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ABSTRACT 

The main challenge that the software industry faces today is to estimate the cost required to 

develop the project in the early phase of software development life cycle. Cost estimation is 

difficult in the early phase because cost depends on factors like Line of Code, Methodology 

adopted etc. which cannot be stated accurately in the beginning. Various techniques had already 

been developed by the researchers which can be categorized into Algorithmic and Non-

Algorithmic methods to determine the cost of the software precisely. In this thesis, Bacterial 

Foraging Optimization Algorithm (BFOA) technique is operated on NASA data set to estimate 

the cost for the NASA project. BFOA is a one of the soft computing techniques which is tolerant 

to factors like imprecision, approximation, partial truth, and uncertainty. It has drawn attention of 

many of the researchers and has been used in various engineering application. BFOA is 

employed to generate parameters of the COCOMO model and four of its variants. These five 

models were compared against the comparison criteria like BIAS, MSE, MAE, MEOP, PRR, 

Variance, RMPSE, RSQ, SSE, TS, ED, PA, SD, MD, MMRE, RMSE and, NRMS. Finally 

distance based approach (DBA) is used for optimal selection and ranking of COCOMO models. 

DBA do recognizes the importance of relative importance of the criteria for the given 

application, without it inter-criterion comparison could not have been accomplished. What all it 

requires is set of criteria for selection of model, set of model, and their level for the purpose of 

optimal selection; and finally it successfully rank on position one COCOMO_model1 as the best 

one with LSE of 651.2720. 

 

Keywords: Bacterial Foraging Optimization Algorithm; Least Mean Square; COCOMO; 

Distance Based Approach; Optimal. 
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Chapter One: Introduction 

1.1 Introduction to software cost estimation 

Estimation of the cost estimation in software development remained the one the 

challenging problem even after the 40 years of the research. This estimation problem has 

already lead project managers, software engineers and analysts into the trouble for 

decades. The estimation of the cost and the schedule is based on determining the size of 

the system which is to be developed. 

Initial estimate of the cost involves many uncertain elements. Early and reliable 

estimation is tuff task because it requires knowledge of many elements that are not 

known in the beginning or at the early stages. But early estimates are obviously 

mandatory for bidding of the contract. Also, determination of feasibility of the project in 

the terms of cost-benefit analysis also requires the early cost prediction. So, prediction 

will definitely guide decision making but it will be useful only when it is accurate. Many 

cost estimation models exist in literature. Many studies have been conducted for the 

evaluation of the models. Several researches showed that accuracy can be improved 

greatly if the model is calibrated to particular organization. Cost estimation relies on the 

some extent on the past experience also. So it is important need of the software industry 

to develop a model which is easy to use, calibrate and understand. 

 

1.2 Cost estimation process (Mansor & Kasirun) 

Cost estimation process is the prediction process to get the closest result with 

required cost. It involves the process of considering, experiences, time constraints, 

resources, risks, schedules, methods used, the required cost and other processes, which 

are related to development of a project. Hence, it is very important in managing a project 

particularly to the project manager, when he is proposing budget for certain project. In 

software development, there is widely used term known as “software project estimation”, 

its function is to find the estimation process. Cost estimation, it is the calculation of 

quantity and prediction within a scope of the costs, which is required to develop and give 

a facility to manufacture goods and to furnish a service. These costs include an evaluation 
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and assessments of uncertainties and risks. This process determines and considers utilized 

experience by an expert, forecasting and calculating the future cost of schedule, resources 

and methods for any project development. It supplies input to the original baselines and 

changes baselines against cost comparisons in whole project. It is done at a certain point 

that is based on the available information and at a certain time. Usually, it includes cost 

estimation summary, cost estimation details and basis of estimation which give type of 

cost estimation including risk, estimation methodologies, project details, cost adjustment 

and cost driven and so on. Estimation is depicted as “black art” due to its subjective 

behaviour. One person may take a day to complete a task, but another person can require 

just few hours to do same. Due to this when many people are asked to do estimation, they 

may give different answers as well as results. But if work is actually performed, actual 

amount of the time that is taken by the process is calculated and all the estimations that 

did not come close to that actual are considered inaccurate. If a person is not involved in 

estimation process, than estimations are just an attempt, to predict required resources and 

cost. It is very important to assume that, project will come in time, to improve accuracy 

of estimation process and have good estimation practices. Therefore, the project manager 

can help to develop a successful estimation for software project by understanding and 

applying good techniques, this makes estimation more accurate. Software project 

estimation is problem solving and in many cases; the problem which needs to be solved is 

very complex to be considered in single piece. For solving the problem, decompose it and 

restructure it to a smaller problem.  Main purpose of software cost estimation is to lessen 

the amount of the predicted actual cost.  

Software estimation is very important and any error in cost estimation can make a 

difference between loss and profit. All the factors must be considered and properly 

calculated. Over cost will results in bad impact to the company and to the developer. In 

actual life, cost estimation process is very difficult since it requires estimator to consider 

large number of factors and variables for example training costs, hardware costs, travel 

government policies costs, man power, environmental, effort, and expertise advices. 

Effort costs are usually least predictable and the largest development effort. Hence, most 

software cost estimations determines the effort cost using the unit man-month (MM). All 
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of these factors will influence the overall effort and cost involved in any project that 

someone wants to develop. Therefore, one requires something that can provide better 

result in estimation to achieve the accurate result. 

 

1.3 The Importance of Software Cost Estimation 

The main motive of using software cost estimation by any organization is to fix 

when, whey and how cost estimation of any software is done. Cost estimation is 

important because: 

• For proper planning purpose, for the purpose of approval and for finalizing the 

budget. In every company, it is the senior manager who takes the strategic 

decisions that are based on the accuracy of the estimation. Cost estimation also 

helps in deciding whether to take particular project. Also for ongoing project it 

helps to decide whether to continue with the ongoing project, delay the project or 

to stop the project. 

• While the development of any software or any project, some sort of planning is 

required. Monitoring and control of implementation also need to be done by the 

project manager and the team leader. Again cost estimation is important for 

successful execution of all these tasks. 

• Project Team Understanding: Cost estimation can be related to the work break 

down structure of the project. Each member is given certain task for estimation 

which is to be completed. (Mansor & Kasirun) 

• For managing software projects in better way, the need of different resources 

should match completely with the different actual requirements. 

•  Software cost estimation should be done accurately because customer always 

expects the estimated cost should approx the actual cost. 

• To improve the overall businesses plan so that all the resources may be used in 

efficient way. 

•  Accuracy of cost estimation process is also important for defining the resources 

required to verify, produce and validate different software products and for 
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management of the various activities require for software development. It also 

helps in deciding if price of the tools is offset by improvement in productivity.  

 

1.4 Problem with the software cost estimation 

The main intrinsic problem that exists in the software cost estimation because of 

the inaccuracy of cost estimation models. Actually, different models fit for the different 

environments in which software are developed. Other factors that contributes in the 

inaccuracy of cost estimation are , imprecise and ambiguously stated requirements,  lack 

of information on past and similar projects, and the models that developed for particular 

kind of data cannot be transferred easily to the other environments . 

Also, the Software projects vary over wide range, from the single person project 

costing around few thousand dollars to the megaprojects that involves thousands of 

people and costs around hundreds of millions of dollars. Now, all tools and method must 

deal with this range. Obviously, a small and a big project will not have same estimation 

accuracy. 

1.5 Introduction to Bacterial Foraging Optimization Algorithm 

In the last forty years, researchers have been trying to simulate the biological 

systems from various aspects and proposed some effective bionic algorithms, including 

artificial neural network (ANN), genetic algorithm (GA), ant colony optimization (ACO), 

particle swarm optimization (PSO) and artificial immune system (AIS), etc. These bionic 

algorithms provide novel paradigms for engineering problems by mimic the specific 

structures or behaviours of certain creatures. (Wu, Zhang, Jiang, Jinhui, & Liang, 

2007).Bacterial foraging optimization algorithm (BFOA) has been widely accepted as a 

global optimization algorithm of current interest for distributed optimization and control. 

BFOA is inspired by the social foraging behaviour of Escherichia coli. BFOA has 

already drawn the attention of researchers because of its efficiency in solving real-world 

optimization problems arising in several application domains. The underlying biology 

behind the foraging strategy of E.coli is emulated in an extraordinary manner and used as 

a simple optimization algorithm. (Das, Biswas, Dasgupta, & Abraham, 2009).The 
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Bacteria Foraging is an evolutionary algorithm which estimates cost function after each 

iterative step of the program as the program execution proceeds and leads to 

progressively better fitness (less cost function). The parameters to be optimized represent 

coordinates (position) of the bacteria. The parameters are discredited in the desirable 

range, each set of these discrete values represent a point in the space coordinates. Then 

one bacterium is positioned (created) at each point. After each progressive step the 

bacteria move to new positions (new coordinate values) and at each position cost function 

is calculated and then, with this calculated value of cost function, further movement of 

bacteria is decided by decreasing direction of cost function. This finally leads the bacteria 

to a position (set of optimization parameters) with highest fitness. The foraging strategy 

of E. Coli. Bacteria is governed by four processes. These are chemotaxis, swarming, 

reproduction and elimination and dispersal. Chemotaxis is achieved by swimming and 

tumbling. When the bacterium meets favourable environment (rich in nutrients and 

noxious free), it continues swimming in the same direction. Decrease in cost function 

represents favourable environment, while increase in cost function represents 

unfavourable environment. When it meets unfavourable environment it tumbles (changes 

direction). In swarming, the bacteria move out from their respective places in ring of cells 

by bringing mean square error to the minimal value.(Sharma, Pattnaik, & Garg, 2012) 

1.6 Motivation 

Though many cost estimation models are already developed in the literature but 

none of them is accurate to determine the software cost precisely. So, there is a need to 

determine the cost with little more accuracy. Also, models should be evaluated and 

ranked in the some way so as to find the most accurate model.  

1.7 Research Objective 

With the motivation explained in the previous section, the objective of our 

research work can be identified as: 

• To find the parameters of COCOMO model and four of its variants using BFOA 

algorithm, which has already proven its effectivness in other engineering domains. 

• To evaluate all the models using 17 comparison criteria. 
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• To find the best of the five model using DBA theory. 

 

1.8 Organization of  thesis. 

The remaining thesis is organized as follows:  

Chapter 2: Literature Overview 

This chapter discusses different techniques used to estimate the cost of the 

software. For example, estimation with the help of neural networks, genetic algorithm, 

particle swarm optimization. It also discusses different modifications of the bacterial 

foraging optimization algorithm like improved BFO, hybrid BFO, self- adapting BFO. 

Apart from all this some of the applications of the BFO are also discussed. 

Chapter 3: Bacterial Foraging Optimization Algorithm 

This chapter discussed the bacterial foraging optimization algorithm in detail. The 

main constituent steps of the algorithm i.e. chemotaxis, swarming, reproduction, and 

elimination dispersal are highlighted. Apart from this influence of various parameters 

used in the algorithm are discussed. 

Chapter 4: Software Cost Estimation 

This chapter mainly discusses the COCOMO model and its types. Some of the 

variations of the model whose parameters are evaluated using bacterial foraging 

optimization algorithm are also discussed. Least square is also discussed. 

Chapter 5: DBA 

This chapter explains the theory DBA. The theory was applied in order to select 

the most appropriate model. Some criteria are discussed based on which models will be 

evaluated.  

Chapter 6:  Proposed Approach and Results. 

This chapter finally gives the proposed approach and the results obtained. The 

parameters of COCOMO and some of its modifications are determined with the help of 

bacterial foraging optimization algorithm. Finally all the models are evaluated against 

certain criteria. These criteria are used by DBA to determine the best model. 
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Chapter Two: Literature Review 

2.1 Introduction to software cost estimation 
 

Software cost estimation is the process by which cost to develop the software can 

be determined before it has been developed actually. It helps to plan and track the process 

of software development. Controlling the investment in the software development is one 

of the important steps in software project management. M aking accurate software cost 

estimate is still one of the challenging tasks before the industry. Estimation is helpful 

when it is made at the early stage when the project is approved. However, estimating the 

values at the early stages is difficult. Since the cost estimation process is the crucial part 

in any development process. 

2.2 Literature review of software cost estimation 

2.2.1 Software cost estimation using neural network 

Attarzadeh et.al. (Attarzadeh & Ow, 2010) proposed COCOMO using the soft 

computing approach with some of the desirable features of neural networks approach like 

good interpretability and learning ability were used to develop the model. The model 

proposed could be validated and interpreted by the experts. They also had good 

generalization capacity in contrast to the other neural models. The reliability of the 

estimation was enhanced since the model dealt with uncertain and imprecise input data as 

well. Software effort drivers that were used for calculating software effort was generally 

observed to have two properties vagueness and uncertainty. But using neural network in 

software effort estimation model had overcome these characteristics. But still for reliable 

and accurate estimation choice of appropriate neural network played an important role. 

