

Ranking of Software Engineering Metrics

by Fuzzy-Based Matrix Methodology

A major Dissertation Submitted in partial fulfilment

of the requirement for the award of the degree of

MASTER OF TECHNOLOGY

In

COMPUTER SCIENCE AND ENGINEERING

Submitted by:

SURENDRA TYAGI

Roll No.:- 2K11/CSE/26

Under the guidance of:

Dr. KAPIL SHARMA

Delhi Technological University

Department of Computer Engineering

Delhi Technological University

Bawana Road Delhi-110042

2013-2014

Page | i

Ranking of Software Engineering Metrics

by Fuzzy-Based Matrix Methodology

A major Dissertation Submitted in partial fulfilment

of the requirement for the award of the degree of

MASTER OF TECHNOLOGY

In

COMPUTER SCIENCE AND ENGINEERING

Submitted by:

SURENDRA TYAGI

Roll No.:- 2K11/CSE/26

Under the guidance of:

Dr. KAPIL SHARMA

Delhi Technological University

Department of Computer Engineering

Delhi Technological University

Bawana Road Delhi-110042

2013-2014

Page | ii

ABSTRACT

In present day a lot of software’s are being developed day by day. To check

reliability of software is a big issue. For this software engineering metrics is formed and

ranked by different methods. In present thesis work we proposed a method for ranking of

software engineering metrics based on expert’s opinions elicitation and fuzzy-based

matrix methodology. The proposed methodology has ability to translate the vague and

imprecise data concerned with the problem of ranking of software engineering metrics,

and the ambiguity and uncertainty occurring at the time of expert decision making to

remove the complexity of formulation of the intention and the control function. The

matrices provide themselves to mechanical manipulations and are helpful for evaluating

and developing systems functions which match with the purpose of research work. This

research work is based on software engineering metrics acknowledged in an earlier study

conducted by Lawrence Livermore National Laboratory. A set of ranking criteria were

recognized. After that software engineering metrics are ranked in ascending series using

experts’ opinion in according to the values of Permanent function on their criteria matrix.

The proposed methodology has also been compared with other known methodologies.

The use of fuzzy set theory improves the decision-making procedure by

considering the vagueness and ambiguity prevalent in real-world system. We also found

that the use of triangular fuzzy numbers made data collection, calculation, and

interpretation of results easier for experts.

Page | iii

DECLARATION

I hereby declare that the thesis entitled “Ranking of Software Engineering Metrics by

Fuzzy-Based Matrix Methodology” which is being submitted to the Delhi

Technological University, in partial fulfillment of the requirements for the award of

degree of Master of Technology in Computer Science and Engineering is an authentic

work carried out by me. The material contained in this thesis has not been submitted to

any university or institution for the award of any degree.

SURENDRA TYAGI

Master of Technology

(Computer Science and Engineering)

College Roll No. 2K11/CSE/26

Department of Computer Engineering

Delhi Technological University,

Delhi.

Page | iv

CERTIFICATE

Date:

This is to certify that the thesis entitled “Ranking of Software Engineering Metrics by

Fuzzy-Based Matrix Methodology” submitted by SURENDRA TYAGI

(Roll Number: 2K11/CSE/26), in partial fulfillment of the requirements for the award of

degree of Master of Technology in Computer Science and Engineering, is an authentic

work carried out by him under my guidance.

The content embodied in this thesis has not been submitted to any institution or

University for any degree or diploma to the best of my knowledge and belief.

Dr. Kapil Sharma

Associate Professor

Department of Computer Engineering

Delhi Technological University

Page | v

ACKNOWLEDGEMENT

With due regards, I hereby take this opportunity to acknowledge a lot of people who have

supported me with their words and deeds in completion of my research work as part of

this course of Master of Technology in Computer Science and Engineering.

To start with I would like to thank the almighty god and Shri Shri 108 Baba Narayan Das

for being with me in each and every step of my life. Next, I thank my parents and family,

for their encouragement and persistent support.

I would like to express my deepest sense of gratitude and indebtedness to my guide and

motivator, Dr. Kapil Sharma, Associate Professor, Department of Computer

Engineering, Delhi Technological University for his valuable guidance and support in all

the phases from conceptualization to final completion of the thesis. It is his immense

support that enabled me to complete my thesis in time.

I wish to convey my sincere gratitude to Prof. Daya Gupta, Prof. O.P. Verma (DTU),

Prof. Ashok de (NIT Patna), Dr. Vishal Bhatnagar (Assosite professor AIACTR) and all

the faculties of Computer Engineering Department, DTU who have been a source of

inspiration and continuously enlightened me during my thesis.

I humbly extend my grateful appreciation to my social welfare organisation

SEWA BHARTI, Sh. Babu lal jee (Secretary Uttari Vibhag Sewa Bharti), Balak Ram

(LNJP hospital) my friends Devanand Meena, Dr. Ashutosh Kumar(AIIMS), Saket mani

Trivedi(Director KCRR), Satish Tyagi, Dileep Tyagi, Rajesh Kumar, Rohit, Vikrant,

Anjana, Saurabh,Zeehshan, My elder sister Dr. Amita Sharma, my social work colleagues

Sh. Yogendra Rana , Sh. Mohit singh , Venu Sahai whose moral support made this thesis

possible.

Last but not the least; I would like to thank all the people directly and indirectly involved

in successfully completion of this thesis.

SURENDRA TYAGI

Roll No. 2K11/CSE/26

Page | vi

TABLE OF CONTENTS

Chapter One: INTRODUCTION ... 1

1.1 INTRODUCTION ... 1

1.2 MATHEMATICS OF RELIABILITY: .. 3
1.2.1 Meaning of Time in Reliability models: .. 7

1.3 SOFTWARE ENGINEERING MATRICS .. 9
1.3.1 Distinction in Measures, Metrics, and Indicators ... 9

1.3.2 Guidelines for Software Metrics ... 11

1.4 RELIABILITY METRICS .. 13

1.4.1 Probability of failure on demand: .. 13
1.4.2 Rate of failure occurrence (ROCOF): ... 13

1.4.3 Mean time to failure (MTTF):... 13
1.4.4 Availability: ... 13

Chapter Two: REVIEW OF LITERATURE .. 16
Chapter Three: METHODOLOGY ADOPTED... 19

3.1 FUZZY SETS ... 19

3.2 TRIANGULAR FUZZY NUMBERS .. 20

3.3 LINGUISTIC TERMS IN TRIANGULAR FUZZY NUMBERS 21

3.4 A FUZZY ALGORITHM FOR SOFTWARE ENGINEERING METRICS

RANKING PROBLEM .. 22

3.5 CONVERSION OF FUZZY NUMBERS TO CRISP SCORES 23

3.6 MATRIX METHOD ... 24

3.7 PERMANENT FUNCTION REPRESENTATION ... 26

Chapter Four: PROCEDURE FOR RANKING OF SOFTWARE ENGINEERING

METRICS ... 27

4.1 IDENTIFICATION OF SOFTWARE ENGINEERING METRICS 27

4.2 EXPERT IDENTIFICATION AND SELECTION .. 27

4.3 SELECTION OF RANKING CRITERIA ... 28

4.4 EVALUATE SOFTWARE ENGINEERING METRICS BY THE FUZZY-

BASED MATRIX METHOD ... 29

Page | vii

Chapter Five: A CASE STUDY .. 32

Chapter Six: RESULT AND DISCUSSION .. 42

6.1 VALIDATION OF THE RESULTS .. 44

Chapter Seven: CONCLUSION .. 48

7.1 CONCLUSION ... 48

7.2 FUTURE SCOPE OF WORK ... 49

Page | viii

LIST OF FIGURES

Figure 1: Membership function of a triangular fuzzy number 20

Figure 2: Membership functions for importance weight of each criterion.............. 21

Figure 3 Membership functions for rating of software engineering metrics 22

file:///G:/Chapter_template_tyagi.docm%23_Toc394060447
file:///G:/Chapter_template_tyagi.docm%23_Toc394060448
file:///G:/Chapter_template_tyagi.docm%23_Toc394060449

Page | ix

LIST OF TABLES

Table 1: Linguistic terms for the importance weight of each criterion 20

Table 2: Linguistic terms for the rating of software engineering metrics 21

Table 3: Ranking criteria definitions... 29

Table 4 Linguistic assessments and membership functions for ranking criteria. 34

Table 5: Linguistic assessments and membership functions for software engineering

metrics.. 35

Table 6: Aggregated weights (Wt) of ranking criteria ... 36

Table 7: Aggregated rating (Rit) of software engineering metrics 37

Table 8: Crisp scores of software engineering metrics. .. 38

Table 9: Ranking values and ranks of the software engineering metrics 39

Table 10: Comparison with other methods ... 39

Table 11: Input required in AHP .. 40

Table 12: Input required in AHP for weights. ... 41

Table 13: Input required in ANOVA method. ... 43

Table 14: Input required in rank based on expert opinion 45

Table 15: Procedural comparisons of various methods ... 47

Page | x

LIST OF ABBREBARATION AND SYMBOLS:

FD Fault Density

MTTF Mean Time To Failure

ROCOF Rate Of Failure Occurrence

ANOVA Analysis Of Variance

AHP Analytic Hierarchy Process

LLNL Lawrence Livermore National Laboratory

IEEE Institute Of Electrical And Electrical Engineering

GUI Graphical User Interface

CC Cyclomatic Complexity

SDC System Design Complexity

RC Requirements Compliance

CH Cohesion

M Medium

H High

L Low

R(p) Reliability Metrics

fA(x) Membership function

ct Criteria

wt Weight

Rit Rating Assigned To Software Engineering Metric

UM(Fi) Left Utility Value

UG(Fi) Right Utility Value

UT(Fi) Total Utility Value

𝜆(𝑝) The failure intensity

BBN Bayesian Belief Network

Department of Computer of Engineering, DTU Delhi 1

Chapter One: INTRODUCTION

1.1 INTRODUCTION

In modern society, software has become a very significant element in all

types of systems. New softwares are being developed everyday. Many of them are

useful, while majority of them are not matching to the desired satisfaction of the

user.Developing a software that is trustworthy is invaluable, but what is the cost of

developing software that is substandard? A famaous tagedy in 1999, NASA lost the

Mars Lander because of an error made by software development team who provided

software to calculate distances in Metric and English units but failed to design

software to make right conversions between the two. NASA lost valuable time,

money and pride on a simple error that must have been detected prior to deployment

of the Mars Lander. (NASA, 2014)

NASA's damage was significant, but a larger mis-happening occurred in

1991 when a Patriot Scud missile used during the Persian Gulf War failed to sense

an incoming scud missile. The Patriot Scud, which was earlier failed due to its

accuracy, had a short rounding error in the timer (approximately 0.000000095

seconds for every second of time the Patriot Missile was in use). The timer, which

was needed for computing distances of incoming scud missiles, added an error of

approximately 0.34 seconds over 100 hours of operation,this time was sufficient to

fail to sense an incoming scud missile. The Patriot Scud failure had taken the lives

of 28 American soldiers. (Arnold, 2014)

Software crashes occur every day, most of the time however, the crashes are

not as expensive as the Mars Lander Failure and Patriot Missile Failure, but are an

bother none the less. Software failures is the most crucial issue that stops the work

and affect right manner functioning of the whole system. hence, it is very essential

and vital to remove as many probable problems in software as possible. The software

development work has become more and more time-wasting and costly because of

the complexity of software systems. In this time, the requirement for extremely

reliable software system is ever increasing. How to increase the quality of the

Department of Computer of Engineering, DTU Delhi 2

software systems and decrease the expenditure to an adequate level becomes a major

concern of present software industry. Methods of applying reliability and cost

models to the software development process are extremely needed. (Pham & Zhang,

1999).

Most vital and dynamic feature of software is its reliability. Generally, the

reliability of a software system is a measure of how well it provides the services

expected of it by its users but a useful proper definition of reliability is much

difficult to explain. Software reliability metrics such as ‘mean time between failures

may be used.

Reliability is a dynamic system feature, which is a function of the number of

software failures. A software failure is an execution event where the software does

not behaves in an expected way. This is not the same as a software fault, which is a

static program characteristic. Software faults cause software failures when the faulty

code is run with a specific set of inputs. Faults do not always show themselves as

failures so the reliability is subjected to on how the software is used. It is not

possible to make a single, universal statement of the software reliability. (DewSoft,

2014)

Software faults are not just program defects. Unexpected behavior can occur

in circumstances where the software conforms to its requirements themselves are

complete. Omissions in software documentations can also lead to unexpected

behavior, although the software may not contain defects.

There is a intricate connection between experimental reliability and the

number of hidden errors. It points out that not all software errors have an equal

probability of occuring. Removing software faults from parts of the system, which

are seldom used, makes little difference to the perceived reliability. Their work

recommended that, for the products studied, removing 60% of product defects would

lead to only a 3% improvement in reliability.

Reliability is to be subject to on how the software is used, so it cannot be

quantified absolutely. Different users uses a program in different ways so mistakes,

which affect the reliability of the system for one user, may never manifest

Department of Computer of Engineering, DTU Delhi 3

themselves under a different method of working. Reliability can only be accurately

specified if the normal software operational profile is also detailed.

