
I

A
Dissertation

On

Selection of Optimal Software Cost Estimation Model Using

Bacterial Foraging Optimization Algorithm

Submitted in Partial Fulfilment of the Requirement
for the Award of the Degree of

Master of Technology
in

Computer Science and Engineering
by

Neha Mittal
University Roll No. 2K12/CSE/11

Under the Esteemed Guidance of

Dr. Kapil Sharma

Associate Professor, Computer Engineering Department, DTU

2013-2014
COMPUTER ENGINEERING DEPARTMENT

DELHI TECHNOLOGICAL UNIVERSITY
DELHI – 110042, INDIA

II

ABSTRACT

The main challenge that the software industry faces today is to estimate the cost required to

develop the project in the early phase of software development life cycle. Cost estimation is

difficult in the early phase because cost depends on factors like Line of Code, Methodology

adopted etc. which cannot be stated accurately in the beginning. Various techniques had already

been developed by the researchers which can be categorized into Algorithmic and Non-

Algorithmic methods to determine the cost of the software precisely. In this thesis, Bacterial

Foraging Optimization Algorithm (BFOA) technique is operated on NASA data set to estimate

the cost for the NASA project. BFOA is a one of the soft computing techniques which is tolerant

to factors like imprecision, approximation, partial truth, and uncertainty. It has drawn attention of

many of the researchers and has been used in various engineering application. BFOA is

employed to generate parameters of the COCOMO model and four of its variants. These five

models were compared against the comparison criteria like BIAS, MSE, MAE, MEOP, PRR,

Variance, RMPSE, RSQ, SSE, TS, ED, PA, SD, MD, MMRE, RMSE and, NRMS. Finally

distance based approach (DBA) is used for optimal selection and ranking of COCOMO models.

DBA do recognizes the importance of relative importance of the criteria for the given

application, without it inter-criterion comparison could not have been accomplished. What all it

requires is set of criteria for selection of model, set of model, and their level for the purpose of

optimal selection; and finally it successfully rank on position one COCOMO_model1 as the best

one with LSE of 651.2720.

Keywords: Bacterial Foraging Optimization Algorithm; Least Mean Square; COCOMO;

Distance Based Approach; Optimal.

III

ACKNOWLEDGEMENT

First of all, I would like to express my deep sense of respect and gratitude to my thesis

supervisor Dr. Kapil Sharma for providing the opportunity of carrying out this thesis and being

the guiding force behind this research work. I am deeply indebted to him for the support, advice

and encouragement he provided without which the thesis could not have been a success.

Secondly, I am grateful to Dr. O.P. Verma, HOD, Computer Engineering Department,

DTU for his immense support. I would also like to acknowledge Delhi Technological University

library and staff for providing the right academic resources and environment for this research

work to be carried out.

Last but not the least I would like to express sincere gratitude to my parents and friends

for constantly encouraging me during the completion of research work.

Neha Mittal

 University Roll no: 2K12/CSE/11

 M.Tech (Computer Science & Engineering)

 Department of Computer Engineering

 Delhi Technological University

Delhi – 110042

IV

CERTIFICATE

This is to certify that the thesis titled “Selection of Optimal Software Cost Estimation

Model Using Bacterial Foraging Optimization Algorithm” is a bonafide record of work done by

Neha Mittal, Roll No. 2K12/CSE/11atDelhi Technological University for partial fulfilment of

the requirements for the degree of Master of Technology in Computer Science & Engineering.

This thesis was carried out under my supervision and has not been submitted elsewhere, either in

part or full, for the award of any other degree or diploma to the best of my knowledge and belief.

Date: __ __ ____

(DR. Kapil Sharma)

Associate Professor & Project Guide

Department of Computer Engineering

Delhi Technological University

V

Declaration

I hereby declare that the thesis entitled “Selection of Optimal Software Cost Estimation

Model Using Bacterial Foraging Optimization Algorithm” which is being submitted to the

Delhi Technological University, in partial fulfillment of the requirements for the award of

degree of Master of Technology in Computer Science Engineering is an authentic work

carried out by me. The material contained in this thesis has not been submitted to any

university or institution for the award of any degree.

Neha Mittal

 University Roll no: 2K12/CSE/11

 M.Tech (Computer Science & Engineering)

 Department of Computer Engineering

 Delhi Technological University

Delhi – 110042

VI

Contents

Abstract ii

Acknowledgment iii

Certificate iv

Declaration v

List of Tables x

List of Figure xi

Abbreviations xii

Chapter One: Introduction ...1

1.1 INTRODUCTION TO SOFTWARE COST ESTIMATION ..1

1.2 COST ESTIMATION PROCESS (MANSOR & KASIRUN)1

1.3 THE IMPORTANCE OF SOFTWARE COST ESTIMATION3

1.4 PROBLEM WITH THE SOFTWARE COST ESTIMATION4

1.5 INTRODUCTION TO BACTERIAL FORAGING OPTIMIZATION ALGORITHM4

1.6 MOTIVATION ..5

1.7 RESEARCH OBJECTIVE ..5

1.8 ORGANIZATION OF THESIS. ..6

Chapter Two: Literature Review ..7

2.1 INTRODUCTION TO SOFTWARE COST ESTIMATION ..7

2.2 LITERATURE REVIEW OF SOFTWARE COST ESTIMATION7

2.2.1 Software cost estimation using neural network ..7

2.2.2 Cost estimation using Genetic Algorithm ...10

2.2.3 Cost estimation using Simulated Annealing Algorithm11

VII

2.2.4 Factors that influences software cost estimation ..11

2.2.5 Software cost estimation using fuzzy logic ..12

2.2.6 Cost estimation based on Quality Assurance Coverage13

2.2.7 Software cost estimation using PSO ...14

2.2.8 Software cost estimation using other methods ...14

2.3 INTRODUCTION TO BACTERIAL FORAGING OPTIMIZATION ALGORITHM16

2.4 APPLICATIONS OF BACTERIAL FORAGING OPTIMIZATION ALGORITHM18

2.4.1 Application in Assembly Line Problem ..18

2.4.2 Application in Autonomous Robot Path Planning in Dynamic Environment19

2.4.3 Parameter Estimation of Solar PV Model ...20

2.4.4 Application in Load Shedding ..20

2.4.5 Application in image registration ...20

2.4.6 Hybrid Least Square-Fuzzy Bacterial Foraging Strategy for Harmonic Estimation
(Mishra, 2005)..21

2.5 MODIFICATIONS OF BACTERIAL FORAGING OPTIMIZATION ALGORITHM22

2.5.1 Hybridization with PSO (Particle Swarm Optimization)22

2.5.2 Self – Adapting BFOA ...22

2.5.3 Parallel BFO ...23

2.5.4 Improved BFO ..24

Chapter Three: Biologically inspired algorithms: BFOA 26

3.1 INTRODUCTION TO SOFT COMPUTING ...26

3.2 BIOLOGICALLY INSPIRED ALGORITHMS ...27

3.2.1 Escherichia Coli Bacteria ..29

3.2.2 Constituent steps in the life cycle of bacteria ...31

3.3 BACTERIAL FORAGING OPTIMIZATION ALGORITHM36

3.3.1 Guidelines for choosing the parameter ...39

Chapter Four: Software Cost Model and Estimation43

4.1 INTRODUCTION ...43

4.2 COST ESTIMATION MODELS ..44

4.2.1 Algorithmic Models ..44

VIII

4.2.2 Non-algorithmic Models ...45

4.3 COCOMO: ...45

4.4 COCOMO MODELS AND ITS VARIANTS ...46

4.4.1 COCOMO_model1: ..47

4.4.2 COCOMO_model2: ..47

4.4.3 COCOMO_model3: ..47

4.4.4 COCOMO_model4 ...47

4.5 PARAMETER ESTIMATION ..47

4.6 LEAST SQUARE ERROR ..48

Chapter Five: DBA (Distance Based Approach)49

5.1 OVERVIEW OF METHODOLOGY (SHARMA, GARG, & NAG, 2010)49

5.2 COMPARISON CRITERIA ..53

5.2.1 Bias ...53

5.2.2 MSE ..53

5.2.3 MAE ..53

5.2.4 MEOP ...54

5.2.5 PRR ...54

5.2.6 Variance ..54

5.2.7 RMPSE ...54

5.2.8 RSQ ...55

5.2.9 SSE ..55

5.2.10 TS ..55

5.2.11 MRE ..55

5.2.12 MMRE ..55

5.2.13 RMSE ..56

5.2.14 NRMS ...56

5.2.15 PA ...56

5.2.16 ED ...56

5.2.17 MD ..56

5.2.18 SD ...57

5.2.19 MdMRE ..57

5.3 MODEL EVALUATION ..57

IX

Chapter Six: Flow of Adopted Approach and Results Obtained59

6.1 INTRODUCTION ...59

6.1.1 Required Operating Environment ...59

6.2 FLOW OF ADOPTED APPROACH ..59

6.2.1 Step 1: Determination of Parameters of COCOMO model and four of its variants
using Bacterial Foraging Algorithm ..59

6.2.2 Step 2: Evaluation of Criteria ...61

6.2.3 Step 3: Finally DBA (Distance Based Approach) is applied to rank all the algorithms.
..61

6.3 DATA SET AND PARAMETERS VALUE USED ...62

6.4 RESULTS OBTAINED ...63

6.4.2 RESULTS OBTAINED FOR COCOMO_model2 ..67

6.4.3 Results obtained for COCOMO_model3 ..69

6.4.4 Results obtained for COCOMO_model4 ..71

6.5 RESULTS OBTAINED AFTER STEP 2 ..73

6.6 RESULTS OBTAINED AFTER STEP 3 ..73

Chapter Seven: Conclusion and Future Scope...78

REFRENCES………………………………………………………………………..79

X

List of Tables

Table 1 Parameters used in BFOA (Das, Biswas, Dasgupta, & Abraham, 2009) 36

Table 2: Value of p for each model .. 60

Table 3: NASA Data Set ... 62

Table 4: Parameters used for BFOA ... 63

Table 5: Parameters-COCOMO .. 63

Table 6: Estimated and Actual-COCOMO ... 64

Table 7: Parameters- COCOMO_model1 ... 65

Table 8: Estimated and Actual-COCOMO_model1 ... 65

Table 9: Parameters-COCOMO_model2 .. 67

Table 10: Estimated and Actual- COCOMO_model2 .. 67

Table 11: Parameters-COCOMO_model3 .. 69

Table 12: Estimated and Actual Efforts-COCOMO_model3 ... 69

Table 13: Parameters-COCOMO_model4 .. 71

Table 14: Estimated and Actual COCOMO_model4 ... 71

Table 15: Comparison Criteria .. 74

Table 16: Zstd Matrix ... 75

Table 17: Zdis Matrix ... 76

Table 18: Composite Distance and Ranking of Cost Estimation Models 77

XI

List of Figures

Figure 1: Block diagram showing hierarchy of biologically inspired algorithm 28

Figure 2: E. Coli Bacteria Structure .. 30

Figure 3 Chemotaxis- Swimming ... 32

Figure 4 Chemotaxis- Tumbling ... 32

Figure 5: Distance Based Approach ... 50

Figure 6: Distances of Real Vector ... 51

Figure 7: Graph for COCOMO ... 64

Figure 8: Graph for COCOMO_model1 ... 66

Figure 9: Graph for COCOMO_model2 ... 68

Figure 10: Graph for COCOMO_model3 ... 70

Figure 11: Graph for COCOMO_model4 ... 73

XII

Abbreviations

E.Coli Escherichia coli

ALB Assembly line balancing

NP Non polynomial

BFOA Bacterial Foraging Optimization Algorithm

PV Photo Voltaic

GA Genetic Algorithm

FBF Fuzzy Bacterial Foraging

BBF BASIC BACTERIAL FORAGING

DFT Discrete Fourier Transform

PSO Particle Swarm Optimization

SABFO Self Adapting Bacterial Foraging Optimization

IBFO Improved Bacterial Foraging Optimization

MAE Mean Absolute Error

MEOP Mean Error of Prediction

AE Accuracy of Estimation

RMSPE Root Mean Square Prediction Error

SSE Sum of Squared Errors

TS Theil Statistics

MRE Magnitude of Relative Error

MMRE Mean Magnitude of Relative Error

XIII

RMSE Root Mean Square Error

NRMS Normalized Root Mean Square

PA Prediction Accuracy

PRR Predictive-Ratio Risk

ED Euclidian distance

MD Manhattan distance

SD Standard Deviation

 MdMRE Median of Magnitude of Relative Error

CCMST Constructive Cost Model for Software Testing

AIS Artificial Immune System

MOPSO Multi Objective Particle Swarm Optimization

COCOMO COnstructive COst Model

DLOC Developed Line of Code

FP Function Point

SA Simulated Annealing

1

Chapter One: Introduction

1.1 Introduction to software cost estimation

Estimation of the cost estimation in software development remained the one the

challenging problem even after the 40 years of the research. This estimation problem has

already lead project managers, software engineers and analysts into the trouble for

decades. The estimation of the cost and the schedule is based on determining the size of

the system which is to be developed.

Initial estimate of the cost involves many uncertain elements. Early and reliable

estimation is tuff task because it requires knowledge of many elements that are not

known in the beginning or at the early stages. But early estimates are obviously

mandatory for bidding of the contract. Also, determination of feasibility of the project in

the terms of cost-benefit analysis also requires the early cost prediction. So, prediction

will definitely guide decision making but it will be useful only when it is accurate. Many

cost estimation models exist in literature. Many studies have been conducted for the

evaluation of the models. Several researches showed that accuracy can be improved

greatly if the model is calibrated to particular organization. Cost estimation relies on the

some extent on the past experience also. So it is important need of the software industry

to develop a model which is easy to use, calibrate and understand.

1.2 Cost estimation process (Mansor & Kasirun)

Cost estimation process is the prediction process to get the closest result with

required cost. It involves the process of considering, experiences, time constraints,

resources, risks, schedules, methods used, the required cost and other processes, which

are related to development of a project. Hence, it is very important in managing a project

particularly to the project manager, when he is proposing budget for certain project. In

software development, there is widely used term known as “software project estimation”,

its function is to find the estimation process. Cost estimation, it is the calculation of

quantity and prediction within a scope of the costs, which is required to develop and give

a facility to manufacture goods and to furnish a service. These costs include an evaluation

2

and assessments of uncertainties and risks. This process determines and considers utilized

experience by an expert, forecasting and calculating the future cost of schedule, resources

and methods for any project development. It supplies input to the original baselines and

changes baselines against cost comparisons in whole project. It is done at a certain point

that is based on the available information and at a certain time. Usually, it includes cost

estimation summary, cost estimation details and basis of estimation which give type of

cost estimation including risk, estimation methodologies, project details, cost adjustment

and cost driven and so on. Estimation is depicted as “black art” due to its subjective

behaviour. One person may take a day to complete a task, but another person can require

just few hours to do same. Due to this when many people are asked to do estimation, they

may give different answers as well as results. But if work is actually performed, actual

amount of the time that is taken by the process is calculated and all the estimations that

did not come close to that actual are considered inaccurate. If a person is not involved in

estimation process, than estimations are just an attempt, to predict required resources and

cost. It is very important to assume that, project will come in time, to improve accuracy

of estimation process and have good estimation practices. Therefore, the project manager

can help to develop a successful estimation for software project by understanding and

applying good techniques, this makes estimation more accurate. Software project

estimation is problem solving and in many cases; the problem which needs to be solved is

very complex to be considered in single piece. For solving the problem, decompose it and

restructure it to a smaller problem. Main purpose of software cost estimation is to lessen

the amount of the predicted actual cost.

Software estimation is very important and any error in cost estimation can make a

difference between loss and profit. All the factors must be considered and properly

calculated. Over cost will results in bad impact to the company and to the developer. In

actual life, cost estimation process is very difficult since it requires estimator to consider

large number of factors and variables for example training costs, hardware costs, travel

government policies costs, man power, environmental, effort, and expertise advices.

Effort costs are usually least predictable and the largest development effort. Hence, most

software cost estimations determines the effort cost using the unit man-month (MM). All

3

of these factors will influence the overall effort and cost involved in any project that

someone wants to develop. Therefore, one requires something that can provide better

result in estimation to achieve the accurate result.

1.3 The Importance of Software Cost Estimation

The main motive of using software cost estimation by any organization is to fix

when, whey and how cost estimation of any software is done. Cost estimation is

important because:

• For proper planning purpose, for the purpose of approval and for finalizing the

budget. In every company, it is the senior manager who takes the strategic

decisions that are based on the accuracy of the estimation. Cost estimation also

helps in deciding whether to take particular project. Also for ongoing project it

helps to decide whether to continue with the ongoing project, delay the project or

to stop the project.

• While the development of any software or any project, some sort of planning is

required. Monitoring and control of implementation also need to be done by the

project manager and the team leader. Again cost estimation is important for

successful execution of all these tasks.

• Project Team Understanding: Cost estimation can be related to the work break

down structure of the project. Each member is given certain task for estimation

which is to be completed. (Mansor & Kasirun)

• For managing software projects in better way, the need of different resources

should match completely with the different actual requirements.

• Software cost estimation should be done accurately because customer always

expects the estimated cost should approx the actual cost.

• To improve the overall businesses plan so that all the resources may be used in

efficient way.

• Accuracy of cost estimation process is also important for defining the resources

required to verify, produce and validate different software products and for

4

management of the various activities require for software development. It also

helps in deciding if price of the tools is offset by improvement in productivity.

