunctionno+"))/(select count(*)

from mstdummytransaction) *100) from dual";

System.out.println(selquery);

ResultSet rs=db.select(selquery);

String query="";

if(rs.next())

{

arr.add(rs.getString(1)!=null?rs.getString(1):"0");

}

}

msg="Success";

Decision Table based Model & its implementation for Automatic prevention of Unauthorized
Database Transactions by Trusted Database Users

46

}

catch(Exception e)

{

e.printStackTrace();

}

finally

{

db.closeConnection();

}

return arr;

}

public ArrayList grapharrhashfunction(int hashfunctionno)

{

String msg="";

String tid="1";

ArrayList arr=new ArrayList();

DBConnection db=null;

try{

db=new DBConnection();

db.openConnection();

String selquery="";

for(int i=4;i<10;i++)

{

selquery=" select floor((select count(*) from mstfalsenegatives where

nvl(falsenegatives,'Y')='Y' and counterbits="+i+" and

hashfunctionno="+hashfunctionno+")/"

+ " (select count(*) from mstdummytransaction) *100) from dual";

System.out.println(selquery);

ResultSet rs=db.select(selquery);

String query="";

if(rs.next())

{

Decision Table based Model & its implementation for Automatic prevention of Unauthorized
Database Transactions by Trusted Database Users

47

arr.add(rs.getString(1)!=null?rs.getString(1):"0");

}

}

msg="Success";

}

catch(Exception e)

{

e.printStackTrace();

}

finally

{

db.closeConnection();

}

return arr;

}

public ArrayList grapharrbit(int bits)

{

String msg="";

String tid="1";

ArrayList arr=new ArrayList();

DBConnection db=null;

try{

db=new DBConnection();

db.openConnection();

String selquery="";

for(int i=1;i<10;i++)

{

selquery=" select floor((select count(*) from mstfalsenegatives where

nvl(falsenegatives,'Y')='Y' and counterbits="+bits+" and hashfunctionno="+i+")/"

+ " (select count(*) from mstdummytransaction) *100) from dual";

System.out.println(selquery);

ResultSet rs=db.select(selquery);

Decision Table based Model & its implementation for Automatic prevention of Unauthorized
Database Transactions by Trusted Database Users

48

String query="";

if(rs.next())

{

arr.add(rs.getString(1)!=null?rs.getString(1):"0");

}

}

msg="Success";

}

catch(Exception e)

{

e.printStackTrace();

}

finally

{

db.closeConnection();

}

return arr;

}

public String updatefalsenegatives()

{

String msg="";

String tid="1";

ArrayList arr=new ArrayList();

DBConnection db=null;

try{

db=new DBConnection();

db.openConnection();

String selquery=" select b.transactionid from msttransaction a, (select

transactionid,QUERYID,QUERYID1,QUERYID2,QUERYID3,QUERYID4,QUERY

ID5"

+ " from mstdummytransaction where transactionid in (select distinct

DUMMYTRANSACTIONID from mstfalsenegatives)) b"

Decision Table based Model & its implementation for Automatic prevention of Unauthorized
Database Transactions by Trusted Database Users

49

+ " where a.queryid=b.queryid and a.queryid1=b.queryid1 and

a.queryid2=b.queryid2 and a.queryid3=b.queryid3"

+ " and a.queryid4=b.queryid4 and a.queryid5=b.queryid5";

System.out.println(selquery);

ResultSet rs=db.select(selquery);

String query="";

while(rs.next())

{

arr.add(rs.getString(1)!=null?rs.getString(1):"");

}

for(int i=0;i<arr.size();i++)

{

query="update MSTFALSENEGATIVES set FALSENEGATIVES='N' "

+ " where DUMMYtransactionid='"+arr.get(i).toString()+"'";

System.out.println(query);

db.update(query);

}

db.commit();

msg="Success";

}

catch(Exception e)

{

e.printStackTrace();

}

finally

{

db.closeConnection();

}

return msg;

}

public ArrayList getOriginalTransactionAllhashfunctionscounterArray()

{

Decision Table based Model & its implementation for Automatic prevention of Unauthorized
Database Transactions by Trusted Database Users

50

ArrayList resultarr=new ArrayList();

DBConnection db=null;

ArrayList arr=new ArrayList();