Neural Networks played better role than other techniques with some of the test cases. 

Neural network was applied to both algorithmic and non-algorithmic model and it was 

proved that more accurate estimates were produced. The proposed neural networks model 

showed better software effort estimates in view of the MMRE, Pred(0.25) evaluation 

criteria as compared to the traditional COCOMO(Attarzadeh & Ow, 2010). Neural 

Network produced better results than COCOMO.  
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Kotb et.al.(Kotb, Haddara, & Ko, 2011) surveyed that majority of times effort is 

estimated by family of COCOMO model. Kotb et.al.was focused basically to replace the 

COCOMO model with other model that can be used easily with ERP adoptions. Cost was 

estimated using neural networks and training algorithm used was back propagation feed 

forward. Finally results of the model as well as its advantages and shortcomings of the 

model were also discussed. The model was initially used for small and medium sized 

enterprises but it can be expanded to other environments and contexts. The model was 

proposed to minimize the role of project managers and other concerned person to define 

various parameters like function points for giving as input. Since the proposed framework 

was based on neural network, hence a training algorithm was required to be chosen. So, 

feed forward back-propagation algorithm was used. Neural network generally has 3 

layers and those are input layer, hidden layer and the output layer. Number of neurons in 

the input layer was kept equal to the number of data factors. Number of neurons in the 

middle layer was kept equal to the number of neuron in the input layer. Finally thirty six 

output neurons were kept in the output layer which covers wide range of cost from 

thousands to billions. BCD encoding was used, so that every digit was represented by the 

four neurons.  For successful and accurate cost estimation data was required to be 

collected accurately. It was one of the key factors for successful estimation. So, 

inappropriate data was thrown away in starting itself. Other factor for unsuccessful 

estimation was noise. The accuracy of the model was limited by noise present. 

Attarzadeh et.al. proposed two models. First model was an artificial neural 

network model that supplements COCOCMO model to determine the cost of software at 

early stages itself. ANN-COCOMO II model was the second model proposed. The 

suggested models used advantages of both artificial neural network like good 

interpretability and learning and COCOMO model. To determine the attributes from the 

past projects neural network was used. For evaluation of models 156 sets of project data 

from COCOMO I and NASA93 were used. The analysis of the obtained results shows 

8.36% improvement in estimation accuracy in the ANN-COCOMOII model, when 

compared with the original COCOMO II(Attarzadeh, Mehranzadeh, & Barati, 2012). 

MMRE was used for evaluation of the results obtained. 
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In (Kaushik, Chauhan, Mittal, & Gupta, 2012) paper, most widely used software 

cost estimation model the Constructive Cost Model (COCOMO) was discussed. The 

model was implemented using artificial neural networks. In addition to this it was trained 

using one of the learning algorithm. Here, perceptron learning algorithm was used. 

COCOMO data set was used for the purpose of training and testing the overall network. 

The results obtained were compared with that of the actual results from the COCOMO 

model. The overall aim of the research was to increase the accuracy of the results that 

were obtained by COCOMO by the introduction of the neural network. The idea basically 

was to form the model that will map COCOMO model to neural network with minimum 

number of layers and minimum number of nodes so as to increase performance of 

network. It was concluded that by the use of artificial neural network algorithm for 

modeling the COCOMO algorithm is one of an efficient way of accurate estimation. 

Values provided were nearly accurate. 

Kaushik et.al.(Kaushik, Soni, & Soni, 2012)also used neural network for cost 

estimation. Neural network was applied on the well known COCOMO model. Again 

back propagation algorithm was used for training purpose. Two data sets were used for 

the testing purpose. 

2.2.1.1 Cost estimation using PSO and Neural Network 

Hari et.al.(Hari & Sethi, 2011) proposed Clustering-PSO-Neural Networks (CPN) 

based on Particle Swarm Optimization Algorithm for determining the parameters of 

COCOMO model. The technique was operated on data sets clustered by using K means 

clustering algorithm. Both clusters and parameters of the effort model were trained by 

using Neural Network for data classification. Training algorithm used was Back 

Propagation algorithm. The model was finally tested on COCOMO81 dataset. It was also 

compared with the standard model. By exploiting the experience of Neural Network and 

as well as parameter tuning property of PSO the proposed model was able to generate 

better results. The CPN model that was proposed was successfully applied on the large 

data sets. PSO generally gave better results when data set contains such projects which 

belong to similar genres. 
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Benala et.al (Benala, Chinnababu, Mall, & Dehuri, 2013) were concerned with 

cost estimation models that were based on Particle swarm optimized Functional link 

artificial neural networks (PSO-FLANN). PSO-FLANN, is a typical three layer feed 

forward neural network which consists of input layer, hidden layer and output layer. 

However in FLANN, the weight vector was evolved by PSO during training of the 

network. The FLANN architecture for predicting software development effort was a 

single-layer feed forward neural network consisting of one input layer and an output 

layer. The FLANN generated the output (effort) by expanding the initial inputs (cost 

drivers) and then processing in the final output layer. Each input neuron corresponded to 

a component of an input vector. The output layer consisted of one output neuron that 

computes the software development effort as a linear weighted sum of the outputs of the 

input layer. The large and non-normal data sets leaded FLANN methods to low 

prediction accuracy and high computational complexity. (Benala, Chinnababu, Mall, & 

Dehuri, 2013). So, the research was done in software cost estimation by using the 

hybridization of FLANN with PSO. It was also suggested that it can be extended further 

by using various other algorithms like ant colony optimization (ABC), Artificial Immune 

System (AIS), Annealing and fuzzy logic etc. Performance of PSO-FLANN was also 

evaluated. It provided better accuracy than that given by FLANN. Experimental results 

showed that method gave better accuracy in comparison to techniques like Step wise 

regression (SWR), classification and regression trees (CART) etc. 

2.2.2 Cost estimation using Genetic Algorithm 

For the purpose of estimation of effort two new models were introduced by Sheta 

et.al. (Sheta A. F., 2006). COCOMO model estimates the effort as a function of 

Developed Line of Code (DLOC). Two new models which were modifications of 

COCOMO model were introduced and they used additional parameter ME 

(methodology) adopted as input. Genetic Algorithm was used to determine various 

parameters used in the model. The models were used for computing the effort required 

for the project data set from NASA. The parameters which were estimated generalized 

the computation required for the calculation of effort. The performances of these models 
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were tested on project dataset of NASA. Variance-Accounted-For (VAF) was finally used 

to check the performance. 

2.2.3 Cost estimation using Simulated Annealing Algorithm 

Multivariate interpolation models were proposed to estimate effort or cost 

required in software project. Effort function was represented by COCOMO based 

equation and data set consisted of two variables LOC (Line of Code) and another one was 

ME (methodology) used. Simulated Annealing (SA) used in effort estimation is another 

heuristic approach to determine the parameters of COCOMO models. Simulated 

Annealing was employed to compute parameters of proposed models by exploiting an 

analogy between the way in which a metal cools and freezes into a minimum energy 

crystalline structure (the annealing process) and the search for a minimum in a more 

general system, the solution randomly walked in its neighbourhood with a probability 

determined by Metropolis principle while the system temperature decreases slowly; when 

the annealing temperature was closing zero, the solution stayed at the global best solution 

in a high probability.(Uysal, 2008). 

2.2.4 Factors that influences software cost estimation 

Mansor et.al.(Mansor, Yahya, & Hj Arshad, 2011) intended to find out the factors 

that influences the cost estimation in software development. A conceptual model was 

developed from the review which showed the influence of various factors in cost 

estimation. These factors could help the software developers to estimate the cost with bit 

more accuracy. Five important factors in 1994 were reported by Standish CHOAS that 

were important in cost estimation process in software development. The factors were 

clearly stated requirements, involvement of user, executive management support, 

entertainment, realistic expectations and obviously proper planning. Role of project 

manager also cannot be overlooked. Some other factors that were considered were 

choosing appropriate methodology, choosing appropriate estimation technique, choice of 

appropriate tools, policies of the company, sponsors role. It was concluded that cost 

estimation in software development process can be improved if these factors were 

considered properly. 
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Realizing the fact that there are many dynamic and precarious attributes that are 

attached to each and every software project, the accuracy in the prediction of the cost will 

rely greatly on the prudential treatment of all of these attributes. Kashyap et.al.(Kashyap 

a & Misra, 2014) dealt with the methods of quantification, selection and comparison of 

various attributes related to various projects. Author had tried to find out similarity 

difference between various project attributes and then consequently used these 

differences measurement for creating an initial cost proposal of any software project that 

may had some degree of similarity or correspondence with the already completed projects 

and whose total cost is fairly established as well as well known. So, a method based on 

the ‘similarity difference measure’ for estimating the cost of software project. For 

calculating similarity difference between various softwares author had defined each 

software on the basis of three aspects, which were Linguistic Attributes, Nominal 

Attributes and Numerical Attributes. Author had described various methods so as to 

calculate similarity difference for each of the category. Then author had used these 

differences to find out the k most similar projects or to find out the nearest neighbours in 

similarity difference space. Author had also tried to validate the given procedure by using 

MMRE benchmark for measuring error. 

2.2.5 Software cost estimation using fuzzy logic  

Kumar and Rao proposed a fuzzy model for software cost estimation that handles 

obscurity and ambiguity. MATLAB was used for determining the parameters in various 

cost estimation models.  The performance of model was evaluated on published software 

projects data. Various models for which parameters were determined were COCOMO 

basic model,  COCOMO Inter(NOM), Detailed(NOM), Early Design Model(high), post 

Arch Model(H-H),Doty, Mittal model, Swarup model .Comparison of results from this 

model with existing ubiquitous models was done. Fuzzy logic was used to estimate the 

cost and MARE was used as for evaluating the performance. (Kumar & Rao, 2011). 

2.2.5.1 Software cost estimation using fuzzy logic and PSO 

To control the uncertainty in the effort estimation (Reddy & Hari, 2011) fuzzy 

logic along with parameters tuned by PSO (Particle Swarm Optimization) was used. 
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Three models were proposed for the cost estimation by using PSO with Inertia weight 

and fuzzy logic. The estimated efforts were optimized with the use of incumbent 

archetypal and tested on data from NASA software. All models were compared against 

each other. Incumbent Archetypal was found to have better values. Models were proved 

best on the basis of VAF, MARE, and VARE. 

2.2.6 Cost estimation based on Quality Assurance Coverage 

Azath et.al. (Azath & Wahidabanu, 2012) proposed an efficient effort estimation 

system based on quality assurance coverage as estimation of software cost accurately is 

very big issue. The existing models did not give accurate results since they consider very 

few factors for estimating the cost. The work was the basis for the improvement of 

software effort estimation research through a series of quality attributes along with 

constructive cost model (COCOMO). The classification of software system for which the 

effort estimation was to be calculated was based on COCOMO classes. For this quality 

assurance ISO 9126 quality factors were used and for the weighing factors the function 

point metric was used as an estimation approach. Effort was estimated for MS word 2007 

using the following models: Albrecht and Gaffney model, Kemerer model, SMPEEM 

model (Software Maintenance Project Effort Estimation Model) and FP Matson, 

Barnettand Mellichamp model. In the proposed method the software effort was 

effectively estimated by using FPs. The sole difference between the proposed and 

existing estimation of effort for the software system development was the level of quality 

deliberation, that is, the effort was estimated by employing the minimum number of 

quality factors in existing methods, but in the proposed effort estimation method covers 

the ISO9126 quality factors, which was automatically reflected in the development of 

software. The advantage of the proposed effort estimation system was to handle correctly 

the imprecision and the uncertainty when describing the software project. From the 

implementation results, it was observed that the proposed method is effectively estimated 

the effort of the software project models.(Azath & Wahidabanu, 2012). 
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2.2.7 Software cost estimation using PSO 

It is known that basic input for software cost estimation is the line of code i.e. 

coding size and also the set of cost drivers, and the output is Effort which is described in 

terms of Person-Months (PM’s). In this paper, (Rao, Krishna, & Rao, 2014) author had 

proposed a model for determining the parameters of COCOMO model used in Software 

Cost Estimation with the help of MOPSO i.e. Multi Objective Particle Swarm 

Optimization. Parameters of the model were tuned by using MOPSO side by side 

considering two main objectives and those were Prediction and Mean Absolute Relative 

Error. Dataset COCOMO was considered to test the model. It was observed that the 

proposed model gave better results in comparison to the standard COCOMO model. It 

was also observed that providing enough classification of training data gave better result. 