1.4 Problem with the software cost estimation

The main intrinsic problem that exists in the software cost estimation because of

the inaccuracy of cost estimation models. Actually, different models fit for the different

environments in which software are developed. Other factors that contributes in the

inaccuracy of cost estimation are , imprecise and ambiguously stated requirements, lack

of information on past and similar projects, and the models that developed for particular

kind of data cannot be transferred easily to the other environments .

Also, the Software projects vary over wide range, from the single person project

costing around few thousand dollars to the megaprojects that involves thousands of

people and costs around hundreds of millions of dollars. Now, all tools and method must

deal with this range. Obviously, a small and a big project will not have same estimation

accuracy.

1.5 Introduction to Bacterial Foraging Optimization Algorithm

In the last forty years, researchers have been trying to simulate the biological

systems from various aspects and proposed some effective bionic algorithms, including

artificial neural network (ANN), genetic algorithm (GA), ant colony optimization (ACO),

particle swarm optimization (PSO) and artificial immune system (AIS), etc. These bionic

algorithms provide novel paradigms for engineering problems by mimic the specific

structures or behaviours of certain creatures. (Wu, Zhang, Jiang, Jinhui, & Liang,

2007).Bacterial foraging optimization algorithm (BFOA) has been widely accepted as a

global optimization algorithm of current interest for distributed optimization and control.

BFOA is inspired by the social foraging behaviour of Escherichia coli. BFOA has

already drawn the attention of researchers because of its efficiency in solving real-world

optimization problems arising in several application domains. The underlying biology

behind the foraging strategy of E.coli is emulated in an extraordinary manner and used as

a simple optimization algorithm. (Das, Biswas, Dasgupta, & Abraham, 2009).The

5

Bacteria Foraging is an evolutionary algorithm which estimates cost function after each

iterative step of the program as the program execution proceeds and leads to

progressively better fitness (less cost function). The parameters to be optimized represent

coordinates (position) of the bacteria. The parameters are discredited in the desirable

range, each set of these discrete values represent a point in the space coordinates. Then

one bacterium is positioned (created) at each point. After each progressive step the

bacteria move to new positions (new coordinate values) and at each position cost function

is calculated and then, with this calculated value of cost function, further movement of

bacteria is decided by decreasing direction of cost function. This finally leads the bacteria

to a position (set of optimization parameters) with highest fitness. The foraging strategy

of E. Coli. Bacteria is governed by four processes. These are chemotaxis, swarming,

reproduction and elimination and dispersal. Chemotaxis is achieved by swimming and

tumbling. When the bacterium meets favourable environment (rich in nutrients and

noxious free), it continues swimming in the same direction. Decrease in cost function

represents favourable environment, while increase in cost function represents

unfavourable environment. When it meets unfavourable environment it tumbles (changes

direction). In swarming, the bacteria move out from their respective places in ring of cells

by bringing mean square error to the minimal value.(Sharma, Pattnaik, & Garg, 2012)

1.6 Motivation

Though many cost estimation models are already developed in the literature but

none of them is accurate to determine the software cost precisely. So, there is a need to

determine the cost with little more accuracy. Also, models should be evaluated and

ranked in the some way so as to find the most accurate model.

1.7 Research Objective

With the motivation explained in the previous section, the objective of our

research work can be identified as:

• To find the parameters of COCOMO model and four of its variants using BFOA

algorithm, which has already proven its effectivness in other engineering domains.

• To evaluate all the models using 17 comparison criteria.

6

• To find the best of the five model using DBA theory.

1.8 Organization of thesis.

The remaining thesis is organized as follows:

Chapter 2: Literature Overview

This chapter discusses different techniques used to estimate the cost of the

software. For example, estimation with the help of neural networks, genetic algorithm,

particle swarm optimization. It also discusses different modifications of the bacterial

foraging optimization algorithm like improved BFO, hybrid BFO, self- adapting BFO.

Apart from all this some of the applications of the BFO are also discussed.

Chapter 3: Bacterial Foraging Optimization Algorithm

This chapter discussed the bacterial foraging optimization algorithm in detail. The

main constituent steps of the algorithm i.e. chemotaxis, swarming, reproduction, and

elimination dispersal are highlighted. Apart from this influence of various parameters

used in the algorithm are discussed.

Chapter 4: Software Cost Estimation

This chapter mainly discusses the COCOMO model and its types. Some of the

variations of the model whose parameters are evaluated using bacterial foraging

optimization algorithm are also discussed. Least square is also discussed.

Chapter 5: DBA

This chapter explains the theory DBA. The theory was applied in order to select

the most appropriate model. Some criteria are discussed based on which models will be

evaluated.

Chapter 6: Proposed Approach and Results.

This chapter finally gives the proposed approach and the results obtained. The

parameters of COCOMO and some of its modifications are determined with the help of

bacterial foraging optimization algorithm. Finally all the models are evaluated against

certain criteria. These criteria are used by DBA to determine the best model.

7

Chapter Two: Literature Review

2.1 Introduction to software cost estimation

Software cost estimation is the process by which cost to develop the software can

be determined before it has been developed actually. It helps to plan and track the process

of software development. Controlling the investment in the software development is one

of the important steps in software project management. M aking accurate software cost

estimate is still one of the challenging tasks before the industry. Estimation is helpful

when it is made at the early stage when the project is approved. However, estimating the

values at the early stages is difficult. Since the cost estimation process is the crucial part

in any development process.

2.2 Literature review of software cost estimation

2.2.1 Software cost estimation using neural network

Attarzadeh et.al. (Attarzadeh & Ow, 2010) proposed COCOMO using the soft

computing approach with some of the desirable features of neural networks approach like

good interpretability and learning ability were used to develop the model. The model

proposed could be validated and interpreted by the experts. They also had good

generalization capacity in contrast to the other neural models. The reliability of the

estimation was enhanced since the model dealt with uncertain and imprecise input data as

well. Software effort drivers that were used for calculating software effort was generally

observed to have two properties vagueness and uncertainty. But using neural network in

software effort estimation model had overcome these characteristics. But still for reliable

and accurate estimation choice of appropriate neural network played an important role.

Neural Networks played better role than other techniques with some of the test cases.

Neural network was applied to both algorithmic and non-algorithmic model and it was

proved that more accurate estimates were produced. The proposed neural networks model

showed better software effort estimates in view of the MMRE, Pred(0.25) evaluation

criteria as compared to the traditional COCOMO(Attarzadeh & Ow, 2010). Neural

Network produced better results than COCOMO.

8

Kotb et.al.(Kotb, Haddara, & Ko, 2011) surveyed that majority of times effort is

estimated by family of COCOMO model. Kotb et.al.was focused basically to replace the

COCOMO model with other model that can be used easily with ERP adoptions. Cost was

estimated using neural networks and training algorithm used was back propagation feed

forward. Finally results of the model as well as its advantages and shortcomings of the

model were also discussed. The model was initially used for small and medium sized

enterprises but it can be expanded to other environments and contexts. The model was

proposed to minimize the role of project managers and other concerned person to define

various parameters like function points for giving as input. Since the proposed framework

was based on neural network, hence a training algorithm was required to be chosen. So,

feed forward back-propagation algorithm was used. Neural network generally has 3

layers and those are input layer, hidden layer and the output layer. Number of neurons in

the input layer was kept equal to the number of data factors. Number of neurons in the

middle layer was kept equal to the number of neuron in the input layer. Finally thirty six

output neurons were kept in the output layer which covers wide range of cost from

thousands to billions. BCD encoding was used, so that every digit was represented by the

four neurons. For successful and accurate cost estimation data was required to be

collected accurately. It was one of the key factors for successful estimation. So,

inappropriate data was thrown away in starting itself. Other factor for unsuccessful

estimation was noise. The accuracy of the model was limited by noise present.

Attarzadeh et.al. proposed two models. First model was an artificial neural

network model that supplements COCOCMO model to determine the cost of software at

early stages itself. ANN-COCOMO II model was the second model proposed. The

suggested models used advantages of both artificial neural network like good

interpretability and learning and COCOMO model. To determine the attributes from the

past projects neural network was used. For evaluation of models 156 sets of project data

from COCOMO I and NASA93 were used. The analysis of the obtained results shows

8.36% improvement in estimation accuracy in the ANN-COCOMOII model, when

compared with the original COCOMO II(Attarzadeh, Mehranzadeh, & Barati, 2012).

MMRE was used for evaluation of the results obtained.

9

In (Kaushik, Chauhan, Mittal, & Gupta, 2012) paper, most widely used software

cost estimation model the Constructive Cost Model (COCOMO) was discussed. The

model was implemented using artificial neural networks. In addition to this it was trained

using one of the learning algorithm. Here, perceptron learning algorithm was used.

COCOMO data set was used for the purpose of training and testing the overall network.

The results obtained were compared with that of the actual results from the COCOMO

model. The overall aim of the research was to increase the accuracy of the results that

were obtained by COCOMO by the introduction of the neural network. The idea basically

was to form the model that will map COCOMO model to neural network with minimum

number of layers and minimum number of nodes so as to increase performance of

network. It was concluded that by the use of artificial neural network algorithm for

modeling the COCOMO algorithm is one of an efficient way of accurate estimation.

Values provided were nearly accurate.

Kaushik et.al.(Kaushik, Soni, & Soni, 2012)also used neural network for cost

estimation. Neural network was applied on the well known COCOMO model. Again

back propagation algorithm was used for training purpose. Two data sets were used for

the testing purpose.

2.2.1.1 Cost estimation using PSO and Neural Network

Hari et.al.(Hari & Sethi, 2011) proposed Clustering-PSO-Neural Networks (CPN)

based on Particle Swarm Optimization Algorithm for determining the parameters of

COCOMO model. The technique was operated on data sets clustered by using K means

clustering algorithm. Both clusters and parameters of the effort model were trained by

using Neural Network for data classification. Training algorithm used was Back

Propagation algorithm. The model was finally tested on COCOMO81 dataset. It was also

compared with the standard model. By exploiting the experience of Neural Network and

as well as parameter tuning property of PSO the proposed model was able to generate

better results. The CPN model that was proposed was successfully applied on the large

data sets. PSO generally gave better results when data set contains such projects which

belong to similar genres.

10

Benala et.al (Benala, Chinnababu, Mall, & Dehuri, 2013) were concerned with

cost estimation models that were based on Particle swarm optimized Functional link

artificial neural networks (PSO-FLANN). PSO-FLANN, is a typical three layer feed

forward neural network which consists of input layer, hidden layer and output layer.

However in FLANN, the weight vector was evolved by PSO during training of the

network. The FLANN architecture for predicting software development effort was a

single-layer feed forward neural network consisting of one input layer and an output

layer. The FLANN generated the output (effort) by expanding the initial inputs (cost

drivers) and then processing in the final output layer. Each input neuron corresponded to

a component of an input vector. The output layer consisted of one output neuron that

computes the software development effort as a linear weighted sum of the outputs of the

input layer. The large and non-normal data sets leaded FLANN methods to low

prediction accuracy and high computational complexity. (Benala, Chinnababu, Mall, &

Dehuri, 2013). So, the research was done in software cost estimation by using the

hybridization of FLANN with PSO. It was also suggested that it can be extended further

by using various other algorithms like ant colony optimization (ABC), Artificial Immune

System (AIS), Annealing and fuzzy logic etc. Performance of PSO-FLANN was also

evaluated. It provided better accuracy than that given by FLANN. Experimental results

showed that method gave better accuracy in comparison to techniques like Step wise

regression (SWR), classification and regression trees (CART) etc.

2.2.2 Cost estimation using Genetic Algorithm

For the purpose of estimation of effort two new models were introduced by Sheta

et.al. (Sheta A. F., 2006). COCOMO model estimates the effort as a function of

Developed Line of Code (DLOC). Two new models which were modifications of

COCOMO model were introduced and they used additional parameter ME

(methodology) adopted as input. Genetic Algorithm was used to determine various

parameters used in the model. The models were used for computing the effort required

for the project data set from NASA. The parameters which were estimated generalized

the computation required for the calculation of effort. The performances of these models

11

were tested on project dataset of NASA. Variance-Accounted-For (VAF) was finally used

to check the performance.

2.2.3 Cost estimation using Simulated Annealing Algorithm

Multivariate interpolation models were proposed to estimate effort or cost

required in software project. Effort function was represented by COCOMO based

equation and data set consisted of two variables LOC (Line of Code) and another one was

ME (methodology) used. Simulated Annealing (SA) used in effort estimation is another

heuristic approach to determine the parameters of COCOMO models. Simulated

Annealing was employed to compute parameters of proposed models by exploiting an

analogy between the way in which a metal cools and freezes into a minimum energy

crystalline structure (the annealing process) and the search for a minimum in a more

general system, the solution randomly walked in its neighbourhood with a probability

determined by Metropolis principle while the system temperature decreases slowly; when

the annealing temperature was closing zero, the solution stayed at the global best solution

in a high probability.(Uysal, 2008).

2.2.4 Factors that influences software cost estimation

Mansor et.al.(Mansor, Yahya, & Hj Arshad, 2011) intended to find out the factors

that influences the cost estimation in software development. A conceptual model was

developed from the review which showed the influence of various factors in cost

estimation. These factors could help the software developers to estimate the cost with bit

more accuracy. Five important factors in 1994 were reported by Standish CHOAS that

were important in cost estimation process in software development. The factors were

clearly stated requirements, involvement of user, executive management support,

entertainment, realistic expectations and obviously proper planning. Role of project

manager also cannot be overlooked. Some other factors that were considered were

choosing appropriate methodology, choosing appropriate estimation technique, choice of

appropriate tools, policies of the company, sponsors role. It was concluded that cost

estimation in software development process can be improved if these factors were

considered properly.

12

Realizing the fact that there are many dynamic and precarious attributes that are

attached to each and every software project, the accuracy in the prediction of the cost will

rely greatly on the prudential treatment of all of these attributes. Kashyap et.al.(Kashyap

a & Misra, 2014) dealt with the methods of quantification, selection and comparison of

various attributes related to various projects. Author had tried to find out similarity

difference between various project attributes and then consequently used these

differences measurement for creating an initial cost proposal of any software project that

may had some degree of similarity or correspondence with the already completed projects

and whose total cost is fairly established as well as well known. So, a method based on

the ‘similarity difference measure’ for estimating the cost of software project. For

calculating similarity difference between various softwares author had defined each

software on the basis of three aspects, which were Linguistic Attributes, Nominal

Attributes and Numerical Attributes. Author had described various methods so as to

calculate similarity difference for each of the category. Then author had used these

differences to find out the k most similar projects or to find out the nearest neighbours in

similarity difference space. Author had also tried to validate the given procedure by using

MMRE benchmark for measuring error.

2.2.5 Software cost estimation using fuzzy logic

Kumar and Rao proposed a fuzzy model for software cost estimation that handles

obscurity and ambiguity. MATLAB was used for determining the parameters in various

cost estimation models. The performance of model was evaluated on published software

projects data. Various models for which parameters were determined were COCOMO

basic model, COCOMO Inter(NOM), Detailed(NOM), Early Design Model(high), post

Arch Model(H-H),Doty, Mittal model, Swarup model .Comparison of results from this

model with existing ubiquitous models was done. Fuzzy logic was used to estimate the

cost and MARE was used as for evaluating the performance. (Kumar & Rao, 2011).

2.2.5.1 Software cost estimation using fuzzy logic and PSO

To control the uncertainty in the effort estimation (Reddy & Hari, 2011) fuzzy

logic along with parameters tuned by PSO (Particle Swarm Optimization) was used.

13

Three models were proposed for the cost estimation by using PSO with Inertia weight

and fuzzy logic. The estimated efforts were optimized with the use of incumbent

archetypal and tested on data from NASA software. All models were compared against

each other. Incumbent Archetypal was found to have better values. Models were proved

best on the basis of VAF, MARE, and VARE.

2.2.6 Cost estimation based on Quality Assurance Coverage

Azath et.al. (Azath & Wahidabanu, 2012) proposed an efficient effort estimation

system based on quality assurance coverage as estimation of software cost accurately is

very big issue. The existing models did not give accurate results since they consider very

few factors for estimating the cost. The work was the basis for the improvement of

software effort estimation research through a series of quality attributes along with

constructive cost model (COCOMO). The classification of software system for which the

effort estimation was to be calculated was based on COCOMO classes. For this quality

assurance ISO 9126 quality factors were used and for the weighing factors the function

point metric was used as an estimation approach. Effort was estimated for MS word 2007

using the following models: Albrecht and Gaffney model, Kemerer model, SMPEEM

model (Software Maintenance Project Effort Estimation Model) and FP Matson,

Barnettand Mellichamp model. In the proposed method the software effort was

effectively estimated by using FPs. The sole difference between the proposed and

existing estimation of effort for the software system development was the level of quality

deliberation, that is, the effort was estimated by employing the minimum number of

quality factors in existing methods, but in the proposed effort estimation method covers

the ISO9126 quality factors, which was automatically reflected in the development of

software. The advantage of the proposed effort estimation system was to handle correctly

the imprecision and the uncertainty when describing the software project. From the

implementation results, it was observed that the proposed method is effectively estimated

the effort of the software project models.(Azath & Wahidabanu, 2012).