CommonBean bn=null;

try{

db=new DBConnection();

db.openConnection();

String selquery="select a.queryid,(select operatorid||' '||tablename from mstquery

where queryid=a.queryid),"

+ "(select weight from mstquery where queryid=a.queryid), "

+ "a.queryid1,(select operatorid||' '||tablename from mstquery where

queryid=a.queryid1),"

+ "(select weight from mstquery where queryid=a.queryid1),"

+ "a.queryid2,(select operatorid||' '||tablename from mstquery where

queryid=a.queryid2),"

+ "(select weight from mstquery where queryid=a.queryid2),"

+ "a.queryid3,(select operatorid||' '||tablename from mstquery where

queryid=a.queryid3),"

+ "(select weight from mstquery where queryid=a.queryid3),"

+ "a.queryid4,(select operatorid||' '||tablename from mstquery where

queryid=a.queryid4),"

+ "(select weight from mstquery where queryid=a.queryid4),"

+ "a.queryid5,(select operatorid||' '||tablename from mstquery where

queryid=a.queryid5),"

+ "(select weight from mstquery where queryid=a.queryid5) from msttransaction a ";

System.out.println(selquery);

ResultSet rs=db.select(selquery);

if(rs.next())

{

bn=new CommonBean();

bn.setField1(rs.getString(1)!=null?rs.getString(1):"");

bn.setField2(rs.getString(2)!=null?rs.getString(2):"");

bn.setField3(rs.getString(3)!=null?rs.getString(3):"");

Decision Table based Model & its implementation for Automatic prevention of Unauthorized
Database Transactions by Trusted Database Users

51

bn.setField4(rs.getString(4)!=null?rs.getString(4):"");

bn.setField5(rs.getString(5)!=null?rs.getString(5):"");

bn.setField6(rs.getString(6)!=null?rs.getString(6):"");

bn.setField7(rs.getString(7)!=null?rs.getString(7):"");

bn.setField8(rs.getString(8)!=null?rs.getString(8):"");

bn.setField9(rs.getString(9)!=null?rs.getString(9):"");

bn.setField10(rs.getString(10)!=null?rs.getString(10):"");

bn.setField11(rs.getString(11)!=null?rs.getString(11):"");

bn.setField12(rs.getString(12)!=null?rs.getString(12):"");

bn.setField13(rs.getString(13)!=null?rs.getString(13):"");

bn.setField14(rs.getString(14)!=null?rs.getString(14):"");

bn.setField15(rs.getString(15)!=null?rs.getString(15):"");

bn.setField16(rs.getString(16)!=null?rs.getString(16):"");

bn.setField17(rs.getString(17)!=null?rs.getString(17):"");

bn.setField18(rs.getString(18)!=null?rs.getString(18):"");

arr.add(bn);

}

//for counter bit 4

ArrayList hshfunccounter4=new ArrayList();

selquery="select hashfunction from msthashfunctions where countervalue=4 and

rownum<=9 ";

System.out.println(selquery);

sultSet rshashfunction4=db.select(selquery);

while(rshashfunction4.next())

{

hshfunccounter4.add(rshashfunction4.getString(1)!=null?rshashfunction4.getString(1)

:"");

}

//for counter bit 5

ArrayList hshfunccounter5=new ArrayList();

selquery="select hashfunction from msthashfunctions where countervalue=5 and

rownum<=9 ";

System.out.println(selquery);

Decision Table based Model & its implementation for Automatic prevention of Unauthorized
Database Transactions by Trusted Database Users

52

ResultSet rshashfunction5=db.select(selquery);

while(rshashfunction5.next())

{

hshfunccounter5.add(rshashfunction5.getString(1)!=null?rshashfunction5.getString(1)

:"");

}

//for counter bit 6

ArrayList hshfunccounter6=new ArrayList();

selquery="select hashfunction from msthashfunctions where countervalue=6 and

rownum<=9 ";

System.out.println(selquery);

ResultSet rshashfunction6=db.select(selquery);

while(rshashfunction6.next())

{

hshfunccounter6.add(rshashfunction6.getString(1)!=null?rshashfunction6.getString(1)

:"");

}

//for counter bit 7

ArrayList hshfunccounter7=new ArrayList();

selquery="select hashfunction from msthashfunctions where countervalue=7 and

rownum<=9 ";