Accuracy of cost estimation model was measured in the terms of its error rate. New 

model was proposed for estimation of software cost. To tune the parameters MOPSO 

methodology was applied. It was observed that MOPSO gave better results. When the 

performance of the model was tested in terms of the Prediction and MARE results were 

found useful. It was also noticed that the non-linearity in the used data items was being 

considered during the work for the testing and training tuning parameters and best way 

for bringing in some amount of linearity among these data items was by using clustering 

techniques. By the use of clustering method divide the data items which may be divided 

into a number of clusters and the PSO was then used for tuning of parameter of each 

cluster. The clusters and the tuned parameters was then trained by using the Neural 

Networks and efficient back propagation algorithms.  

2.2.8 Software cost estimation using other methods 

Mansor et.al.(Mansor & Kasirun) did a survey result of which concluded that two 

methods were used most commonly for software cost estimation. One of them was expert 

judgment. Expert judgment was based on the experience of the estimator and the past 

estimation histories. Other method that was used most prominently was based on 

COCOMO II. COMOCO II was said to provide good results since it took number of 
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variables into consideration. So, it was suggested to use hybridization of both the models. 

Integration of both was suggested to be helpful for accurate estimation. 

COCOMO was developed by Boehm which came under the category of 

algorithmic software cost estimation model. The model had increasingly three different 

forms and these are basic, intermediate and detailed. Basic COCOMO was suitable for 

quick, early and the rough order of estimated required in production of software but from 

accuracy point of view it was not very efficient. Intermediate COCOMO considers the 

project attributes also. So, it was bit more efficient than basic. In detailed COCOMO in 

addition to all this phase of project is also considered. COCOMO technique is in use 

since 1981. After that some of the intelligent techniques were introduced so as to obtain 

results more accurately. Some of the data mining techniques were introduced and results 

of these were compared to the standard results obtained. Some of the techniques that 

were used was ANN, LR, K-NN and SVR. NASA’s projects data were used for the 

purpose of training as well as testing. Finally the results obtained of data mining and 

COCOMO were compared (Khalifelua & Ghar, 2012). These data mining techniques 

were found to produce better results than the COCOMO model. 

Satapathy et.al.(Satapathy, Kumar, & Rath, 2013)estimated the cost of various 

software projects using class point approach and optimize the parameters using six types 

of adaptive regression techniques such as multi-layer perceptron, multivariate adaptive 

regression splines (MRS), projection pursuit regression, constrained topological mapping, 

K nearest neighbour regression and radial basis function network to achieve better 

accuracy. Further, a comparative analysis of software effort estimation using these 

adaptive regression techniques had been provided. By estimating the effort required to 

develop software projects accurately, softwares with acceptable quality within budget and 

on planned schedules were expected. Finally the generated minimum results of different 

techniques had been compared to estimate their performance accuracy. Result showed 

that MRS based effort estimation model gave less value of NRMSE, MMRE and higher 

value of prediction accuracy. Hence it was concluded that the effort estimation using 

MRS model will provide more accurate results than other five techniques. The 
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computations for above procedure had been implemented and membership functions 

generated using MATLAB.(Satapathy, Kumar, & Rath, 2013). 

Lu et.al.(Lu & Yin, 2013) proposed the new model for testing project. The model 

given was named as Constructive Cost Model for Software Testing (CCMST). It contains 

the drivers used for software testing. The driver introduced was more complete then the 

previous models. Case study was used to prove validity and usability of model. Some, 

rating levels were also introduced by the CCMST model. It improved cost estimation by 

using cost drivers towards which researchers were not paying attention. 

(Sheta & Aljahdali, 2013) presented two new models for the purpose of effort 

estimation with the use of fuzzy logic. One of the models was proposed on the famous 

COCOMO model and it used source line of code as input to estimate the effort required. 

While the second model that was used takes Outputs, Inputs, User Inquiries and Files as 

input so as to estimate the FP (Function Point). The proposed model was reported for 

showing better results. Results were validated against the Albrecht data set. 

Benala et.al.(Benala, Mall, Srikavya, & HariPriya, 2014) described the empirical 

study undertaken for investigating the quantitative aspect of application of data mining 

techniques in model building for purpose of Software effort estimation. Some example of 

techniques that were chosen are Logistic regression, Multi linear regression and CART. 

Empirical evaluation was carried out. That used three fold cross validation procedures 

which had been carried out with the use of three datasets of software projects, which 

were, Cocomo81, Nasa93, and Bailey Basili. It was observed that: (1) CART technique 

was suitable for Nasa93 and Nasa93_5. (2). Multiple Linear Regression was suitable for 

Nasa93_2, Cocomo81o, Cocomo81s, and Basili Bailey. (3). Logistic Regression was 

suitable for Cocomo81, Nasa93_1 and Cocomo81e. It was concluded that data mining 

techniques gave better results for unlimited data. 

2.3 Introduction to Bacterial Foraging Optimization Algorithm 

Biologically inspired algorithms mimic behaviour of animals that they exhibit in 

some sort of group activity like foraging. Particle Swarm Optimization (PSO), Ant 

Colony Optimization (ACO), Artificial Bee Colony Optimization (ABC) are some of the 
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algorithms developed on this ground. Bacterial Foraging Optimization Algorithm 

(BFOA) was given by Passino (Passino K. M., 2002). It has been used widely in many of 

the engineering problem related to optimization example harmonic estimation (Mishra, 

2005), Parameter estimation of Wiener model (Huang & Lin, 2010), Assembly line 

problem (Atasagun & Kara, 2013), Autonomous Robot Path Planning (Hossain & 

Ferdous, 2014). 

Bacterial Foraging Optimization Algorithm was developed to mimic the foraging 

strategy of Escherichia Coli Bacteria. E.coli is the rod shaped bacteria i.e. found in lower 

intestine of warm blooded organisms. E.coli always tries to move to place which has 

highest amount of nutrition and it avoids the harmful environment. Foraging is the 

process by which bacteria locate and ingest their food. The E.coli bacterium has a plasma 

membrane, cell wall, and capsule that contains the cytoplasm and nucleoid. The pili 

(singular, pilus) are used for a type of gene transfer to other E.colibacteria, and flagella 

(singular, flagellum) are used for locomotion. The cell is about 1µm in diameter and 2 

µm in length. The E.coli cell only weighs about 1 picogram and is about 70% water. 

Salmonella typhimurium is a similar type of bacterium.(Passino K. M., 2002) In suitable 

environment whenever E.coli gets longer it splits into two parts. For example on getting 

sufficient food and temperature of around 37 degree centigrade, it can develop everything 

it needs to replicate within 20 minutes. Hence in short time population can be doubled 

easily. It also has some sort of system that guides its search of food and help avoiding 

noxious environment. It will swim from noxious environment to healthy environment 

with the help of this control system. 

 If we map this to optimization problem then bacteria will have to move to 

position of highest nutrient value and this position will be optimum position. Bacteria can 

initially be placed at any of the random positions in the search space. Bacteria will move 

in the search space in order to find the optimum value. Process by which bacterium 

moves from one position to another position in order to find position with highest nutrient 

value in foraging is known as chemotaxis. This step simulates the movement of bacteria 

in the search space. Bacteria exhibit two operations while chemotaxis namely swimming 

and tumbling. Bacteria may perform swim followed by tumble or tumble followed by 
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swim or tumble followed by tumble or it swims continuously depending on the medium 

in which it is searching for food. Bacterium uses flagella for swimming and tumbling. In 

each chemotactic step bacterium gets energy. Each bacterium undergoes certain fixed 

number of chemotactic steps. Amount of movement in particular direction is quantified 

by a parameter know as step size ( )c i  where i  is the bacterium under consideration. If 

value of ( )c i  is kept large then algorithm may jump over the optimum point and if value 

of ( )c i  is small then algorithm may take large time to converge. 

 After this health (sum of energy obtained at each chemotactic step) of each 

bacterium is calculated and bacteria are sorted according to the health. So bacteria in 

nutrient medium tend to reproduce and bacteria with poor nutrients tend to die. So half of 

the bacteria which are healthy reproduce on finding suitable conditions into two and the 

remaining half with poor health are eliminated. So, theory of natural selection is 

applicable here.  

Finally, sometimes due to occurrence of some rare event like sudden rise in 

temperature or other, some or all bacteria may be migrated to other media.  

2.4 Applications of Bacterial Foraging Optimization Algorithm 

2.4.1 Application in Assembly Line Problem 

Bacterial foraging optimization problem had been applied to assembly line 

balancing (ALB). In Assembly line balancing tasks are needed to be assigned to 

workstations (Atasagun & Kara, 2013). This is done so as to satisfy the precedence 

relations between cycle time and tasks restrictions while optimizing the performance. 

Entire production system is greatly affected by performance given by assembly lines. It is 

last stage of processes but has an important impact. So, obtaining effective solution in 

reasonable time for ALB problems is important. Problem by nature is NP Hard, so 

finding deterministic solution which gives result in polynomial time is quite tuff. 

However various heuristic and meta-heuristic solutions had already been suggested in 

literature for solving various simply straight and assembly line problems which are U-

shaped. BFOA was one of the meta-heuristic approaches applied to this problem using 

well known data set. It was applied to both simple and U shaped problem. Number of 
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tasks varied from 7 to 111 in data set. 128 test-problems were used and BFOA gave 

optimal solution for 123 test-problems within seconds. Since BFOA had shown quite 

competitive performance here, so it was expected that it can be applied to various other 

versions of ALB problems. BFOA can be hybridized with other meta-heuristic 

approaches or chemotactic step in the original BFOA can be modified to apply it on other 

complex version of the ALB problem.  

2.4.2 Application in Autonomous Robot Path Planning in Dynamic Environment 

A robot is reprogrammable and multifunctional intelligent device. It is intelligent 

because it can decide the actions it has to take depending on the environment. In case of 

mobile robot, path planning is one of the challenging tasks especially in dynamic 

environment where any random obstacle can occur. In static environment all the objects 

are static i.e. position remains fixed with time. However in dynamic environment objects 

are dynamic in nature means there position can change with time. They can move in 

different directions. The basic goal is to move robot from one point to another point 

through shortest possible path considering all the obstacles that occur in between i.e. to 

find the optimal path. Optimal path is the path which is better in terms of time, cost, 

energy, distance etc. But each of them has weakness associated with them. Than came 

various meta-heuristic techniques like PSO, ABC etc to solve the above problem. BFOA 

was used to solve this problem of moving robot continuously from current position to 

target position and avoiding obstacles side by side. Bacteria were considered to be 

distributed around the robot in a circle in a random fashion. Best bacterium was evaluated 

by finding distance to the target point and by using the Gaussian cost function of bacteria. 

Current position of robot, next position required and position of obstacle as detected by 

sensor were given as input to the algorithm and output produced was the most feasible 

path. So, results were produced after using this high level strategy. The algorithm works 

well in local environment where simple sensor was used. The results produced were 

compared with those produced by another well known algorithm PSO (Hossain & 

Ferdous, 2014). BFO algorithm was found to be better in terms of optimal path. 



20 

2.4.3 Parameter Estimation of Solar PV Model 

Solar energy is available freely. Also, it is non-polluting. So, it has attracted the 

interest of many researchers. So, this attraction had given the birth to need for the 

photovoltaic module. But modeling photovoltaic panels is quite difficult because of the 

limited data as provided by the manufacturers. So, precise estimation of various modeling 

parameters was required to be established and that too in different environments for 

modeling photovoltaic panels accurately. Optimization techniques are useful to find 

solution of over determined systems (which has more variables then equations) or of non-

linear system. Various algorithms like Artificial Immune System, Genetic Algorithm, and 

BFO was used (Krishnakumar, Venugopalan, & Rajasekar, 2013). They all were 

compared according to the performance based on various criteria. Some of criteria were 

accuracy, convergence speed, consistency etc. The results computed by each of these 

were compared with the actual values. All results were validated against photovoltaic 

modules namely multi crystalline and thin film.  Best optimal value was again given by 

BFOA.  

2.4.4 Application in Load Shedding 

Optimization can also be applied to power system in field of load shedding. The 

basic goal was to remove some of the loads at fixed location in bus system. It was done to 

improve the loss of power and costs of shedded loads. The objective functions of total 

power losses, voltage stability index values and also total cost of shedded loads were 

used in determining the optimal load shedding in that particular system (Afif Wan, 

Rahman, & Zakaria, 2013). The technique was already implemented in IEEE-30 bus 

system. It was observed that algorithm gives better result when compared to the base case 

values of total power losses and voltage stability index values of that particular bus 

system. 

2.4.5 Application in image registration 

BFOA was applied on image registration as well as on multi-core processors.  