As reliability is subjected to the probability of an error occuring in

functioning use, a program may have known errors but may still never be seen select

an mistaken input; the program always appears to be reliable. In addition, skilled

operators may ‘work around’ identified software errors and consciously escape using

features, which they recognize to be mistaken. Repairing the errors in these features

may make no practical change to the reliability as supposed by these users.

Software reliability may be defined as the probability that software will not

cause a failure of a system for a specifics time under specifics conditions, and is one

of the greatest vital appearances of quality. Maximum of the software reliability

models that were made to specify the probability of software failure are based on

software failure observations prepared for the duration of test or operation(MR,

1995.)(Musa, A, & Okumoto, 1987)(Ramamoorthy & Bastani, 1982). The

conventional software reliability models may not put on in definite cases where it

may not be possible to detect an suitable number of failures. It may also be the

situation that some companies or research institutions designate to quantity other

software engineering metrics like complexity and fault density (FD). Thus, software

reliability may have to be evaluated a posteriori from existing sets of software

engineering metrics.

 To explain this issue, it may be supposed that the product characteristics and

the operational environment are two issues that contribute for defining software

reliability. Further, the project features, as the type of application, functional size,

etc., and the development features, type as the developer’s ability, project

inexpensive, stiffness of timetable, methods, tools, and languages needed for the

development of the product, define product characteristics.

1.2 MATHEMATICS OF RELIABILITY:

Reliability of a product quantified the probability of without failure working

of that product for a given time duration. Unreliability of any product occurs because

of failures or mainly of errors in the system. As software does not "wear out" or

"age" as a mechanical or an electronic system does, the unreliability of software is

Department of Computer of Engineering, DTU Delhi 4

mainly due to errors or design bugs in the software. It is commonly supposed that

with the present time of technology, it is not possible to identify and remove the

entire error in a big software system (mostly before supply). Consequently, a

software system is possible to have some faults in it.

Reliability is a probabilistic quantity that adopts that the manifestation of

failure of software is a random phenomenon. i.e., if it is well defined the total

workable time of a software system as a variable, this is a random variable that may

assume dissimilar values in dissimilar calls of the software. This randomness of the

failure incidences is essential for reliability modeling. Here, by randomness all that

is intended is that the failure cannot be predicted exactly. This hypothesis will

normally hold for bigger systems, but may not hold for little programs that have

bugs (in which situation, one might be able to prediction the errors). Therefore,

reliability modeling is more significant for larger systems. It is recommended that it

must be functional to systems bigger than 5000 LOC, because such systems will give

enough data points to do statistical examination.

Let y be the random variable that denotes the life time of a system. The

failure probability, F (p), of a system is well defined as the probability that the

system will be breakdown by time p i.e., the life of the system, y is less than p

Equation 1-1

F (p)=P (y< p)

As F (p) denotes the failure probability till a given time p which changes

with time some may denotes functions for F (p). This function is known as the

failure distribution function. Each functions must have a 0 at time p= 0 (a system

cannot be value of failed earlier time 0) and a value 1 at time p= y all systems must

be failed before infinite time). System reliability is the probability that the system

has not failed till time t. In other words,

Equation 1-2

R (p) =1 -F (p).

Department of Computer of Engineering, DTU Delhi 5

If F (p) is differentiable, its first derivative f (p) is called the failure density

function. The failure density function shows the instantaneous failure probability at

time p. Or, the probability that a failure will arise between times p and (p + ~p) is

given by f (p) ~p.

These definitions give the failure probability, and reliability, failure density

as a function of time at the starting time. i.e., at time p = 0 it is forecasting that the

probability that the system should be failed by some time p is F (p). What happen it

is observed that by time p the system has not failed (after all F (p) is only a

probability)? That is, as time passes, it is found that a system has not failed by some

time p. In that situation, at time p, we would like to identify the future breakdown

probabilities from that time ahead. In other words, it identify the failure probability

for a system, specified that the system has not failed by time p. This is usually

specified for a system by its hazard rate, z (p), which is the conditional failure

density at time p, given that no failure has occurred between 0 and p. By this

definition, the hazard rate is

Equation 1-3

Z (p) = f (p)/R (p)

The connection between the hazard rate and reliability is

Equation 1-4

R (p) =𝑒∫ 𝑍 𝑦 𝑑𝑦
𝑡

0

The reliability of a system may also be defined as the mean time to failure

(MTTF). MTTF shows the probable lifetime of the system. From the reliability

function, it can be found as:

Equation 1-5

MTTF = ∫ 𝑅 𝑦 𝑑𝑦
∞

0

Note that one can find the MTTF from the reliability function but the

opposite is not forever true. The reliability function may, however, be found from

Department of Computer of Engineering, DTU Delhi 6

the MTTF if the failure action is understood to be Poisson, that is, F (p) has an

exponential distribution. Exponential distribution is given by

Equation 1-6

 𝐹 𝑝 = 1 − 𝑒𝛾𝑝

Where 𝛾𝑝 the failure is rate and is equal to inverse of MTTF.

The traditional definition of reliability was given earlier. Previous, there are

other types in which reliability can be defined. In the preceding definitions, the

random variable was taken as the time to next failure or the life of the system. We

can describe a different random variable, which signifies the number of failures

expert by the system by time p. obviously; this number will also be random, because

failures are random. If the random variable representing the number of failures till

time p, it can be define that reliability in another form. If m(p) denotes the

distribution of the number of failures felt by time p, then the mean value function

µ(p)

Equation 1-7

µ(p) = E [M (p)]

Where E is the expectation function and µ(p) represents the probable number

of failures that will be occurred till time p. The function µ(p) have a value of 0 at

time p = 0 and be a non-decreasing function. The failure intensity 𝜆(𝑝) of the

system is explained as:

Equation 1-8

𝜆 𝑡 =
𝑑𝜇 𝑡

𝑑𝑡
 , 𝜆 = 𝑑𝜇(𝑝)/𝑑𝑝

The failure intensity quantifies the instantaneous medication in the probable

number of failures, or the probable number of failures per unit time. The number of

failures that happens between p and 𝑝 + ∆(𝑝) can be estimates as 𝜆(𝑝) ∆(𝑝). For

Poisson- like system (where failure probability has an exponential distribution), the

probability of more than one time occurring in a little duration ∆(𝑝)is supposed 0.

therefore, ∆(𝑝) shows the probability that a failure will happen in between p and (p

Department of Computer of Engineering, DTU Delhi 7

+∆(𝑝)), that is the similar as the probability that time the system does not fail up to

time t and at is a failure time ∆(𝑡)after the time. In this way, for these kinds of

models, the hazard rate is the similar as the failure intensity function.

1.2.1 Meaning of Time in Reliability models:

There are three general explanations of time for software reliability models:

execution time, calendar time, and clock time.

Execution time is the really CPU time, the software runs for the period of its

execution.

Calendar time is the ordered time that is used by group.

Clock time is the actual clock time that passes when the software is running

(i.e., it contains the time the software waits also consist in it other).

Different models define in different manner definitions, although the

maximum generally used are execution time and calendar time. It supposed that

execution time models are for superior and more precise than calendar time models,

since they more precisely define the "stress" on the software because of processing.

 In software, what is called a "failure" is subject to the project, and its exact

description is provided by the tester or project manager. For a line, is a misplaced

line in the output may be a failure or not? Obviously, it is instance on the project;

someone would consider it a failure and others will not. Another example.

Determined output is not being generated in a given time duration, is it a failure or

not? in a real-time system this may be supposed as a failure, however for an

operating system it may not be supposed as a failure. That is there is no clear cut

definition of failure, and it depends of project manager or end user to They will

decide what will be supposed a failure for reliability purposes. Note that in the

example of a misplaced line, a flaw might be registered, and even make right after

some time, but its occurring may not be qualified a failure. The failure feature of

software is mainly given by two things:

1. The number of errors in the software being evaluated.

2. The profile of operation of the execution.

Department of Computer of Engineering, DTU Delhi 8

This is clear, with a large number of fault in code of, anyone will think the

software to be a low reliability. i.e., the more errors, the more the probability that the

system will be filled more within time p. i.e. by the total number of error in the

software can be supposed to be a rough guide of its reliability. so flaws or faults per

KLOC are a very commonly used metric for measuring quality. This type of metric

is used to compare processes or products to quantify reliability. As far as a metric

does not need reliability modeling, which need a reasonable quantity of data

gathering and complexity, this metric is broadly used in practice, in spite of its

limitations., the reliability models can be used to estimate the faults per KLOC

metric more accurately.

The failure of software is also subjected to seriously on the atmosphere in

which it is working. It is famous concept that software mostly fails only if some

different types of inputs are given. In other ways, if software has faults, merely some

particular types of input will generate cause exercise that fault to influence failures.

Therefore, how many times these inputs generate failures at the time of execution

will decide how many times the software fails. The functioning outline of software

confine the probability of different kinds of inputs being provided to the software at

the time of its execution. Since explanation of reliability is based on failures that

depend on the nature of inputs reliability is clearly dependent on the operational

profile of the software. Hence, when we say that the reliability of software is R (p), it

assumes that this is for some operational profile. If the operational profile changes

dramatically, then it will be need to either recomputed R (p) or recalculate it. In other

words, to measure the reliability of a software system, it must be observed the

failures of the software in the operational profile in which it is finally going to

execute. Normally, it is supposed that the profile of inputs given during system

testing is same as to the inputs the software will understand during operation (i.e.,

the test cases at the time system testing are with the operational outline of the

software). Therefore, the data of system testing is used to model the reliability of the

software. (DewSoft, 2014)

Software reliability metrics have, by and large, developed from hardware

reliability metrics. Though, hardware metrics cannot be used without amendment

due to the dissimillar nature of software and hardware failures.

Department of Computer of Engineering, DTU Delhi 9

1.3 SOFTWARE ENGINEERING MATRICS

Once calculated data are gathered they are changed into metrics for use.

IEEE defines metric as 'a quantitative measure of the degree to which a system,

component, or process possesses a given attribute.' The purpose of software metrics

is to identity and manage essential issues that influence software work. Other

purpose of software metrics are listed following

To compute the dimensions of the software quantitatively.

To help the stage of complexity exist.

To help the powering of the component by calculating correction coupling.

To help the testing methods.

To guide when to stop testing.

To determine the time of completion of the software.

To approximate required cost of resources and project calender.

Software metrics assist project managers to increase an insight into the

productivity of the software development, project, and product. It is possible by

bringing collectively excellence and efficiency statistics and then examining and

matching these statistics with last averages to identify whether excellence

enhancements have taken place. Also, when metrics are used in a consistent manner,

it assist in project planning and project management activity. For example, schedule-

based resource allotment can be efficiently improved with the help of metrics.

1.3.1 Distinction in Measures, Metrics, and Indicators

Metrics is frequently said interchangeably with measure or measurement.

Through, it is crucial to know the dissimilarties between them. Measure may be

known as quantitative clue of amount, size, capacity, or dimension of product and

process attributes. Measurement is defined as the process of determining the

measure. Metrics can be defined as quantitative measures that permit software

engineers to recognize the productvity and get better the excellence of software

process, project, and product

Department of Computer of Engineering, DTU Delhi 10

To comprehend the differentiation, let us take an example. A measure is

established which a number of errors are (single data point) sensed in a software

part. Measurement is the technique of gathering one or more data points. i.e.,

measurement is recognized when a more elements are re-evaluate and tested

separatly to get together the measure of a more errors in all these components.

Metrics are linked with particular measure in some type behaviour. In other ways,

metrics are associated to recognition of errors found per re-evlauation or the average

number of errors recognised per unit test.

Once measures and metrics have been made, indicators are found. These

indicators provide a whole knowledge of the software process, software project, or

inter stage product. Indicators also make able software engineers or project managers

to control software processes and get for better qualtiy software products, if required.

For example, measurement dashboards or key indicators are used to see development

and initiate change. Making manage collectively, indicators give pictures of the

system's performance.

1.3.1.1 Measured Data

Before data is gathered and used, it is needed to recognize the kind of data

related in the software metrics. Make table lists different kinds of data, which are

identified in metrics beside with their detail and the probable actions that can be

performed on them

1.3.1.1.1 Type of Data Measured

Type of data Possible operations Description of data

Nominal =,≠ Categories

Ordinal <, > Ranking

Interval +, - Differences

Ratio / Absolute zero

Department of Computer of Engineering, DTU Delhi 11

1.3.1.1.1.1 Nominal data:

Data in the program can be identified by putting it in a cluster. This cluster of

program can be a database program, application program, or an operating system

program. For such kind of data, activites of addition subtraciton type and ordering

of values in any order (increasing or decreasing) is not possible. The merely action

that can be done is to make certain whether program 'X' is the qual to 'Y'.

1.3.1.1.1.2 Ordinal data:

 Data can be ordered with calculation of to the data values. For illustaution,

experience in application domain can be given as very low, low, medium, or high.

Thus, experience can easily be ordered according to its rating.

1.3.1.1.1.3 Interval data:

 Data values can be ordered and considerable gap between them can also be

given. For illution, a program with complexity standard 8 is said to as 4 units more

complex than a program with complexity standard 4.

1.3.1.1.1.4 Ratio data:

Data values are related to a ratio scale, which holds an exact zero and permits

signigicant ratios to be mesured. For illustation, program lines represent in lines of

code.

It is perferable to recognise the measurement scale for metrics. For

illustation, if metrics values are used to show a model for a software process, then

metrics related with the ratio scale may be chosen.