System.out.println(selquery);

ResultSet rshashfunction7=db.select(selquery);

while(rshashfunction7.next())

{

hshfunccounter7.add(rshashfunction7.getString(1)!=null?rshashfunction7.getString(1)

:"");

}

//for counter bit 8

ArrayList hshfunccounter8=new ArrayList();

selquery="select hashfunction from msthashfunctions where countervalue=8 and

rownum<=9 ";

System.out.println(selquery);

Decision Table based Model & its implementation for Automatic prevention of Unauthorized
Database Transactions by Trusted Database Users

53

ResultSet rshashfunction8=db.select(selquery);

while(rshashfunction8.next())

{

hshfunccounter8.add(rshashfunction8.getString(1)!=null?rshashfunction8.getString(1)

:"");

}

//for counter bit 9

ArrayList hshfunccounter9=new ArrayList();

selquery="select hashfunction from msthashfunctions where countervalue=9 and

rownum<=9 ";

System.out.println(selquery);

ResultSet rshashfunction9=db.select(selquery);

while(rshashfunction9.next())

{

hshfunccounter9.add(rshashfunction9.getString(1)!=null?rshashfunction9.getString(1)

:"");

}

// For finding weighted hashed actual array of 4 bit counter for hash function number

1 to 9

ArrayList counterpositionafterhashingfor4bit=new ArrayList();

ArrayList counterpositionafterhashingfor5bit=new ArrayList();

ArrayList counterpositionafterhashingfor6bit=new ArrayList();

ArrayList counterpositionafterhashingfor7bit=new ArrayList();

ArrayList counterpositionafterhashingfor8bit=new ArrayList();

ArrayList counterpositionafterhashingfor9bit=new ArrayList();

String result="";

for(int i=0;i<arr.size();i=i+1) {

//dummycurrhashedvals="";

bn=(CommonBean)arr.get(i);

//for 4 bit counter

int array[]=new int[4];

for(int j=0;j<hshfunccounter4.size();j=j+1) {

String hashfunction=hshfunccounter4.get(j).toString().replace("x",bn.getField3());

Decision Table based Model & its implementation for Automatic prevention of Unauthorized
Database Transactions by Trusted Database Users

54

selquery="select "+hashfunction+" from dual";

System.out.println(selquery);

ResultSet rshashvalue=db.select(selquery);

if(rshashvalue.next())

{

result=rshashvalue.getString(1)!=null?rshashvalue.getString(1):"";

}

array[Integer.parseInt(result)]=array[Integer.parseInt(result)]+1;

hashfunction=hshfunccounter4.get(j).toString().replace("x",bn.getField6());

selquery="select "+hashfunction+" from dual";

System.out.println(selquery);

ResultSet rshashvalue1=db.select(selquery);

if(rshashvalue1.next())

{

result=rshashvalue1.getString(1)!=null?rshashvalue1.getString(1):"";

}

array[Integer.parseInt(result)]=array[Integer.parseInt(result)]+1;

hashfunction=hshfunccounter4.get(j).toString().replace("x",bn.getField9());

selquery="select "+hashfunction+" from dual";

System.out.println(selquery);

ResultSet rshashvalue2=db.select(selquery);

if(rshashvalue2.next())

{

result=rshashvalue2.getString(1)!=null?rshashvalue2.getString(1):"";

}

array[Integer.parseInt(result)]=array[Integer.parseInt(result)]+1;

hashfunction=hshfunccounter4.get(j).toString().replace("x",bn.getField12());

selquery="select "+hashfunction+" from dual";

System.out.println(selquery);

ResultSet rshashvalue3=db.select(selquery);

if(rshashvalue3.next())

{

result=rshashvalue3.getString(1)!=null?rshashvalue3.getString(1):"";

Decision Table based Model & its implementation for Automatic prevention of Unauthorized
Database Transactions by Trusted Database Users

55

}

array[Integer.parseInt(result)]=array[Integer.parseInt(result)]+1;

hashfunction=hshfunccounter4.get(j).toString().replace("x",bn.getField15());

selquery="select "+hashfunction+" from dual";

System.out.println(selquery);

ResultSet rshashvalue4=db.select(selquery);

if(rshashvalue4.next())