14

2.2.7 Software cost estimation using PSO

It is known that basic input for software cost estimation is the line of code i.e.

coding size and also the set of cost drivers, and the output is Effort which is described in

terms of Person-Months (PM’s). In this paper, (Rao, Krishna, & Rao, 2014) author had

proposed a model for determining the parameters of COCOMO model used in Software

Cost Estimation with the help of MOPSO i.e. Multi Objective Particle Swarm

Optimization. Parameters of the model were tuned by using MOPSO side by side

considering two main objectives and those were Prediction and Mean Absolute Relative

Error. Dataset COCOMO was considered to test the model. It was observed that the

proposed model gave better results in comparison to the standard COCOMO model. It

was also observed that providing enough classification of training data gave better result.

Accuracy of cost estimation model was measured in the terms of its error rate. New

model was proposed for estimation of software cost. To tune the parameters MOPSO

methodology was applied. It was observed that MOPSO gave better results. When the

performance of the model was tested in terms of the Prediction and MARE results were

found useful. It was also noticed that the non-linearity in the used data items was being

considered during the work for the testing and training tuning parameters and best way

for bringing in some amount of linearity among these data items was by using clustering

techniques. By the use of clustering method divide the data items which may be divided

into a number of clusters and the PSO was then used for tuning of parameter of each

cluster. The clusters and the tuned parameters was then trained by using the Neural

Networks and efficient back propagation algorithms.

2.2.8 Software cost estimation using other methods

Mansor et.al.(Mansor & Kasirun) did a survey result of which concluded that two

methods were used most commonly for software cost estimation. One of them was expert

judgment. Expert judgment was based on the experience of the estimator and the past

estimation histories. Other method that was used most prominently was based on

COCOMO II. COMOCO II was said to provide good results since it took number of

15

variables into consideration. So, it was suggested to use hybridization of both the models.

Integration of both was suggested to be helpful for accurate estimation.

COCOMO was developed by Boehm which came under the category of

algorithmic software cost estimation model. The model had increasingly three different

forms and these are basic, intermediate and detailed. Basic COCOMO was suitable for

quick, early and the rough order of estimated required in production of software but from

accuracy point of view it was not very efficient. Intermediate COCOMO considers the

project attributes also. So, it was bit more efficient than basic. In detailed COCOMO in

addition to all this phase of project is also considered. COCOMO technique is in use

since 1981. After that some of the intelligent techniques were introduced so as to obtain

results more accurately. Some of the data mining techniques were introduced and results

of these were compared to the standard results obtained. Some of the techniques that

were used was ANN, LR, K-NN and SVR. NASA’s projects data were used for the

purpose of training as well as testing. Finally the results obtained of data mining and

COCOMO were compared (Khalifelua & Ghar, 2012). These data mining techniques

were found to produce better results than the COCOMO model.

Satapathy et.al.(Satapathy, Kumar, & Rath, 2013)estimated the cost of various

software projects using class point approach and optimize the parameters using six types

of adaptive regression techniques such as multi-layer perceptron, multivariate adaptive

regression splines (MRS), projection pursuit regression, constrained topological mapping,

K nearest neighbour regression and radial basis function network to achieve better

accuracy. Further, a comparative analysis of software effort estimation using these

adaptive regression techniques had been provided. By estimating the effort required to

develop software projects accurately, softwares with acceptable quality within budget and

on planned schedules were expected. Finally the generated minimum results of different

techniques had been compared to estimate their performance accuracy. Result showed

that MRS based effort estimation model gave less value of NRMSE, MMRE and higher

value of prediction accuracy. Hence it was concluded that the effort estimation using

MRS model will provide more accurate results than other five techniques. The

16

computations for above procedure had been implemented and membership functions

generated using MATLAB.(Satapathy, Kumar, & Rath, 2013).

Lu et.al.(Lu & Yin, 2013) proposed the new model for testing project. The model

given was named as Constructive Cost Model for Software Testing (CCMST). It contains

the drivers used for software testing. The driver introduced was more complete then the

previous models. Case study was used to prove validity and usability of model. Some,

rating levels were also introduced by the CCMST model. It improved cost estimation by

using cost drivers towards which researchers were not paying attention.

(Sheta & Aljahdali, 2013) presented two new models for the purpose of effort

estimation with the use of fuzzy logic. One of the models was proposed on the famous

COCOMO model and it used source line of code as input to estimate the effort required.

While the second model that was used takes Outputs, Inputs, User Inquiries and Files as

input so as to estimate the FP (Function Point). The proposed model was reported for

showing better results. Results were validated against the Albrecht data set.

Benala et.al.(Benala, Mall, Srikavya, & HariPriya, 2014) described the empirical

study undertaken for investigating the quantitative aspect of application of data mining

techniques in model building for purpose of Software effort estimation. Some example of

techniques that were chosen are Logistic regression, Multi linear regression and CART.

Empirical evaluation was carried out. That used three fold cross validation procedures

which had been carried out with the use of three datasets of software projects, which

were, Cocomo81, Nasa93, and Bailey Basili. It was observed that: (1) CART technique

was suitable for Nasa93 and Nasa93_5. (2). Multiple Linear Regression was suitable for

Nasa93_2, Cocomo81o, Cocomo81s, and Basili Bailey. (3). Logistic Regression was

suitable for Cocomo81, Nasa93_1 and Cocomo81e. It was concluded that data mining

techniques gave better results for unlimited data.

2.3 Introduction to Bacterial Foraging Optimization Algorithm

Biologically inspired algorithms mimic behaviour of animals that they exhibit in

some sort of group activity like foraging. Particle Swarm Optimization (PSO), Ant

Colony Optimization (ACO), Artificial Bee Colony Optimization (ABC) are some of the

17

algorithms developed on this ground. Bacterial Foraging Optimization Algorithm

(BFOA) was given by Passino (Passino K. M., 2002). It has been used widely in many of

the engineering problem related to optimization example harmonic estimation (Mishra,

2005), Parameter estimation of Wiener model (Huang & Lin, 2010), Assembly line

problem (Atasagun & Kara, 2013), Autonomous Robot Path Planning (Hossain &

Ferdous, 2014).

Bacterial Foraging Optimization Algorithm was developed to mimic the foraging

strategy of Escherichia Coli Bacteria. E.coli is the rod shaped bacteria i.e. found in lower

intestine of warm blooded organisms. E.coli always tries to move to place which has

highest amount of nutrition and it avoids the harmful environment. Foraging is the

process by which bacteria locate and ingest their food. The E.coli bacterium has a plasma

membrane, cell wall, and capsule that contains the cytoplasm and nucleoid. The pili

(singular, pilus) are used for a type of gene transfer to other E.colibacteria, and flagella

(singular, flagellum) are used for locomotion. The cell is about 1µm in diameter and 2

µm in length. The E.coli cell only weighs about 1 picogram and is about 70% water.

Salmonella typhimurium is a similar type of bacterium.(Passino K. M., 2002) In suitable

environment whenever E.coli gets longer it splits into two parts. For example on getting

sufficient food and temperature of around 37 degree centigrade, it can develop everything

it needs to replicate within 20 minutes. Hence in short time population can be doubled

easily. It also has some sort of system that guides its search of food and help avoiding

noxious environment. It will swim from noxious environment to healthy environment

with the help of this control system.

 If we map this to optimization problem then bacteria will have to move to

position of highest nutrient value and this position will be optimum position. Bacteria can

initially be placed at any of the random positions in the search space. Bacteria will move

in the search space in order to find the optimum value. Process by which bacterium

moves from one position to another position in order to find position with highest nutrient

value in foraging is known as chemotaxis. This step simulates the movement of bacteria

in the search space. Bacteria exhibit two operations while chemotaxis namely swimming

and tumbling. Bacteria may perform swim followed by tumble or tumble followed by

18

swim or tumble followed by tumble or it swims continuously depending on the medium

in which it is searching for food. Bacterium uses flagella for swimming and tumbling. In

each chemotactic step bacterium gets energy. Each bacterium undergoes certain fixed

number of chemotactic steps. Amount of movement in particular direction is quantified

by a parameter know as step size ()c i where i is the bacterium under consideration. If

value of ()c i is kept large then algorithm may jump over the optimum point and if value

of ()c i is small then algorithm may take large time to converge.

 After this health (sum of energy obtained at each chemotactic step) of each

bacterium is calculated and bacteria are sorted according to the health. So bacteria in

nutrient medium tend to reproduce and bacteria with poor nutrients tend to die. So half of

the bacteria which are healthy reproduce on finding suitable conditions into two and the

remaining half with poor health are eliminated. So, theory of natural selection is

applicable here.

Finally, sometimes due to occurrence of some rare event like sudden rise in

temperature or other, some or all bacteria may be migrated to other media.

2.4 Applications of Bacterial Foraging Optimization Algorithm

2.4.1 Application in Assembly Line Problem

Bacterial foraging optimization problem had been applied to assembly line

balancing (ALB). In Assembly line balancing tasks are needed to be assigned to

workstations (Atasagun & Kara, 2013). This is done so as to satisfy the precedence

relations between cycle time and tasks restrictions while optimizing the performance.

Entire production system is greatly affected by performance given by assembly lines. It is

last stage of processes but has an important impact. So, obtaining effective solution in

reasonable time for ALB problems is important. Problem by nature is NP Hard, so

finding deterministic solution which gives result in polynomial time is quite tuff.

However various heuristic and meta-heuristic solutions had already been suggested in

literature for solving various simply straight and assembly line problems which are U-

shaped. BFOA was one of the meta-heuristic approaches applied to this problem using

well known data set. It was applied to both simple and U shaped problem. Number of

19

tasks varied from 7 to 111 in data set. 128 test-problems were used and BFOA gave

optimal solution for 123 test-problems within seconds. Since BFOA had shown quite

competitive performance here, so it was expected that it can be applied to various other

versions of ALB problems. BFOA can be hybridized with other meta-heuristic

approaches or chemotactic step in the original BFOA can be modified to apply it on other

complex version of the ALB problem.

2.4.2 Application in Autonomous Robot Path Planning in Dynamic Environment

A robot is reprogrammable and multifunctional intelligent device. It is intelligent

because it can decide the actions it has to take depending on the environment. In case of

mobile robot, path planning is one of the challenging tasks especially in dynamic

environment where any random obstacle can occur. In static environment all the objects

are static i.e. position remains fixed with time. However in dynamic environment objects

are dynamic in nature means there position can change with time. They can move in

different directions. The basic goal is to move robot from one point to another point

through shortest possible path considering all the obstacles that occur in between i.e. to

find the optimal path. Optimal path is the path which is better in terms of time, cost,

energy, distance etc. But each of them has weakness associated with them. Than came

various meta-heuristic techniques like PSO, ABC etc to solve the above problem. BFOA

was used to solve this problem of moving robot continuously from current position to

target position and avoiding obstacles side by side. Bacteria were considered to be

distributed around the robot in a circle in a random fashion. Best bacterium was evaluated

by finding distance to the target point and by using the Gaussian cost function of bacteria.

Current position of robot, next position required and position of obstacle as detected by

sensor were given as input to the algorithm and output produced was the most feasible

path. So, results were produced after using this high level strategy. The algorithm works

well in local environment where simple sensor was used. The results produced were

compared with those produced by another well known algorithm PSO (Hossain &

Ferdous, 2014). BFO algorithm was found to be better in terms of optimal path.

20

2.4.3 Parameter Estimation of Solar PV Model

Solar energy is available freely. Also, it is non-polluting. So, it has attracted the

interest of many researchers. So, this attraction had given the birth to need for the

photovoltaic module. But modeling photovoltaic panels is quite difficult because of the

limited data as provided by the manufacturers. So, precise estimation of various modeling

parameters was required to be established and that too in different environments for

modeling photovoltaic panels accurately. Optimization techniques are useful to find

solution of over determined systems (which has more variables then equations) or of non-

linear system. Various algorithms like Artificial Immune System, Genetic Algorithm, and

BFO was used (Krishnakumar, Venugopalan, & Rajasekar, 2013). They all were

compared according to the performance based on various criteria. Some of criteria were

accuracy, convergence speed, consistency etc. The results computed by each of these

were compared with the actual values. All results were validated against photovoltaic

modules namely multi crystalline and thin film. Best optimal value was again given by

BFOA.

2.4.4 Application in Load Shedding

Optimization can also be applied to power system in field of load shedding. The

basic goal was to remove some of the loads at fixed location in bus system. It was done to

improve the loss of power and costs of shedded loads. The objective functions of total

power losses, voltage stability index values and also total cost of shedded loads were

used in determining the optimal load shedding in that particular system (Afif Wan,

Rahman, & Zakaria, 2013). The technique was already implemented in IEEE-30 bus

system. It was observed that algorithm gives better result when compared to the base case

values of total power losses and voltage stability index values of that particular bus

system.

2.4.5 Application in image registration

BFOA was applied on image registration as well as on multi-core processors.

Image registration is one of the optimization problems. The goal was to compute the

optimal parameters of one of the transform so as to align the source image to the model

21

given in such a manner that similarities are maximized. Image registration is one of the

important steps in the fusion of images. The reason being quality of fusion of image is

affected by quality of result of image registration. Bacterial Foraging Optimization

Algorithm can be used as image registration technique. But Image Registration becomes

time consuming due to similarity measure and optimization algorithm used. So, this

sequential algorithm can be converted to parallel on multi-core systems (Bejinariu, 2013).

The parallel approach was based on shared memory model that can be implemented with

ease in multi-core processors. Cost function which is a parameter in the algorithm

implementation can be used in parallel on different cores.

2.4.6 Hybrid Least Square-Fuzzy Bacterial Foraging Strategy for Harmonic
Estimation (Mishra, 2005)

BFOA has been used in power system to estimate the harmonic component in

voltage or current waveforms. Depending on the operating conditions to make the

convergence faster Takagi-Sugeno fuzzy scheme was used. Phase is non-linear while

amplitude is linear in harmonic estimation. The overall scheme was hybrid in the sense

linear least square estimates the amplitude and Newton-like gradient descent was applied

to phase estimation. The percentage error and the time of processing were found to be

improved as compared with the genetic algorithm and discrete Fourier transform.

Performance was acceptable even with decaying dc component or change in phase angle

or amplitude of harmonic estimation. Actually the non-linear part i.e. the phase of each

harmonic was estimated by Fuzzy Bacterial Foraging (FBF) algorithm. Whereas, the

linear part was estimated via normal least square estimator. For both GA and FBF

scheme uses performance criteria as the cost function. Limitation of BBF was overcome

by using Takagi-Sugeno fuzzy scheme. The algorithm showed better results than DFT in

the noise. This was because the estimation problem becomes multimodal if noise is there

so obviously FBF shows better results. Also since transducer noise is almost unavoidable

in sampled signal so FBF shows the better performance than DFT algorithm. Also the

time taken for convergence was almost half when compared to the genetic algorithm. So,

overall it was better than both GA and DFT.

22

2.5 Modifications of Bacterial Foraging Optimization Algorithm

2.5.1 Hybridization with PSO (Particle Swarm Optimization)

Long et.al. has hybridized BFO with other algorithms so as to improve the

accuracy, efficiency, and weak ability of the algorithm to come out of the local minima in

the process of optimization. New proposed algorithm was formed by hybridization of

BFO with well known algorithm PSO. Chemotaxis step of bacterial foraging was

modified by merging it with PSO. Elimination Dispersal step of the algorithm was also

modified. Resulting algorithm was proved better in terms of the accuracy, convergence

speed. In PSO particles updates their position by using their local optimal as well as

global optimal found upto now. This principle of PSO was merged in the chemotaxis of

BFO. So, bacterium could compare its optimal point with the global optimal point i.e.

obtained upto now. It swam in a particular direction if it keeps on getting better results

than the optimal point. This accelerated the speed of algorithm to find the optimal point.

PSO also replaces the random variable in the actual design. So, bacteria have improved

by learning from itself as well as whole population. So, bacterium which was at good

position will exploit the surrounding region while bacterium in bad region came to a

better one with good speed. In elimination dispersal step, some or all of the bacteria are

dispersed randomly. So, any of the good bacteria may get migrated to the new location.

So, step was improved by eliminating the bacteria based on the life cycle energy. It

improved the global searching time of the algorithm. The experimental data showed that:

the improved hybrid particle swarm -bacterial foraging optimization algorithm is

significantly better than individual particle swarm optimization algorithm and bacterial

foraging optimization algorithm whether in searching speed or accuracy(Long, Jun, &

Ping, 2010)

2.5.2 Self – Adapting BFOA

Chen et.al.has introduced the Self Adapting BFO. In standard BFOA all the

bacteria has constant run-length. Self Adapting algorithm introduced the term exploration

and exploitation. In the exploration step bacteria took large steps to move to the position

which has higher nutrient value. In the exploitation step bacteria took small steps to

23

exploit the particular region. Exploitation was done when bacteria was in the region with

higher nutrient value. Bacterium changed its search behaviour according to the

environment i.e. bacteria adapted itself to the changing environment. It used two criteria.

First one said whenever bacterium moved to the new promising domain its run length is

decreased so as to exploit that reason properly. Second one said that bacterium enters

the exploration so as to find some promising region. Four widely used benchmark

functions have been used to test the SA-BFO algorithm in comparison with the original

BFO, the standard PSO and the real-coded GA. The simulation results were encouraging:

the SABFO was definitely better than the original BFO for all the test functions and

appear to be comparable with the standard PSO and GA (Chen, Zhu, & Hu, 2008).