Image registration is one of the optimization problems. The goal was to compute the 

optimal parameters of one of the transform so as to align the source image to the model 
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given in such a manner that similarities are maximized. Image registration is one of the 

important steps in the fusion of images. The reason being quality of fusion of image is 

affected by quality of result of image registration. Bacterial Foraging Optimization 

Algorithm can be used as image registration technique. But Image Registration becomes 

time consuming due to similarity measure and optimization algorithm used. So, this 

sequential algorithm can be converted to parallel on multi-core systems (Bejinariu, 2013). 

The parallel approach was based on shared memory model that can be implemented with 

ease in multi-core processors. Cost function which is a parameter in the algorithm 

implementation can be used in parallel on different cores. 

2.4.6 Hybrid Least Square-Fuzzy Bacterial Foraging Strategy for Harmonic 
Estimation (Mishra, 2005) 

BFOA has been used in power system to estimate the harmonic component in 

voltage or current waveforms. Depending on the operating conditions to make the 

convergence faster Takagi-Sugeno fuzzy scheme was used. Phase is non-linear while 

amplitude is linear in harmonic estimation. The overall scheme was hybrid in the sense 

linear least square estimates the amplitude and Newton-like gradient descent was applied 

to phase estimation.  The percentage error and the time of processing were found to be 

improved as compared with the genetic algorithm and discrete Fourier transform. 

Performance was acceptable even with decaying dc component or change in phase angle 

or amplitude of harmonic estimation. Actually the non-linear part i.e. the phase of each 

harmonic was estimated by Fuzzy Bacterial Foraging (FBF) algorithm. Whereas, the 

linear part was estimated via normal least square estimator.  For both GA and FBF 

scheme uses performance criteria as the cost function. Limitation of BBF was overcome 

by using Takagi-Sugeno fuzzy scheme.  The algorithm showed better results than DFT in 

the noise. This was because the estimation problem becomes multimodal if noise is there 

so obviously FBF shows better results. Also since transducer noise is almost unavoidable 

in sampled signal so FBF shows the better performance than DFT algorithm. Also the 

time taken for convergence was almost half when compared to the genetic algorithm. So, 

overall it was better than both GA and DFT. 
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2.5 Modifications of Bacterial Foraging Optimization Algorithm 

2.5.1 Hybridization with PSO (Particle Swarm Optimization) 

Long et.al. has hybridized BFO with other algorithms so as to improve the 

accuracy, efficiency, and weak ability of the algorithm to come out of the local minima in 

the process of optimization. New proposed algorithm was formed by hybridization of 

BFO with well known algorithm PSO. Chemotaxis step of bacterial foraging was 

modified by merging it with PSO. Elimination Dispersal step of the algorithm was also 

modified. Resulting algorithm was proved better in terms of the accuracy, convergence 

speed. In PSO particles updates their position by using their local optimal as well as 

global optimal found upto now. This principle of PSO was merged in the chemotaxis of 

BFO. So, bacterium could compare its optimal point with the global optimal point i.e. 

obtained upto now. It swam in a particular direction if it keeps on getting better results 

than the optimal point. This accelerated the speed of algorithm to find the optimal point. 

PSO also replaces the random variable in the actual design. So, bacteria have improved 

by learning from itself as well as whole population. So, bacterium which was at good 

position will exploit the surrounding region while bacterium in bad region came to a 

better one with good speed. In elimination dispersal step, some or all of the bacteria are 

dispersed randomly. So, any of the good bacteria may get migrated to the new location. 

So, step was improved by eliminating the bacteria based on the life cycle energy. It 

improved the global searching time of the algorithm. The experimental data showed that: 

the improved hybrid particle swarm -bacterial foraging optimization algorithm is 

significantly better than individual particle swarm optimization algorithm and bacterial 

foraging optimization algorithm whether in searching speed or accuracy(Long, Jun, & 

Ping, 2010) 

2.5.2 Self – Adapting BFOA 

Chen et.al.has introduced the Self Adapting BFO. In standard BFOA all the 

bacteria has constant run-length. Self Adapting algorithm introduced the term exploration 

and exploitation. In the exploration step bacteria took large steps to move to the position 

which has higher nutrient value. In the exploitation step bacteria took small steps to 
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exploit the particular region. Exploitation was done when bacteria was in the region with 

higher nutrient value. Bacterium changed its search behaviour according to the 

environment i.e. bacteria adapted itself to the changing environment. It used two criteria. 

First one said whenever bacterium moved to the new promising domain its run length is 

decreased so as to exploit that reason properly. Second   one said that bacterium enters 

the exploration so as to find some promising region. Four widely used benchmark 

functions have been used to test the SA-BFO algorithm in comparison with the original 

BFO, the standard PSO and the real-coded GA. The simulation results were encouraging: 

the SABFO was definitely better than the original BFO for all the test functions and 

appear to be comparable with the standard PSO and GA (Chen, Zhu, & Hu, 2008). 

2.5.3 Parallel BFO 

Pattnaik et.al. proposed parallel BFO. In the original BFO basic steps in the 

chemotaxis were swimming and tumbling. Both of the steps resulted in updation of 

position and energy of bacteria. So, in the chemotaxis step each of the bacteria calculated 

its fitness. In parallel BFO fitness of each bacterium was computed in parallel manner. 

Master slave technology was used and number of slaves was equal to number of bacteria. 

Each of the slaves must report the computed fitness to the master. So that updated values 

could be used by other bacteria in the next chemotactic step.  So, proper synchronization 

need to be ensured between master and slave. But there were some issues related to 

parallelization. All the slave nodes were required to work at same speed so that master 

may not wait for next operation. Synchronization was ensured properly so that overall 

fitness was not affected. The second change introduced was mutation operation after 

chemotaxis. This was done to accelerate the overall performance of PBFO. Positions 

were mutated by free PSO parameter. It did not require any other parameter or equation. 

The whole concept was introduced so as to decrease the computational time required to 

solve the high dimension function which are multimodal.  (Pattnaik, Bakwad, Devi, & 

Panig, 2011) . Introduction of mutation improves the quality of global best.  
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2.5.4 Improved BFO 

Chen et.al. introduced the IBFO. The first change was made to the constant step 

size that was used in the algorithm. Bacteria used constant step size throughout the 

lifecycle in standard BFO. But it was more reasonable if larger step size is used in the 

beginning and smaller when bacterium is nearer to the global media. So, step size was 

modified to   

( ) ( )max min
max

( )
( ) *

c

c i c i
c i c i j

N

−
= −  (2.1)  

Where i  is bacterium under consideration 

maxc  is maximum step size 

minc is minimum step size 

cN is total number of chemotactic steps 

j is current chemotactic step. 

ccJ was used in standard BFOA so as to produce the swarming effect. It used 

some parameters for attraction and repulsion. Attraction parameters were used so that 

good bacteria can attract other bacteria in the nutrient region and repulsion parameter was 

used so as to maintain certain minimal distance between two bacteria. But these attraction 

and repulsion parameters together resulted in oscillations in the bacterial movement. This 

ccJ was replaced bygbestJ  which was the global optimal value obtained upto now.gbestJ has 

done two things. One produced the required swarming effect and second  it  replaced the 

lastJ . lastJ was maintaining local best information.  

The third modification that was proposed was number of nutrients obtained by 

bacterium in its lifetime will not matter. In IBFO, particular bacterium has not been 

considered as the best if its final position is not close to the global optimal point and 

fitness of bacteria cannot be judged by the energy accumulated during lifetime. There 

was no need of calculating summation of energy. Bacteria were sorted against the value 
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of fitness acquired in the last step only and healthier bacteria reproduced and rest died. It 

also saved computation time.  

The last improvement that was made was narrowing the search space with the 

progress of algorithm. It has been observed that larger the search space less is the 

accuracy and more is the computational time. Search space is restricted according to the 

following equation  

( )max 2 jgbest
Rjθ θ= +

 (2.2)  

( )min 2 jgbest
Rjθ θ= −

 (2.3) 

Where ( ) ( )min max,j jθ θ    is the current searching scope. 

j  is the current chemotaxis step. 

R  is the sphere of activity of swarm. 

gbestθ is updated while chemotaxis. 

IBFO gave better performance than the classical BFO when tested over  

benchmark problems like Sphere, Rosenbrock, Rastrigin, Griewank. (Chen & Lin, 2009) 
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Chapter Three: Biologically inspired algorithms: BFOA 

3.1 Introduction to Soft Computing 

Computing techniques are involved in various problems like pattern recognition, 

image recognition etc. In past, researchers used conventional computing techniques like 

hard computing technique to solve various problems. The problem with hard computing 

was that it requires exact computational model. Also data required to solve was needed to 

be accurate as well as precise. However in real world system it is not necessarily ideal. 

One more problem with hard computing technique was the time. Hard computing 

techniques required much time to develop. But hard computing techniques had been used 

widely by researchers and engineers.  

In contrast soft computing techniques can be applied in many areas where hard 

computing techniques fail. Soft computing techniques don’t require the data to be exact 

and accurate. Soft computing techniques can be used to solve real world problems. So we 

can apply soft computing techniques or methodologies in case of uncertainty, imprecision 

and partial truth. These advantages of Soft Computing over hard computing make it 

useful for wide range of application example machine performance prediction and 

optimization (Chandrasekaran, Muralidhar, Krishna, & Dixit, 2009) , in decision making 

problems (Roy & Maji, 2002). 

Professor Zadeh’s(Zadeh, 1965) original definition of soft computing is quoted 

below: 

“Soft computing differs from conventional (hard) computing in that, unlike hard 

computing, it is tolerant of imprecision, uncertainty, partial truth, and approximation. In 

effect, the role model for soft computing is the human mind. The guiding principle of soft 

computing is: Exploit the tolerance for imprecision, uncertainty, partial truth, and 

approximation to achieve tractability, robustness and low solution cost. At this juncture, 

the principal constituents of soft computing (SC) are fuzzy logic (FL), neural computing 

(NC), genetic computing (GC) and probabilistic reasoning (PR), with the latter 
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subsuming belief networks, chaos theory and parts of learning theory. What is important 

to note is that soft computing is not a melange. Rather, it is a partnership in which of the 

partners contributes a distinct methodology for addressing problems in its domain. In 

this prospective, the principal constituent methodologies in SC are complementary rather 

than competitive.” 

The main constituents of soft computing are Neural Network, Probabilistic 

Reasoning, Fuzzy Logic and Genetic Computing. Soft computing gives better results 

generally when we use mixture of above constituent rather than using single of above 

constituent. Soft computing can be used in place of hard computing in some of the 

techniques and in some other techniques it can be used along with hard computing. We 

need both Soft Computing and Hard Computing whenever we want a solution that is cost 

effective and accurate. 

3.2 Biologically Inspired Algorithms 

We need to find the global optimum in case of optimization problems. But there 

are several problems associated with this. For example our search space is too large, there 

are many local optima, and it may take large computation time. Many tools are developed 

to solve such problems. Both deterministic and heuristic approach can be used in this 

regard. Deterministic algorithm search for the optimum point using some well defined 

procedure while heuristic approaches proceed based on the experience gained. If we 

compare both the approaches then deterministic gives high possibility to find the solution 

but obviously in more computation time than heuristic. Heuristic approaches are non 

deterministic and hence they search for global optima randomly but within some 

reasonable time. But if problem required to be solved is highly complex and non-linear 

then computation process increases significantly in this case also. Biologically-inspired 

algorithms come under soft computing methodologies. They are developed by mimicking 

natural algorithms or more appropriately biological algorithms as that of natural 

selection, foraging etc. The aim was to develop alternating technique to solve highly 

complex problems or to solve over-determined systems (one with more variables then 
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equations). These systems cannot be solved using usual methods like gradient descent 

method. All the process that occurs in nature are very efficient and optimal. So, it’s a 

good idea to mimic these processes as algorithms and use in our problems. Below in 

Figure 1 the hierarchy of biologically inspired algorithms is shown. 

 

Figure 1: Block diagram showing hierarchy of biologically inspired algorithm 
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Biologically inspired algorithms mimic the behaviour of animals that they exhibit 

in some sort of group activity like foraging. Particle Swarm Optimization, Ant Colony 

Optimization, Artificial Bee Colony Optimization are some of the algorithms developed 

on this ground. BFOA(Bacterial Foraging Optimization Algorithm) is an another 

algorithm which was given by Passino (Passino K. M., 2002). It has been used widely in 

many of the engineering problem related to optimization example harmonic estimation 

(Mishra, 2005), Parameter estimation of Wiener model (Huang & Lin, 2010). 