{

result=rshashvalue4.getString(1)!=null?rshashvalue4.getString(1):"";

}

array[Integer.parseInt(result)]=array[Integer.parseInt(result)]+1;

hashfunction=hshfunccounter4.get(j).toString().replace("x",bn.getField18());

selquery="select "+hashfunction+" from dual";

System.out.println(selquery);

ResultSet rshashvalue5=db.select(selquery);

if(rshashvalue5.next())

{

result=rshashvalue5.getString(1)!=null?rshashvalue5.getString(1):"";

}

array[Integer.parseInt(result)]=array[Integer.parseInt(result)]+1;

int ar[]=new int[4];

for(int m=0;m<4;m++)

{

ar[m]=array[m];

}

counterpositionafterhashingfor4bit.add(ar);

}

// For 5 bit counter

int array1[]=new int[5];

for(int j=0;j<hshfunccounter5.size();j=j+1) {

String hashfunction=hshfunccounter5.get(j).toString().replace("x",bn.getField3());

selquery="select "+hashfunction+" from dual";

System.out.println(selquery);

Decision Table based Model & its implementation for Automatic prevention of Unauthorized
Database Transactions by Trusted Database Users

56

ResultSet rshashvalue5_0=db.select(selquery);

if(rshashvalue5_0.next())

{

result=rshashvalue5_0.getString(1)!=null?rshashvalue5_0.getString(1):"";

}

array1[Integer.parseInt(result)]=array1[Integer.parseInt(result)]+1;

hashfunction=hshfunccounter5.get(j).toString().replace("x",bn.getField6());

selquery="select "+hashfunction+" from dual";

System.out.println(selquery);

ResultSet rshashvalue5_1=db.select(selquery);

if(rshashvalue5_1.next())

{

result=rshashvalue5_1.getString(1)!=null?rshashvalue5_1.getString(1):"";

}

array1[Integer.parseInt(result)]=array1[Integer.parseInt(result)]+1;

hashfunction=hshfunccounter5.get(j).toString().replace("x",bn.getField9());

selquery="select "+hashfunction+" from dual";

System.out.println(selquery);

ResultSet rshashvalue5_2=db.select(selquery);

if(rshashvalue5_2.next())

{

result=rshashvalue5_2.getString(1)!=null?rshashvalue5_2.getString(1):"";

}

array1[Integer.parseInt(result)]=array1[Integer.parseInt(result)]+1;

hashfunction=hshfunccounter5.get(j).toString().replace("x",bn.getField12());

selquery="select "+hashfunction+" from dual";

System.out.println(selquery);

ResultSet rshashvalue5_3=db.select(selquery);

if(rshashvalue5_3.next())

{

result=rshashvalue5_3.getString(1)!=null?rshashvalue5_3.getString(1):"";

}

array1[Integer.parseInt(result)]=array1[Integer.parseInt(result)]+1;

Decision Table based Model & its implementation for Automatic prevention of Unauthorized
Database Transactions by Trusted Database Users

57

hashfunction=hshfunccounter5.get(j).toString().replace("x",bn.getField15());

selquery="select "+hashfunction+" from dual";

System.out.println(selquery);

ResultSet rshashvalue5_4=db.select(selquery);

if(rshahvalue5_4.next())

{

result=rshashvalue5_4.getString(1)!=null?rshashvalue5_4.getString(1):"";

}

array1[Integer.parseInt(result)]=array1[Integer.parseInt(result)]+1;

hashfunction=hshfunccounter5.get(j).toString().replace("x",bn.getField18());

selquery="select "+hashfunction+" from dual";

System.out.println(selquery);

ResultSet rshashvalue5_5=db.select(selquery);

if(rshashvalue5_5.next())

{

result=rshashvalue5_5.getString(1)!=null?rshashvalue5_5.getString(1):"";

}

array1[Integer.parseInt(result)]=array1[Integer.parseInt(result)]+1;

int ar[]=new int[5];

for(int m=0;m<5;m++)

{

ar[m]=array1[m];

}

counterpositionafterhashingfor5bit.add(ar);

}

// For 6 bit counter

int array2[]=new int[6];

for(int j=0;j<hshfunccounter6.size();j=j+1) {

String hashfunction=hshfunccounter6.get(j).toString().replace("x",bn.getField3());

selquery="select "+hashfunction+" from dual";