2.5.3 Parallel BFO

Pattnaik et.al. proposed parallel BFO. In the original BFO basic steps in the

chemotaxis were swimming and tumbling. Both of the steps resulted in updation of

position and energy of bacteria. So, in the chemotaxis step each of the bacteria calculated

its fitness. In parallel BFO fitness of each bacterium was computed in parallel manner.

Master slave technology was used and number of slaves was equal to number of bacteria.

Each of the slaves must report the computed fitness to the master. So that updated values

could be used by other bacteria in the next chemotactic step. So, proper synchronization

need to be ensured between master and slave. But there were some issues related to

parallelization. All the slave nodes were required to work at same speed so that master

may not wait for next operation. Synchronization was ensured properly so that overall

fitness was not affected. The second change introduced was mutation operation after

chemotaxis. This was done to accelerate the overall performance of PBFO. Positions

were mutated by free PSO parameter. It did not require any other parameter or equation.

The whole concept was introduced so as to decrease the computational time required to

solve the high dimension function which are multimodal. (Pattnaik, Bakwad, Devi, &

Panig, 2011) . Introduction of mutation improves the quality of global best.

24

2.5.4 Improved BFO

Chen et.al. introduced the IBFO. The first change was made to the constant step

size that was used in the algorithm. Bacteria used constant step size throughout the

lifecycle in standard BFO. But it was more reasonable if larger step size is used in the

beginning and smaller when bacterium is nearer to the global media. So, step size was

modified to

() ()max min
max

()
() *

c

c i c i
c i c i j

N

−
= − (2.1)

Where i is bacterium under consideration

maxc is maximum step size

minc is minimum step size

cN is total number of chemotactic steps

j is current chemotactic step.

ccJ was used in standard BFOA so as to produce the swarming effect. It used

some parameters for attraction and repulsion. Attraction parameters were used so that

good bacteria can attract other bacteria in the nutrient region and repulsion parameter was

used so as to maintain certain minimal distance between two bacteria. But these attraction

and repulsion parameters together resulted in oscillations in the bacterial movement. This

ccJ was replaced bygbestJ which was the global optimal value obtained upto now.gbestJ has

done two things. One produced the required swarming effect and second it replaced the

lastJ . lastJ was maintaining local best information.

The third modification that was proposed was number of nutrients obtained by

bacterium in its lifetime will not matter. In IBFO, particular bacterium has not been

considered as the best if its final position is not close to the global optimal point and

fitness of bacteria cannot be judged by the energy accumulated during lifetime. There

was no need of calculating summation of energy. Bacteria were sorted against the value

25

of fitness acquired in the last step only and healthier bacteria reproduced and rest died. It

also saved computation time.

The last improvement that was made was narrowing the search space with the

progress of algorithm. It has been observed that larger the search space less is the

accuracy and more is the computational time. Search space is restricted according to the

following equation

()max 2 jgbest
Rjθ θ= +

 (2.2)

()min 2 jgbest
Rjθ θ= −

 (2.3)

Where () ()min max,j jθ θ   is the current searching scope.

j is the current chemotaxis step.

R is the sphere of activity of swarm.

gbestθ is updated while chemotaxis.

IBFO gave better performance than the classical BFO when tested over

benchmark problems like Sphere, Rosenbrock, Rastrigin, Griewank. (Chen & Lin, 2009)

26

Chapter Three: Biologically inspired algorithms: BFOA

3.1 Introduction to Soft Computing

Computing techniques are involved in various problems like pattern recognition,

image recognition etc. In past, researchers used conventional computing techniques like

hard computing technique to solve various problems. The problem with hard computing

was that it requires exact computational model. Also data required to solve was needed to

be accurate as well as precise. However in real world system it is not necessarily ideal.

One more problem with hard computing technique was the time. Hard computing

techniques required much time to develop. But hard computing techniques had been used

widely by researchers and engineers.

In contrast soft computing techniques can be applied in many areas where hard

computing techniques fail. Soft computing techniques don’t require the data to be exact

and accurate. Soft computing techniques can be used to solve real world problems. So we

can apply soft computing techniques or methodologies in case of uncertainty, imprecision

and partial truth. These advantages of Soft Computing over hard computing make it

useful for wide range of application example machine performance prediction and

optimization (Chandrasekaran, Muralidhar, Krishna, & Dixit, 2009) , in decision making

problems (Roy & Maji, 2002).

Professor Zadeh’s(Zadeh, 1965) original definition of soft computing is quoted

below:

“Soft computing differs from conventional (hard) computing in that, unlike hard

computing, it is tolerant of imprecision, uncertainty, partial truth, and approximation. In

effect, the role model for soft computing is the human mind. The guiding principle of soft

computing is: Exploit the tolerance for imprecision, uncertainty, partial truth, and

approximation to achieve tractability, robustness and low solution cost. At this juncture,

the principal constituents of soft computing (SC) are fuzzy logic (FL), neural computing

(NC), genetic computing (GC) and probabilistic reasoning (PR), with the latter

27

subsuming belief networks, chaos theory and parts of learning theory. What is important

to note is that soft computing is not a melange. Rather, it is a partnership in which of the

partners contributes a distinct methodology for addressing problems in its domain. In

this prospective, the principal constituent methodologies in SC are complementary rather

than competitive.”

The main constituents of soft computing are Neural Network, Probabilistic

Reasoning, Fuzzy Logic and Genetic Computing. Soft computing gives better results

generally when we use mixture of above constituent rather than using single of above

constituent. Soft computing can be used in place of hard computing in some of the

techniques and in some other techniques it can be used along with hard computing. We

need both Soft Computing and Hard Computing whenever we want a solution that is cost

effective and accurate.

3.2 Biologically Inspired Algorithms

We need to find the global optimum in case of optimization problems. But there

are several problems associated with this. For example our search space is too large, there

are many local optima, and it may take large computation time. Many tools are developed

to solve such problems. Both deterministic and heuristic approach can be used in this

regard. Deterministic algorithm search for the optimum point using some well defined

procedure while heuristic approaches proceed based on the experience gained. If we

compare both the approaches then deterministic gives high possibility to find the solution

but obviously in more computation time than heuristic. Heuristic approaches are non

deterministic and hence they search for global optima randomly but within some

reasonable time. But if problem required to be solved is highly complex and non-linear

then computation process increases significantly in this case also. Biologically-inspired

algorithms come under soft computing methodologies. They are developed by mimicking

natural algorithms or more appropriately biological algorithms as that of natural

selection, foraging etc. The aim was to develop alternating technique to solve highly

complex problems or to solve over-determined systems (one with more variables then

28

equations). These systems cannot be solved using usual methods like gradient descent

method. All the process that occurs in nature are very efficient and optimal. So, it’s a

good idea to mimic these processes as algorithms and use in our problems. Below in

Figure 1 the hierarchy of biologically inspired algorithms is shown.

Figure 1: Block diagram showing hierarchy of biologically inspired algorithm

29

Biologically inspired algorithms mimic the behaviour of animals that they exhibit

in some sort of group activity like foraging. Particle Swarm Optimization, Ant Colony

Optimization, Artificial Bee Colony Optimization are some of the algorithms developed

on this ground. BFOA(Bacterial Foraging Optimization Algorithm) is an another

algorithm which was given by Passino (Passino K. M., 2002). It has been used widely in

many of the engineering problem related to optimization example harmonic estimation

(Mishra, 2005), Parameter estimation of Wiener model (Huang & Lin, 2010).

Bacterial Foraging Optimization Algorithm was developed to mimic the foraging

strategy of Escherichia Coli Bacteria. E. Coli is a rod shaped bacteria that is found in

lower intestine of warm blooded organisms. E.Coli always tries to move to place which

has highest amount of nutrition, avoiding the harmful environment. If we map this to

optimization problem then bacteria will have to move to position of highest energy and

this position will be required optimum position. Bacteria can initially be placed at any of

the random positions in the search space. Bacteria will move in the search space in order

to find the optimum value. Process by which a bacterium moves from one position to

another position in order to a find position with highest nutrient value is known as

chemotaxis. Bacteria exhibit two operations in chemotaxis namely swimming and

tumbling. Bacterium uses flagella for swimming and tumbling. In each chemotactic step

bacterium gets some energy. Each bacterium undergoes certain fixed number of

chemotactic steps. After this health which is sum of energy obtained at each chemotactic

step of each bacterium is calculated and bacteria are sorted according to this health.

Bacterium with least energy and best health is considered to be the bacteria with highest

nutrient value. So half of the healthy bacteria reproduce on finding suitable conditions

into two and remaining half are eliminated. So, theory of natural selection is applicable

here. Finally, sometimes due to occurrence of some rare event like sudden rise in

temperature etc. some of the bacteria may be migrated to some media.

3.2.1 Escherichia Coli Bacteria

BFOA is an optimization algorithm used for optimization was developed based on

the foraging behaviour of Escherichia Coli bacteria found in lower intestine of warm

30

blooded organisms. Foraging is the process by which animals locate and ingest their

food. The structure of E. Coli bacteria is shown in Figure 2below.The E. coli bacterium

has a plasma membrane, cell wall and capsule that contains the cytoplasm and nucleoid.

The pili (singular, pilus) are used for a type of gene transfer to other E. coli bacteria and

flagella (singular, flagellum) are used for locomotion. The cell is about 1µm in diameter

and 2 µm in length. The E. coli cell only weighs about 1 picogram and is about 70%

water. Salmonella typhimurium is a similar type of bacterium (Passino K. M., 2002). In

suitable environment whenever E. Coli gets longer it splits into two parts. For example on

getting sufficient food and temperature of around 37 degree centigrade it can develop

everything it needs to replicate within 20 minutes. Hence in short time population can be

doubled easily. It also has some sort of system that guides its search for food and help

avoiding noxious environment. It will swim from noxious environment to healthy

environment.

Figure 2: E. Coli Bacteria Structure

3.2.1.1 Basic Concept of Movement of Bacteria

E. Coli bacteria always tries to move to the position where there is highest value

of nutrition avoiding poisonous environment side by side. This motion of E. Coli in order

to find the most optimum position is known as chemotaxis. Tumble and Swimming are

the two basic operations exhibited by bacteria in chemotaxis. Straight movement is

known as swimming and if bacterium changes its direction then it is known as tumbling.

31

Less energy is here associated with higher nutrition value. So, lesser the energy more is

the nutrition value and higher the energy less is the nutrition value. Therefore, ultimate

goal is to reach at the position with highest nutrient value or lowest energy. Now, bacteria

move in straight direction if its energy continues to decrease i.e. its health continues to

improve. It tumbles if there is no improvement in energy, and in case of poisonous

environment it tumbles more. In short, if bacteria found improvement in energy with

respect to previous position it swims otherwise, it tumbles.

Below Figure 3 depicts the swim and Figure 4 depicts tumble in bacteria.

Considering Figure 3 bacterium is initially at position P1 with energy E1 at this position

energy is. Now the bacterium moves to position P2. Energy changes with change in

position here again energy of bacterium is calculated. Suppose new energy is E2. Now,

this new energy is compared with old energy. If new energy is less than previous energy

bacterium continues to move in that direction. In this way bacterium swims in particular

direction i.e. it swims from position P1 to P2 and from P2 to P3. In Figure 4 bacterium

moves forward from position P1 to P2. Energy initially at P1 is E1and at P2 is E2. Both E1

and E2 are compared. In this case E2 is greater than E1. So, bacterium tumbles in the

random direction and moves to P3. Energy of P3 is compared to best energy reached by

this bacterium till now i.e. E3 is compared to the E1. Again energy E3 is greater than E1.

So, bacterium will tumble again in some random direction and reach at position P4. Again

since position of bacterium is updated energy is calculated. Suppose energy at P4 is E4. E4

is compared to E1.Value of E4 is lower than that of E1 so bacteria will now move in this

direction. It swims to position P5 and whole chemotaxis cycle continues like this.

3.2.2 Constituent steps in the life cycle of bacteria

Each bacterium undergoes four main steps during its life cycle namely:

i. Chemotaxis

ii. Swarming

iii. Reproduction

iv. Elimination Dispersal

32

Figure 3 Chemotaxis- Swimming

Figure 4 Chemotaxis- Tumbling

3.2.2.1 Chemotaxis

Chemotaxis stands for movement by a cell or organism in reaction to a chemical

stimulus. This step simulates the movement of bacteria in the search space. Chemotaxis

basically constitutes two main steps swimming and tumbling. Depending on the medium

in which it is searching for food bacteria can:

• Swim followed by tumble

• Tumble followed by swim

• Tumble followed by tumble

• Swim continuously

The position of bacteria can be represented by (, ,)i j k lθ where , , ,i j k l meansthi

bacterium at thj chemotactic, thk reproductive and thl elimination-dispersal step. Amount

33

of movement in particular direction is quantified by a parameter know as step size ()c i

where i is the bacteria under consideration. If value of ()c i is kept large then algorithm

may jump over the optimum point and if value of ()c i is small then algorithm may take

large time to converge. Energy of bacteria is represented by (, ,)J j k l where , ,j k l

means at thj chemotactic, thk reproductive and thl elimination-dispersal step.Whenever

bacterium needs to tumble a random unit vector ∆ is generated such that ∆ [-1,1].Finally,

Motion of bacteria can be represented mathematically as:

()
(1, ,) (, ,) ()

() ()

i i i
j k l j k l c i

i i
θ θ

Τ

∆+ = +
∆ ∆ (3.1)

If value of energy (1, ,)J j k l+ at (1, ,)i j k lθ + is lower than (, ,)J j k l at (, ,)i j k lθ

then bacteria takes one step forward in the same direction with step size ()c i and will

continue to swim in that direction if energy keeps on decreasing. But maximum number

of times bacteria can swim in particular direction is given bysN where sN is the

maximum number of swimming steps. After completion of
sN steps bacterium will have

to tumble.

3.2.2.2 Swarming

While moving bacteria can release chemical substances so that other bacteria can

be attracted and they could swarm together. Foraging is group activity and group

behaviour is governed by these chemicals. They could release a sort of repellent also. So

that, no two bacteria can be on the same position at same instant of time. Repellent

ensures that there is some particular amount of distance between two bacteria. So,

swarming justifies group behaviour by cell-to-cell signalling or by attractant and

repellents. This is how bacteria swarm together. Mathematically swarming can be

represented as:

1

(, (, ,)) (, (, ,))
S

i
cc cc

i

J P j k l J j k lθ θ θ
=

=∑

34

2
tan tan

1 1

2

1 1

exp ()

exp ()

pS
i

attrac t attrac t m m
i m

pS
i

repellent repellent m m
i m

d w

h w

θ θ

θ θ

= =

= =

  
= − − − +  

  

  
− − −  

  

∑ ∑

∑ ∑

 (3.2)

where,

(, (, ,))ccJ P j k lθ is the objective function (to be minimized).

Srepresents the total number of bacteria.

p is number of dimension of the space in which bacteria will move or it is number of

parameters required to be optimized.

1 2, pθ θ θ θ
Τ

 =   is a particular point in the search domain with p dimension.

tanattrac td it gives the depth to which attractant is released or it quantifies the attractant

released.

tanattrac tw it gives the width of attractant i.e. it quantifies the magnitude to which it effects.

repellenth it gives the depth to which repellent is released or it quantifies the repellent

released.

repellentw it gives the width of repellent i.e. it quantifies the magnitude to which it effects.

If value of tanattrac td and tanattrac tw is too high means there is large magnitude and

height of attraction. So, bacteria will swarm in group. But they may miss some of the

nutrients. Very less value of these will not introduce group behaviour. Hence they will

not swarm together and search for food independently. So, optimum value of these

parameters is required to be set so that optimum amount of swarming is introduced.

Value of these parameters lies in between [1, 9] and should be chosen appropriately.

35

3.2.2.3 Reproduction

Bacteria reproduce very fast in the nutrient media so population size will increase.

Similarly, in poor nutrient media bacteria will die rapidly resulting in decrease in

population. After Nc chemotactic steps health of each bacteria is calculated by adding the

energies accumulated at each chemotactic step. Lower the value of healthJ more fit is the

bacteria or medium is nutrient. Higher healthJ value signifies bacteria are unfit or nutrient

is poor. So bacteria in nutrient medium tend to reproduce and bacteria with poor nutrients

tend to die. To keep the algorithm simple it is assumed that half of the bacteria with lower

healthJ value will reproduce and half of the bacteria with higher healthJ value will die. In

this way total population size remains constant. So, finally bacteria with low healthJ value

die and other asexually split into two.

1

(, , ,)
cN

i
health

j

J J i j k l
=

=∑
 (3.3)

2r

S
S =

 (3.4)

It is assumed that we have even number of bacteria. So, finally bacteria rS with

lower healthJ will reproduce and other rS will die and new rS bacteria will be placed at

same position as their parents.

3.2.2.4 Elimination dispersal

Occasionally when there are sudden changes in the local environment like sudden

change in temperature some of the bacteria which are present in the search space may be

migrated to some other location. Sometimes all the bacteria may be migrated to some

other location. Algorithmically a probability edP is considered. It’s a random probability

and its value lies between 0 and 1. Apart from this, a random probability is generated

corresponding to each bacterium. This probability is compared to edP . If its value is

lower than edP then this bacterium will migrate to some new location. However, to keep

36

the algorithm simple some other bacterium is migrated to search space at some random

position. This phase of bacteria’s life cycle helps the algorithm to come out of local

minima and to exploit the positions not exploited yet.