Bacterial Foraging Optimization Algorithm was developed to mimic the foraging 

strategy of Escherichia Coli Bacteria. E. Coli is a rod shaped bacteria that is found in 

lower intestine of warm blooded organisms. E.Coli always tries to move to place which 

has highest amount of nutrition, avoiding the harmful environment. If we map this to 

optimization problem then bacteria will have to move to position of highest energy and 

this position will be required optimum position. Bacteria can initially be placed at any of 

the random positions in the search space. Bacteria will move in the search space in order 

to find the optimum value. Process by which a bacterium moves from one position to 

another position in order to a find position with highest nutrient value is known as 

chemotaxis. Bacteria exhibit two operations in chemotaxis namely swimming and 

tumbling. Bacterium uses flagella for swimming and tumbling. In each chemotactic step 

bacterium gets some energy. Each bacterium undergoes certain fixed number of 

chemotactic steps. After this health which is sum of energy obtained at each chemotactic 

step of each bacterium is calculated and bacteria are sorted according to this health. 

Bacterium with least energy and best health is considered to be the bacteria with highest 

nutrient value. So half of the healthy bacteria reproduce on finding suitable conditions 

into two and remaining half are eliminated. So, theory of natural selection is applicable 

here. Finally, sometimes due to occurrence of some rare event like sudden rise in 

temperature etc. some of the bacteria may be migrated to some media. 

3.2.1 Escherichia Coli Bacteria 

BFOA is an optimization algorithm used for optimization was developed based on 

the foraging behaviour of Escherichia Coli bacteria found in lower intestine of warm 
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blooded organisms. Foraging is the process by which animals locate and ingest their 

food. The structure of E. Coli bacteria is shown in Figure 2below.The E. coli bacterium 

has a plasma membrane, cell wall and capsule that contains the cytoplasm and nucleoid. 

The pili (singular, pilus) are used for a type of gene transfer to other E. coli bacteria and 

flagella (singular, flagellum) are used for locomotion. The cell is about 1µm in diameter 

and 2 µm in length. The E. coli cell only weighs about 1 picogram and is about 70% 

water. Salmonella typhimurium is a similar type of bacterium (Passino K. M., 2002). In 

suitable environment whenever E. Coli gets longer it splits into two parts. For example on 

getting sufficient food and temperature of around 37 degree centigrade it can develop 

everything it needs to replicate within 20 minutes. Hence in short time population can be 

doubled easily. It also has some sort of system that guides its search for food and help 

avoiding noxious environment. It will swim from noxious environment to healthy 

environment. 

 

Figure 2: E. Coli Bacteria Structure 

3.2.1.1 Basic Concept of Movement of Bacteria 

E. Coli bacteria always tries to move to the position where there is highest value 

of nutrition avoiding poisonous environment side by side. This motion of E. Coli in order 

to find the most optimum position is known as chemotaxis. Tumble and Swimming are 

the two basic operations exhibited by bacteria in chemotaxis. Straight movement is 

known as swimming and if bacterium changes its direction then it is known as tumbling. 
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Less energy is here associated with higher nutrition value. So, lesser the energy more is 

the nutrition value and higher the energy less is the nutrition value. Therefore, ultimate 

goal is to reach at the position with highest nutrient value or lowest energy. Now, bacteria 

move in straight direction if its energy continues to decrease i.e. its health continues to 

improve. It tumbles if there is no improvement in energy, and in case of poisonous 

environment it tumbles more. In short, if bacteria found improvement in energy with 

respect to previous position it swims otherwise, it tumbles. 

Below Figure 3 depicts the swim and Figure 4 depicts tumble in bacteria. 

Considering Figure 3 bacterium is initially at position P1 with energy E1 at this position 

energy is. Now the bacterium moves to position P2. Energy changes with change in 

position here again energy of bacterium is calculated. Suppose new energy is E2. Now, 

this new energy is compared with old energy. If new energy is less than previous energy 

bacterium continues to move in that direction. In this way bacterium swims in particular 

direction i.e. it swims from position P1 to P2 and from P2 to P3. In Figure 4 bacterium 

moves forward from position P1 to P2. Energy initially at P1 is E1and at P2 is E2. Both E1 

and E2 are compared. In this case E2 is greater than E1. So, bacterium tumbles in the 

random direction and moves to P3.  Energy of P3 is compared to best energy reached by 

this bacterium till now i.e. E3 is compared to the E1. Again energy E3 is greater than E1. 

So, bacterium will tumble again in some random direction and reach at position P4. Again 

since position of bacterium is updated energy is calculated. Suppose energy at P4 is E4. E4 

is compared to E1.Value of E4 is lower than that of E1 so bacteria will now move in this 

direction. It swims to position P5 and whole chemotaxis cycle continues like this.  

3.2.2 Constituent steps in the life cycle of bacteria 

Each bacterium undergoes four main steps during its life cycle namely: 

i. Chemotaxis 

ii.  Swarming 

iii.  Reproduction 

iv. Elimination Dispersal 
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Figure 3 Chemotaxis- Swimming 

 

Figure 4 Chemotaxis- Tumbling 

3.2.2.1 Chemotaxis 

Chemotaxis stands for movement by a cell or organism in reaction to a chemical 

stimulus. This step simulates the movement of bacteria in the search space. Chemotaxis 

basically constitutes two main steps swimming and tumbling. Depending on the medium 

in which it is searching for food bacteria can: 

• Swim followed by tumble 

• Tumble followed by swim 

• Tumble followed by tumble 

• Swim continuously 

The position of bacteria can be represented by ( , , )i j k lθ where , , ,i j k l  meansthi  

bacterium at thj chemotactic, thk reproductive and thl elimination-dispersal step. Amount 
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of movement in particular direction is quantified by a parameter know as step size ( )c i

where i  is the bacteria under consideration. If value of ( )c i  is kept large then algorithm 

may jump over the optimum point and if value of ( )c i  is small then algorithm may take 

large time to converge. Energy of bacteria is represented by ( , , )J j k l  where , ,j k l  

means at thj  chemotactic, thk reproductive and thl elimination-dispersal step.Whenever 

bacterium needs to tumble a random unit vector ∆ is generated such that ∆  [-1,1].Finally, 

Motion of bacteria can be represented mathematically as: 

( )
( 1, , ) ( , , ) ( )

( ) ( )

i i i
j k l j k l c i

i i
θ θ

Τ

∆+ = +
∆ ∆  (3.1) 

If value of energy ( 1, , )J j k l+ at ( 1, , )i j k lθ + is lower than ( , , )J j k l at ( , , )i j k lθ  

then bacteria takes one step forward in the same direction with step size ( )c i and will 

continue to swim in that direction if energy keeps on decreasing. But maximum number 

of times bacteria can swim in particular direction is given bysN where sN is the 

maximum number of swimming steps. After completion of
sN steps bacterium will have 

to tumble. 

3.2.2.2 Swarming 

While moving bacteria can release chemical substances so that other bacteria can 

be attracted and they could swarm together. Foraging is group activity and group 

behaviour is governed by these chemicals. They could release a sort of repellent also. So 

that, no two bacteria can be on the same position at same instant of time. Repellent 

ensures that there is some particular amount of distance between two bacteria. So, 

swarming justifies group behaviour by cell-to-cell signalling or by attractant and 

repellents. This is how bacteria swarm together. Mathematically swarming can be 

represented as: 

1

( , ( , , )) ( , ( , , ))
S

i
cc cc

i

J P j k l J j k lθ θ θ
=

=∑
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2
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i
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θ θ

= =
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= − − − +  
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  
− − −  

  

∑ ∑

∑ ∑

 (3.2) 

where, 

( , ( , , ))ccJ P j k lθ is the objective function (to be minimized). 

Srepresents the total number of bacteria. 

p is number of dimension of the space in which bacteria will move or it is number of 

parameters required to be optimized.  

1 2, ..... pθ θ θ θ
Τ

 =   is a particular point in the search domain with p dimension. 

tanattrac td  it gives the depth to which attractant is released or it quantifies the attractant 

released. 

tanattrac tw it gives the width of attractant i.e. it quantifies the magnitude to which it effects. 

repellenth it gives the depth to which repellent is released or it quantifies the repellent 

released. 

repellentw it gives the width of repellent i.e. it quantifies the magnitude to which it effects. 

If value of tanattrac td  and tanattrac tw is too high means there is large magnitude and 

height of attraction. So, bacteria will swarm in group. But they may miss some of the 

nutrients. Very less value of these will not introduce group behaviour. Hence they will 

not swarm together and search for food independently. So, optimum value of these 

parameters is required to be set so that optimum amount of swarming is introduced. 

Value of these parameters lies in between [1, 9] and should be chosen appropriately. 
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3.2.2.3 Reproduction 

Bacteria reproduce very fast in the nutrient media so population size will increase. 

Similarly, in poor nutrient media bacteria will die rapidly resulting in decrease in 

population. After Nc chemotactic steps health of each bacteria is calculated by adding the 

energies accumulated at each chemotactic step. Lower the value of healthJ  more fit is the 

bacteria or medium is nutrient. Higher healthJ value signifies bacteria are unfit or nutrient 

is poor. So bacteria in nutrient medium tend to reproduce and bacteria with poor nutrients 

tend to die. To keep the algorithm simple it is assumed that half of the bacteria with lower 

healthJ  value will reproduce and half of the bacteria with higher healthJ  value will die. In 

this way total population size remains constant. So, finally bacteria with low healthJ value 

die and other asexually split into two. 

1

( , , , )
cN

i
health

j

J J i j k l
=

=∑
 (3.3) 

2r

S
S =

 (3.4)
 

It is assumed that we have even number of bacteria. So, finally bacteria rS with 

lower healthJ will reproduce and other rS will die and new rS bacteria will be placed at 

same position as their parents. 

3.2.2.4 Elimination dispersal 

Occasionally when there are sudden changes in the local environment like sudden 

change in temperature some of the bacteria which are present in the search space may be 

migrated to some other location. Sometimes all the bacteria may be migrated to some 

other location. Algorithmically a probability edP is considered. It’s a random probability 

and its value lies between 0 and 1. Apart from this, a random probability is generated 

corresponding to each bacterium. This probability is compared to edP . If its value is 

lower than edP then this bacterium will migrate to some new location. However, to keep 
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the algorithm simple some other bacterium is migrated to search space at some random 

position. This phase of bacteria’s life cycle helps the algorithm to come out of local 

minima and to exploit the positions not exploited yet.   

3.3 Bacterial Foraging Optimization Algorithm 

Originally the BFOA was proposed by Passino in the year 2002 (Passino K. , 

2002) after that many modifications are made in the standard algorithm.  

Table 1 shows that parameters used in this algorithm, it has parameter names 

along with their corresponding description. 

Let position of each bacterium in the population of size S is represented by 

{ }( , , ) ( , , ), 1, 2....iP j k l j k l i Sθ= =  where j  means at thj chemotactic step, k  means at thk  

reproduction step, and l means at thl elimination-dispersal step. Here, let ( , , , )J i j k l  

denote the energy of thi bacterium position ( , , )i j k lθ Ρ∈ℜ . J can be termed both as 

energy of bacteria at particular position or as cost which is to be minimized. In nature 

value of S i.e. number of bacteria in population can be very large but number of 

dimensions is restricted to be 4. But in case of simulation number of bacteria in 

population is kept fixed and is small. However value of p  i.e. dimensions of search 

space can be greater than 3 depending on the number of parameters required to be 

optimized in the problem. 

Table 1 Parameters used in BFOA (Das, Biswas, Dasgupta, & Abraham, 2009) 

S.NO. PARAMETER 
NAME 

DESCRIPTION 

1 j  the variable used as loop counter for chemotactic step 

2 k  the variable used as loop counter for reproduction step 

3 l  the variable used as loop counter for elimination dispersal step 

4 p  Dimension of the search space 
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5 S  Total number of bacteria in the population 

6 
cN  The number of chemotactic steps 

7 
sN  The swimming length 

8 
reN  The number of reproduction steps 

9 
edN  The number of elimination-dispersal events 

10 
edP  Elimination-dispersal probability 

11 ( )c i  The size of the step taken in the random direction specified by 
the tumble 

 

The algorithm is as follows (Das, Biswas, Dasgupta, & Abraham, 2009) 

[Step 1] Initialize parameters , , , , , , ( ),c re ed s edp S N N N N c i Pwhere 1,2,.....i S=  

[Step 2] Elimination-dispersal loop: 1l l= +  

[Step 3] Reproduction loop: 1k k= +  

[Step 4] Chemotaxis loop: 1j j= +  

[a] For 1,2,.....i S= take a chemotactic step for bacterium i as follows. 