1.3.2 Guidelines for Software Metrics

Although lot of software metrics have been projected till this time, best

software metric is the one which is simple to understand, efficient, and effective. For

the sake of developing best metrics, software metrics must be validated and

categorised effectively. For this, it is vital to make metrics using some given rules,

which are following.

Department of Computer of Engineering, DTU Delhi 12

1.3.2.1 Easy and computable:

calculation of software metrics must be simple to understand and should

consume average quantity of time and effort.

1.3.2.2 Consistent and objective:

Clear-cut data must be generated by software metrics.

1.3.2.3 Consistent in the use of units and dimensions:

Mathematical calculation of the metrics should contain use of dimensions

and units in a steady manner.

1.3.2.4 Programming language independent:

Metrics must be made on the basis of the analysis model, design model, or

program's structure.

1.3.2.5 High quality:

Efficient and Effective software metrics should lead to a high-excellence

software product.

1.3.2.6 Easy to standardize:

Metrics should be easy to adjust according to project needs.

1.3.2.7 Easy to obtain:

 Metrics should be made at a reasonable charge.

1.3.2.8 Validation:

Metrics should be sustificate before being used for taking any decisions.

1.3.2.9 Robust:

Metrics should be comparatively insensible to small alterations in process,

project, or product.

1.3.2.10 Value:

Value of metrics should increase or decrease according value of the software

features they show. For this, the value of metrics must be within a reasonable order.

For example, metrics can be in a order of 0 to 5. (Thakur, 2014)

Department of Computer of Engineering, DTU Delhi 13

1.4 RELIABILITY METRICS

There are some metrics, which are used to measure software reliability are:

1.4.1 Probability of failure on demand:

 This is a quantification of the chances that the system will work in an

undesired method when some demand is made on it. It is generally associated with

secure complex systems and "continuous" systems whose continuous action is

critical. In these systems, a determine of failure occuring is less vital that the

possibility that the system will not behave as expected.

1.4.2 Rate of failure occurrence (ROCOF):

 This is a measure of the frequency of incidence with which unforeseen

behavior is likely to be shown. For illustration, if the ROCOF is 2/100 this tells that

2 failures are probable to happen in each 100 action time units. time units are

discussed shortly. This is, possibly, the most generally useful reliability metric.

1.4.3 Mean time to failure (MTTF):

This is a calculation of the time during shown failures. This metric is a

similar to a comparable metric used in hardware reliability evaluation where it

represents the life time of system element. In software systems, parts do not wear out

and, They remain in action after a single failure. hence, mean time to failure is

merely helpful in software reliability evaluation when the system is constant and no

alternations are being done to it. In this case, it gives a signal of how long the system

will be in a action before a failure occurs.

1.4.4 Availability:

This quantify the system is to be available for use. For illustration, an

availability of 998/1000 means that in every 1000 time units, the system is probable

to be available for 998 of these. This measure is most suitable for systems like

telecommunication systems, where the repair or start again at time is important and

the loss of working in this interval during time is vital. (Software realiabilty, 2014)

Department of Computer of Engineering, DTU Delhi 14

No lone metric is unanimously suitable and the specific metric used should

depend on the application domain and the projected usage of the system. For large

systems, it may be suitable to use different reliability metrics for different

component of the system. All the above features can be quantified explicitly or

implicitly using software engineering metrics. Hence, an obvious inference is that

‘software engineering metrics determine software reliability’ (Li & Smidts, A

ranking of software engineering measures based on expert opinion, 2003).

Parastoo and Dehlen (Parastoo & Dehlen, May 2009) discussed the use of

metrics for measuring quality. They are presented an general idea of planned metrics

in literature and some examples of usage. Ordonez and Haddad(Ordonez & Haddad,

April 2008) examined the practices of metrics in software industry and experiences

of some related organizations. These experiences show proof of profit and progress

in excellence and reliability. Software engineering metrics, used for reliability

estimation and assurance, are ranked in terms of their capacity to forecast software

reliability. It is very vital to rank software engineering metrics since top-ranked

metrics are the expected roots of total set of metrics to find authentic reliability

forcasting. The ranking is also important for software industry for better organization

and quality manage of software development work and hence to increase the

software quality. Ranking of the software engineering metrics on the basis of lots of

criteria creates a multi-criteria decision-making problem. The values provided to

chosen criteria are frequently qualitatively described or imprecisely measured. The

significance of each factor may also change in different requirements and situations.

It is easier for a decision maker to describe his/her desired value and the importance

of a criterion by using common language. Owing to the vaguely nature of software

engineering metrics and the ranking criteria, there is a need to expand a multi-criteria

decision-making method based on fuzzy set theory. Fuzzy set theory was developed

to address this exact hypothesis, that the key parts in human thinking are not interger

value, but linguistic terms or fuzzy set labels (Zadeh, 1965).

The aim of doing this experimental research is to progress the understanding

of software engineering metrics that may have power on software reliability and

evaluate the importance of their effects. Thus, it needs developing a fuzzy-based

matrix methodology to systematically rank the available software engineering

Department of Computer of Engineering, DTU Delhi 15

metrics with respect to their effect on the forecast of software reliability. This thesis

is organized as follows: in Chapter 2, a review of software engineering metrics

ranking problem and framework is provided. A decision-making approach based on

fuzzy sets and matrix operations is described in Chapter 3. In Chapter 4, a ranking

procedure for software engineering metrics is described. The application of the fuzzy

sets and matrix operation for ranking of software engineering metrics based on

different criteria using an illustrated example is presented in Chapter 5. The results

are analyzed in Chapter 6. Chapter 6 also compares the proposed method with the

existing methods and Chapter 7 contains the conclusion of the methodology

presented in this thesis.

Department of Computer of Engineering, DTU Delhi 16

Chapter Two: REVIEW OF LITERATURE

Roberts et al.(Roberts, Gibson, Fields, & Rainer, 1998)recognized five

factors vital to implementing a system development methodology. Understanding the

significance of aspects that affects the software metrics, it was also told that there is

a need for analytical methodologies that put together both software complexity

metrics and different parameters describing the software development

environment(Evanco & Lacovara, 1994) . Schneberger(Schneberger, 1997)

represented the outcomes of his work of the impacts of distributed computing

environments on software maintenance difficulty. Furuyama et al.(Furuyama,

Yoshio, & Kazuhiko, Fault generation model and mental stress effect analysis.,

1994)(Furuyama, Arai, & Lio, Analysis of fault generation caused by stress during

software development, 1997) studied criteria such as working stress, development

methodologies, etc. They found that various settings of these factors have

statistically significant effect on the quality of final software products.

Zhang and Pham (Zhang & Pham, 2000)conducted a survey and found

qualitative and quantitative data from software professionals and managers of 13 top

companies. The relative weight and analysis of variance (ANOVA) methods were

used to examine the known 32 factors affecting software reliability. In this study no

exact expert elicitation process was described. The expert biases were not measured

and the relative weight method was not acceptable.

Fenton and Neil (Fenton & Neil, 1999) projected a Bayesian Belief Network

(BBN) model to forecast software defect density, and Johnson and Yu (Johnson &

Yu, Objective software quality assessment., 1999) presented a BBN software quality

model, based on BBN technique that finds software reliability by software

engineering metrics measurement. These procedures need large amount of data and

that's why such procedures cannot be broadly used. Moreover, correctness of the

results cannot be ensured.

Analytic Hierarchy Process (AHP) has been used to select software reliability

metrics(Li, Lu, & Li, 2006). It occupies large amount of time for calculation and is

also hard to score while the number of the criteria increases greater than seven.

Department of Computer of Engineering, DTU Delhi 17

Criteria interdependency can put up with losses because of oversimplifying the

hierarchy and assessment of the quality for software parts (Sharma, Kumar, &

Grover, 2008).

A limited number of expert views applications are got in the software

engineering area. Putnam and Fitzsimmons(Putnam & Fitzsimmons, 1979) projected

a subjective approximation of the length of a program. Kitchenham et al.

(Kitchenham, Linkman, & Law, 1997) examined software engineering methods and

tools using subject surveys as one of the valuation methods. Dyba (Dyba, 2000) used

expert view to recognize and rank the key factors of success in software process

enhancement of quality. Wohlin et al. (Wohlin, Mayrhauser, Host, & Regnell, 2000)

approximated the success of a project using subjective factors. Host and Wohlin

(Host & Wohlin, 1998)(Host & Wohlin, 1998) performed attempt evaluation by

merging individual evaluations performed by field specialists. Briand et al. (Briand,

Freimut, & Vollei, 2000) suggested an expert view application to the estimation of

the cost effectiveness of examination. Many researchers (Li, et al., 2004)(Singh,

Singh, & Singh, 2006) have anticipated methods for ranking of software engineering

measures based on specialist view. In these studies, suspicions and partiality in the

expert’s decisions are purposely reduced. Moreover, the liner additive plans used to

aggregate the scores elicited through specialist views are comparatively inflexible,

inexact, and also does not think the comparative weights, i.e. interdependencies of

software engineering metrics. In case of analysis through AHP it is very hard to be

pair wise comparison particularly when a lot of metrics are concerned and thus

becomes a somewhat complex problem to solve.

From the wide study of the exists literature, it is found that there is a need to

make a unified way that can make suitable imprecision and vagueness occurring at

the time of human decision making and will make able to consider all ranking

criteria and their relative importance concomitantly in an incorporated approach for

ranking of software engineering metrics. consequently, fuzzy-based matrix method

(a traditional multi-attribute decision-making computation method) to deal with

specialist decisions qualitatively and quantitatively is proposed. The technique is

more flexible, correct, and has better understanding and reliability. The decision-

making methods, using fuzzy set theory, have slowly got recognition over the last

Department of Computer of Engineering, DTU Delhi 18

decade and their applications have also become more in different areas. A complete

explanation of these applications can be found in (Chang & Chen, 1994)(Wang &

Chang, 1995)(Liao, 1996)(Yeh, Deng, & Chang, 2000)(Karsak & Tolga, 2001)(Lau,

et al., 2003)(Wang & Lin, 2003)(McIvor, McCloskey, Humphreys, & Maguire,

2004)(Cochran & Chen, 2005)(Garg, Gupta, & Agrawal, 2007)(Khatatnech &

Mustafa, 2009)(Bailador & Trivi, 2010)

Department of Computer of Engineering, DTU Delhi 19

Chapter Three: METHODOLOGY ADOPTED

To minimize complexity of the calculation of objective and constraint

functions that is faced when the mathematical programming model is used in a multi

attributes decision problem, an initiative has been introduced in this thesis to

generate a finite quantitative model based on fuzzy sets and matrix operations for the

sake of ranking of software engineering metrics.

The projected fuzzy-based matrix methodology has been made suitable and

implemented for ranking of software engineering metrics. In this methodology the

use of fuzzy set theory makes suitable the ambiguity and vagueness faced at the time

human decision making. The matrices are useful in analyzing expectations and to

make the system function and index to meet the purposes.

A short introduction to crucial concepts of fuzzy sets, algebraic operations,

triangular fuzzy numbers, linguistic variables, and matrix operations is presented in

this chapter.

3.1 FUZZY SETS

Fuzzy set theory, consisting of the fuzziness of data, was given by Zadeh

(Zadeh, 1965). It was generated to draw solutions of problems, in which details of

activities and observations were vague, unclear, and uncertain. A fuzzy set is a class

of objects, with a range of membership degree, where the membership degree is

taken value between 0 and 1. A fuzzy subset A of a universal set X is given by a

membership function f A(x) which maps each element x in X to a real number (0, 1).

The degree of membership for an element is 1, that is the element is in that set. The

degree of membership is 0, that’s meaning is that the element is not in that set. In

ambiguous cases membership values are given between 0 and 1. The theory also

permits mathematical operations such as addition, subtraction, multiplication, and

division. Which can be applied on the fuzzy sets (Kaufmann & Gupta, 1988)(Dubois

D, Prade H. Fuzzy real algebra: Some results, 1979).

Department of Computer of Engineering, DTU Delhi 20

3.2 TRIANGULAR FUZZY NUMBERS

In this study, triangular fuzzy numbers are used as membership functions,

related to the elements in a set, as shown in Figure 1. The reason for using a

triangular fuzzy number is that it is naturally easy for the decision makers to use and

compute. A fuzzy number is a triangular fuzzy number if its membership function

can be givn as follows (Kaufmann & Gupta, 1988).

Equation 3-1

𝑓𝐴 𝑥 =

𝑥−𝑐

𝑎−𝑐
 𝑐 ≤ 𝑥 ≤ 𝑎

𝑏−𝑥

𝑏−𝑎
 𝑐 ≤ 𝑥 ≤ 𝑏

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Where a, b, and c are real numbers and c ≤ a ≤ b.

Zadeh’s extension principle is used to compute membership functions. In this

study, only addition and multiplication are used. Defining two triangular fuzzy

numbers A1 and A2 by the

.

Table 1: Linguistic terms for the importance weight of each criterion

Linguistic term Very low (VL) Low (L) Medium (M) High (H)

Membership

function (0, 0, 0.3) (0, 0.3, 0.5) (0.2, 0.5, 0.8) (0.5, 0.7, 1)

Figure 1: Membership function of a triangular fuzzy number

Department of Computer of Engineering, DTU Delhi 21

.