3.3 Bacterial Foraging Optimization Algorithm

Originally the BFOA was proposed by Passino in the year 2002 (Passino K. ,

2002) after that many modifications are made in the standard algorithm.

Table 1 shows that parameters used in this algorithm, it has parameter names

along with their corresponding description.

Let position of each bacterium in the population of size S is represented by

{ }(, ,) (, ,), 1, 2....iP j k l j k l i Sθ= = where j means at thj chemotactic step, k means at thk

reproduction step, and l means at thl elimination-dispersal step. Here, let (, , ,)J i j k l

denote the energy of thi bacterium position (, ,)i j k lθ Ρ∈ℜ . J can be termed both as

energy of bacteria at particular position or as cost which is to be minimized. In nature

value of S i.e. number of bacteria in population can be very large but number of

dimensions is restricted to be 4. But in case of simulation number of bacteria in

population is kept fixed and is small. However value of p i.e. dimensions of search

space can be greater than 3 depending on the number of parameters required to be

optimized in the problem.

Table 1 Parameters used in BFOA (Das, Biswas, Dasgupta, & Abraham, 2009)

S.NO. PARAMETER
NAME

DESCRIPTION

1 j the variable used as loop counter for chemotactic step

2 k the variable used as loop counter for reproduction step

3 l the variable used as loop counter for elimination dispersal step

4 p Dimension of the search space

37

5 S Total number of bacteria in the population

6
cN The number of chemotactic steps

7
sN The swimming length

8
reN The number of reproduction steps

9
edN The number of elimination-dispersal events

10
edP Elimination-dispersal probability

11 ()c i The size of the step taken in the random direction specified by
the tumble

The algorithm is as follows (Das, Biswas, Dasgupta, & Abraham, 2009)

[Step 1] Initialize parameters , , , , , , (),c re ed s edp S N N N N c i Pwhere 1,2,.....i S=

[Step 2] Elimination-dispersal loop: 1l l= +

[Step 3] Reproduction loop: 1k k= +

[Step 4] Chemotaxis loop: 1j j= +

[a] For 1,2,.....i S= take a chemotactic step for bacterium i as follows.

[b] Compute fitness function,(, , ,)J i j k l

Let, (, , ,) (, , ,) ((, ,), (, ,))iJ i j k l J i j k l Jcc j k l P j k lθ= + (i.e. add on the cell-to

cellattractant–repellent profile to simulate the swarming behaviour)where,

ccJ is defined in(3.2).

[c] Let (, , ,)lastJ J i j k l= to save this value since we may find a better cost via

a run.

38

[d] Tumble: generate a random vector () pi∆ ∈ℜ with each element m(i)∆ ,

1,2,...m p= a random number on[1,1]− .

[e] Move: Let

i ()
(1, ,) (, ,) ()

() ()

i

T

i
j k l j k l c i

i i
θ θ ∆+ = +

∆ ∆ (3.5)

This results in a step of size ()c i in the direction of the tumble for bacterium

i .

[f] Compute (, 1, ,)J i j k l+ and let,

(, 1, ,) (, , ,) ((1, ,), (1, ,))i
ccJ i j k l J i j k l J j k l P j k lθ+ = + + + (3.6)

[g] Swim

i) Let 0m = (counter for swim length).

ii) While sm N< (if have not climbed down too long).

• Let 1m m= + .

• If (, 1, ,) lastJ i j k l J+ < (if doing better), let (, 1, ,)lastJ J i j k l= + and let

()
(1, ,) (, ,) ()

() ()

i i

T

i
j k l j k l c i

i i
θ θ ∆+ = +

∆ ∆
use this (1, ,)i j k lθ + to compute the

new (, 1, ,)J i j k l+ as we did in [f]

• Else, let sm N= This is the end of the while statement.

[h] Go to next bacterium (i+1) if i S< (i.e., go to [b] to process the next

bacterium).

39

[Step 5] If cj N< , go to step 4. In this case continue chemotaxis since the life of the

bacteria is not over.

[Step 6] Reproduction:

[a] For the given k and l , and for each 1,2,...i S= , let

1

1

(, , ,)
cN

i
health

j

J J i j k l
+

=
= ∑

 (3.7)

be the health of the bacterium i (a measure of how many nutrients it got

over its lifetime and how successful it was at avoiding noxious substances).

Sort bacteria and chemotactic parameters ()c i in order of ascending cost

healthJ (higher cost means lower health).

[b] The Sr bacteria with the highest healthJ values die and the remaining rS

bacteria with the best values split (this process is performed by the copies

that are made are placed at the same location as their parent).

[Step 7] If rek N< go to step 3. In this case, we have not reached the number of specified

reproduction steps, so we start the next generation of the chemotactic loop.

[Step 8] Elimination-dispersal: For 1,2,...i S= with probability edP , eliminate and disperse

each bacterium (this keeps the number of bacteria in the population constant). To do this,

if a bacterium is eliminated, simply disperse another one to a random location on the

optimization domain. If edl N< , then go to step 2; otherwise end.

3.3.1 Guidelines for choosing the parameter

There are many parameters used in the algorithm and each of the parameter may

influence the algorithm in different ways. Different parameters are described below:

40

3.3.1.1 Number of Bacteria S

Suppose a large value of S is taken i.e. large number of bacteria. In this case

computational complexity of the algorithm will increase. But chances of finding an

accurate solution will also increase. It may happen in starting itself that some of the

bacteria are near to the optimal value.

3.3.1.2 Step Size ()c i

Biologically motivated value may be chosen but it may not be best according to

the engineering problem. If value of ()c i is kept large then algorithm may jump over the

optimum point and if value of ()c i is small then algorithm may take large time to

converge increasing the computational complexity.

3.3.1.3 ccJ parameters

ccJ parameters influence the swarm and independent foraging behaviour of

bacteria. If value of tanattrac td , repellenth , repellentw and tantattracw is too high means there is large

magnitude and height of attraction. So, bacteria will swarm in group. But they may miss

some of the nutrients. Very less value of these will not introduce group behaviour. Hence

they will not swarm together and search for food independently. Therefore, optimum

value of these parameters is required to be set so that optimum amount of swarming is

introduced. Value of these parameters lie in between [1, 9] and should be chosen

appropriately. Thus, they influence characteristics of swarming.

3.3.1.4 Number of Chemotactic Steps cN

Increasing the value of cN may result in better optimization results but it will

increase the computational complexity as well. However, low value of cN may result in

dependence of optimization more on luck and reproduction.

3.3.1.5 Number of Reproduction StepsreN

Reproduction steps helps to ignore bad regions by killing bacteria will poor

nutrients. However, large value may increase the computational complexity.

41

3.3.1.6 Number of Elimination Dispersal Steps edN

Low value of edN indicates that algorithm rely less on random elimination

dispersal step to find the solution. However, high value increases computational

complexity and also helps in exhaustive search. It can help algorithm to jump out of local

minima and search for global optima. Therefore, optimum value ofedN allows algorithm

to look in more regions.

3.3.1.7 Number of swimming steps sN

The value for this parameter is chosen as optimal because increasing its value will

increase the complexity of the algorithm while decreasing its value will create a problem

in converging of the algorithm.

Flowchart is given on next page

42

43

Chapter Four: Software Cost Model and Estimation

4.1 Introduction

In today’s world, software has its own importance which can be seen in every

field. Dependency on software is increasing day by day because of its extreme

importance. Software is used in various domains either to support the speed or

intelligence or to reduce hardware resources or for easy maintenance of systems. But one

concern here that needs to be heeded is the software cost. Any software must incur less

cost and should be available in the market before any of its competitors can even think of

that.

But software cost should be estimated before the project development actually

takes place. Estimating proper software cost is very complex and challenging task for

every project manager. Software cost is directly proportional to the resources and time

required by the project which is dependent on the software attributes and characteristics.

As attributes are really very dynamic and are related to a project, so for proper cost

estimation prudential treatment of attributes needs to be done.

Estimating future costs and schedule is very much tedious for any analyst. Some

of tradition cost estimating techniques include parametric, bottoms-up and estimating by

analogy. Here, lies a drawback in all these techniques and i.e. all estimation of cost are

based on the relationship constructed with historical data. It assumes that the cost

incurred by a model will be similar to the part that has been constructed in past and that is

similar to new one. But if future that changes, it will not be of any use unless cost

estimation is scaled according to that. Software cost estimation is done during the

software development life cycle (SDLC). Initially all resources are identified with their

quantity and listed together. Resources used may include list of all software and

hardware, testing activities, training session, infrastructure etc. Team members that are

needed to complete the project are also identified. After this project manager will

estimate the project cost from list of resources that is made. Wrong identification of

resources may lead to overbudget and can lead to wrong results in estimation process. So,

some tool is required by the manager to properly estimate the software cost.

44

Over cost and over schedule may lead to project failure. Poor estimated projects

lead to termination of projects. Software cost estimation can be defined as a collection of

techniques that are used by organizations to estimate proposal bidding, probability

estimates and project planning. There are certain reasons that cause difficulty in cost

estimation are given below:

• practice needs a significant amount of money to perform it

• process is always performed in a hurry

• experience is required for making the estimates.

4.2 Cost Estimation Models

There are many software cost estimation models that are developed till now. A

prototype is basically needed to consider all the factors and attributes of the project to

properly estimate the software cost. It is mandatory as it helps in the overall software

management, contract establishment, scheduling, project planning and resource

allocation. All the models that are developed till date can be categorized in either of the

following two categories:

• Parametric or Algorithmic models.

• Non-Algorithmic methods.

4.2.1 Algorithmic Models

Algorithmic models use mathematical formulas and do some measurements of

project attributes. Some of the examples of algorithmic models are given below:

• Function points

• Putnam

• Slim

• SLOC

• The Doty model

• Price-S model

• Estimacs

• Checkpoint

45

4.2.2 Non-algorithmic Models

Non-algorithmic models consist of a model that do reasoning, applies logic and

uses a large knowledge base. These models are based on the phenomenon of learning by

experience or can be said as trail by case studies. These type of models include models

like

• Analogy costing

• Expert judgment

• Parkinson model

• Price-to-win

• Bottom-up approach

• Top-down approach

• Delphi

• Machine learning etc.

The main difference lies in both is that algorithmic models use calculations. Here

in non-algorithmic model cost is estimated using the Cost Estimating Relationships

(CERs) with the help of mathematical algorithms and different logics to establish a cost

estimate. Once a model is developed, this approach is very easy to use. It uses physical

characteristics like mass, number of inputs, outputs, and volume etc. Detailed information

is not needed here. But the disadvantage here can be that its difficult to make the model

itself. Accuracy can be one of the other flaws here. Algorithmic models have their

importance because they provide a properly defined step by step procedure to provide the

final outcome.

4.3 COCOMO:

This is the thoroughly documented model that is used for effort estimation in

software process development. It provides the formulae for calculating the time schedule,

overall development effort, effort break down by phase and activity, and maintenance

effort.

There are three classes of system in which modeling process is categorized:

46

1. Embedded: here main concern is on the tight constraints, changing environment

and the unfamiliar surroundings. Real-time software comes under this class example

aerospace, medicine, automobiles etc.

2. Organic: this is applicable for projects that are small in respect to project size

and team size, and projects that have familiar surroundings and have easy interfaces.

These may include data processing systems, small libraries or business systems.

3. Semi-detached: These type of software have mixed characteristics of both

embedded and organic software. Examples may include operating systems, inventory

management systems and database management systems. (Azath & Wahidabanu, 2012)

Three levels of COCOMO was proposed by the Boehm

1) Basic COCOMO

2) Intermediate COCOMO

3) Detailed COCOMO

Majority of software projects apply Basic COCOMO model to estimate the cost

of Software Development. What Boehm says about the model is: "Basic COCOMO is

good for rough order of magnitude estimates of software costs, but its accuracy is

necessarily limited because of its lack of factors to account for differences in hardware

constraints, personnel quality and experience, use of modern tools and techniques, and

other project attributes known to have a significant influence on costs." (Pandey, 2013)

4.4 COCOMO Models and its Variants

COCOMO can be represented as

()b
Effort a DLOC=

 (4.1)

Where DLOC is the independent variable and Effort is the dependent variable.

47

Four new models were proposed (Sheta, 2006)(Uysal, 2008) to consider the

methodology adopted also in the determination of effort. So, now there are 2 independent

parameters DLOC and ME and one is dependent parameter i.e. effort.

4.4.1 COCOMO_model1:

() ()b
Effort a LOC c ME= +

 (4.2)

The model considered ME as linearly related with effort. It had three parameters , ,a b c

4.4.2 COCOMO_model2:

() ()b
Effort a LOC c ME d= + +

 (4.3)

It had 4 parameters , , ,a b c d

4.4.3 COCOMO_model3:

() ()b d
Effort a LOC c ME e= + +

 (4.4)

It had 5 parameters , , , ,a b c d e

4.4.4 COCOMO_model4

() () ()() ()ln ln(loc)
b d

Effort a LOC c ME e ME f g= + + + +
 (4.5)

So, there were seven parameters in total.

4.5 Parameter Estimation

We know that some of the cost estimation models are present in the form of used

for software cost estimation. There are always some unknown parameters in these

functions like �, �, �, � etc. In order to find these parameters we need these estimation

equations to fit to some meaningful data. This is known as estimating the parameters or

parameter estimation. Mainly used approaches include maximum likelihood estimation

technique; least square estimation technique etc. Data is directly given as input into the

equations to find the parameters in MLE. In least square method, curve described by the

function is given to fit to the data and parameters are estimated. In our research we have

48

used least square method to fit data into the equations of the software cost estimation

models.

4.6 Least square error

The maximum likelihood technique determines the parameter values directly

which are best feasible and optimal. On the other hand, the least squares estimation

method estimate the parameter values by choosing those values which fits a curve in the

best way. This technique is the best when the size of the sample is medium or small.

Mood (Mood, 1974) describes the theory of curve fitting using LSE as “finding

parameter values that minimize the "difference" between the data and the function fitting

the data, where the difference is defined as the sum of the squared errors.” Another way

in which this technique can be used is to directly calculate the difference between the

calculated and estimated number of defects and then to minimize the difference between

the two so that the results are optimized.

Given the data as, { }1 1(,),.....(,)N Nx y x y , the error associated can be estimated by saying

y ax b= + by,

2

1

(,) ()
N

n
n

E a b y y
=

= −∑
 (4.6)

As it can be seen from the eq. 1.8 it is N times the variance of the data set

1 1{ (),....., ()}n Ny ax b y ax b− + − + . It does not make much difference whether we consider

only the variance or N times of the variance to be the error. It must be noted that the error

is taken as the function of two variables. The intention here is to determine or estimate

those values of parameters aand b which can minimize the error. In multivariable

calculus this requires us to find out the values of(,)a b such that

0, 0
E E

a b

∂ ∂= =
∂ ∂ (4.7)

49

Chapter Five: DBA (Distance Based Approach)

5.1 Overview of Methodology (Sharma, Garg, & Nag, 2010)

The development of the DBA method begins with defining the optimal state of

the overall objective, and specifies the ideally good values of attributes involved in the

process. The optimal state of the objective is represented by the optimum model, the

OPTIMAL. The vector OP,
1 2(, , ...,)nr r r , is the set of “optimum” simultaneous attributes

values. In an n-dimensional space, the vector OP is called the optimal point. For practical

purposes, the optimal good value for attributes is defined as the best values which exist

within the range of values of attributes. The OPTIMAL, then, is simply the SRM that has

all the best values of attributes.

It is very unlikely that a certain SRM has the best values for all attributes. Instead,

a variety of alternatives may be used to simulate the optimal state. For this reason, the

OPTIMAL is not to be considered as feasible alternatives, but it is used only as reference

to which other alternatives are quantitatively compared. The numerical difference

resulting from comparison represents the effectiveness of alternatives to achieve the

optimal state of the objective function. Hence, here, the decision problem is to find a

feasible solution which is as close as possible to the optimal point. The objective function

for finding such a solution can be formulated as

Minimize { }(),Alt x OPTIMALδ (5.1)

Subjectto x ς X

where { ()Alt x }, and δ represent a SRM alternative in the n-dimensional space,

and the distance from the optimal point, respectively. Thus the problem, and its solutions

depend on the choice of optimal point, OPTIMAL, and the distance metric,δ , used in the

model. In two dimensional spaces, this solution function can be illustrated as in Figure 5,

where H is the feasible region, and the OP is the optimal point.

50

The DBA method determines the point in the H region which is “the closest” to

the optimal point, and is graphically explained in Figure 6 for two dimensional cases.

Note that the lines 1()XAlt OP− , and 2()XAlt OP− are parallel to the X1, and X2 axis

respectively. Therefore, 1 1 1() | |X X XAlt OP OP Alt=− − , and 2 2 2() | |X X XAlt OP OP Alt− = −

Based on Pythagoras theorem, in two dimensional space, δ is

Figure 5: Distance Based Approach

1/22 2
1 1 2 2() ()X X X XOP Alt OP Altδ = − + −   (5.2)

In general terms, the “distanceδ ” can be formulated as

1/ 22()ij ijOP Altδ  = −∑  (5.3)

where i=1, 2, 3, 4... n = alternative SRMs, and j=1, 2, 3... m = selection attributes.