[b] Compute fitness function,( , , , )J i j k l  

Let, ( , , , ) ( , , , ) ( ( , , ), ( , , ))iJ i j k l J i j k l Jcc j k l P j k lθ= + (i.e. add on the cell-to 

cellattractant–repellent profile to simulate the swarming behaviour)where, 

ccJ is defined in(3.2). 

[c] Let ( , , , )lastJ J i j k l= to save this value since we may find a better cost via 

a run. 
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[d] Tumble: generate a random vector ( ) pi∆ ∈ℜ with each element m(i)∆ ,

1,2,...m p= a random number on[ 1,1]− . 

[e] Move: Let  

i ( )
( 1, , ) ( , , ) ( )

( ) ( )

i

T

i
j k l j k l c i

i i
θ θ ∆+ = +

∆ ∆  (3.5)

 

This results in a step of size ( )c i  in the direction of the tumble for bacterium

i . 

[f] Compute ( , 1, , )J i j k l+ and let, 

( , 1, , ) ( , , , ) ( ( 1, , ), ( 1, , ))i
ccJ i j k l J i j k l J j k l P j k lθ+ = + + +  (3.6) 

[g] Swim 

i) Let 0m = (counter for swim length). 

ii) While sm N< (if have not climbed down too long). 

• Let 1m m= + . 

• If ( , 1, , ) lastJ i j k l J+ < ( if doing better), let ( , 1, , )lastJ J i j k l= + and let 

( )
( 1, , ) ( , , ) ( )

( ) ( )

i i

T

i
j k l j k l c i

i i
θ θ ∆+ = +

∆ ∆
use this ( 1, , )i j k lθ + to compute the 

new ( , 1, , )J i j k l+ as we did in [f] 

• Else, let sm N= This is the end of the while statement. 

[h] Go to next bacterium (i+1) if i S< (i.e., go to [b] to process the next 

bacterium). 
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[Step 5] If cj N< , go to step 4. In this case continue chemotaxis since the life of the 

bacteria is not over. 

[Step 6] Reproduction: 

[a] For the given k and l , and for each 1,2,...i S= , let 

1

1

( , , , )
cN

i
health

j

J J i j k l
+

=
= ∑

 (3.7) 

be the health of the bacterium i (a measure of how many nutrients it got 

over its lifetime and how successful it was at avoiding noxious substances). 

Sort bacteria and chemotactic parameters ( )c i  in order of ascending cost 

healthJ (higher cost means lower health). 

[b] The Sr bacteria with the highest healthJ values die and the remaining rS

bacteria with the best values split (this process is performed by the copies 

that are made are placed at the same location as their parent).  

[Step 7] If rek N<  go to step 3. In this case, we have not reached the number of specified 

reproduction steps, so we start the next generation of the chemotactic loop. 

[Step 8] Elimination-dispersal: For 1,2,...i S= with probability edP , eliminate and disperse 

each bacterium (this keeps the number of bacteria in the population constant). To do this, 

if a bacterium is eliminated, simply disperse another one to a random location on the 

optimization domain. If edl N< , then go to step 2; otherwise end. 

3.3.1 Guidelines for choosing the parameter 

There are many parameters used in the algorithm and each of the parameter may 

influence the algorithm in different ways. Different parameters are described below: 
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3.3.1.1 Number of Bacteria S  

Suppose a large value of S  is taken i.e. large number of bacteria. In this case 

computational complexity of the algorithm will increase. But chances of finding an 

accurate solution will also increase. It may happen in starting itself that some of the 

bacteria are near to the optimal value. 

3.3.1.2 Step Size ( )c i  

Biologically motivated value may be chosen but it may not be best according to 

the engineering problem. If value of ( )c i is kept large then algorithm may jump over the 

optimum point and if value of ( )c i is small then algorithm may take large time to 

converge increasing the computational complexity. 

3.3.1.3 ccJ parameters 

ccJ parameters influence the swarm and independent foraging behaviour of 

bacteria. If value of tanattrac td , repellenth , repellentw and tantattracw is too high means there is large 

magnitude and height of attraction. So, bacteria will swarm in group. But they may miss 

some of the nutrients. Very less value of these will not introduce group behaviour. Hence 

they will not swarm together and search for food independently. Therefore, optimum 

value of these parameters is required to be set so that optimum amount of swarming is 

introduced. Value of these parameters lie in between [1, 9] and should be chosen 

appropriately. Thus, they influence characteristics of swarming. 

3.3.1.4 Number of Chemotactic Steps cN  

Increasing the value of cN may result in better optimization results but it will 

increase the computational complexity as well. However, low value of cN  may result in 

dependence of optimization more on luck and reproduction. 

3.3.1.5 Number of Reproduction StepsreN  

Reproduction steps helps to ignore bad regions by killing bacteria will poor 

nutrients. However, large value may increase the computational complexity. 
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3.3.1.6 Number of Elimination Dispersal Steps edN  

Low value of edN indicates that algorithm rely less on random elimination 

dispersal step to find the solution. However, high value increases computational 

complexity and also helps in exhaustive search. It can help algorithm to jump out of local 

minima and search for global optima. Therefore, optimum value ofedN allows algorithm 

to look in more regions. 

3.3.1.7 Number of swimming steps sN  

The value for this parameter is chosen as optimal because increasing its value will 

increase the complexity of the algorithm while decreasing its value will create a problem 

in converging of the algorithm. 

Flowchart is given on next page 
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Chapter Four: Software Cost Model and Estimation 

4.1 Introduction 

In today’s world, software has its own importance which can be seen in every 

field. Dependency on software is increasing day by day because of its extreme 

importance. Software is used in various domains either to support the speed or 

intelligence or to reduce hardware resources or for easy maintenance of systems. But one 

concern here that needs to be heeded is the software cost. Any software must incur less 

cost and should be available in the market before any of its competitors can even think of 

that. 

But software cost should be estimated before the project development actually 

takes place. Estimating proper software cost is very complex and challenging task for 

every project manager. Software cost is directly proportional to the resources and time 

required by the project which is dependent on the software attributes and characteristics. 

As attributes are really very dynamic and are related to a project, so for proper cost 

estimation prudential treatment of attributes needs to be done. 

Estimating future costs and schedule is very much tedious for any analyst. Some 

of tradition cost estimating techniques include parametric, bottoms-up and estimating by 

analogy. Here, lies a drawback in all these techniques and i.e. all estimation of cost are 

based on the relationship constructed with historical data. It assumes that the cost 

incurred by a model will be similar to the part that has been constructed in past and that is 

similar to new one. But if future that changes, it will not be of any use unless cost 

estimation is scaled according to that. Software cost estimation is done during the 

software development life cycle (SDLC). Initially all resources are identified with their 

quantity and listed together. Resources used may include list of all software and 

hardware, testing activities, training session, infrastructure etc. Team members that are 

needed to complete the project are also identified. After this project manager will 

estimate the project cost from list of resources that is made. Wrong identification of 

resources may lead to overbudget and can lead to wrong results in estimation process. So, 

some tool is required by the manager to properly estimate the software cost. 
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Over cost and over schedule may lead to project failure. Poor estimated projects 

lead to termination of projects. Software cost estimation can be defined as a collection of 

techniques that are used by organizations to estimate proposal bidding, probability 

estimates and project planning. There are certain reasons that cause difficulty in cost 

estimation are given below: 

• practice needs a significant amount of money to perform it 

• process is always performed in a hurry 

• experience is required for making the estimates. 

4.2 Cost Estimation Models 

There are many software cost estimation models that are developed till now. A 

prototype is basically needed to consider all the factors and attributes of the project to 

properly estimate the software cost. It is mandatory as it helps in the overall software 

management, contract establishment, scheduling, project planning and resource 

allocation. All the models that are developed till date can be categorized in either of the 

following two categories: 

• Parametric or Algorithmic models. 

• Non-Algorithmic methods. 

4.2.1 Algorithmic Models 

Algorithmic models use mathematical formulas and do some measurements of 

project attributes. Some of the examples of algorithmic models are given below: 

• Function points 

• Putnam  

• Slim 

• SLOC 

• The Doty model 

• Price-S model 

• Estimacs 

• Checkpoint  
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4.2.2 Non-algorithmic Models 

Non-algorithmic models consist of a model that do reasoning, applies logic and 

uses a large knowledge base. These models are based on the phenomenon of learning by 

experience or can be said as trail by case studies. These type of models include models 

like  

• Analogy costing 

• Expert judgment 

• Parkinson model 

• Price-to-win  

• Bottom-up approach 

• Top-down approach 

• Delphi 

• Machine learning etc. 

The main difference lies in both is that algorithmic models use calculations. Here 

in non-algorithmic model cost is estimated using the Cost Estimating Relationships 

(CERs) with the help of mathematical algorithms and different logics to establish a cost 

estimate. Once a model is developed, this approach is very easy to use. It uses physical 

characteristics like mass, number of inputs, outputs, and volume etc. Detailed information 

is not needed here. But the disadvantage here can be that its difficult to make the model 

itself. Accuracy can be one of the other flaws here. Algorithmic models have their 

importance because they provide a properly defined step by step procedure to provide the 

final outcome. 

4.3 COCOMO: 

This is the thoroughly documented model that is used for effort estimation in 

software process development. It provides the formulae for calculating the time schedule, 

overall development effort, effort break down by phase and activity, and maintenance 

effort.  

There are three classes of system in which modeling process is categorized:  
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1. Embedded: here main concern is on the tight constraints, changing environment 

and the unfamiliar surroundings. Real-time software comes under this class example 

aerospace, medicine, automobiles etc. 

2. Organic: this is applicable for projects that are small in respect to project size 

and team size, and projects that have familiar surroundings and have easy interfaces. 

These may include data processing systems, small libraries or business systems. 

3. Semi-detached: These type of software have mixed characteristics of both 

embedded and organic software. Examples may include operating systems, inventory 

management systems and database management systems. (Azath & Wahidabanu, 2012) 

Three levels of COCOMO was proposed by the Boehm 

1) Basic COCOMO 

2) Intermediate COCOMO 

3) Detailed COCOMO 

Majority of software projects apply Basic COCOMO model to estimate the cost 

of Software Development. What Boehm says about the model is: "Basic COCOMO is 

good for rough order of magnitude estimates of software costs, but its accuracy is 

necessarily limited because of its lack of factors to account for differences in hardware 

constraints, personnel quality and experience, use of modern tools and techniques, and 

other project attributes known to have a significant influence on costs." (Pandey, 2013) 

4.4 COCOMO Models and its Variants 

COCOMO can be represented as 

( )b
Effort a DLOC=

 (4.1) 

Where DLOC is the independent variable and Effort is the dependent variable. 
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Four new models were proposed (Sheta, 2006)(Uysal, 2008)  to consider the 

methodology adopted also in the determination of effort. So, now there are 2 independent 

parameters DLOC and ME and one is dependent parameter i.e. effort.  

4.4.1 COCOMO_model1: 

( ) ( )b
Effort a LOC c ME= +

 (4.2) 

The model considered ME as linearly related with effort. It had three parameters , ,a b c  

4.4.2 COCOMO_model2: 

( ) ( )b
Effort a LOC c ME d= + +

 (4.3)
 

It had 4 parameters , , ,a b c d  

4.4.3 COCOMO_model3: 

( ) ( )b d
Effort a LOC c ME e= + +

 (4.4)
 

It had 5 parameters , , , ,a b c d e 

4.4.4 COCOMO_model4 

( ) ( ) ( )( ) ( )ln ln(loc)
b d

Effort a LOC c ME e ME f g= + + + +
 (4.5)

 

So, there were seven parameters in total. 

4.5  Parameter Estimation 

We know that some of the cost estimation models are present in the form of used 

for software cost estimation. There are always some unknown parameters in these 

functions like �, �, �, � etc. In order to find these parameters we need these estimation 

equations to fit to some meaningful data. This is known as estimating the parameters or 

parameter estimation. Mainly used approaches include maximum likelihood estimation 

technique; least square estimation technique etc. Data is directly given as input into the 

equations to find the parameters in MLE. In least square method, curve described by the 

function is given to fit to the data and parameters are estimated. In our research we have 
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used least square method to fit data into the equations of the software cost estimation 

models. 

4.6 Least square error 

The maximum likelihood technique determines the parameter values directly 

which are best feasible and optimal. On the other hand, the least squares estimation 

method estimate the parameter values by choosing those values which fits a curve in the 

best way. This technique is the best when the size of the sample is medium or small. 

Mood (Mood, 1974) describes the theory of curve fitting using LSE as “finding 

parameter values that minimize the "difference" between the data and the function fitting 

the data, where the difference is defined as the sum of the squared errors.” Another way 

in which this technique can be used is to directly calculate the difference between the 

calculated and estimated number of defects and then to minimize the difference between 

the two so that the results are optimized.  