System.out.println(selquery);

ResultSet rshashvalue6_0=db.select(selquery);

if(rshashvalue6_0.next())

Decision Table based Model & its implementation for Automatic prevention of Unauthorized
Database Transactions by Trusted Database Users

58

{

result=rshashvalue6_0.getString(1)!=null?rshashvalue6_0.getString(1):"";

}

array2[Integer.parseInt(result)]=array2[Integer.parseInt(result)]+1;

hashfunction=hshfunccounter6.get(j).toString().replace("x",bn.getField6());

selquery="select "+hashfunction+" from dual";

System.out.println(selquery);

ResultSet rshashvalue6_1=db.select(selquery);

if(rshashvalue6_1.next())

{

result=rshashvalue6_1.getString(1)!=null?rshashvalue6_1.getString(1):"";

}

array2[Integer.parseInt(result)]=array2[Integer.parseInt(result)]+1;

hashfunction=hshfunccounter6.get(j).toString().replace("x",bn.getField9());

selquery="select "+hashfunction+" from dual";

System.out.println(selquery);

ResultSet rshashvalue6_2=db.select(selquery);

if(rshashvalue6_2.next())

{

result=rshashvalue6_2.getString(1)!=null?rshashvalue6_2.getString(1):"";

}

array2[Integer.parseInt(result)]=array2[Integer.parseInt(result)]+1;

hashfunction=hshfunccounter6.get(j).toString().replace("x",bn.getField12());

selquery="select "+hashfunction+" from dual";

System.out.println(selquery);

ResultSet rshashvalue6_3=db.select(selquery);

if(rshashvalue6_3.next())

{

result=rshashvalue6_3.getString(1)!=null?rshashvalue6_3.getString(1):"";

}

array2[Integer.parseInt(result)]=array2[Integer.parseInt(result)]+1;

hashfunction=hshfunccounter6.get(j).toString().replace("x",bn.getField15());

selquery="select "+hashfunction+" from dual";

Decision Table based Model & its implementation for Automatic prevention of Unauthorized
Database Transactions by Trusted Database Users

59

System.out.println(selquery);

ResultSet rshashvalue6_4=db.select(selquery);

if(rshashvalue6_4.next())

{

result=rshashvalue6_4.getString(1)!=null?rshashvalue6_4.getString(1):"";

}

array2[Integer.parseInt(result)]=array2[Integer.parseInt(result)]+1;

hashfunction=hshfunccounter6.get(j).toString().replace("x",bn.getField18());

selquery="select "+hashfunction+" from dual";

System.out.println(selquery);

ResultSet rshashvalue6_5=db.select(selquery);

if(rshashvalue6_5.next())

{

result=rshashvalue6_5.getString(1)!=null?rshashvalue6_5.getString(1):"";

}

array2[Integer.parseInt(result)]=array2[Integer.parseInt(result)]+1;

int ar[]=new int[6];

for(int m=0;m<6;m++)

{

ar[m]=array2[m];

}

counterpositionafterhashingfor6bit.add(ar);

}

// For 7 bit counter

int array3[]=new int[7];

for(int j=0;j<hshfunccounter7.size();j=j+1) {

String hashfunction=hshfunccounter7.get(j).toString().replace("x",bn.getField3());

selquery="select "+hashfunction+" from dual";

System.out.println(selquery);

ResultSet rshashvalue7_0=db.select(selquery);

if(rshashvalue7_0.next())

{

result=rshashvalue7_0.getString(1)!=null?rshashvalue7_0.getString(1):"";

Decision Table based Model & its implementation for Automatic prevention of Unauthorized
Database Transactions by Trusted Database Users

60

}

array3[Integer.parseInt(result)]=array3[Integer.parseInt(result)]+1;

hashfunction=hshfunccounter7.get(j).toString().replace("x",bn.getField6());

selquery="select "+hashfunction+" from dual";

System.out.println(selquery);

ResultSet rshashvalue7_1=db.select(selquery);

if(rshashvalue7_1.next())

{

result=rshashvalue7_1.getString(1)!=null?rshashvalue7_1.getString(1):"";