To implement the above approach, let us assume that we have a complete set of

SRMs consisting of 1, 2, 3,...n SRMs, and 1,2,3...m selection attributes corresponding to

each alternative SRM,
1 11 12 1(, , ...,)mAlt r r r ,

2 21 22 2(, , ...,)mAlt r r r , 1 2(, , ...,)n nmn nAlt r r r , and

51

the OPTIMAL
1 2(, , ...,)b b bmr r r where bmr = the best value of attribute ‘m’. The whole set

of alternatives can be represented by the matrix

[]

111 12

21 22 2

1 2

1 2

m

m

n n nm

b b bm

r rr
r r r

r
r r r
r r r

=

 
 
 
 
  

…

…

⋮ ⋮ ⋮ ⋮

…

…

 (5.4)

Figure 6: Distances of Real Vector

Thus, in this matrix, a vector in an m-dimensional space represents every SRM

alternative. To ease the process, and in the same time to eliminate the influence of

different units of measurement, the matrix is standardized using

ij j
ij

j

r r
Z

S

−
=

 (5.5)

Here,
1

1 n

ij ij
i

r r
n =

= ∑ , and (5.6)

52

1/ 2
2

1

1
 ()

n

j ij j
i

S r r
n =

 = −∑  
 (5.7)

where i = 1, 2, 3, ... , n, and j = 1, 2, 3, … , m.

jr , and S j represent the average value, and the standard deviation of each attribute for all

alternative SRMs. m, and n represent the number of different SRM attributes, and the

number of alternate SRMs, respectively.

11 12 1

21 22 2

1 2

1 2

m

m

std

n n nm

OP OP OPm

Z Z Z

Z Z Z

Z Z Z

Z Z Z

Z  = 

 
 
 
 
  

…

…

⋮ ⋮ ⋮ ⋮

…

… (5.8)

where 11 1
11

1

,
r

Z
S

r−
= 12 2

12

2

,
r

Z
S

r−
= 1

1 .m m
m

m

r
Z

S

r−
=

The next step is to obtain the difference from each alternative to the reference

point, the OPTIMAL, by subtracting each element of the optimal set by a corresponding

element in the alternative set. This results in another interim matrix

OP1 11 2 12 1

OP1 21 2 22 2

OP1 1 2 2

Z

Z

Z

OP OPm m

OP OPm m
dis

n OP n OPm nm

Z Z Z Z Z

Z Z Z Z Z

Z Z Z Z Z

Z

− − −
− − −

− − −

  = 

 
 
 
  

…

…

⋯ ⋯ ⋯ ⋯

… (5.9)

Finally, the Euclidean composite distance, CD, between each alternative SRM to

the optimal state, OPTIMAL, is derived from

1/ 2
2

1
()

m

OP Alt OPj ij
j

CD Z Z−
=

= ∑ − 
   (5.10)

Within any given set of SRM’s alternatives, this distance of each alternative to

every other is obviously a composite distance. In other words, it can be referred to as the

mathematical expression of several distances on each attribute in which SRMs can be

compared.

53

5.2 Comparison Criteria

A model can be judged according to its ability to reproduce the observed

behaviour of the software, and to predict the future behaviour of the software from the

observed data. To investigate the effectiveness of software cost estimation models, a set

of comparison criteria is proposed to compare models quantitatively. The comparison

criteria judge the model according to the various properties like fidelity (are the estimated

cost close to the actual), stability (does the difference in input is making any difference in

output), etc. The comparison criteria we used are described as follows. (Sharma, Garg, &

Nag, 2010)

5.2.1 Bias

It can be defined as sum of the difference between the estimated curve, and the

actual data. Mathematically, it can be given as (Sharma, Garg, & Nag, 2010)

1

effo(res ttimated actual effor) t
k

i i
iBias

k
=

−
=
∑

 (5.10)

Where k represents the sample size of data set.

5.2.2 MSE

The mean square error (MSE) measures the deviation between the predicted

values with the actual observations, and is defined as (Sharma, Garg, & Nag, 2010).

2

1

(estimate_effort _effortd)
k

i i
i

actual
MSE

k p
=

−
=

−

∑

 (5.11)

Where k represents the sample size of the data set and p is number of parameters.

5.2.3 MAE

The mean absolute error (MAE) is similar to MSE, but the way of measuring the

deviation is by the use of absolute values. It is defined as (Sharma, Garg, & Nag, 2010).

54

1

(estimated_effort _e or)ff t
k

i i
i

actual
MAE

k p
=

−
=

−

∑

 (5.12)

Where k represents the sample size of the data set, and p is the number of parameters.

5.2.4 MEOP

The mean error of prediction (MEOP) sums the absolute value of the deviation between

the actual data and the estimated curve, and is defined as (Sharma, Garg, & Nag, 2010).

1

_effort _eff
1

o t
00

r
1

1

N

i i
i

estimated actual
MEOP

k p
=

  −  
  = − ×

− +  
  
  

∑

 (5.13)

Where k represents the sample size of the data set, and p is the number of parameters.

5.2.5 PRR

The predictive-ratio risk (PRR) is defined as (Sharma, Garg, & Nag, 2010)

1

_effort _effort

_effort

k
i i

i i

estimated actual
PRR

estimated=

−=∑
 (5.14)

5.2.6 Variance

The variance is defined as (Sharma, Garg, & Nag, 2010).

2

1

1
variance (estimatactual_effort - _effort -Biaed)s

1

k

i i
ik =

=
− ∑

 (5.15)

Where k represents the sample size of the data set.

5.2.7 RMPSE

The Root Mean Square Prediction Error (RMSPE) is a measure of the closeness with

which the model predicts the observation. (Sharma, Garg, & Nag, 2010)

2 2RMSPE Variance Bias= + (5.16)

55

5.2.8 RSQ

Rsq can measure how successful the fit is in explaining the variation of the data. It

is defined as (Sharma, Garg, & Nag, 2010).

2

1

2

1 1

_effort _e(actual estimated)
1

actual
(ac

ffort

_effort
_efforttual)

k

i i
i

k k
j

i
i j

Rsq

n

=

= =

−
= −

−

∑

∑ ∑
 (5.17)

5.2.9 SSE

The sum of squared errors (SSE) is defined as (Sharma, Garg, & Nag, 2010).

2

1

(estimate_effort _eff rtd)o
k

i i
i

SSE actual
=

= −∑
 (5.18)

5.2.10 TS

The Theil statistic (TS) is the average deviation percentage over all periods with

regard to the actual values. The closer Theil’s Statistic is to zero, the better the prediction

capability of the model. (Sharma, Garg, & Nag, 2010).

2

1

2

1

_effort _effort(actual)
100%

a _effortctual

k

i i
i

k

i
i

estimated
TS =

=

−
= ×
∑

∑
 (5.19)

5.2.11 MRE

Magnitude of Relative Error can be defined as (Khalifelua & Ghar, 2011).

_effort _effort

_effort
i i

i

actual estimated
MRE

actual

−
=

 (5.20)

5.2.12 MMRE

The mean magnitude of relative error (MMRE) can be achieved through the

summation of MRE over N observations (Satapathy, Kumar, & Rath, 2013).

56

1

N

i

MMRE MRE
=

=∑
 (5.21)

5.2.13 RMSE

The root mean square error (RMSE) is just the square root of the mean square

error. (Satapathy, Kumar, & Rath, 2013).

RMSE MSE= (5.22)

5.2.14 NRMS

The normalized root mean square (NRMS) can be calculated by dividing the

RMSE value with standard deviation of the actual effort value for training data set.

(Satapathy, Kumar, & Rath, 2013).

()

RMSE
NRME

mean Y
=

 (5.23)

5.2.15 PA

The prediction accuracy (PA) can be calculated as: (Satapathy, Kumar, & Rath,

2013).

1

_effort _effort
1 100

N

i i
i

actual estimated
PA

N
=

  −  
  = − ×
  

  
  

∑

 (5.24)

5.2.16 ED

Euclidian distance (ED) can be defined as (Sheta & Aljahdali, 2013).

2

1

_effo(estimated actualrt _ t)effor
N

i i
i

ED
=

= −∑
 (5.25)

5.2.17 MD

Manhattan distance (MD) can be defined as (Sheta & Aljahdali, 2013).

1

_effort _effo)rt
N

i i
i

MD estimated actual
=

 = − 
 
∑

 (5.26)

57

5.2.18 SD

Standard Deviation can be defined mathematically as (Foss, Stensrud, &

Kitchenh, 2002).

()2
_effort _effort

1
i iestimated actual

SD
n

−
=

−
∑

 (5.27)

5.2.19 MdMRE

Median of the Magnitude of Relative Error can be mathematically defined as

(Bardsiri, Jawawi b, Bardsiri, & Khatibi, 2013)

()MdMRE median MRE=
 (5.28)

5.3 Model Evaluation

The model must be evaluated in the light of its objectives. The objective is to

develop DBA method so that a comprehensive ranking of the alternative cost estimation

models could be made combining various attributes relevant to them for a data set. We

consider 5 cost estimation models as described in chapter 4 section 4.4 and a dataset has

been taken from the open literature for evaluation, optimal selection, and ranking of these

five models based on seventeen criteria as described in section 5.2: Bias, MSE, MAE,

MEOP, PRR, Variance, RMSPE, Rsq, SSE, TS, ED, PA, SD, MD, MMRE, RMSE, and

NRMS. The mathematical form of the five cost estimation models described in equations

(4.1) to (4.5) are used to find parameters and to evaluate model selection criteria on the

dataset.

For the first time, Bacterial Foraging Optimization (BFO) algorithm is employed

along with LSE technique, to calculate values of parameters of these models under

discussion for ten datasets. LSE technique is used to get a function of the cost estimation

models. This function is called objective function, and is required as an input function to

BFOA. The minimized value of objective function is used to find values of parameters.

Comparison criteria are computed on these parameters values.

58

The values of the parameters for these five cost estimation models have been

estimated using the LSE technique using BFOA. The estimated values of the parameters

have been provided in Table 5,Table 7,Table 9,Table 11,Table 13. The values of the

seventeen comparison criteria considered here have been obtained using eq. (5.10)

through (5.28). The estimated and optimal values of the model selection criteria are given

in Table 15.

Matlab7.10.0.499 has been used to model thirteen NHPP SRGMs and to

implement BFO algorithm. The values have been computed by matlab programmes

executed on intel core 2 duo 2.0 Ghz processor with 4GB RAM under windows 7

environment on matlab 7.10.0.499.

59

Chapter Six: Flow of Adopted Approach and Results Obtained

6.1 Introduction

We have implemented software reliability models based on Matlab scripting

language. We have also implemented several software reliability models to rank software

reliability models at the Testing phases.

6.1.1 Required Operating Environment

Computers on which Optimal model selection tool will run must have the

following characteristics:

1. Operating Environment - Microsoft Windows 2000, Windows XP, Windows Vista,

or Windows 7.

2. CPU – Pentium-IV with an 80387 math coprocessor, Dual core, or Quad core or

higher microprocessor based system is recommended.

3. Disk space - You should have at least 200 MB of free space on your hard drive to

install optimal model selection tool.

4. Pointing device - Two-button Windows-compatible mouse. It will not run without a

mouse or equivalent pointing device (e.g. Windows-compatible trackball, touch pad,

or digitizing tablet).

5. Memory - 1GB of RAM is recommended.

6. Monitor - A 17" or larger VGA or better quality monitor/TFT/LCD supported by

Windows is expected.

7. Printer - a printer supported by Windows is assumed. A 300dpi or better resolution

laser printer is highly recommended.

6.2 Flow of adopted approach

Procedure adopted to rank the cost estimation models using BFO and DBA is described

below:

6.2.1 Step 1: Determination of Parameters of COCOMO model and four of its variants
using Bacterial Foraging Algorithm

Input: KLOC, ME, Actual Effort [Table 3]

60

Output: Parameters of all five model and corresponding estimated efforts.

First step is the determination of parameters of COCOMO model and four of its

modifications using Bacterial Foraging Algorithm. Bacterium moves in the search space

in search of food. It means objective of bacteria is to move to the position with highest

nutrient value. Highest nutrient position is considered to be a position with lowest energy.

So, overall objective of the algorithm is to find the position with lowest energy. Now, the

problem of estimation of parameters of COCOMO and its variants has to be mapped to

the bacterial forging optimization problem. For this purpose position of each bacterium is

considered as one set of parameter of a particular model. Now, according to algorithm all

the bacteria are initialized with some random position. So, set of random position is equal

to the number of bacteria. Now iteration of four events of bacterium life cycle will start.

Value of p (dimension in BFOA) will be equal to the number of parameters in the model

whose parameters are required to be found out. Therefore, it can be observed that number

of parameters correspond to the number of dimension in BFO. Table 2 shows the value of

p for each cost estimation model considered in this research.

Table 2: Value of p for each model

Model p

COCOMO 2

COCOMO_model1 3

COCOMO_model2 4

COCOMO_model3 5

COCOMO_model4 7

• Chemotaxis: Initial energy is calculated. However, process to calculate the

energy will change a bit. Now, energy function will be composed of LSE andJ .

In BFOA for given parameters J value is calculated. Now, LSE is also calculated

in addition toJ . In addition toJ , LSE also need to be minimized. So, fitness

function is sum of J and LSE. Rest of the procedure for chemotaxis remains

same.

61

ccJ J LSE= + (6.1)

()() ()()
1

, , , , , ,
S

i
cc cc

i

J P j k l J j k lθ θ θ
=

=∑

()

()

2

tan tan
1 1

2

1 1

exp

exp

pS
i

attrac t attrac t m m
i m

pS
i

repellent repellent m m
i m

d w

h w

θ θ

θ θ

= =

= =

  
= − − −  

  

  
+ − − −  

  

∑ ∑

∑ ∑ (6.2)

()2
_effort-Actual_effortLSE Estimated=∑ (6.3)

Estimated effort is calculated according to the model used. The equation of the

respective models is given in Chapter 4 from section 4.4.

• Reproduction and Elimination dispersal steps are carried as described in the

original BFOA.

6.2.2 Step 2: Evaluation of Criteria

Input: Estimated Efforts, Actual Effort.

Output: Values determined for criteria.

All the five models are evaluated against the 17 criteria. The criteria that are used

are BIAS, MSE, MAE, MEOP, PRR, Variance, RMPSE, RSQ, SSE, TS, MMRE, RMSE,

NRMS, PA, ED, MD, and SD. After determination of parameters of all the models, they

are evaluated against the criteria stated above.

6.2.3 Step 3: Finally DBA (Distance Based Approach) is applied to rank all the
algorithms.

Input: Values determined of criteria

Output: Rank of cost estimation models

62

6.3 Data Set and Parameters Value Used

Data set that was used is shown in the table below. The data set was given by

Bailey and Basili so as to develop the model for effort estimation. Data set in Table 3

contains loc in first column i.e. line of code and methodology used in second column of

the table as the input. Data for the first 13 projects is used for the purpose of training and

other 5 is used for the purpose of testing. Estimated efforts computed with various

models are compared with the actual efforts.

Table 3: NASA Data Set

LOC Actual_Efforts ME
90.2 115.8 30
46.2 96 20
46.5 79 19
54.5 90.8 20
31.1 39.6 35
67.5 98.4 29
12.8 18.9 26
10.5 10.3 34
21.5 28.5 31
3.1 7 26
4.2 9 19
7.8 7.3 31
2.1 5 28
5 8.4 29

78.6 98.7 35
9.7 15.6 27

12.5 23.9 27

100.8 138.3 34

63

The below results are calculated with the parameters values given in the following table:

Table 4: Parameters used for BFOA

PARAMETER VALUE

Number of Bacteria 20

Number of Chemotactic Step 40

Number of Swimming Step 8

Number of Reproduction Step 4

Number of Elimination Dispersal Step 4

6.4 Results obtained

6.4.1.1 Results obtained for COCOMO

Table 5 shows the value of two parameters obtained for the COCOMO model.

These values of a and b were giving minimum LSE. First column is showing the

parameter and second column is showing the value obtained for that parameter.

Table 5: Parameters-COCOMO

Parameter Value

a 2.4279

b 0.8817

Table 6 shows the results of the simulation run of the COCOMO model on the

MATLAB. Second column shows the value of LOC which is one of the independent

variable. Third column shows the actual effort measured for the NASA data set. Fourth

column shows the estimated effort by the COCOMO model. Values of parameter shown

in the table above are used to calculate these efforts. LSE of 1227.7128 is obtained for

above parameters.

64

Table 6: Estimated and Actual-COCOMO

loc actual_efforts cocomo_estimated
90.2 115.8 128.569
46.2 96 71.27638
46.5 79 71.6843
54.5 90.8 82.45397
31.1 39.6 50.28027
67.5 98.4 99.56987
12.8 18.9 22.9857
10.5 10.3 19.30249
21.5 28.5 36.3113
3.1 7 6.583615
4.2 9 8.604977
7.8 7.3 14.85219
2.1 5 4.670158
5 8.4 10.03489

78.6 98.7 113.8741
9.7 15.6 17.99979
12.5 23.9 22.51004
100.8 138.3 141.8019

Figure 7: Graph for COCOMO

0

20

40

60

80

100

120

140

160

9
0

.2

4
6

.2

4
6

.5

5
4

.5

3
1

.1

6
7

.5

1
2

.8

1
0

.5

2
1

.5

3
.1

4
.2

7
.8

2
.1 5

7
8

.6

9
.7

1
2

.5

1
0

0
.8

LOC

actual_efforts

cocomo_estimated

65

Figure 7 shows the graphical representation for the deviation of estimated efforts

from the actual effort. Horizontal axis depicts the LOC which was input and vertical axis

depicts the Efforts. LSE of 1227.7128 was obtained.