Given the data as, { }1 1( , ),.....( , )N Nx y x y , the error associated can be estimated by saying 

y ax b= + by, 

2

1

( , ) ( )
N

n
n

E a b y y
=

= −∑
 (4.6) 

As it can be seen from the eq. 1.8 it is N times the variance of the data set

1 1{ ( ),....., ( )}n Ny ax b y ax b− + − + . It does not make much difference whether we consider 

only the variance or N times of the variance to be the error. It must be noted that the error 

is taken as the function of two variables. The intention here is to determine or estimate 

those values of parameters aand b which can minimize the error. In multivariable 

calculus this requires us to find out the values of( , )a b such that 

0, 0
E E

a b

∂ ∂= =
∂ ∂  (4.7)
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Chapter Five: DBA (Distance Based Approach) 

5.1 Overview of Methodology (Sharma, Garg, & Nag, 2010) 

The development of the DBA method begins with defining the optimal state of 

the overall objective, and specifies the ideally good values of attributes involved in the 

process. The optimal state of the objective is represented by the optimum model, the 

OPTIMAL. The vector OP, 
1 2( , , ..., )nr r r , is the set of “optimum” simultaneous attributes 

values. In an n-dimensional space, the vector OP is called the optimal point. For practical 

purposes, the optimal good value for attributes is defined as the best values which exist 

within the range of values of attributes. The OPTIMAL, then, is simply the SRM that has 

all the best values of attributes.  

It is very unlikely that a certain SRM has the best values for all attributes. Instead, 

a variety of alternatives may be used to simulate the optimal state. For this reason, the 

OPTIMAL is not to be considered as feasible alternatives, but it is used only as reference 

to which other alternatives are quantitatively compared. The numerical difference 

resulting from comparison represents the effectiveness of alternatives to achieve the 

optimal state of the objective function. Hence, here, the decision problem is to find a 

feasible solution which is as close as possible to the optimal point. The objective function 

for finding such a solution can be formulated as 

Minimize { }( ),Alt x OPTIMALδ  (5.1) 

Subjectto x ς X 

where { ( )Alt x }, and δ represent a SRM alternative in the n-dimensional space, 

and the distance from the optimal point, respectively. Thus the problem, and its solutions 

depend on the choice of optimal point, OPTIMAL, and the distance metric,δ , used in the 

model. In two dimensional spaces, this solution function can be illustrated as in Figure 5, 

where H is the feasible region, and the OP is the optimal point. 
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The DBA method determines the point in the H region which is “the closest” to 

the optimal point, and is graphically explained in Figure 6 for two dimensional cases. 

Note that the lines 1( )XAlt OP− , and 2( )XAlt OP−  are parallel to the X1, and X2 axis 

respectively. Therefore, 1 1 1( ) | |X X XAlt OP OP Alt=− − , and 2 2 2( ) | |X X XAlt OP OP Alt− = −

Based on Pythagoras theorem, in two dimensional space, δ is 

 

Figure 5: Distance Based Approach 

1/22 2
1 1 2 2( ) ( )X X X XOP Alt OP Altδ = − + −    (5.2) 

In general terms, the “distanceδ ” can be formulated as 

1/ 22( )ij ijOP Altδ  = −∑   (5.3) 

where i=1, 2, 3, 4... n = alternative SRMs, and j=1, 2, 3... m = selection attributes. 

To implement the above approach, let us assume that we have a complete set of 

SRMs consisting of 1, 2, 3,...n SRMs, and 1,2,3...m selection attributes corresponding to 

each alternative SRM, 
1 11 12 1( , , ..., )mAlt r r r ,  

2 21 22 2( , , ..., )mAlt r r r , 1 2( , , ..., )n nmn nAlt r r r , and 



51 

the OPTIMAL 
1 2( , , ..., )b b bmr r r where bmr = the best value of attribute ‘m’. The whole set 

of alternatives can be represented by the matrix 

[ ]

111 12

21 22 2

1 2

1 2

m

m

n n nm

b b bm

r rr
r r r

r
r r r
r r r

=

 
 
 
 
  

…

…

⋮ ⋮ ⋮ ⋮

…

…

 (5.4) 

 

 

 

Figure 6: Distances of Real Vector 

Thus, in this matrix, a vector in an m-dimensional space represents every SRM 

alternative. To ease the process, and in the same time to eliminate the influence of 

different units of measurement, the matrix is standardized using  

ij j
ij

j

r r
Z

S

−
=

 (5.5) 

Here, 
1

1 n

ij ij
i

r r
n =

= ∑ , and  (5.6) 
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1/ 2
2

1

1
 ( )

n

j ij j
i

S r r
n =

 = −∑  
 (5.7) 

where i = 1, 2, 3, ... , n, and  j = 1, 2, 3, … , m. 

jr , and S j represent the average value, and the standard deviation of each attribute for all 

alternative SRMs. m, and n represent the number of different SRM attributes, and the 

number of alternate SRMs, respectively. 

11 12 1

21 22 2

1 2

1 2

m

m

std

n n nm

OP OP OPm

Z Z Z

Z Z Z

Z Z Z

Z Z Z

Z  = 

 
 
 
 
  

…

…

⋮ ⋮ ⋮ ⋮

…

…   (5.8) 

where 11 1
11

1

,
r

Z
S

r−
= 12 2

12

2

,
r

Z
S

r−
= 1

1 .m m
m

m

r
Z

S

r−
=

 

The next step is to obtain the difference from each alternative to the reference 

point, the OPTIMAL, by subtracting each element of the optimal set by a corresponding 

element in the alternative set. This results in another interim matrix 

OP1 11 2 12 1

OP1 21 2 22 2

OP1 1 2 2

Z

Z

Z

OP OPm m

OP OPm m
dis

n OP n OPm nm

Z Z Z Z Z

Z Z Z Z Z

Z Z Z Z Z

Z

− − −
− − −

− − −

  = 

 
 
 
  

…

…

⋯ ⋯ ⋯ ⋯

…  (5.9) 

Finally, the Euclidean composite distance, CD, between each alternative SRM to 

the optimal state, OPTIMAL, is derived from  

1/ 2
2

1
( )

m

OP Alt OPj ij
j

CD Z Z−
=

= ∑ − 
    (5.10) 

Within any given set of SRM’s alternatives, this distance of each alternative to 

every other is obviously a composite distance. In other words, it can be referred to as the 

mathematical expression of several distances on each attribute in which SRMs can be 

compared. 
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5.2 Comparison Criteria 

A model can be judged according to its ability to reproduce the observed 

behaviour of the software, and to predict the future behaviour of the software from the 

observed data. To investigate the effectiveness of software cost estimation models, a set 

of comparison criteria is proposed to compare models quantitatively. The comparison 

criteria judge the model according to the various properties like fidelity (are the estimated 

cost close to the actual), stability (does the difference in input is making any difference in 

output), etc. The comparison criteria we used are described as follows. (Sharma, Garg, & 

Nag, 2010) 

5.2.1 Bias 

It can be defined as sum of the difference between the estimated curve, and the 

actual data. Mathematically, it can be given as (Sharma, Garg, & Nag, 2010) 

1

_effo( res ttimated actual effor )_ t
k

i i
iBias

k
=

−
=
∑

 (5.10)
 

Where k represents the sample size of data set. 

5.2.2 MSE 

The mean square error (MSE) measures the deviation between the predicted 

values with the actual observations, and is defined as (Sharma, Garg, & Nag, 2010). 

2

1

( estimate_effort _effortd )
k

i i
i

actual
MSE

k p
=

−
=

−

∑

 (5.11)
 

Where k represents the sample size of the data set and p is number of parameters. 

5.2.3 MAE 

The mean absolute error (MAE) is similar to MSE, but the way of measuring the 

deviation is by the use of absolute values. It is defined as (Sharma, Garg, & Nag, 2010). 
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1

( estimated_effort _e or )ff t
k

i i
i

actual
MAE

k p
=

−
=

−

∑

 (5.12)
 

Where k represents the sample size of the data set, and p is the number of parameters. 

5.2.4 MEOP 

The mean error of prediction (MEOP) sums the absolute value of the deviation between 

the actual data and the estimated curve, and is defined as (Sharma, Garg, & Nag, 2010). 

1

_effort _eff
1

o t
00

r
1

1

N

i i
i

estimated actual
MEOP

k p
=

  −  
  = − ×

− +  
  
  

∑

 (5.13)

 

Where k represents the sample size of the data set, and p is the number of parameters. 

5.2.5 PRR 

The predictive-ratio risk (PRR) is defined as (Sharma, Garg, & Nag, 2010) 

1

_effort _effort

_effort

k
i i

i i

estimated actual
PRR

estimated=

−=∑
 (5.14)

 

5.2.6 Variance 

The variance is defined as (Sharma, Garg, & Nag, 2010). 

2

1

1
variance ( estimatactual_effort - _effort -Biaed )s

1

k

i i
ik =

=
− ∑

 (5.15)
 

Where k represents the sample size of the data set. 

5.2.7 RMPSE 

The Root Mean Square Prediction Error (RMSPE) is a measure of the closeness with 

which the model predicts the observation. (Sharma, Garg, & Nag, 2010) 

2 2RMSPE Variance Bias= +  (5.16) 
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5.2.8 RSQ 

Rsq can measure how successful the fit is in explaining the variation of the data. It 

is defined as (Sharma, Garg, & Nag, 2010). 

2

1

2

1 1

_effort _e(actual estimated )
1

actual
(ac

ffort

_effort
_efforttual )

k

i i
i

k k
j

i
i j

Rsq

n

=

= =

−
= −

−

∑

∑ ∑
 (5.17)

 

5.2.9 SSE 

The sum of squared errors (SSE) is defined as (Sharma, Garg, & Nag, 2010). 

2

1

( estimate_effort _eff rtd )o
k

i i
i

SSE actual
=

= −∑
 (5.18)

 

 

5.2.10 TS 

The Theil statistic (TS) is the average deviation percentage over all periods with 

regard to the actual values. The closer Theil’s Statistic is to zero, the better the prediction 

capability of the model. (Sharma, Garg, & Nag, 2010). 

2

1

2

1

_effort _effort( actual )
100%

a _effortctual

k

i i
i

k

i
i

estimated
TS =

=

−
= ×
∑

∑
 (5.19)

 

5.2.11 MRE 

Magnitude of Relative Error can be defined as (Khalifelua & Ghar, 2011). 

_effort _effort

_effort
i i

i

actual estimated
MRE

actual

−
=

 (5.20)
 

5.2.12 MMRE 

The mean magnitude of relative error (MMRE) can be achieved through the 

summation of MRE over N observations (Satapathy, Kumar, & Rath, 2013). 
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1

N

i

MMRE MRE
=

=∑
 (5.21)

 

5.2.13 RMSE 

The root mean square error (RMSE) is just the square root of the mean square 

error. (Satapathy, Kumar, & Rath, 2013). 

RMSE MSE=  (5.22) 

5.2.14 NRMS 

The normalized root mean square (NRMS) can be calculated by dividing the 

RMSE value with standard deviation of the actual effort value for training data set. 

(Satapathy, Kumar, & Rath, 2013). 

( )

RMSE
NRME

mean Y
=

 (5.23)
 

5.2.15 PA 

The prediction accuracy (PA) can be calculated as: (Satapathy, Kumar, & Rath, 

2013). 

1

_effort _effort
1 100

N

i i
i

actual estimated
PA

N
=

  −  
  = − ×
  

  
  

∑

 (5.24)

 

5.2.16 ED 

Euclidian distance (ED) can be defined as (Sheta & Aljahdali, 2013). 

2

1

_effo(estimated actualrt _ t )effor
N

i i
i

ED
=

= −∑
 (5.25)

 

5.2.17 MD 

Manhattan distance (MD) can be defined as (Sheta & Aljahdali, 2013). 

1

_effort _effo )rt
N

i i
i

MD estimated actual
=

 = − 
 
∑

 (5.26)
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5.2.18 SD 

Standard Deviation can be defined mathematically as (Foss, Stensrud, & 

Kitchenh, 2002). 

( )2
_effort _effort

1
i iestimated actual

SD
n

−
=

−
∑

 (5.27)
 

5.2.19 MdMRE 

Median of the Magnitude of Relative Error can be mathematically defined as 

(Bardsiri, Jawawi b, Bardsiri, & Khatibi, 2013) 

( )MdMRE median MRE=
 (5.28) 

 

5.3  Model Evaluation 

The model must be evaluated in the light of its objectives. The objective is to 

develop DBA method so that a comprehensive ranking of the alternative cost estimation 

models could be made combining various attributes relevant to them for a data set. We 

consider 5 cost estimation models as described in chapter 4 section 4.4 and a dataset has 

been taken from the open literature for evaluation, optimal selection, and ranking of these 

five models based on seventeen criteria as described in section 5.2: Bias, MSE, MAE, 

MEOP, PRR, Variance, RMSPE, Rsq, SSE, TS, ED, PA, SD, MD, MMRE, RMSE, and 

NRMS. The mathematical form of the five cost estimation models described in equations 

(4.1) to (4.5) are used to find parameters and to evaluate model selection criteria on the 

dataset.  