Table 2: Linguistic terms for the rating of software engineering metrics

Linguistic

term

Very poor

(VP) Poor (P) Fair (F) Good (G)

Very Good

(VG)

Membership

function (0,0,0.2) (0,0.2,0.4) (0.3,0.5, .7) (0.6,0.8, 1) (0.8, 1, 1)

Triplets as A1 = (c1, a1, b1) and A2 = (c2, a2, b2), the addition and

multiplication operations of A1 and A2 can be expressed as follows:

Addition: if ⊕ represents addition.

Equation 3-2

𝐴1⨁𝐴2: 𝑐1 , 𝑎1 , 𝑏1 ⨁ 𝑐2 , 𝑎2 , 𝑏2 = 𝑐1⨁𝑐2 , 𝑎1⨁𝑎2 , 𝑏1⨁𝑏2

Multiplication: if ⊗ shows multiplication.

Equation 3-3

𝐴1 ⊗ 𝐴2: 𝑐1 , 𝑎1 , 𝑏1 ⊗ 𝑐2 , 𝑎2 , 𝑏2 = 𝑐1 ⊗ 𝑐2 , 𝑎1 ⊗ 𝑎2 , 𝑏1 ⊗ 𝑏2 , 𝑐1 ≥ 0, 𝑐2 ≥ 0

3.3 LINGUISTIC TERMS IN TRIANGULAR FUZZY NUMBERS

Fuzzy set theory is mainly related with measuring the imprecision in human

opinions and perception, where verbal terms can be in well manner shown by the

estimated reasoning of fuzzy set theory. The weights of different and the rating

values of software engineering metrics are considered as linguistic terms in whole

Figure 2: Membership functions for importance weight of each criterion

Department of Computer of Engineering, DTU Delhi 22

this thesis. A verbal term can be defined as a variable whose values are not numbers

but words or sentences in natural language. The weights can be evaluated by

linguistic terms such as very low, low, medium, high, and very high. These linguistic

terms can be expressed via triangular fuzzy numbers, as shown in Table I, while the

membership functions of the five linguistic values are shown in Figure 2.

In order to find the appropriate of different software engineering metrics

versus various ranking criteria, the rating values can be fetched by verbal terms such

as very poor, poor, fair, good, and very good. These verbal terms can be represented

by triangular fuzzy numbers, as shown in Table II, while the membership functions

of the five verbal values are shown in Figure 3. Triangular membership functions

have been used in different areas of application, as well as in this paper because of

their perceptive representation and ease in estimation.

3.4 A FUZZY ALGORITHM FOR SOFTWARE ENGINEERING

METRICS RANKING PROBLEM

A systematic way to the software engineering metrics ranking problem,

based on fuzzy set theory and multi-criteria decision analysis, is given in this part.

Many ways have been projected to get together the Thoughts of experts such as

mean, median, max, min, and mixed operators (Buckley, The multiple judge

multiple ranking problem: A fuzzy set approach, 1984).

 Since the mean activity is the most generally used aggregation method

(Chang & Chen, 1994), (Wang & Chang, 1995), (Cochran & Chen, 2005) in this

study, the mean operator was used to aggregate the evaluations of experts. For

Figure 3 Membership functions for rating of software engineering metrics

Department of Computer of Engineering, DTU Delhi 23

software engineering metrics ranking problem, there are a group of n experts (E1,

E2, ..., En), who calculate the weights of k criteria (C1, C2, . . . , Ck) and the grading

of m software engineering Metrics (A1, A2, . . . , Am), in each of these k criteria. Let

Wte (t = 1, 2, . . ., k; e = 1, 2, . . ., n) be the weight given to Ct by expert Ee. Let Rite (i

= 1, 2, . . ., m; t = 1, 2, . . ., k; e = 1, 2, . . ., n). be the rating given to software

engineering metric Ai by expert Ee for criterion Ct . Wt and Rit are defined as follows:

Equation 3-4

𝑊𝑡 =
1

𝑛
 ⊗ 𝑊𝑡1 ⊕ 𝑊𝑡2 ⊕···⊕ 𝑊𝑡3 =

1

𝑛
 𝑊𝑡𝑒

𝑛

𝑒=1

Equation 3-5

𝑅𝑖𝑡 =
1

𝑛
 ⊗ 𝑅𝑖𝑡1 ⊕ 𝑅𝑖𝑡2 ⊕···⊕ 𝑅𝑖𝑡𝑛 =

1

𝑛
 = 𝑅𝑖𝑡𝑒

𝑛

𝑒=1

Where Wt is the mean weight of criterion Ct and Rit is the total grading of

software engineering metric Ai for criterion Ct .

3.5 CONVERSION OF FUZZY NUMBERS TO CRISP SCORES

Since the total evaluations are shown as triangular fuzzy numbers, a

technique of changing of these fuzzy triangular numbers to crisp values is needed.

There are several techniques of changing fuzzy numbers (Liou & Wang, 1992)(Kim

& Park, 1990). In this Thesis, the maximizing set and minimizing set methods are

used because of the simple in of use and application in previous studies (Wang &

Chang, 1995),(Yeh, Deng, & Chang, 2000),(Karsak & Tolga, 2001),(Cochran &

Chen, 2005).

Let Fi (i = 1, 2, . . ., m) be the fuzzy grading of m software engineering

metrics. Chen (Chen, 1985) gave the maximizing set M = {(x, f M (x))|x ∈R } with

Equation 3-6

𝑓𝑀(𝑥) =

𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
 𝑥𝑚𝑖𝑛 ≤ 𝑥 ≤ 𝑥𝑚𝑎𝑥

 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Department of Computer of Engineering, DTU Delhi 24

and, minimizing set G={(x, fG(x))|x∈R} with

Equation 3-7

𝑓𝑀 𝑥 𝑓𝐺 𝑥 =

𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
 𝑥𝑚𝑖𝑛 ≤ 𝑥 ≤ 𝑥𝑚𝑎𝑥

 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Where xmin = inf S, xmax = sup S, S = ∪m
i=1 Fi , Fi = {x| f Fi (x) > 0}, i = 1, 2, . . ., m.

 Further, the right utility value UM (Fi) and the left utility value UG (Fi) for

software engineering metric i are given as:

Equation 3-8

𝑈𝑀 𝐹𝑖 = sup⁡(𝑓𝐹𝑖
(𝑥) ∩ 𝑓𝑀 𝑥 𝑖 = 1,2,3 … . . 𝑚

Equation 3-9

𝑈𝐺 𝐹𝑖 = sup⁡(𝑓𝐹𝑖
(𝑥) ∩ 𝑓𝐺 𝑥 𝑖 = 1,2,3 … . . 𝑚

And, the total utility value UT (Fi) for another i are described as:

Equation 3-10

𝑈𝑇 𝐹𝑖 =
 𝑈𝑀 𝐹𝑖 + 1 − 𝑈𝐺 𝐹𝑖

2

3.6 MATRIX METHOD

Each software engineering metric at this phase is characterized by multiple

criteria, which require to be changed into a single number index. This single number

index will be utilized to rank the software engineering metrics in order of their effect

on software reliability. This value for each software engineering metric is found

using matrices. The matrices provide themselves easily to handmade manipulations

and are appropriate for computer processing. The deterministic values (crisp scores)

of the total evaluations i.e. grading of the software engineering metrics and the

associative total weights of all recognized ranking criteria are kept in a matrix that is

known as ‘Criteria Matrix’. The size of this matrix is be n × n related to n criteria.

The diagonal elements (aii ’s or ai ’s) and the their elements (ai j ’s) of this matrix

Department of Computer of Engineering, DTU Delhi 25

give the total grading of different software engineering metrics versus different

ranking criteria and the comparative total weights of various ranking criteria,

respectively. Hence, the criteria matrix is a made of two matrices namely ‘Software

Engineering Metric Rating Matrix’ and ‘Criteria Weight Matrix’.

Software Engineering Metric Rating Matrix: This matrix is made on the basis

of deterministic values (crisp values) of the total grading of the software engineering

metrics versus different ranking criteria. This is a diagonal matrix whose values (aii

’s or ai ’s) represent the aggregated ratings of different software engineering metrics

versus different ranking criteria.

𝑎11 0 ⋯ 0 0

0 𝑎22 … . 0 0
⋮ ⋮ ⋱ ⋮ ⋮
0 0 … . 𝑎𝑛−1𝑛−1 0
0 0 ⋯ 0 𝑎𝑛𝑛

Criteria Weight Matrix: The Criteria Weight Matrix is formed on the basis of

the aggregated weights of different criteria. The off-diagonal elements of this matrix

represent the aggregated weights of the criteria e.g. the element (ai j) of this matrix

will give the relative importance weight of j th criteria with respect to ith criteria. All

diagonal elements of this matrix are zero because there is no significance of

comparing a criterion with respect to itself. Mathematically, ai j = weight of j
th

criteria/weight of i
th
 criteria

0 𝑎12 ⋯ 𝑎1𝑛

𝑎21 0 … . 𝑎2𝑛

⋮ ⋮ ⋱ ⋮
𝑎𝑛1 𝑎𝑛2 ⋯ 0

 Thus, the ‘Criteria Matrix’ corresponding to ‘n’ criteria, in general, is

written as:

𝑎11 𝑎12 ⋯ 𝑎1𝑛

𝑎21 𝑎22 … . 𝑎2𝑛

⋮ ⋮ ⋱ ⋮
𝑎𝑛1 𝑎𝑛2 ⋯ 𝑎𝑛𝑛

Department of Computer of Engineering, DTU Delhi 26

3.7 PERMANENT FUNCTION REPRESENTATION

Variable Permanent Function or simply known as Permanent is a standard

matrix function that is used in combinatorial mathematics (Marcus & Minc, 1965). It

is a powerful tool for multi-criteria based evaluation and ranking of the systems in

ascending or descending order. The Permanent is similar to the determinant of a

matrix with a difference that no negative term appears in the Permanent. Computer

software is developed to determine the value of the Permanent of the ‘Criteria

Matrix’. The algorithm is (Garg, et al., 2011):

(A) P←0; Xi←ain−
1

2
 𝑎𝑖𝑗

𝑛
𝑖,𝑗 =𝑛 ; sgn←−1

(B) sgn ← −sgn; P ← sgn,

Get next subset of (1, 2, . . ., n − 1) from NEXSUB;

if empty, go to (C) and if j was deleted, then : z ← −1; otherwise, z ← 1;

xi ← xi + z ai j (i = 1, 2, . . ., n)

(C) P ← P.xi (i = 1, 2, . . ., n); p ← p + p if more subsets remain, to (B);

Permanent ← 2(−1)
n−1

 p; EXIT.

ALGORITHM NEXSUB

(A) [First entry] m ← 1; j ← 1; z ← 1; exit.

 (B) [Later entry] m ← m + 1; x ← m; j ← 0;

(C) j←j+1; x←x/2;if x is an integer ,to (C).

(D) z←(-1)
(x+1)/2

; If==2
n
 final exit; EXIT

Department of Computer of Engineering, DTU Delhi 27

Chapter Four: PROCEDURE FOR RANKING OF

SOFTWARE ENGINEERING METRICS

4.1 IDENTIFICATION OF SOFTWARE ENGINEERING

METRICS

The software development process grouped of five stages: analysis, design,

coding, testing, and operation. In each stages there are different factors that

distinguish the software development work and guide to different quality standards

of the final software product. Lawrence Livermore National Laboratory (LLNL) has

recognized 78 software metrics associated either directly or indirectly to software

reliability. This set of 78 software metrics was decreased to 30 based on semantic

consideration using structural considerations as well as other vital considerations.

The present study work is based on such already recognized software engineering

metrics that affects software reliability.

4.2 EXPERT IDENTIFICATION AND SELECTION

In available software engineering literature, data that could comprise the

basis for ranking the set of pre-selected metrics are impossible, because of scarcity

of understanding in this field. Similarly, data mining of software engineering

databases has made confirmed that it is impossible in practice (Mendonsa & Basili,

2000). Due to this, faith on expert thoughts was the best way to the problem of

gathering ranking data. Hence, the first action is to make a team of experts who

show a extensive diversity of experiences as is got in universities/consulting firms,

laboratories, or government agencies demonstrated by publications, hands on

practice and running research in the field linked to the issues within study and should

also be adaptable sufficient to address these issues. Some of the experts have been

both in academia and in industry. Persons of the industry may have better knowledge

of issues of cost and advantages, while academician may have better knowledge of

dealings in investigational development and it is at the edge of technological

advances. For this research, we deliberately select five experts. All experts have

more than 20 years experience in the area of software reliability testing and

Department of Computer of Engineering, DTU Delhi 28

assessment, software reliability engineering, etc. Out of these five experts, three are

from software industries, one from academics, and one from the software research

laboratory.

4.3 SELECTION OF RANKING CRITERIA

Software engineering metrics can be compared by means of many attributes,

jointly termed ranking criteria. Examples of such attributes are: repeatability (the

fact that the repeated application of a measure provides identical results), cost,

credibility (the fact that a measure supports the specified goals), etc. Some efforts

have been made to identify attributes of software engineering metrics with the

purpose of improving the software measurement. For instance, IEEE standard 982.2

(IEEE Guide for the Use of IEEE Standard Dictionary of Measures to Produce

Reliable Software, 1988) identified additional ranking criteria such as the benefits

and experience characteristics of each software engineering metric. These criteria

reflect industrial considerations. The study of Lawrence et al. (Lawrence, Persons,

Sicherman, & Johnson, 1998) based its ranking of measures on a total of eight

criteria, which are cost, benefit, credibility, directness, timeliness, repeatability,

experience, and validation.