6.4.1.2 Results obtained for COCOMO_MODEL1

Table 7 shows the value of two parameters obtained for the COCOMO_model1

model. This value of a , b , and c was giving minimum LSE. First column is showing the

parameter and second column is showing the value obtained for that parameter.

Table 7: Parameters- COCOMO_model1

Parameter Value

a 9.9729

b 0.5912

c -0.7998

Table 8 shows the results of the simulation run of the COCOMO_model1 on the

MATLAB. First column shows the value of LOC which is one of the independent

variable. Second column shows the actual effort measured for the NASA data set. Third

column corresponds to the value of ME. Fourth column shows the estimated effort by the

COCOMO_model1 model. Values of parameter shown in the table above are used to

calculate these efforts. LSE of 651.2720 is obtained for above parameters

Table 8: Estimated and Actual-COCOMO_model1

loc actual_efforts me cocomo_model1_estimated

90.2 115.8 30 118.8097

46.2 96 20 80.15588

46.5 79 19 81.32432

54.5 90.8 20 90.02187

31.1 39.6 35 48.09942

66

67.5 98.4 29 97.11694

12.8 18.9 26 24.22505

10.5 10.3 34 12.85183

21.5 28.5 31 36.3791

3.1 7 26 -1.32711

4.2 9 19 8.100073

7.8 7.3 31 8.797576

2.1 5 28 -6.93055

5 8.4 29 2.631526

78.6 98.7 35 103.6492

9.7 15.6 27 16.6175

12.5 23.9 27 22.79842

100.8 138.3 34 125.3059

Figure 8 shows the graphical representation for the deviation of estimated efforts from

the actual effort for COCOMO_model1. Horizontal axis depicts the LOC which was

input and vertical axis depicts the Efforts. LSE of 651.2720 was obtained

Figure 8: Graph for COCOMO_model1

-20

0

20

40

60

80

100

120

140

160

9
0

.2
4

6
.2

4
6

.5
5

4
.5

3
1

.1
6

7
.5

1
2

.8
1

0
.5

2
1

.5
3

.1
4

.2
7

.8
2

.1 5
7

8
.6

9
.7

1
2

.5
1

0
0

.8

E
F
F
O
R
T
S

LOC

actual_efforts

cocomo_model1_estimated

67

.

6.4.2 RESULTS OBTAINED FOR COCOMO_model2

Table 9 shows the value of two parameters obtained for the COCOMO_model2

model. These value of a , b , c , and d were giving minimum LSE. First column is

showing the parameter and second column is showing the value obtained for that

parameter.

Table 9: Parameters-COCOMO_model2

Parameter Value

a 6.7987

b 0.6719

c -1.4746

d 23.5270

Table 10 shows the results of the simulation run of the COCOMO_model2 on the

MATLAB. First column shows the value of LOC which is one of the independent

variable. Second column shows the actual effort measured for the NASA data set. Third

column corresponds to the value of ME. Fourth column shows the estimated effort by the

COCOMO_model2 model. Values of parameter shown in the table above are used to

calculate these efforts. LSE of 476.7398 is obtained for above parameters.

Table 10: Estimated and Actual- COCOMO_model2

loc actual_efforts me cocomo_model2_estimated

90.2 115.8 30 120.1006

46.2 96 20 81.98924

46.5 79 19 83.78808

54.5 90.8 20 92.56147

31.1 39.6 35 40.26464

67.5 98.4 29 95.66398

12.8 18.9 26 23.94391

68

10.5 10.3 34 8.437606

21.5 28.5 31 31.47896

3.1 7 26 3.834764

4.2 9 19 16.41172

7.8 7.3 31 7.376208

2.1 5 28 -1.67351

5 8.4 29 4.185275

78.6 98.7 35 100.0845

9.7 15.6 27 16.77257

12.5 23.9 27 21.99422

100.8 138.3 34 125.9551

Figure 9 shows the graphical representation for the deviation of estimated efforts

from the actual effort for COCOMO_model2. Horizontal axis depicts the LOC which

was input and vertical axis depicts the Efforts. LSE of 476.7398 was obtained.

Figure 9: Graph for COCOMO_model2

-20

0

20

40

60

80

100

120

140

160

9
0

.2
4

6
.2

4
6

.5
5

4
.5

3
1

.1
6

7
.5

1
2

.8
1

0
.5

2
1

.5
3

.1
4

.2
7

.8
2

.1 5
7

8
.6

9
.7

1
2

.5
1

0
0

.8

E
F
F
O
R
T

LOC

actual_efforts

cocomo_model2_estimated

69

6.4.3 Results obtained for COCOMO_model3

Table 11 shows the value of two parameters obtained for the COCOMO_model3

model. These value of a , b , c , d , and e were giving minimum LSE. First column is

showing the parameter and second column is showing the value obtained for that

parameter.

Table 11: Parameters-COCOMO_model3

Parameter Value

a 7.7960

b 0.6343

c -0.9401

d 1.0841

e 18.8382

Table 12 shows the results of the simulation run of the COCOMO_model3 on the

MATLAB. First column shows the value of LOC which is one of the independent

variable. Second column shows the actual effort measured for the NASA data set. Third

column corresponds to the value of ME. Fourth column shows the estimated effort by the

COCOMO_model3 model. Values of parameter shown in the table above are used to

calculate these efforts. LSE of 446.1398 is obtained for above parameters.

Table 12: Estimated and Actual Efforts-COCOMO_model3

loc actual_efforts me cocomo_model3_estimated

90.2 115.8 30 116.8333

46.2 96 20 83.31446

46.5 79 19 84.9876

54.5 90.8 20 93.11093

31.1 39.6 35 43.44834

70

67.5 98.4 29 95.42207

12.8 18.9 26 25.97107

10.5 10.3 34 10.48273

21.5 28.5 31 34.51784

3.1 7 26 2.669481

4.2 9 19 15.33051

7.8 7.3 31 8.627129

2.1 5 28 -3.51741

5 8.4 29 4.289172

78.6 98.7 35 98.67209

9.7 15.6 27 18.29254

12.5 23.9 27 24.04201

100.8 138.3 34 121.2743

Figure 10 shows the graphical representation for the deviation of estimated efforts

from the actual effort for COCOMO_model3. Horizontal axis depicts the LOC which

was input and vertical axis depicts the Efforts. LSE of 446.1398 was obtained.

Figure 10: Graph for COCOMO_model3

-20

0

20

40

60

80

100

120

140

160

9
0

.2
4

6
.2

4
6

.5
5

4
.5

3
1

.1
6

7
.5

1
2

.8
1

0
.5

2
1

.5
3

.1
4

.2
7

.8
2

.1 5
7

8
.6

9
.7

1
2

.5
1

0
0

.8

E
F
F
O
R
T

LOC

actual_efforts

cocomo_model3_estimated

71

6.4.4 Results obtained for COCOMO_model4

Table 13 shows the value of two parameters obtained for the COCOMO_model4

model. These value of a , b , c , d , e , f and g were giving minimum LSE. First

column is showing the parameter and second column is showing the value obtained for

that parameter.

Table 13: Parameters-COCOMO_model4

Parameter Value

a 4.0933

b 0.7577

c -1.9088

d 0.9340

e 4.1569

f 1.5473

g 20.7323

Table 14 shows the results of the simulation run of the COCOMO_model4 on the

MATLAB. Second column shows the value of LOC which is one of the independent

variable. Third column shows the actual effort measured for the NASA data set. Fourth

column corresponds to the value of ME. Fifth column shows the estimated effort by the

COCOMO_model4 model. Values of parameter shown in the table above are used to

calculate these efforts. LSE of 451.3753 is obtained for above parameters.

Table 14: Estimated and Actual COCOMO_model4

S.NO loc actual_efforts me cocomo_model4_estimated

1 90.2 115.8 30 120.1186

2 46.2 96 20 82.49775

3 46.5 79 19 84.12727

4 54.5 90.8 20 92.71668

72

5 31.1 39.6 35 43.34774

6 67.5 98.4 29 96.49507

7 12.8 18.9 26 26.44356

8 10.5 10.3 34 11.91825

9 21.5 28.5 31 34.42817

10 3.1 7 26 5.646882

11 4.2 9 19 17.47326

12 7.8 7.3 31 10.42199

13 2.1 5 28 0.01857

14 5 8.4 29 6.753416

15 78.6 98.7 35 101.1766

16 9.7 15.6 27 19.38157

17 12.5 23.9 27 24.62457

18 100.8 138.3 34 126.0314

 Figure 11: Graph for COCOMO_model4 shows the graphical representation for

the deviation of estimated efforts from the actual effort for COCOMO_model4.

Horizontal axis depicts the LOC which was input and vertical axis depicts the Efforts.

LSE of 451.3753 was obtained.

73

Figure 11: Graph for COCOMO_model4

6.5 Results obtained after step 2

 In the Table 15 we have listed all the 5 models in different rows and each column

represent one of the 17 criteria discussed in 5.2. For all the models the values for each

criterion were obtained by putting outcomes of MVFs i.e. estimated defects and also the

observed defects, in the formulas of these criteria. In the last row of the table we can see

OPTIMAL value which in this case in the absolute minimum value for each criterion

except Rsq for which absolute maximum value is considered. This table is given as the

input to the Step 3 of the experimental setup.

6.6 Results obtained after step 3

First step of DBA is to convert the Table 15 to Zstd table i.e. the standard matrix

that can be obtained from eq. 5.8. The structure of the table is same as the above table.

This table is the input to find out another intermediate table i.e. Zdis table or the distance

matrix which can be obtained from eq. 5.9 In the Zdis which has the difference from each

alternative to the reference point is the final table that is obtained before composite

distance can be calculated. Zdis then serve as the input to find the Euclidean composite

distance, between each alternative software cost estimation model to the optimal state.

Both the Zstd table and Zdis table are shown in Table 16 and Table 17respectively.

0

20

40

60

80

100

120

140

160

9
0

.2
4

6
.2

4
6

.5
5

4
.5

3
1

.1
6

7
.5

1
2

.8
1

0
.5

2
1

.5
3

.1
4

.2
7

.8
2

.1 5
7

8
.6

9
.7

1
2

.5
1

0
0

.8

E
F
F
O
R
T

LOC

actual_efforts

cocomo_model4_estimated

74

Table 15: Comparison Criteria

Model BIAS MSE MAE MEOP PRR VAR RMPSE RSQ SSE TS ED PA SD MD MMRE RMSE NRMS

COCOMO 1.8258 92.6266 7.4186 -598.2238 1.3538 9.8877 10.0549 0.9583 1482.0257 13.6450 38.4971 -559.4336 9.3369 118.6980 -2.6487 9.6243 0.1945

COCOMO_model1 -1.2152 58.7022 6.3987 -499.8800 6.4662 7.5158 7.6134 0.9752 880.5337 10.5176 29.6738 -433.2267 7.1970 95.9808 3.2926 7.6617 0.1549

COCOMO_model2 -0.9628 40.9368 5.4640 -409.9736 2.5299 6.0545 6.1306 0.9839 573.1147 8.4853 23.9398 -324.9780 5.8063 76.4960 1.3837 6.3982 0.1293

COCOMO_model3 -0.7073 58.4837 6.6631 -518.7131 0.8933 6.8053 6.8420 0.9786 760.2884 9.7731 27.5733 -381.2213 6.6875 86.6198 1.2232 7.6475 0.1546

COCOMO_model4 0.7290 56.8766 7.6759 -603.6264 -267.1849 6.2041 6.2467 0.9824 625.6423 8.8656 25.0128 -369.0843 6.0665 84.4352 -1.0148 7.5417 0.1524

Optimal 0.7073 40.9368 5.4640 409.9736 0.8933 6.0545 6.1306 0.9839 573.1147 8.4853 23.9398 324.9780 5.8063 76.4960 1.0148 6.3982 0.1293

75

Table 16: Zstd Matrix

Model BIAS MSE MAE MEOP PRR VAR RMPSE RSQ SSE TS ED PA SD MD MMRE RMSE NRMS

COCOMO 1.6287 1.8391 0.8841 -1.0114 0.4864 1.8588 1.8614 -1.8894 1.8894 1.8451 1.8451 -1.8080 1.8451 1.8080 -1.5000 1.7800 1.7800

COCOMO_model
1 -0.9892 -0.1669 -0.4141 0.3674 0.5338 0.1593 0.1640 -0.0496 0.0496 0.1418 0.1418 -0.2434 0.1418 0.2434 1.3787 -0.1087 -0.1087

COCOMO_model
2 -0.7719 -1.2174 -1.6040 1.6278 0.4973 -0.8877 -0.8669 0.8907 -0.8907 -0.9651 -0.9651 1.0985 -0.9651 -1.0985 0.4538 -1.3246 -1.3246

COCOMO_model
3 -0.5520 -0.1798 -0.0777 0.1033 0.4822 -0.3498 -0.3723 0.3182 -0.3182 -0.2637 -0.2637 0.4012 -0.2637 -0.4012 0.3760 -0.1224 -0.1224

COCOMO_model
4 0.6844 -0.2749 1.2116 -1.0871 -1.9997 -0.7806 -0.7862 0.7301 -0.7301 -0.7580 -0.7580 0.5517 -0.7580 -0.5517 -0.7084 -0.2242 -0.2242

Optimum -0.5520 -0.1669 -0.0777 0.1033 0.4822 0.1593 0.1640 -1.8894 0.0496 0.1418 0.1418 -0.2434 0.1418 0.2434 0.3760 -0.1087 -0.1087

76

Table 17: Zdis Matrix

Model BIAS MSE MAE MEOP PRR VAR RMPSE RSQ SSE TS ED PA SD MD MMRE RMSE NRMS

COCOMO -2.1806 -2.0060 -0.9618 1.1147 -0.0043 -1.6995 -1.6975 0.0000 -1.8398 -1.7033 -1.7033 1.5645 -1.7033 -1.5645 1.8760 -1.8886 -1.8886

COCOMO_model
1

0.4372 0.0000 0.3365 -0.2640 -0.0516 0.0000 0.0000 -1.8398 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -1.0027 0.0000 0.0000

COCOMO_model
2

0.2199 1.0505 1.5263 -1.5245 -0.0152 1.0470 1.0309 -2.7801 0.9403 1.1069 1.1069 -1.3419 1.1069 1.3419 -0.0778 1.2160 1.2160

COCOMO_model
3

0.0000 0.0129 0.0000 0.0000 0.0000 0.5090 0.5363 -2.2076 0.3678 0.4055 0.4055 -0.6447 0.4055 0.6447 0.0000 0.0137 0.0137

COCOMO_model
4

-1.2364 0.1080 -1.2893 1.1904 2.4818 0.9398 0.9501 -2.6195 0.7797 0.8998 0.8998 -0.7951 0.8998 0.7951 1.0844 0.1156 0.1156

Optimum -0.5520 -0.1669 -0.0777 0.1033 0.4822 0.1593 0.1640 -1.8894 0.0496 0.1418 0.1418 -0.2434 0.1418 0.2434 0.3760 -0.1087 -0.1087

77

Once the composite distance value is known we can find out the rank of each

model on the basis of this distance with shortest or lowest composite distance being the

best is given rank 1 and longest composite distance being the worst is given rank 13

which is the lowest rank in our case. The composite distance and ranks of the models

based on the contributing criteria are shown in Table 18

Table 18: Composite Distance and Ranking of Cost Estimation Models

MODEL NAME
COMPOSITE

DISTANCE(CD) VALUE
RANK

COCOMO 6.6599 5

COCOMO_MODEL1 2.1834 1

COCOMO_MODEL2 5.1787 4

COCOMO_MODEL3 2.6231 2

COCOMO_MODEL4 4.9931 3

78

Chapter Seven: Conclusion and Future Scope

From the above Table 18 we can conclude that the COCOMO_model1 is ranked

as number one or the best based on the analysis which was done using the 17 criteria and

DBA. After that COCOMO_model3 and COCOMO_model4 are ranked. COCOMO and

COCOMO_model2 has highest composite distance i.e. five and four respectively.

Parameters of BFOA can be studied in more detail. There are many parameters

that are used in the BFOA algorithm. Effects of modifying these parameters can be

analyzed. BFOA algorithm can be hybridized with various algorithms like Ant Colony

Optimization, Particle Swarm Optimization, Genetic Algorithm, Artificial Bee Colony,

Bat Algorithm so as to improve the convergence speed, accuracy of the algorithm. BFOA

can be modified in order to mimic the exact natural process of E. Coli bacteria. For

example population of bacteria can be kept variable; all bacteria may not undergo steps

like chemotaxis, reproduction, elimination-dispersal at the same time etc. BFOA can be

converted be parallel algorithm i.e. it can be parallelized. This will improve the speed of

convergence of algorithm because computations can be performed in parallel. Algorithm

can also be converted to the Map Reduce form using Hadoop framework so as to handle

the big data. Modifications of the BFOA for example Improved BFOA, Self Adapting

BFOA, Hybridized BFOA can be applied to estimate the cost so as to obtain better

results. BFOA can be applied to other engineering domains as well.