}

array3[Integer.parseInt(result)]=array3[Integer.parseInt(result)]+1;

hashfunction=hshfunccounter7.get(j).toString().replace("x",bn.getField9());

selquery="select "+hashfunction+" from dual";

System.out.println(selquery);

ResultSet rshashvalue7_2=db.select(selquery);

}

public String generatedummytransactions(String transno)

{

String msg="";

String tid="1";

DBConnection db=null;

try{

db=new DBConnection();

db.openConnection();

String query="";

query="insert into

mstdummytransaction(TRANSACTIONID,QUERYID,QUERYID1,QUERYID2,QU

ERYID3,QUERYID4,QUERYID5) "

+ "select rownum,floor(dbms_random.value(1,36)),floor(dbms_random.value(1,36)),"

floor(dbms_random.value(1,36)),floor(dbms_random.value(1,36)),floor(dbms_rando

m.value(1,36)),floor(dbms_random.value(1,36)) "

+ "from sys.access$ where rownum<="+transno;

Decision Table based Model & its implementation for Automatic prevention of Unauthorized
Database Transactions by Trusted Database Users

61

System.out.println(query);

db.insert(query);

db.commit();

msg="Success";

}

catch(Exception e)

{

e.printStackTrace();

}

finally

{

db.closeConnection();

}

return msg;

}

public String gethashedvalues(String weight,String hashfunction)

{

DBConnection db=null;

String result="";

try{

db=new DBConnection();

db.openConnection();

hashfunction=hashfunction.replace("x",weight);

String selquery="select "+hashfunction+" from dual";

System.out.println(selquery);

ResultSet rs=db.select(selquery);

if(rs.next())

{

result=rs.getString(1)!=null?rs.getString(1):"";

}

}

catch(Exception e)

Decision Table based Model & its implementation for Automatic prevention of Unauthorized
Database Transactions by Trusted Database Users

62

{

e.printStackTrace();

}

finally

{

db.closeConnection();

}

return result;

}

public ArrayList getQueryweights(String transactionid)

{

DBConnection db=null;

ArrayList arr=new ArrayList();

CommonBean bn=null;

try{

db=new DBConnection();

db.openConnection();

String selquery="select a.queryid,(select operatorid||' '||tablename from mstquery

where queryid=a.queryid),"

+ "(select weight from mstquery where queryid=a.queryid), "

+ "a.queryid1,(select operatorid||' '||tablename from mstquery where

queryid=a.queryid1),"

+ "(select weight from mstquery where queryid=a.queryid1),"

+ "a.queryid2,(select operatorid||' '||tablename from mstquery where

queryid=a.queryid2),"

+ "(select weight from mstquery where queryid=a.queryid2),"

+ "a.queryid3,(select operatorid||' '||tablename from mstquery where

queryid=a.queryid3),"

+ "(select weight from mstquery where queryid=a.queryid3),"

+ "a.queryid4,(select operatorid||' '||tablename from mstquery where

queryid=a.queryid4),"

+ "(select weight from mstquery where queryid=a.queryid4),"

Decision Table based Model & its implementation for Automatic prevention of Unauthorized
Database Transactions by Trusted Database Users

63

+ "a.queryid5,(select operatorid||' '||tablename from mstquery where

queryid=a.queryid5),"

+ "(select weight from mstquery where queryid=a.queryid5) from msttransaction a

where a.transactionid='"+transactionid+"'";

System.out.println(selquery);

ResultSet rs=db.select(selquery);

if(rs.next())

{

arr.add(rs.getString(1)!=null?rs.getString(1):"");

arr.add(rs.getString(2)!=null?rs.getString(2):"");

arr.add(rs.getString(3)!=null?rs.getString(3):"");

arr.add(rs.getString(4)!=null?rs.getString(4):"");

arr.add(rs.getString(5)!=null?rs.getString(5):"");

arr.add(rs.getString(6)!=null?rs.getString(6):"");

arr.add(rs.getString(7)!=null?rs.getString(7):"");

arr.add(rs.getString(8)!=null?rs.getString(8):"");

arr.add(rs.getString(9)!=null?rs.getString(9):"");

arr.add(rs.getString(10)!=null?rs.getString(10):"");

arr.add(rs.getString(11)!=null?rs.getString(11):"");

arr.add(rs.getString(12)!=null?rs.getString(12):"");

arr.add(rs.getString(13)!=null?rs.getString(13):"");

arr.add(rs.getString(14)!=null?rs.getString(14):"");

arr.add(rs.getString(15)!=null?rs.getString(15):"");

arr.add(rs.getString(16)!=null?rs.getString(16):"");

arr.add(rs.getString(17)!=null?rs.getString(17):"");

arr.add(rs.getString(18)!=null?rs.getString(18):"");