Each of the ranking criteria relates to some particular aspect of the measure

considered important to the objectives of the study. Using the experience gained

from the literature, for the problem of identifying a single measure that can be used

(per life-cycle phase) to characterize reliability, the ranking criteria need to cover the

following aspects: (1) The measurement’s cost effectiveness (cost and benefit). This

will determine whether or not the measure will be used in a ‘real’ software

development process. (2) The measurement’s quality (whether it is reliable,

repeatable, formally validated, and widely used in the industry). This will determine

whether the measurement is credible. (3) The measure’s relevance to reliability (the

direct objective of the study). A detailed definition of ranking criteria is given in

Table III. Thus, it requires developing a set of criteria and corresponding levels for

the ranking of software engineering metrics.

Department of Computer of Engineering, DTU Delhi 29

4.4 EVALUATE SOFTWARE ENGINEERING METRICS BY

THE FUZZY-BASED MATRIX METHOD

In this projected technique, the weight of each criterion and the grading of

every software engineering metric are described using verbal terms, which can also

be represented as triangular fuzzy numbers. The fuzzy algorithm total the experts’

mind set rating for criteria, and the evaluation ratings of software engineering

metrics against the ranking criteria, to fixed the ‘Criteria Matrix’ and to compute the

value of the Permanent. The fuzzy-based matrix method consists of five phases. In

the first phase, the experts want to choose the suitable verbal values and membership

functions for measuring the weights of each criterion and the grading values of

software engineering metrics. In the second phase, the experts evaluate

Table 3: Ranking criteria definitions.

 Ranking criteria Definition

 Cost
This Criteria pay attention on the efforts needed to apply and

use the measure. A model of developer was defined to show the

discriminations among real development organizations. The

Qualification of this ranking criterion is based on this

organization’s typical one-year production. This ranking

criterion is qualified by the comparative needed do the

measurement for the one-year development given above

 Benefit Benefits are defined to be the escaping of overheads that would

be acquire if the measures are not used. It is measured by the

employee that would be saved for one-year software

development if the measurement is carried out

 Credibility
The records provided for each measure argues that it measures

Department of Computer of Engineering, DTU Delhi 30

 some thought of software development or software. A measure

is supposed to be credible if we think it probably to support the

specified purpose. This qualification is measured by the

directness of the measurements. For example, the measure

estimate the recorded purpose directly, or adjoin other values

and algorithms to estimate the recorded aims.

Experience

This ranking criterion shows the grade to which this

quantity has been used in the industry. Then, standard of this

ranking criterion is a function of the number of business uses

Repeatability
A measure is supposed to be repeatable if the repeated

application of the measure by the same or various people

consensus similar results. This criterion is measured by how

much subjective decision is needed to do the Measurement

Validation

This ranking criterion shows the grade to which the

measure has been validated by the software engineering society.

The standard based on whether the measure is formally

validated or not and by whom

Relevance to

reliability

This ranking criterion recognizes association measure for

forecasting/estimating software reliability. The level is a

function of the number of software reliability forecasting or

estimation techniques or models that include the measure

the weight of each ranking criteria and the grading of the software engineering

metrics against criteria. In the third phase, total weights and grading of software

Department of Computer of Engineering, DTU Delhi 31

engineering metrics are computed. In the fourth phase, the average values (fuzzy

numbers) obtained from the third phase are changed into crisp scores using

maximizing and minimizing set methods. In the fifth phase, the ‘Criteria Matrices’

are made for every software engineering metric and the value of the Permanent of

every such ‘Criteria Matrix’ is determined. In last, the software reliability metrics are

ranked in according to the values of the Permanents. The software engineering

metric with the highest value of the Permanent is ranked at number 1, the next as

number 2, and so on.

A user friendly computer software has been generated, which has in-built

scales of linguistic terms and respective membership functions for assigning

significant weights to ranking criterion and ratings of software engineering metrics

by the experts. Each expert has only to give weights and ratings to each ranking

criterion and software engineering metric, respectively, choosing appropriate verbal

term already available in tabular form in the software and all other mathematical

operations like approximating average weights and grading, conversion of verbal

terms into crisp scores, making of criteria matrix and determination of Permanent,

etc. as described in phases 3–5 in the above paragraph are performed automatically

by the software.

Department of Computer of Engineering, DTU Delhi 32

Chapter Five: A CASE STUDY

The fuzzy-based matrix method, described in the last chapter, is illustrated

with an example. Computer software has been developed for best choosing of

software reliability growth models using Distance-Based Approximation method

(Optimal selection and accuracy estimation of software reliability models, 2011).

The selection is based on 12 software reliability model selection criteria. Optimal

software reliability growth model selection (OSRGMS) is the application chosen. In

this software, user starts the application by double clicking application icon in

Microsoft Windows environment. He chose one or more SRGM’s out of 16

available software reliability growth models, as candidate models for reliability

forecasting, after providing failure data in needed format. He chooses one or more

model selection criteria out of 12 pre-specified selection criteria. The user has been

given with a facility to choose the parameter estimation method and optimization

method. The application shows the quantitative values of the criteria’s and selection

criteria of chosen software reliability growth models. Further, the application shows

the last results in forms of ranking of different software reliability growth models in

ascending/descending way along with the intermediate results against each step of

the methodology.

OSRGMS was a smart candidate for experimental system because it is user-

friendly GUI-based application, and is simply used by experts from various field e.g.

expert from industry, academic, etc. and it does not need any wide technical

knowledge in the field for its use.

This computer software is used to rank six most widely used software

engineering metrics:

(1) Cyclomatic Complexity (CC); (2) Fault Density (FD); (3) Mean Time to

Failure (MTTF); (4) System Design Complexity (SDC); (5) Requirements

Compliance (RC); and (6) Cohesion (CH) based on seven ranking criteria as

described in Table III on suggestions of five experts.

Asses the software engineering metrics by the fuzzy-based matrix method:

The weights given to the seven ranking criteria and the ratings of the six software

Department of Computer of Engineering, DTU Delhi 33

engineering metrics against each ranking parameter by five experts assigned in

linguistic terms using the weight set W and rating set R, described in Section 3.3 i.e.

W = {Very low, Low, Medium, High, and Very high}, R = {Very poor, Poor, Fair,

Good, and Very good} and their respective membership functions are given in

Tables IV and V respectively.

Through triangular fuzzy number aggregation by Equation (4), the total

weights (Wt) of the seven criteria determined by the five experts and by using

Equation (5), the aggregated rating (Rit) of software engineering metrics A i under

each criterion Ct were found and are represented in Tables VI and VII respectively.

For example, the aggregated weight of criterion C1 (Cost) was obtained as follows:

W1 =1/5[(0.2, 0.5, 0.8)⊕ (0.5, 0.7, 1)⊕ (0, 0.3, 0.5)⊕ (0.2, 0.5, 0.8)⊕ (0.5, 0.7, 1)]

=1/5 (1.4, 2.7, 4.1) = (0.28, 0.54, 0.82)

In addition, the aggregated rating (R11) of software engineering metric (A1)

under criterion (C1) can be found as follows:

R11 =1/5[(0.6, 0.8, 1)⊕ (0.8, 1, 1)⊕ (0.6, 0.8, 1)⊕ (0.8, 1, 1)⊕ (0.6, 0.8, 1)]

=1/5(3.4, 4.4, 5)

= (0.68, 0.88, 1)

The crisp scores of these aggregated values (fuzzy numbers) are obtained

using conversion method as described in Section 3.5 i.e. Equations (6)–(10) and are

shown in Table VIII. The ‘Criteria Matrices’ are formed for each of the software

engineering metric and the value of the Permanent

Department of Computer of Engineering, DTU Delhi 34

Table 4 Linguistic assessments and membership functions for ranking criteria.

 E1 E2 E3 E4 E5

Cost M (0.2,0.5,0.8) H (0.5,0.7,1) L (0,0.3,0.5) M (0.2,0.5,0.8) H (0.5,0.7,1)

Benefit H (0.5,0.7,1) VH (0.7,1,1) M (0.2,0.5,0.8) H (0.5,0.7,1) VH (0.7,1,1)

Repeatability L (0,0.3,0.5) M (0.2,0.5,0.8) H (0.5,0.7,1) M (0.2,0.5,0.8) M (0.2,0.5,0.8)

Creditability VL (0,0,0.3) L (0,0.3,0.5) M (0.2,0.5,0.8) L (0,0.3,0.5) VL (0,0,0.3)

Validation L (0,0.3,0.5) L (0,0.3,0.5) M (0.2,0.5,0.8) L (0,0.3,0.5) M (0.2,0.5,0.8)

Experience M (0.2,0.5,0.8) M (0.2,0.5,0.8) M (0.2,0.5,0.8) L (0,0.3,0.5) VL (0,0,0.3)

Relevance to

Reliability

M (0.2,0.5,0.8) H (0.5,0.7,1) L (0,0.3,0.5) M (0.2,0.5,0.8) H (0.5,0.7,1)

Department of Computer of Engineering, DTU Delhi 35

Table 5: Linguistic assessments and membership functions for software engineering metrics

 Cost Benefit Repeatability Creditability Validation Experience Relevance to

reliability

CC E1 G(0.6,0.8,1) F(0.3,0.5,0.7) F(0.3,0.5,0.7) VG(0.8,1,1) F(0.3,0.5,0.7) G(0.6,0.8,1) G(0.6,0.8,1)

 E2 VG(0.8,1,1) F(0.3,0.5,0.7) P(0,0.2,0.4) VG(0.8,1,1) G(0.6,0.8,1) VG(0.8,1,1) G(0.6,0.8,1)

 E3 G(0.6,0.8,1) P(0,0.2,0.4) VP(0,0,0.2) G(0.6,0.8,1) F(0.3,0.5,0.7) G(0.6,0.8,1) P(0,0.2,0.4)

 E4 VG(0.8,1,1) G(0.6,0.8,1) P(0,0.2,0.4) VG(0.8,1,1) G(0.6,0.8,1) F(0.3,0.5,0.7) VG(0.8,1,1)

 E5 G(0.6,0.8,1) F(0.3,0.5,0.7) G(0.6,0.8,1) G(0.6,0.8,1) F(0.3,0.5,0.7) G(0.6,0.8,1) G(0.6,0.8,1)

FD E1 VG(0.8,1,1) F(0.3,0.5,0.7) F(0.3,0.5,0.7) G(0.6,0.8,1) G(0.6,0.8,1) G(0.6,0.8,1) G(0.6,0.8,1)

 E2 G(0.6,0.8,1) G(0.6,0.8,1) G(0.6,0.8,1) F(0.3,0.5,0.7) F(0.3,0.5,0.7) VG(0.8,1,1) G(0.6,0.8,1)

 E3 VG(0.8,1,1) G(0.6,0.8,1) VP(0,0,0.2) G(0.6,0.8,1) G(0.6,0.8,1) G(0.6,0.8,1) VG(0.8,1,1)

 E4 VG(0.8,1,1) F(0.3,0.5,0.7) P(0,0.2,0.4) G(0.6,0.8,1) G(0.6,0.8,1) G(0.6,0.8,1) G(0.6,0.8,1)

 E5 G(0.6,0.8,1) F(0.3,0.5,0.7) P(0,0.2,0.4) F(0.3,0.5,0.7) F(0.3,0.5,0.7) G(0.6,0.8,1) G(0.6,0.8,1)

MTTF E1 G(0.6,0.8,1) G(0.6,0.8,1) G(0.6,0.8,1) G(0.6,0.8,1) G(0.6,0.8,1) G(0.6,0.8,1) G(0.6,0.8,1)

 E2 F(0.3,0.5,0.7) VG(0.8,1,1) G(0.6,0.8,1) F(0.3,0.5,0.7) F(0.3,0.5,0.7) F(0.3,0.5,0.7) G(0.6,0.8,1)

 E3 F(0.3,0.5,0.7) G(0.6,0.8,1) G(0.6,0.8,1) G(0.6,0.8,1) P(0,0.2,0.4) G(0.6,0.8,1) G(0.6,0.8,1)

 E4 F(0.3,0.5,0.7) VG(0.8,1,1) VG(0.8,1,1) G(0.6,0.8,1) F(0.3,0.5,0.7) G(0.6,0.8,1) VG(0.8,1,1)

 E5 P(0,0.2,0.4) G(0.6,0.8,1) G(0.6,0.8,1) F(0.3,0.5,0.7) F(0.3,0.5,0.7) F(0.3,0.5,0.7) G(0.6,0.8,1)

SDC E1 F(0.3,0.5,0.7) F(0.3,0.5,0.7) P(0,0.2,0.4) G(0.6,0.8,1) P(0,0.2,0.4) G(0.6,0.8,1) F(0.3,0.5,0.7)

 E2 F(0.3,0.5,0.7) F(0.3,0.5,0.7) F(0.3,0.5,0.7) G(0.6,0.8,1) F(0.3,0.5,0.7) F(0.3,0.5,0.7) F(0.3,0.5,0.7)

 E3 G(0.6,0.8,1) P(0,0.2,0.4) F(0.3,0.5,0.7) F(0.3,0.5,0.7) F(0.3,0.5,0.7) F(0.3,0.5,0.7) G(0.6,0.8,1)