79

REFERENCES

Abdel-Ghaly, A. A., Chan, P. Y., & Littlewood, B. (1986, september). Evaluation of
competing software reliability predictions. Transactions on Software
Engineering (Volume:SE-12 , Issue: 9), 950 - 967.
Afif Wan, W. N., Rahman, T. K., & Zakaria, Z. (2013). Bacterial Foraging Optimization
Algorithm For Load Shedding. Power Engineering and Optimization Conference
(PEOCO), 2013 IEEE 7th International Conference (pp. 722-726). Langkawi: IEEE.
Akaike, H. (1974, december). A New Look at the Statistical Model Identification.
Transaction on Automatic Control, 19(6), 716-723.
Atasagun, Y., & Kara, Y. (2013). Assembly Line Balancing Using Bacterial Foraging
Optimization Algorthm. 25, pp. 237-250. Springer London. doi:10.1007/s00521-013-
1477-9
Attarzadeh, I., & Ow, S. H. (2010). A Novel Soft Computing Model to Increase the
Accuracy of Software Development Cost Estimation. (pp. 603-607). Singapore: IEEE.
Attarzadeh, I., Mehranzadeh, A., & Barati, A. (2012). Proposing an Enhanced Artificial
Neural Network Prediction Model to Improve the Accuracy in Software Effort
Estimation. (pp. 167-172). IEEE.
Azath, H., & Wahidabanu, R. D. (2012). Efficient effort estimation system viz. function
points and quality assurance coverage. IET Softwares, 6(4), 335-341.
Bardsiri, V. K., Jawawi b, D. N., Bardsiri, A. K., & Khatibi, E. (2013). LMES: A
localized multi-estimator model to estimate software development effort., (pp. 2624-
2660).
Bejinariu, S. I. (2013). Image Registration using Bacterial Foraging Optimization
Algorithm on Multi-core Processors. Electrical and Electronics Engineering (ISEEE),
2013 4th International Symposium (pp. 1-6). Galati: IEEE.
Benala, T. R., Chinnababu, K., Mall, R., & Dehuri, S. (2013). A Particle Swarm
Optimized Functional Link Artificial Neural Network (PSO-FLANN) in Software Cost
Estimation. (pp. 59-66). Springer-Verlag Berlin Heidelberg.
Benala, T. R., Chinnababu, K., Mall, R., & Dehuri, S. (n.d.). A Particle Swarm
Optimized Functional Link Artificial Neural Network (PSO-FLANN) in Software Cost
Estimation. (pp. 59-66). Springer-Verlag Berlin Heidelberg.
Benala, T. R., Mall, R., Srikavya, P., & HariPriya, M. V. (2014). Software Effort
Estimation Using Data Mining Techniques. 1, pp. 85-92. Springer International
Publishing Switzerland.
Brocklehurst, S., Chan, P. Y., Littlewood, B., & Snell, J. (1990). Recalibrating software
reliability models. Transactions on Software Engineering , 16(4), 458 - 470.
Chandrasekaran, M., Muralidhar, M., Krishna, C. M., & Dixit, U. S. (2009). Appication
of Soft Computing Technique in Machining Performance Prediction and Optimization:A
Literature Review. Springer-Verlag London Limited, 445-464.
Chen, H., Zhu, Y., & Hu, K. (2008). Self-Adaptation in Bacterial Foraging Optimization
Algorithm. Intelligent System and Knowledge Engineering, 2008. ISKE 2008. 3rd
International Conference. 1, pp. 1026-1031. IEEE.

80

Chen, Y., & Lin, W. (2009). An Improved Bacterial Foraging Optimization. (pp. 2057-
2062). IEEE.
Chiu, K. C., Huang, Y. S., & Lee, T. Z. (2007). A study of software reliability growth
from the perspective of learning effects. Reliability Engineering and System Safety, 1410-
1421.
Chiu, K. C., Huang, Y. S., & Lee, T. Z. (2008). A study of software reliability growth
from the perspective of learning effects. Reliability Engineering and System Safety,,
1410-1421.
Chiu, K., Huang, Y., & Lee, T. (2008). A study of software reliability growth from the
perspective of learning effects. Reliability Engineering and System Safety, 1410-1421.
Das, S., Biswas, A., Dasgupta, S., & Abraham, A. (2009). Bacterial Foraging
Optimization Algorithm:Theoretical Foundations, Analysis, and Applications. In S. Das,
A. Biswas, S. Dasgupta, A. Abraham, A. Abraham, A. E. Hassanien, P. Siarry, & A.
Engelbrecht (Eds.), Foundations of Computational Intelligence Volume 3 (Vol. 3, pp. 23-
55). Springer Berlin Heidelberg.
Davis, R., & Brockwell, P. (2003). Introduction to Time Series and Forecasting. New
York: Springer-Verlag.
Dharmasena, L. S., Zeephongsekul, P., & Jayasing, C. L. (2011). Software Reliability
Growth Models Based on Local Polynomial Modeling with Kernel Smoothing. 22nd
International Symposium on Software Reliability Engineering (ISSRE) (pp. 220 - 229).
Hiroshima: IEEE.
Dohi, T., & Okamura, H. (2014). A Novel Framework of Software Reliability Evaluation
with Software Reliability Growth Models and Software Metrics. 15th International
Symposium on High-Assurance Systems Engineering (HASE) (pp. 97 - 104). Miami
Beach, FL: IEEE.
Dohi, T., Yasui, K., & Osaki, S. (2003). Software reliability assessment models based on
cumulative Bernoulli trial processes. Mathematical and Computer Modelling, 1119–
1468.
Fiondella, L., & Gokhale, S. S. (2011). Software Reliability Model with Bathtub-shaped
Fault Detection Rate. Annual Reliability and Maintainability Symposium (RAMS) (pp. 1 -
6). Lake Buena Vista, FL: IEEE.
Foss, T., Stensrud, E., & Kitchenh, B. (2002). A Simulation Study of the Model
Evaluation Criterion MMRE., (pp. 1-30).
Gaudoin, O., Yang, B., & Xie, M. (2003, March). A simple goodness-of-fit test for the
power-law process, based on the Duane plot. Transactions on Reliability, 52(1), 69 - 74.
Goel, A. L. (1985, decemebr). Software Reliability Models: Assumptions, Limitations,
and Applicability. TRANSACTIONS ON SOFTWARE ENGINEERING, 1411–1423.
Goel, A. L., & Okumoto, K. (1979). Time dependent error-detection rate model for
software reliability and other performance measures. Transactions on Reliability , 28(3),
206 - 211.
Hari, C. M., & Sethi, T. S. (2011). CPN-A Hybrid Model for Software Cost Estimation.
(pp. 902-906). IEEE.
Hossain, M. A., & Ferdous, I. (2014). Electrical Information and Communication
Technology (EICT), 2013 International Conference. (pp. 1-6). Khulna: IEEE.

81

Huang, C., & Kuo, S. (2002). Analysis of incorporating logistic testing effort function
into software reliability modeling. IEEE Trans. on Reliability, 51(3), 261–270.
Huang, W., & Lin, W. (2010). Parameter Estimation of Wiener Model Based on
Improved Bacterial Foraging Optimization. Artificial Intelligence and Computational
Intelligence (AICI). 1, pp. 174-178. Sanya: IEEE.
Hwang, S., & Pham, H. (2009, January). Quasi-renewal time-delay fault-removal
consideration in software reliability modelling. IEEE Trans. on systems, man and
cybernetics-Part A: Systems and humans, 39(1).
Jin, L. Z., Dohi, T., & Osaki, S. (2011). Continuous Software Reliability Models.
International Conference on Quality, Reliability, Risk, Maintenance, and Safety
Engineering (ICQR2MSE) (pp. 405-410). Xi'an: IEEE.
Kashyap a, D., & Misra, A. K. (2014). Software Cost Estimation Using Similarity
Difference Between Software Attributes. Proceedings of the Second International
Conference on Soft Computing 1205 (pp. 1205-1215). Springer India.
Kaushik, A., Chauhan, A., Mittal, D., & Gupta, S. (2012). COCOMO Estimates Using
Neural Networks., (pp. 22-28).
Kaushik, A., Soni, A. K., & Soni, R. (2012). An Adaptive Learning Approach to
Software Cost Estimation. IEEE.
Khalifelua, Z. A., & Ghar, F. S. (2011). Comparison and evaluation of data mining
techniques with algorithmic models in software cost estimation. (pp. 65-71). Elsevier Ltd.
Khalifelua, Z. A., & Ghar, F. S. (2012). Comparison and evaluation of data mining
techniques with algorithmic models in software cost estimation. (pp. 65-71). Elsevier Ltd.
Khoshgoftaar, T. M., & Woodcock, T. G. (1991). Software reliability model selection: A
Case Study. Proc. of the 2nd International Symposium on Software Reliability
Engineering (pp. 183–191). Austin: IEEE.
Kotb, M. T., Haddara, M., & Ko, Y. T. (2011). Back-Propagation Artificial Neural
Network for ERP Adoption Cost Estimation. (pp. 180-187). IEEE.
Kotb, M. T., Haddara, M., & Ko, Y. T. (n.d.). Back-Propagation Artificial Neural
Network for ERP Adoption Cost Estimation. (pp. 180-187). IEEE.
Krishnakumar, N., Venugopalan, R., & Rajasekar, N. (2013). Bacterial Foraging
Algorithm Based Parameter Estimation of Solar PV Model. Emerging Research Areas
and 2013 International Conference on Microelectronics, Communications and
Renewable Energy (AICERA/ICMiCR), 2013 Annual International Conference (pp. 1-6).
Kanjirapally: IEEE.
Kumar, J. S., & Rao, T. G. (2011). A Novel Model for Software Effort Estimation Using
Exponential Regression as Firing Interval in Fuzzy Logic. (pp. 118-127). IEEE.
Li, P., Herbsleb, J., & Shaw, M. (2005). Forecasting field defect rates using a combined
time-based and metrics-based approach: a case study of OpenBSD. in Proceedings of the
16th IEEE International Symposium on Softw. Reliability Engineering, (pp. 193-202).
Chicago, IL.
LI, Q., LUO, L., & AI, J. (2013). The Determination Method for Software Reliability
Qualitative Indices. 7th International Conference on Software Security and Reliability
(SERE) (pp. 237 - 245). Gaithersburg, MD: IEEE.

82

Long, L. X., Jun, L. R., & Ping, Y. (2010). A Bacterial Foraging Global Optimization
Algorithm Based On the Particle Swarm Optimization. Intelligent Computing and
Intelligent Systems (ICIS), 2010 IEEE International Conference. 2, pp. 22-27. IEEE.
Lu, Y. f., & Yin, Y. f. (2013). A New Constructive Cost Model for Software Testing
Project Management. The 19th International Conference on Industrial Engineering, (pp.
545-556).
Mansor, Z., & Kasirun, Z. M. (2011). Current Practices of Software Cost Estimation
Technique in Malaysia Context. (pp. 566-574). Springer Berlin Heidelberg.
Mansor, Z., & Kasirun, Z. M. (n.d.). Current Practices of Software Cost Estimation
Technique in Malaysia Context. (pp. 566-574). Springer Berlin Heidelberg.
Mansor, Z., Yahya, S., & Hj Arshad, N. H. (2011). Success Factors in Cost Estimation
for Software Development Project. (pp. 210-216). Springer Berlin Heidelberg.
Mishra, S. (2005). A Hybrid Least Square-Fuzzy Bacterial Foraging Strategy for
Harmonic Estimation. Evolutionary Computation, IEEE Transactions on. 9, pp. 61-73.
IEEE.
Mishra, S. (2005). A Hybrid Least Square-Fuzzy Bacterial Foraging Strategy for
Harmonic Estimation. Evolutionary Computation, IEEE Transactions. 9, pp. 61-73.
IEEE.
Mood, A. F. (1974). Introduction to the Theory of Statistics. McGraw-Hill.
Musa, J. D., & Okumoto, K. (1983). A logarithmic Poisson execution time model for
software reliability measurement. 7th International Conference on Software Engineering
(pp. 230–237). IEEE.
Nair, V. S., & Pillai, K. (1997, august). A model for software development effort and cost
estimation. IEEE Transaction on Software Engineering, 23(8), 485-497.
Okamura, H., Etani, Y., & Dohi, T. (2010, November). A Multi-Factor Software
Reliability Model Based on Logistic Regression. IEEE 21st International Symposium
Software Reliability Engineering (ISSRE), 31 - 40.
Ovaska, S. J., Kamiya, A., & Chen, Y. Q. (2006). Fusion of soft computing and hard
computing: computational structures and characteristic features. Systems, Man, and
Cybernetics, Part C: Applications and Reviews, IEEE Transactions on (Volume:36 ,
Issue: 3). 36, pp. 439-448. IEEE.
Pandey, P. (2013). Analysis Of the Techniques for Software Cost Estimation. Third
International Conference on Advanced Computing & Communication Technologies.
IEEE.
Park, J., Kim, H. J., Shin, J. H., & Baik, J. (2012). An Embedded Software Reliability
Model with Consideration of Hardware related Software Failures. Sixth International
Conference on Software Security and Reliability (SERE) (pp. 207 - 214). Gaithersburg,
MD: IEEE.
Passino, K. (2002). Biomimicry of Bacterial Foraging for Distributed Optimization and
Control. IEEE, Control Systems, 22(3), 52 - 67.
Passino, K. M. (2002). Biomimicry of Bacterial Foraging. IEEE, 52-67.
Pattnaik, ,. S., Bakwad, K. M., Devi, S., & Panig, B. K. (2011). Parallel Bacterial
Foraging Optimization., 8, pp. 487-502.
Pham, H., & Deng, C. (2003). Predictive-ratio risk criterion for selecting software
reliability models. Proc. Ninth International Conf. On Reliability and Quality in Design.

83

Pillai, K., & Nair, V. S. (1997). A model for software development effort and cost
estimation. IEEE Trans. on Softw. Engineering, 23(8), 485–497.
Rao, G. S., Krishna, C. P., & Rao, K. R. (2014). Multi Objective Particle Swarm
Optimization for Software Cost Estimation. 1, pp. 125-132. Springer International
Publishing Switzerland.
Reddy, P. P., & Hari, C. K. (2011). Fuzzy Based PSO for Software Effort Estimation.
(pp. 227-232). Springer-Verlag Berlin Heidelberg.
Roy, A. R., & Maji, P. K. (2002). An application of soft sets in a decision making
problem. An international journal computer and mathematics with applications, 44(8-9),
1077-1083.
Satapathy, S. M., Kumar, M., & Rath, S. K. (2013). Fuzzy-class point approach for
software effort estimation using various adaptive regression methods. CSI.
Satapathy, S. M., Kumar, M., & Rath, S. K. (2013). Fuzzy-class point approach for
software effort estimation using various adaptive regression methods. (pp. 367-380). CSI.
Sharma, K., Garg, R., & Nag, C. K. (2010). Selection of Optimal Software Reliability
Growth Models Using a Distance Based Approach. 59, pp. 266-275. IEEE.
Sharma, V., Pattnaik, S. S., & Garg, T. (2012). A Review of Bacterial Foraging
Optimization and Its Applications. National Conference on Future Aspects of Artificial
intelligence in Industrial Automation (pp. 9-12). Proceedings published by International
Journal of Computer Applications® (IJCA).
Sheta, A. F. (2006). Estimation of the COCOMO Model Parameters Using Genetic
Algorithms. Journal of Computer Science, 2(2), 118-123.
Sheta, A. F. (2006). Estimation of the COCOMO Model Parameters Using Genetic
Algorithms. Journal of Computer Science, 2(2), 118-123.
Sheta, A. F., & Aljahdali, S. (2013). Software Effort Estimation Inspired by COCOMO
and FP Models: A Fuzzy Logic Approach., 4, pp. 192-197.
Sukert, A. N. (1979). Empirical Validation of Three Software Error Prediction Models.
Transactions on Reliability , R-28(3), 199 - 205.
Ullah, N., Morisio, M., & Vetro, A. (2012). A Comparative Analysis of Software
Reliability Growth Models using Defects Data of Closed and Open Source Software.
35th Annual IEEE Software Engineering Workshop (SEW) (pp. 187 - 192). Heraclion,
Crete, Greece: IEEE.
Uysal, M. (2008). Estimation of the Effort Component of the Software Projects Using
Simulated Annealing Algorithm., (pp. 258-261).
Wolverton, R. W., & Schick, G. J. (1978). An Analysis of Competing Software
Reliability Models. Transactions on Software Engineering (Volume:SE-4 , Issue: 2),
SE-4(2), 104 - 120.
Wu, C., Zhang, N., Jiang, J., Jinhui, Y., & Liang, Y. (2007). Improved Bacterial Foraging
Algorithms and Their Applications to Job Shop Scheduling Problems. Springer-Verlag
Berlin Heidelberg, (pp. 562-569).
Xu, P., & Xu, S. (2010). A Reliability Model for Object-Oriented Software. 19th IEEE
Asian Test Symposium (ATS), 65 - 70.
Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338-353.

84

Zhang, X., Teng, X., & Pham, H. (2003). Considering Fault Removal Efficiency in
Software Reliability Assessment. IEEE Trans. on Systems, Man, and Cybernetics – Part
A, 33(1), 114-120.
Zhao, M., & Xie, M. (1992). On the log-power NHPP software reliability model. Third
International Symposium on Software Reliability Engineering (pp. 14 - 22). Research
Triangle Park, NC: IEEE.
Zhao, M., & Xie, M. (1992). On the log-power NHPP software reliability model.
Proceedings of the Third IEEE International Symposium on Softw. Reliability
Engineering, (pp. 14–22). Research Triangle Park,North Carolina.