}

}

catch(Exception e)

{

e.printStackTrace();

}

finally

Decision Table based Model & its implementation for Automatic prevention of Unauthorized
Database Transactions by Trusted Database Users

64

{

db.closeConnection();

}

return arr;

}

public ArrayList getDummyQueryweights(String transactionid)

{

DBConnection db=null;

ArrayList arr=new ArrayList();

CommonBean bn=null;

try{

db=new DBConnection();

db.openConnection();

String selquery="select a.queryid,(select operatorid||' '||tablename from mstquery

where queryid=a.queryid),"

+ "(select weight from mstquery where queryid=a.queryid), "

+ "a.queryid1,(select operatorid||' '||tablename from mstquery where

queryid=a.queryid1),"

+ "(select weight from mstquery where queryid=a.queryid1),"

+ "a.queryid2,(select operatorid||' '||tablename from mstquery where

queryid=a.queryid2),"

+ "(select weight from mstquery where queryid=a.queryid2),"

+ "a.queryid3,(select operatorid||' '||tablename from mstquery where

queryid=a.queryid3),"

+ "(select weight from mstquery where queryid=a.queryid3),"

+ "a.queryid4,(select operatorid||' '||tablename from mstquery where

queryid=a.queryid4),"

+ "(select weight from mstquery where queryid=a.queryid4),"

+ "a.queryid5,(select operatorid||' '||tablename from mstquery where

queryid=a.queryid5),"

+ "(select weight from mstquery where queryid=a.queryid5) from

mstdummytransaction a where a.transactionid='"+transactionid+"'";

Decision Table based Model & its implementation for Automatic prevention of Unauthorized
Database Transactions by Trusted Database Users

65

System.out.println(selquery);

ResultSet rs=db.select(selquery);

if(rs.next())

{

arr.add(rs.getString(1)!=null?rs.getString(1):"");

arr.add(rs.getString(2)!=null?rs.getString(2):"");

arr.add(rs.getString(3)!=null?rs.getString(3):"");

arr.add(rs.getString(4)!=null?rs.getString(4):"");

arr.add(rs.getString(5)!=null?rs.getString(5):"");

arr.add(rs.getString(6)!=null?rs.getString(6):"");

arr.add(rs.getString(7)!=null?rs.getString(7):"");

arr.add(rs.getString(8)!=null?rs.getString(8):"");

arr.add(rs.getString(9)!=null?rs.getString(9):"");

arr.add(rs.getString(10)!=null?rs.getString(10):"");

arr.add(rs.getString(11)!=null?rs.getString(11):"");

arr.add(rs.getString(12)!=null?rs.getString(12):"");

arr.add(rs.getString(13)!=null?rs.getString(13):"");

arr.add(rs.getString(14)!=null?rs.getString(14):"");

arr.add(rs.getString(15)!=null?rs.getString(15):"");

arr.add(rs.getString(16)!=null?rs.getString(16):"");

arr.add(rs.getString(17)!=null?rs.getString(17):"");

arr.add(rs.getString(18)!=null?rs.getString(18):"");

}}

catch(Exception e)

{

e.printStackTrace();

}

finally

{

db.closeConnection();

}

return arr;

}

Decision Table based Model & its implementation for Automatic prevention of Unauthorized
Database Transactions by Trusted Database Users

66

APPENDIX-II Screen Shots of

Application

1. Application Directory Structure

Decision Table based Model & its implementation for Automatic prevention of Unauthorized
Database Transactions by Trusted Database Users

67

2. Index Page

3. Activation & Initialization of TQLC

Decision Table based Model & its implementation for Automatic prevention of Unauthorized
Database Transactions by Trusted Database Users

68

4. Initialization of AQIA

5. QWA Implementation

Decision Table based Model & its implementation for Automatic prevention of Unauthorized
Database Transactions by Trusted Database Users

69

6. Graphical DashBoard