 E4 P(0,0.2,0.4) G(0.6,0.8,1) F(0.3,0.5,0.7) G(0.6,0.8,1) P(0,0.2,0.4) P(0,0.2,0.4) P(0,0.2,0.4)

 E5 F(0.3,0.5,0.7) P(0,0.2,0.4) VP(0,0,0.2) G(0.6,0.8,1) P(0,0.2,0.4) P(0,0.2,0.4) F(0.3,0.5,0.7)

RC E1 P(0,0.2,0.4) F(0.3,0.5,0.7) F(0.3,0.5,0.7) F(0.3,0.5,0.7) G(0.6,0.8,1) F(0.3,0.5,0.7) F(0.3,0.5,0.7)

 E2 VP(0,0,0.2) F(0.3,0.5,0.7) F(0.3,0.5,0.7) G(0.6,0.8,1) F(0.3,0.5,0.7) P(0,0.2,0.4) F(0.3,0.5,0.7)

 E3 VP(0,0,0.2) VP(0,0,0.2) G(0.6,0.8,1) F(0.3,0.5,0.7) F(0.3,0.5,0.7) F(0.3,0.5,0.7) P(0,0.2,0.4)

 E4 VP(0,0,0.2) P(0,0.2,0.4) F(0.3,0.5,0.7) G(0.6,0.8,1) G(0.6,0.8,1) G(0.6,0.8,1) F(0.3,0.5,0.7)

 E5 P(0,0.2,0.4) P(0,0.2,0.4) F(0.3,0.5,0.7) F(0.3,0.5,0.7) G(0.6,0.8,1) P(0,0.2,0.4) P(0,0.2,0.4)

CH E1 F(0.3,0.5,0.7) G(0.6,0.8,1) G(0.6,0.8,1) F(0.3,0.5,0.7) F(0.3,0.5,0.7) F(0.3,0.5,0.7) G(0.6,0.8,1)

 E2 G(0.6,0.8,1) G(0.6,0.8,1) G(0.6,0.8,1) P(0,0.2,0.4) G(0.6,0.8,1) P(0,0.2,0.4) G(0.6,0.8,1)

 E3 P(0,0.2,0.4) F(0.3,0.5,0.7) F(0.3,0.5,0.7) F(0.3,0.5,0.7) F(0.3,0.5,0.7) P(0,0.2,0.4) F(0.3,0.5,0.7)

 E4 F(0.3,0.5,0.7) F(0.3,0.5,0.7) F(0.3,0.5,0.7) F(0.3,0.5,0.7) F(0.3,0.5,0.7) G(0.6,0.8,1) F(0.3,0.5,0.7)

 E5 F(0.3,0.5,0.7) VG(0.8,1,1) VG(0.8,1,1) P(0,0.2,0.4) G(0.6,0.8,1) F(0.3,0.5,0.7) G(0.6,0.8,1)

Department of Computer of Engineering, DTU Delhi 36

Table 6: Aggregated weights (Wt) of ranking criteria

 Relevance to

Reliability Criteria Cost Benefit Repeatability Creditability Validation Experience

Wt
0.28,0.54,0.82 0.52,0.78,0.96 0.22,0.5,0.78 0.04,0.22,0.48 0.08,0.38,0.62 0.12,0.36,0.64 0.28,0.54,0.82

Department of Computer of Engineering, DTU Delhi 37

Table 7: Aggregated rating (Rit) of software engineering metrics

Relevance to

Reliability

Cost Benefit Repeatability Creditability Validation Experience

CC 0.68,0.88,1 0.3,0.5,0.7 0.18,0.3, 0.54 0.72,0.92,1 0.42,0.62,0.82 0.58,0.78,0.94 0.52,0.72,0.88

FD 0.72,0.92,1 0.42,0.62,0.82 0.18,0.34,0.54 0.48,0.68,0.88 0.48,0.68,0.88 0.64,0.84,1 0.64,0.84,1

MTTF 0.3,0.5,0.7 0.68,0.88,1 0.64,0.84,1 0.48,0.68,0.88 0.3,0.5,0.7 0.48,0.68,0.88 0.64,0.84,1

SDC 0.3,0.5,0.7 0.24,0.44,0.64 0.18,0.34,0.54 0.54,0.74,0.94 0.12,0.32,0.52 0.24,0.44,0.64 0.3,0.44,0.64

RC 0,0.08,0.28 0.12,0.28,0.48 0.36,0.56,0.76 0.42,0.62,0.82 0.48,0.68,0.88 0.24,0.44,0.64 0.18,0.38,0.58

CH 0.3,0.5,0.7 0.52,0.72,0.88 0.52,0.72,0.88 0.18,0.38,0.58 0.42,0.62,0.82 0.24,0.44,0.64 0.48,0.68,0.88

Department of Computer of Engineering, DTU Delhi 38

Table 8: Crisp scores of software engineering metrics.

 Cost Benefit Repeatability Creditability Validation Experience

Relevance to

Reliability

CC 0.813095 0.5 0.371552 0.846296 0.6 0.730172 0.7056

FD 0.846296 0.6 0.371552 0.65 0.65 0.781034 0.8188

MTTF 0.5 0.813095 0.781034 0.65 0.5 0.65 0.8188

SDC 0.5 0.45 0.371552 0.7 0.35 0.45 0.4681

RC 0.153704 0.32069 0.55 0.6 0.65 0.45 0.3800

CH 0.5 0.67931 0.67931 0.4 0.6 0.45 0.6800

Criteria 0.534598 0.716303 0.5 0.283697 0.396154 0.395161 0.5465

of each such ‘Criteria Matrix’ is known using computer software. For

example, the ‘Criteria Matrix’ made for software engineering metric, CC, is given

as:

0.8478 1.3836 0.9149 0.4462 0.6596 0.6872 1

0.7227 0.5 0.6612 0.3225 0.4767 0.4967 0.7227
1.093 1.5123 0.3549 0.4877 0.721 0.7512 1.093

2.2412 3.1009 2.0505 0.8692 1.4784 1.5402 2.2412
1.516 2.0976 1.387 0.6764 0.62 1.0418 1.516

1.4551 2.0133 1.3313 0.6493 0.9598 0.7699 1.4551
1 1.3836 0.9149 0.4462 0.6596 0.6872 0.7056

Finally, the ranking values of all six software engineering metrics and their

corresponding rankings so found are shown in Table IX.

Department of Computer of Engineering, DTU Delhi 39

Table 9: Ranking values and ranks of the software engineering metrics

Software engineering metric Ranking values Rank #

CC 3602.431908 3

FD 3694.611648 2

MTTF 3758.057821 1

SDC 2951.339775 5

RC 2932.999554 6

CH 3293.575558 4

.

Table 10: Comparison with other methods

Proposed fuzzy

based matrix

Method

Rank based on

expert opinion

Rank based on

ANOVA method

Rank based on

AHP method

Ranking Ranking Ranking Ranking

Software

engineering metric Values Rank Values Rank values Rank values Rank

CC 3602.4319 3 0.7867 3 0.3208 3 0.0367 2

FD 3694.6116 2 0.8156 2 0.3393 2 0.0357 3

MTTF 3758.0578 1 0.8367 1 0.3636 1 0.0424 1

SDC 2951.3397 5 0.5478 5 0.2376 5 0.0296 5

RC 2932.9995 6 0.5244 6 0.2334 6 0.0246 6

CH 3293.5755 4 0.6744 4 0.3099 4 0.0311 4

.

Department of Computer of Engineering, DTU Delhi 40

Table 11: Input required in AHP

 Cost Benefit Repeatability Creditability Validation Experience Relevance to reliability

CC E1 0.800 0.500 0.500 0.967 0.500 0.800 0.800

 E2 0.967 0.500 0.200 0.967 0.800 0.967 0.800

 E3 0.800 0.200 0.033 0.800 0.500 0.800 0.200

 E4 0.967 0.800 0.200 0.967 0.800 0.500 0.967

 E5 0.800 0.500 0.800 0.800 0.500 0.800 0.800

FD E1 0.967 0.500 0.500 0.800 0.800 0.800 0.800

 E2 0.800 0.800 0.800 0.500 0.500 0.967 0.800

 E3 0.967 0.800 0.033 0.800 0.800 0.800 0.967

 E4 0.967 0.500 0.200 0.800 0.800 0.800 0.800

 E5 0.800 0.500 0.200 0.500 0.500 0.800 0.800

MTTF E1 0.800 0.800 0.800 0.800 0.800 0.800 0.800

 E2 0.500 0.967 0.800 0.500 0.500 0.500 0.800

 E3 0.500 0.967 0.967 0.800 0.500 0.800 0.800

 E4 0.500 0.967 0.967 0.800 0.500 0.800 0.967

 E5 0.200 0.800 0.800 0.500 0.500 0.500 0.800

SDC E1 0.500 0.500 0.200 0.800 0.200 0.800 0.500

 E2 0.500 0.500 0.500 0.800 0.500 0.500 0.500

 E3 0.800 0.200 0.500 0.500 0.500 0.500 0.800

 E4 0.200 0.800 0.500 0.800 0.200 0.200 0.200

 E5 0.500 0.200 0.033 0.800 0.200 0.200 0.500

RC E1 0.200 0.500 0.500 0.500 0.800 0.500 0.500

 E2 0.033 0.500 0.500 0.800 0.500 0.200 0.500

 E3 0.033 0.033 0.800 0.500 0.500 0.500 0.200

 E4 0.433 0.200 0.500 0.800 0.800 0.800 0.500

 E5 0.200 0.200 0.500 0.500 0.800 0.200 0.200

CH E1 0.500 0.800 0.800 0.500 0.500 0.500 0.800

 E2 0.800 0.800 0.800 0.200 0.800 0.200 0.800

 E3 0.200 0.500 0.500 0.500 0.500 0.200 0.500

 E4 0.500 0.500 0.500 0.500 0.500 0.800 0.500

 E5 0.500 0.967 0.967 0.200 0.800 0.500 0.800

Department of Computer of Engineering, DTU Delhi 41

Table 12: Input required in AHP for weights.

 Relevance to

 Cost Benefit Repeatability Creditability Validation Experience Reliability

Cost E1 1 0.6818 1.875 7.5 1.875 1 1

 E2 1 0.7857 1.4667 2.75 2.75 1.4667 1

 E3 1 0.5333 0.3636 0.5333 0.5333 0.5333 1

 E4 1 0.6818 1 1.875 1.875 1.875 1

 E5 1 0.7857 1.4667 11 1.4667 11 1

Benefit E1 1.4667 1 2.75 11 2.75 1.4667 1.4667

 E2 1.2727 1 1.8667 3.5 3.5 1.8667 1.2727

 E3 1.875 1 0.6818 1 1 1 1.875

 E4 1.4667 1 1.4667 2.75 2.75 2.75 1.4667

 E5 1.2727 1 1.8667 14 1.8667 14 1.2727

Repeatability E1 0.5333 0.3636 1 4 1 0.5333 0.5333

 E2 0.6818 0.5357 1 1.875 1.875 1 0.6818

 E3 2.75 1.4667 1 1.4667 1.4667 1.4667 2.75

 E4 1 0.6818 1 1.875 1.875 1.875 1

 E5 0.6818 0.5357 1 7.5 1 7.5 0.6818

Creditability E1 0.1333 0.0909 0.25 1 0.25 0.1333 0.1333

 E2 0.3636 0.2857 0.5333 1 1 0.5333 0.3636

 E3 1.875 1 0.6818 1 1 1 1.875

 E4 0.5333 0.3636 0.5333 1 1 1 0.5333

 E5 0.0909 0.0714 0.1333 1 0.1333 1 0.0909

Validation E1 0.5333 0.3636 1 4 1 0.5333 0.5333

 E2 0.3636 0.2857 0.5333 1 1 0.5333 0.3636

 E3 1.875 1 0.6818 1 1 1 1.875

 E4 0.5333 0.3636 0.5333 1 1 1 0.5333

 E5 0.6818 0.5357 1 7.5 1 7.5 0.6818

Experience E1 1 0.6818 1.875 7.5 1.875 1 1

 E2 0.6818 0.5357 1 1.875 1.875 1 0.6818

 E3 1.875 1 0.6818 1 1 1 1.875

 E4 0.5333 0.3636 0.5333 1 1 1 0.5333

 E5 0.0909 0.0714 0.1333 1 0.1333 1 0.0909

Relevance to E1 1 0.6818 1.875 7.5 1.875 1 1

Reliability

 E2 1 0.7857 1.4667 2.75 2.75 1.4667 1

 E3 1 0.5333 0.3636 0.5333 0.5333 0.5333 1

 E4 1 0.6818 1 1.875 1.875 1.875 1

 E5 1 0.7857 1.4667 11 1.4667 11 1

Department of Computer of Engineering, DTU Delhi 42

Chapter Six: RESULT AND DISCUSSION

The associated ranking of software engineering metrics have been given in

terms of the importance of their effect on software reliability. The higher the value

of the permanent shows better ranking. Table IX shows that MTTF has been ranked

highest because it scored very high value for three criteria namely cost,

repeatability, and relevance to reliability. This metric is followed by FD and CC

being ranked at 2 and 3 and are top three software engineering metrics. It implies

that these metrics are prime candidates as a root of a software reliability forecasting

system. The software engineering metric RC has the lowest ranking, a result

because of the fact that the metrics scores very low in the cost criterion. The

quantification analysis given in Table X shows the comparison of the rankings of

software engineering metrics obtained by fuzzy-based matrix method with other

available methods.

It is clear that the results, found using fuzzy-based matrix methodology, are

consistent with the results obtained from other statistical analysis used by other

researchers. However, it is easier to obtain the results by this methodology as a very

small change in the Permanent leads to a more difference in the value of ranking of

a software engineering metric.

Department of Computer of Engineering, DTU Delhi 43

Table 13: Input required in ANOVA method.

 Cost Benefit Repeatability Creditability Validation Experience

Relevance to

 Reliability

CC E1 0.800 0.500 0.500 0.967 0.500 0.800 0.800

 E2 0.967 0.500 0.200 0.967 0.800 0.967 0.800

 E3 0.800 0.200 0.033 0.800 0.500 0.800 0.200

 E4 0.967 0.800 0.200 0.967 0.800 0.500 0.967

 E5 0.800 0.500 0.800 0.800 0.500 0.800 0.800

FD E1 0.967 0.500 0.500 0.800 0.800 0.800 0.800

 E2 0.800 0.800 0.800 0.500 0.500 0.967 0.800

 E3 0.967 0.800 0.033 0.800 0.800 0.800 0.967

 E4 0.967 0.500 0.200 0.800 0.800 0.800 0.800

 E5 0.800 0.500 0.200 0.500 0.500 0.800 0.800

MTTF E1 0.800 0.800 0.800 0.800 0.800 0.800 0.800

 E2 0.500 0.967 0.800 0.500 0.500 0.500 0.800

 E3 0.500 0.967 0.967 0.800 0.500 0.800 0.800

 E4 0.500 0.967 0.967 0.800 0.500 0.800 0.967

 E5 0.200 0.800 0.800 0.500 0.500 0.500 0.800

SDC E1 0.500 0.500 0.200 0.800 0.200 0.800 0.500

 E2 0.500 0.500 0.500 0.800 0.500 0.500 0.500

 E3 0.800 0.200 0.500 0.500 0.500 0.500 0.800

 E4 0.200 0.800 0.500 0.800 0.200 0.200 0.200

 E5 0.500 0.200 0.033 0.800 0.200 0.200 0.500

RC E1 0.200 0.500 0.500 0.500 0.800 0.500 0.500

 E2 0.033 0.500 0.500 0.800 0.500 0.200 0.500

 E3 0.033 0.033 0.800 0.500 0.500 0.500 0.200

 E4 0.433 0.200 0.500 0.800 0.800 0.800 0.500

 E5 0.200 0.200 0.500 0.500 0.800 0.200 0.200

CH E1 0.500 0.800 0.800 0.500 0.500 0.500 0.800

 E2 0.800 0.800 0.800 0.200 0.800 0.200 0.800

 E3 0.200 0.500 0.500 0.500 0.500 0.200 0.500

 E4 0.500 0.500 0.500 0.500 0.500 0.800 0.500

 E5 0.500 0.967 0.967 0.200 0.800 0.500 0.800

Weights (W) 0.5465 0.7562 0.5000 0.2438 0.3605 0.3756 0.5465

Department of Computer of Engineering, DTU Delhi 44

6.1 Validation of the results

The relative weight and ANOVA method used by Zhang and Pham (Zhang

& Pham, 2000) for the analysis of data did not consist of expert biases and also no

exact expert elicitation process has been described. The methodology suggested by

Li and Smidts (Li & Smidts, A ranking of software engineering measures based on

expert opinion, 2003) did not estimate the bias in expert inputs and think limited

number of experts.

The aggregation of supremacy degree by OWA operator with quantifier-

guided function and pair wise comparison of ranking parameter or criteria as

suggested by Wang and Lin (Wang & Lin, 2003) also used AHP, which consists of

large amount of time for computation and is also hard to score when the number of

the parameter or criteria exceeds more than seven. Criteria interdependency may

suffer losses due to oversimplifying the hierarchy. Further, in this methodology

fuzzy preference relation is determined by hamming distance, and consensus

measures are based on the decisions agreed by most of the experts.

BBN (Fenton & Neil, 1999),(Johnson & Yu, Objective software quality

assessment., 1999) needs large amount of data that stop the widespread use of such

methods and badly affect the accuracy of the results.

The methodology projected in this paper has taken care of almost all

shortcomings of different other methodologies. It considers expert bias with no

limits on the number of exerts, and does not need excess amount of data in

comparison with BBN, and imparts a better modeling of vagueness and ambiguity

connected with the pair wise assessment process. Further, Complexity of AHP is

higher if number of levels exceeds or overextends the hierarchy. The projected

fuzzy-based matrix method considers the relative weights directly with ratings of

the criteria to find out the ranking values and thus improves the accuracy of the

results.

Department of Computer of Engineering, DTU Delhi 45

Table 14: Input required in rank based on expert opinion

 Cost Benefit Repeatability Creditability Validation Experience

Relevance to

Reliability

CC

E

1 0.800 0.500 0.500 0.967 0.500 0.800 0.800

E

2 0.967 0.500 0.200 0.967 0.800 0.967 0.800

E

3 0.800 0.200 0.033 0.800 0.500 0.800 0.200

E

4 0.967 0.800 0.200 0.967 0.800 0.500 0.967

E

5 0.800 0.500 0.800 0.800 0.500 0.800 0.800

FD

E

1 0.967 0.500 0.500 0.800 0.800 0.800 0.800

E

2 0.800 0.800 0.800 0.500 0.500 0.967 0.800

E

3 0.967 0.800 0.033 0.800 0.800 0.800 0.967

E

4 0.967 0.500 0.200 0.800 0.800 0.800 0.800

E

5 0.800 0.500 0.200 0.500 0.500 0.800 0.800

MTTF

E

1 0.800 0.800 0.800 0.800 0.800 0.800 0.800

E

2 0.500 0.967 0.800 0.500 0.500 0.500 0.800

E

3 0.500 0.967 0.967 0.800 0.500 0.800 0.800

E

4 0.500 0.967 0.967 0.800 0.500 0.800 0.967

E

5 0.200 0.800 0.800 0.500 0.500 0.500 0.800

SDC

E

1 0.500 0.500 0.200 0.800 0.200 0.800 0.500

 E0.500 0.500 0.500 0.800 0.500 0.500 0.500

Department of Computer of Engineering, DTU Delhi 46

2

E

3 0.800 0.200 0.500 0.500 0.500 0.500 0.800

E

4 0.200 0.800 0.500 0.800 0.200 0.200 0.200

E

5 0.500 0.200 0.033 0.800 0.200 0.200 0.500

RC

E

1 0.200 0.500 0.500 0.500 0.800 0.500 0.500

E

2 0.033 0.500 0.500 0.800 0.500 0.200 0.500

E

3 0.033 0.033 0.800 0.500 0.500 0.500 0.200

E

4 0.433 0.200 0.500 0.800 0.800 0.800 0.500

E

5 0.200 0.200 0.500 0.500 0.800 0.200 0.200

CH

E

1 0.500 0.800 0.800 0.500 0.500 0.500 0.800

E

2 0.800 0.800 0.800 0.200 0.800 0.200 0.800

E

3 0.200 0.500 0.500 0.500 0.500 0.200 0.500

E

4 0.500 0.500 0.500 0.500 0.500 0.800 0.500

E

5 0.500 0.967 0.967 0.200 0.800 0.500 0.800

Department of Computer of Engineering, DTU Delhi 47

Table 15: Procedural comparisons of various methods

 Proposed

 fuzzy-based

Step matrix method Expert opinion ANOVA method AHP method

1. Construct fuzzy Fuzzy Non-fuzzy Non-fuzzy Non-fuzzy

 Matrix

2. Adjust attributes Fuzzy Non-fuzzy Non-fuzzy Non-fuzzy

 Values

3. weight matrix Fuzzy aggregation Algebraic Not available N pair wise

 Aggregation comparison matrix

4. Aggregation of Fuzzy aggregation Algebraic Algebraic Compute the

 Experts Opinion Aggregation Aggregation priority vector for

 N pair wise

 comparison matrix

5. suitability indices Fuzzy Algebraic Algebraic Compute the

 of metrics Comprehensive

 priority vector

6. Rank of metrics Yes Yes Yes Yes

7. Computations N N N (2N + 4)

Required (N = number of attribute)

Algebraic means easy addition, multiplication, and arithmetic average. All these

methodologies have been compared for computer software developed for most favourable

selection of software reliability development models as detailed in chapter5. In order to

have experimental analysis and validation of this comparison, the inputs needed for

different techniques for ranking of software engineering metrics for the above illustrated

example are given in Tables XI–XIV and the procedural comparison has been given in

Table XV.

Department of Computer of Engineering, DTU Delhi 48

Chapter Seven: CONCLUSION

7.1 CONCLUSION

The study was conducted to rank the software engineering metrics using the state-

of-art knowledge in the field of software engineering. In meticulous, a fuzzy-based

matrix method (a multiple attribute decision-making method) has been developed. It is

established that once a complete set of criteria and software engineering metrics have

been identified, their significant weights and ratings are assigned using verbal terms

using expert elicitation, and then this method can be applied for their ranking. The results

obtained by this method and their comparison in Table X validate the results presented by

other methods. In general, the following conclusion can be drawn:

The interdependencies of the ranking criteria have been given due consideration

in the matrix method and since Permanent of criteria matrix is used; the situation of

indeterminacy does not arise.

The use of fuzzy set theory improves the decision-making procedure by

considering the vagueness and ambiguity prevalent in real-world system. We also found

that the use of triangular fuzzy numbers made data collection, calculation, and

interpretation of results easier for experts.

The computer software that has been developed for determining the aggregated

weights, ratings, and Permanent of the criteria matrix is user friendly and also does not

require extensive technical knowledge of software engineering metrics and/or ranking

criteria. It takes a few seconds for solving a 20× 20 matrix and thus makes the

methodology easier, simpler, and effective

Department of Computer of Engineering, DTU Delhi 49

7.2 FUTURE SCOPE OF WORK

In this work fuzzy based methodology has been used of Ranking of software

engineering metrics for measuring reliability of software. This can be extended to fuzzy

set theory concept in allocating appropriate work to suitable employee on the basis of

interest. This can enhance productivity and efficiency of industry. Work need to be taken

to make rank of employee interest and working as software engineering metrics. Thus

this concept can further be utilised for other type of industries as software industry.

.

Department of Computer of Engineering, DTU Delhi 50

REFERENCES

"The Nature of Mathematical Programming. (n.d.).

(2014, june 17). Retrieved from NASA:

http://mars.jpl.nasa.gov/msp98/news/mco990930.html

Abdel-Rahman, E. M., Ahmad, A. R. (2012). A metaheurisic bat inspired algorithm for

full body human pose estimation. Ninth Conference on Computer and Robot Vision, (pp.

369–375).

Abraham A., C. G. (2006). Stigmergic Optimization. Springer .

Albrecht, A. (1979). Measuring Application Development Productivity. In Proc of the

IBM Applications Development Symposium , (pp. 83-92).

Anish M, Kamal P and Harish M. (2010). Software Cost Estimation using Fuzzy logic.

ACM SIGSOFT Software Engineering Notes , 1-7.

Anna Galinina, Olga Burceva, Sergei Parshutin. (2012). The Optimization of COCOMO

Model Coefficients Using Genetic Algorithms. Information Technology and Management

Science , 45-52.

Arnold, D. N. (2014, june 16). Retrieved from The Patriot Missile Failure:

https://www.ima.umn.edu/~arnold/disasters/patriot.html

Briand, L., Freimut, B., & Vollei, F. (Eds.). (2000). Assessing the cost-effectiveness of

inspections by combining project data and expert opinion. Proceedings of the 11th

International Symposium on Software Reliability Engineering, 23, pp. 246–258. San Jose,

CA, U.S.A.

Bailador, G., & Trivi, G. ˜. (2010). Pattern recognition using temporal fuzzy automata.

Fuzzy Sets and Systems , 37–55.

Banks A., J. V. (2007). A Review of Particle Swarm Optimization- Part I: Background

and Development, Natural Computation. springer , 467–484.

Basili, J. B. (1981). A meta model for software development resource expenditures. Fifth

International conference on software Engineering, (pp. 107-129).

Boehm., B. (1981). Software Engineering Economics. New Jersey.

Bora, T. C. (2012). Bat-inspired optimization approach for the brushless DC wheel motor

problem. IEEE Trans. Magnetics , 947-950.

Brajesh Kumar Singh, S. T. (2013). Tuning of Cost Drivers by Significance Occurrences

and Their Calibration with Novel Software Effort Estimation Method. Advances in

Software Engineering .

Buckley, J. (1984). The multiple judge multiple ranking problem: A fuzzy set approach.

Fuzzy Sets and Systems , 25–37.

C.F, K. (1996). An Empirical Validation of Software Cost Estimation Models. ACM ,

416-429.

Chang, P., & Chen, Y. (1994). A fuzzy multi-criteria decision making method for

technology transfer strategy selection in biotechnology. Fuzzy Sets and Systems , 131–

139.

Chen, S. (1985). Ranking fuzzy numbers with maximizing set and minimizing set. Fuzzy

Sets and Systems .

Department of Computer of Engineering, DTU Delhi 51

Cochran, J., & Chen, H. (2005). Fuzzy multi-criteria selection of object-oriented

simulation software for production system analysis. Computers and Operations Research

, 153–168.

DewSoft. (2014, June 17). Retrieved from SOFTWARE RELIABILITY:

http://education.dewsoftoverseas.com/QE/QUickReference/Software%20Enginering/7.1.

asp

DewSoft. (2014, June 17). Retrieved from SOFTWARE RELIABILITY:

http://education.dewsoftoverseas.com/QE/QUickReference/Software%20Enginering/7.6.

asp

Dolado, J. J. (2009). On the Problem of the Software Cost Function,. spain.

Du, Z. Y. (2012). Image matching using a bat algorithm with mutation. Applied

Mechanics and Materials , 88-93.

Dubois D, Prade H. Fuzzy real algebra: Some results. (1979). Fuzzy Sets and Systems ,

327–348.

Dyba, T. (2000). An instrument for measuring the key factors of success in software

process improvement. Empirical Software Engineering , 357–390.

Evanco, W., & Lacovara, R. (1994). A model-based framework for the integration of

software metrics. The Journal of Systems Software , 77–86.

F, s. (2006). Estimation of the COCOMO model parameters using genetic algorithms for

NASA software projects. Journal of computer science , 118-123.

F. Ferrucci, C. G. (2010). Genetic programming for effort estimation: an analysis of the

impact of different fitness functions. in Proceedings of the 2nd International Symposium

on Search Based Software Engineering (SSBSE ’10), (pp. 89-98). IEEE Computer

Society.

Facts about COCOMO And Costar. (2012). Retrieved from

http://www.softstarsystems.com/.

Fenton, N., & Neil, M. (1999). A critique of software defect prediction models. IEEE

Transactions Software Engineering , 675–689.

Five reason why software projects fail. (2002, may 20). Retrieved from Computerworld.

Furuyama, T., Arai, Y., & Lio, K. (1997). Analysis of fault generation caused by stress

during software development. . The Journal of Systems and Software , 13–25.

Furuyama, T., Yoshio, A., & Kazuhiko, I. (1994). Fault generation model and mental

stress effect analysis. The Journal of Systems and Software , 31–42.

Gao, B. W. (1997). ASSESSING SOFTWARE COST ESTIMATION MODELS:

CRITERIA FOR ACCURACY, CONSISTENCY AND REGRESSION. Advanced

journal of Information sciences , 30-44.

Garg, R., Gupta, V., & Agrawal, V. (2007). Quality evaluation of thermal power plants

by graph theoretical methodology. International Journal of Power and Energy Systems ,

42–48.

Host, M., & Wohlin, C. (1998). An experimental study of individual subjective effort

estimations and combinations of the estimates. Proceeding of the 20th International

Conference on Software Engineering, (pp. 332–339). tokyo, japan.

http://en.wikipedia.org/wiki/COCOMO. (n.d.). Retrieved june 2014, from

http://en.wikipedia.org/: http://en.wikipedia.org/wiki/COCOMO

Department of Computer of Engineering, DTU Delhi 52

(1988). IEEE Guide for the Use of IEEE Standard Dictionary of Measures to Produce

Reliable Software. IEEE, New York.

Jacob, L. (2014). Bat Algorithm for resource scheduling in cloud computing

enviornment. International Journal for research in applied sciences and engineering

technology .

Jamil, M. Z.-J. (2013). Improved bat algorithm for global optimization. Applied Soft

Computing .

Johnson, G., & Yu, X. (1999). Objective software quality assessment. Proceeding of

Nuclear Science Symposium (NSS), (pp. 1691–1698). Seattle, WA, U.S.A.

Johnson, G., & Yu, X. (1999). Objective software quality assessment. Proceeding of

Nuclear Science Symposium (NSS), Seattle, WA, U.S.A , 1691–1698.

Karsak, E., & Tolga, E. (2001). Fuzzy multi-criteria decision-making procedure for

evaluating advanced manufacturing system investments. International Journal of

Production Economics , 49–64.

Kaufmann, A., & Gupta, M. (1988). Fuzzy Mathematical Models in Engineering and

Management Science. Elsevier Science Publisher .

Khan, K. N. (2011). A fuzzy bat clustering method for er-gonomic screening of office

workplaces,. Advances in Intelligent and Soft Computing , 59–66.

Khatatnech, K., & Mustafa, T. (2009). Software reliability modeling using soft

computing technique. European Journal of Scientific Research , 154–160.

Kim, K., & Park, K. (1990). Ranking fuzzy numbers with index of optimism. Fuzzy Sets

and Systems , 143–150.

Kitchenham, B., Linkman, S., & Law, D. (1997). DESMET: A methodology for

evaluating software engineering methods and tools. Computing and Control Engineering

Journal , 120–126.

Komarasamy, G. a. (2012). An optimized K-means clustering techniqueusing bat

algorithm. European J. Scientific Research , 263-273.

Lau, H., Wong, C., Lau, P., Pun, K., Chin, K., & Jiang. (2003). A fuzzy multi-criteria

decision support procedure for enhancing information delivery in extended enterprise

networks. Engineering Applications of Artificial Intelligence , 1–9.

Lawrence, J., Persons, W., Sicherman, A., & Johnson, G. (1998). Assessment of software

reliability measurement methods for use in probabilistic risk assessment. Lawrence

Livermore National Laboratory, Fission Energy and Systems Safety Program. Technical

Report UCRLID-136035.

Lemma, T. A., Bin Mohd Hashim, F. (2011). Use of fuzzy systems and bat algorithm for

exergy modelling in a gas turbine generator,. IEEE Colloquium , 305–310.

Li, M., & Smidts, C. (2003). A ranking of software engineering measures based on expert

opinion. IEEE Transactions on Software Engineering , 29(9):811–824. DOI:

10.1109/TSE.2003.1232286.

Li, M., Wei, Y., Desovski, D., Nejad, H., Ghose, S., & Cukic, B. (2004). Validation of a

methodology for assessing software reliability. Software Reliability Engineering 2004:

ISSRE 2004, 15th International Symposium, (pp. 66–76). Saint-Malo, Bretagne, France.

Liao, T. (1996). A fuzzy multi-criteria decision making method for material selection.

Journal of Manufacturing Systems , 1–12.

Department of Computer of Engineering, DTU Delhi 53

Lin, J. H. (2012). A chaotic Levy flight bat algorithm for parameter estimation in

nonlinear dynamic biological systems. J.Computer and Information Technology , 56–63.

Lin, J.-C. (2010). Applying Particle Swarm Optimization to Estimate Software Effort by

Multiple Factors Software Project Clustering. IEEE .

Liou, T., & Wang, M. (1992). Ranking fuzzy numbers with integral value. Fuzzy Sets and

Systems , 247–255.

M.jorgensen, K. a. (2003). A review of software surveys on software effort estimation.

International symposium on Empirical Software Engineering, (pp. 223-230).

Marcus, M., & Minc, H. (1965). Permanents. American Mathematics , 571–591.

McIvor, R., McCloskey, A., Humphreys, P., & Maguire, L. (2004). Using a fuzzy

approach to support financial analysis in the corporate acquisition process. Expert

Systems with Applications , 533–547.

Mendonsa, M., & Basili, V. (2000). Validation of an approach for improving existing

measurement frameworks. IEEE Transactions on Software Engineering , 484–499.

Michalewicz. (1992). Genetic Algorithms + Data Structures = Evolution Programs.

Springer .

Molokken, K. F. (2007). Increasing Software Effort Estimation Accuracy- using

experiance data, estimation models and checklists. &th International conference on

Quality Software, (pp. 342-347). portland.

MR, L. (1995.). Handbook of Software Reliability Engineering. McGraw-Hill: New York,

1995. New York: McGraw-Hill.

Musa, J., A, I., & Okumoto, K. (1987). Software Reliability: Measurement, Prediction,

Applicationsl. New York: McGraw-Hil.

Nakamura, R. Y. (2012). A binary bat algorithm for feature selection. 25th SIBGRAPI

Conference on Graphics, Patterns and Images (SIBGRAPI) (pp. 291-297). IEEE

Publication.

Optimal selection and accuracy estimation of software reliability models. (2011). PhD

Thesis submitted to M. D. University . Rohtak, India.

Ordonez, J., & Haddad, H. (April 2008). The state of metrics in software industry.

Information Technology: New Generations, 2008. ITNG 2008. Fifth International

Conference, DOI: 10.1109/ITNG.2008.106, pp. 453–458. Las Vegas, NV.

P.R Srivastava, A. B. (2014). An empirical study of test effort estimation based on bat

algorithm. Int. J. Bio-Inspired Computation , 57-70.

Parastoo, M., & Dehlen, V. (May 2009). Existing model metrics and relations to model

quality. ICSE Workshop on Software Quality. Vancouver, BC, Canada.

Pham, H., & Zhang, X. (1999). A software cost model with warranty and risk costs. IEEE

Transactions on Computers , 71–75.

Putnam, L. (1978). A general Empirical Solution to the Macro Software Sizing and

Estimating Problem. IEEE Transactions on Software Engineering , (pp. 345-360).

Putnam, L., & Fitzsimmons, A. (1979). Estimating software costs. Datamation , 171–

178.

Q. Alam, P. (n.d.). Systematic Review of Effort Estimation and cost Estimation. Roorkee:

Institute of management studies.

Ramamoorthy, C., & Bastani, F. (1982). Software reliability: Status and perspectives.

IEEE Transactions Software Engineering , 8(4):354–371.

Department of Computer of Engineering, DTU Delhi 54

Reddy, P. (2010). Software effort estimation using Particle Swarm Optimization with

inertia weight. International journal of software Engineering , 12-23.

Roberts, J. T., Gibson, M., Fields, K., & Rainer, J. R. (1998). Factors that impact

implementing a system development methodology. IEEE Transactions on Software

Engineering , 640–648.

S K Sehra, Y. S. (2011). SOFT COMPUTING TECHNIQUES FOR SOFTWARE

PROJECT EFFORT ESTIMATION. “International Journal of Advanced Computer and

Mathematical Sciences , 160-167.

Schneberger, S. (1997). Distributed computing environments: Effects on software

maintenance difficulty. The Journal of Systems and Software , 101–116.

Segundo. (2001). SEER-SEM Users Manual .

Sharma, A., Kumar, R., & Grover, P. (2008). Estimation of quality for software

components: An empirical approach. ACM SIGSOFT Software Engineering Notes , 1–10.

Shepperd, M. J. (2007). A Systematic Review of Software Development Cost Estimation

Studies. IEEE Transactions on Software Engineering .

Sheta, S. A. (2007). Software Effort Estimation by Tuning COOCMO Model Parameters

Using Differential Evolution. IEEE congess on evolutionary computation , 1283-1289.

Singh, R., Singh, O., & Singh, Y. (2006). A methodology for ranking of software

reliability measures. IE (I) Journal-CP , 14–20.

Software realiabilty. (2014, June 17). Retrieved from Dew soft:

http://education.dewsoftoverseas.com/QE/QUickReference/Software%20Enginering/7.2.

asp

Li, H., Lu, M., & Li, Q. (Eds.). (2006). Software reliability metrics selecting method

based on analytic hierarchy process. Quality Software, 2006. QSIC 2006.Sixth

International Conference, (pp. 337–346). Beijing.

Thakur, D. (2014, June 17). Computer Notes. Retrieved from ecomputernotes:

http://ecomputernotes.com/software-engineering/software-metrics

(2009). The 10 laws of chaos. The Standish group International, Inc.

Vishali, Anshu Sharma, Suchika Malik. (2014). COCOMO model Coefficients

Optimization Using GA and ACO. International Journal of Advanced Research in

Computer Science and Software Engineering , 771-776.

Wang, J., & Lin, Y. (2003). A fuzzy multi-criteria group decision making approach to

select configuration items for software development. Fuzzy Sets and Systems , 343–363.

Wang, M., & Chang, T. (1995). Tool steel materials selection under fuzzy environment.

Fuzzy Sets and Systems , 263–270.

Wohlin, C., Mayrhauser, A., Host, M., & Regnell, B. (2000). Subjective evaluation as a

tool for learning from software project success. Information and Software Technology ,

983–992.

X.S., Y. (2008). Nature-Inspired Metaheuristic Algorithms. UK: Luniver. .

Xie, J. Z. (2013). A novel bat algorithm based on differential operator and Levy flights

trajectory. Computational Intelligence and Neuroscience .

Yang, X. S. (2011). Bat algorithm for multi-objective optimisation. Int. J. Bio-Inspired

Computation , 267-274.

Department of Computer of Engineering, DTU Delhi 55

Yang, X. S., Karamanoglu, M., Fong, S. (2012). Bat aglorithm for topology optimization

in microelectronic applications. Conference on Future Generation Communication

Technology, (pp. 150–155).

Yang, X.-S. (2010). A New Metaheuristic Bat-Inspired Algorithm. Nature Inspired

Coop-erative Strategies for Optimization (NISCO 2010) (pp. 65-74). Springer.

Yeh, C., Deng, F., & Chang, Y. (2000). Fuzzy multicriteria analysis for performance

evaluation of bus companies. European Journal of Operational Research , 459–473.

Zadeh, L. (1965). Fuzzy sets. Information and Control. 8:338–353.

Zhang, X., & Pham, H. (2000). An analysis of factors affecting software reliability. The

Journal of Systems and Software , 43–56.