For the first time, Bacterial Foraging Optimization (BFO) algorithm is employed 

along with LSE technique, to calculate values of parameters of these models under 

discussion for ten datasets. LSE technique is used to get a function of the cost estimation 

models. This function is called objective function, and is required as an input function to 

BFOA. The minimized value of objective function is used to find values of parameters. 

Comparison criteria are computed on these parameters values.    



58 

The values of the parameters for these five cost estimation models have been 

estimated using the LSE technique using BFOA. The estimated values of the parameters 

have been provided in Table 5,Table 7,Table 9,Table 11,Table 13. The values of the 

seventeen comparison criteria considered here have been obtained using eq. (5.10) 

through (5.28). The estimated and optimal values of the model selection criteria are given 

in Table 15.  

Matlab7.10.0.499 has been used to model thirteen NHPP SRGMs and to 

implement BFO algorithm. The values have been computed by matlab programmes 

executed on intel core 2 duo 2.0 Ghz processor with 4GB RAM under windows 7 

environment on matlab 7.10.0.499. 
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Chapter Six: Flow of Adopted Approach and Results Obtained 

6.1 Introduction  

We have implemented software reliability models based on Matlab scripting 

language. We have also implemented several software reliability models to rank software 

reliability models at the Testing phases. 

6.1.1 Required Operating Environment 

Computers on which Optimal model selection tool will run must have the 

following characteristics: 

1. Operating Environment - Microsoft Windows 2000, Windows XP, Windows Vista, 

or Windows 7. 

2. CPU – Pentium-IV with an 80387 math coprocessor, Dual core, or Quad core or 

higher microprocessor based system is recommended.  

3. Disk space - You should have at least 200 MB of free space on your hard drive to 

install optimal model selection tool.  

4. Pointing device - Two-button Windows-compatible mouse. It will not run without a 

mouse or equivalent pointing device (e.g. Windows-compatible trackball, touch pad, 

or digitizing tablet).  

5. Memory - 1GB of RAM is recommended. 

6. Monitor  - A 17" or larger VGA or better quality monitor/TFT/LCD supported by 

Windows is expected.  

7. Printer  - a printer supported by Windows is assumed. A 300dpi or better resolution 

laser printer is highly recommended. 

6.2 Flow of adopted approach 

Procedure adopted to rank the cost estimation models using BFO and DBA is described 

below: 

6.2.1 Step 1: Determination of Parameters of COCOMO model and four of its variants 
using Bacterial Foraging Algorithm 

Input: KLOC, ME, Actual Effort [Table 3] 
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Output: Parameters of all five model and corresponding estimated efforts.    

First step is the determination of parameters of COCOMO model and four of its 

modifications using Bacterial Foraging Algorithm. Bacterium moves in the search space 

in search of food. It means objective of bacteria is to move to the position with highest 

nutrient value. Highest nutrient position is considered to be a position with lowest energy. 

So, overall objective of the algorithm is to find the position with lowest energy. Now, the 

problem of estimation of parameters of COCOMO and its variants has to be mapped to 

the bacterial forging optimization problem. For this purpose position of each bacterium is 

considered as one set of parameter of a particular model. Now, according to algorithm all 

the bacteria are initialized with some random position. So, set of random position is equal 

to the number of bacteria.  Now iteration of four events of bacterium life cycle will start. 

Value of p (dimension in BFOA) will be equal to the number of parameters in the model 

whose parameters are required to be found out. Therefore, it can be observed that number 

of parameters correspond to the number of dimension in BFO. Table 2 shows the value of 

p for each cost estimation model considered in this research. 

Table 2: Value of p for each model 

Model p  

COCOMO 2 

COCOMO_model1 3 

COCOMO_model2 4 

COCOMO_model3 5 

COCOMO_model4 7 

 

• Chemotaxis:  Initial energy is calculated. However, process to calculate the 

energy will change a bit. Now, energy function will be composed of LSE andJ . 

In BFOA for given parameters J  value is calculated. Now, LSE is also calculated 

in addition toJ . In addition toJ , LSE also need to be minimized. So, fitness 

function is sum of J  and LSE. Rest of the procedure for chemotaxis remains 

same.  



61 

ccJ J LSE= +  (6.1)
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  

  
+ − − −  

  

∑ ∑

∑ ∑  (6.2)
 

( )2
_effort-Actual_effortLSE Estimated=∑  (6.3)

 

Estimated effort is calculated according to the model used. The equation of the 

respective models is given in Chapter 4 from section 4.4. 

• Reproduction and Elimination dispersal steps are carried as described in the 

original BFOA. 

6.2.2 Step 2: Evaluation of Criteria 

Input: Estimated Efforts, Actual Effort. 

Output: Values determined for criteria. 

All the five models are evaluated against the 17 criteria. The criteria that are used 

are BIAS, MSE, MAE, MEOP, PRR, Variance, RMPSE, RSQ, SSE, TS, MMRE, RMSE, 

NRMS, PA, ED, MD, and SD. After determination of parameters of all the models, they 

are evaluated against the criteria stated above.  

6.2.3 Step 3: Finally DBA (Distance Based Approach) is applied to rank all the 
algorithms. 

Input: Values determined of criteria 

Output: Rank of cost estimation models 
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6.3 Data Set and Parameters Value Used 

Data set that was used is shown in the table below. The data set was given by 

Bailey and Basili so as to develop the model for effort estimation. Data set in Table 3 

contains loc in first column i.e. line of code and methodology used in second column of 

the table as the input. Data for the first 13 projects is used for the purpose of training and 

other 5 is used for the purpose of testing. Estimated efforts computed with various 

models are compared with the actual efforts. 

Table 3: NASA Data Set 

LOC Actual_Efforts ME 
90.2 115.8 30 
46.2 96 20 
46.5 79 19 
54.5 90.8 20 
31.1 39.6 35 
67.5 98.4 29 
12.8 18.9 26 
10.5 10.3 34 
21.5 28.5 31 
3.1 7 26 
4.2 9 19 
7.8 7.3 31 
2.1 5 28 
5 8.4 29 

78.6 98.7 35 
9.7 15.6 27 

12.5 23.9 27 

100.8 138.3 34 
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The below results are calculated with the parameters values given in the following table: 

Table 4: Parameters used for BFOA 

PARAMETER VALUE 

Number of Bacteria 20 

Number of Chemotactic Step 40 

Number of Swimming Step 8 

Number of Reproduction Step 4 

Number of Elimination Dispersal Step 4 

 

6.4 Results obtained 

6.4.1.1 Results obtained for COCOMO 

Table 5 shows the value of two parameters obtained for the COCOMO model. 

These values of a  and b  were giving minimum LSE. First column is showing the 

parameter and second column is showing the value obtained for that parameter. 

Table 5: Parameters-COCOMO  

Parameter Value 

a  2.4279 

b  0.8817 

 

Table 6 shows the results of the simulation run of the COCOMO model on the 

MATLAB. Second column shows the value of LOC which is one of the independent 

variable. Third column shows the actual effort measured for the NASA data set. Fourth 

column shows the estimated effort by the COCOMO model. Values of parameter shown 

in the table above are used to calculate these efforts. LSE of 1227.7128 is obtained for 

above parameters. 
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Table 6: Estimated and Actual-COCOMO 

loc actual_efforts cocomo_estimated 
90.2 115.8 128.569 
46.2 96 71.27638 
46.5 79 71.6843 
54.5 90.8 82.45397 
31.1 39.6 50.28027 
67.5 98.4 99.56987 
12.8 18.9 22.9857 
10.5 10.3 19.30249 
21.5 28.5 36.3113 
3.1 7 6.583615 
4.2 9 8.604977 
7.8 7.3 14.85219 
2.1 5 4.670158 
5 8.4 10.03489 

78.6 98.7 113.8741 
9.7 15.6 17.99979 
12.5 23.9 22.51004 
100.8 138.3 141.8019 

 

 

Figure 7: Graph for COCOMO 
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Figure 7 shows the graphical representation for the deviation of estimated efforts 

from the actual effort. Horizontal axis depicts the LOC which was input and vertical axis 

depicts the Efforts. LSE of 1227.7128 was obtained. 

 

6.4.1.2 Results obtained for COCOMO_MODEL1 

Table 7 shows the value of two parameters obtained for the COCOMO_model1 

model. This value of a , b , and c  was giving minimum LSE. First column is showing the 

parameter and second column is showing the value obtained for that parameter. 

Table 7: Parameters- COCOMO_model1 

Parameter Value 

a  9.9729 

b  0.5912 

c  -0.7998 

 

Table 8 shows the results of the simulation run of the COCOMO_model1 on the 

MATLAB. First column shows the value of LOC which is one of the independent 

variable. Second column shows the actual effort measured for the NASA data set. Third 

column corresponds to the value of ME. Fourth column shows the estimated effort by the 

COCOMO_model1 model. Values of parameter shown in the table above are used to 

calculate these efforts. LSE of 651.2720 is obtained for above parameters 

Table 8: Estimated and Actual-COCOMO_model1 

loc actual_efforts me cocomo_model1_estimated 

90.2 115.8 30 118.8097 

46.2 96 20 80.15588 

46.5 79 19 81.32432 

54.5 90.8 20 90.02187 

31.1 39.6 35 48.09942 
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67.5 98.4 29 97.11694 

12.8 18.9 26 24.22505 

10.5 10.3 34 12.85183 

21.5 28.5 31 36.3791 

3.1 7 26 -1.32711 

4.2 9 19 8.100073 

7.8 7.3 31 8.797576 

2.1 5 28 -6.93055 

5 8.4 29 2.631526 

78.6 98.7 35 103.6492 

9.7 15.6 27 16.6175 

12.5 23.9 27 22.79842 

100.8 138.3 34 125.3059 

 

Figure 8 shows the graphical representation for the deviation of estimated efforts from 

the actual effort for COCOMO_model1. Horizontal axis depicts the LOC which was 

input and vertical axis depicts the Efforts. LSE of 651.2720 was obtained 

 

Figure 8: Graph for COCOMO_model1 
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. 

6.4.2 RESULTS OBTAINED FOR COCOMO_model2 

Table 9 shows the value of two parameters obtained for the COCOMO_model2 

model. These value of a , b , c , and d  were giving minimum LSE. First column is 

showing the parameter and second column is showing the value obtained for that 

parameter. 

Table 9: Parameters-COCOMO_model2 

Parameter Value 

a  6.7987 

b  0.6719 

c  -1.4746 

d  23.5270 

Table 10 shows the results of the simulation run of the COCOMO_model2 on the 

MATLAB. First column shows the value of LOC which is one of the independent 

variable. Second column shows the actual effort measured for the NASA data set. Third 

column corresponds to the value of ME. Fourth column shows the estimated effort by the 

COCOMO_model2 model. Values of parameter shown in the table above are used to 

calculate these efforts. LSE of 476.7398 is obtained for above parameters. 

Table 10: Estimated and Actual- COCOMO_model2 

loc actual_efforts me cocomo_model2_estimated 

90.2 115.8 30 120.1006 

46.2 96 20 81.98924 

46.5 79 19 83.78808 

54.5 90.8 20 92.56147 

31.1 39.6 35 40.26464 

67.5 98.4 29 95.66398 

12.8 18.9 26 23.94391 
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10.5 10.3 34 8.437606 

21.5 28.5 31 31.47896 

3.1 7 26 3.834764 

4.2 9 19 16.41172 

7.8 7.3 31 7.376208 

2.1 5 28 -1.67351 

5 8.4 29 4.185275 

78.6 98.7 35 100.0845 

9.7 15.6 27 16.77257 

12.5 23.9 27 21.99422 

100.8 138.3 34 125.9551 

  

Figure 9 shows the graphical representation for the deviation of estimated efforts 

from the actual effort for COCOMO_model2. Horizontal axis depicts the LOC which 

was input and vertical axis depicts the Efforts. LSE of 476.7398 was obtained. 

 

 

Figure 9: Graph for COCOMO_model2 
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6.4.3 Results obtained for COCOMO_model3 

Table 11 shows the value of two parameters obtained for the COCOMO_model3 

model. These value of a , b , c  , d  , and e  were giving minimum LSE. First column is 

showing the parameter and second column is showing the value obtained for that 

parameter. 

Table 11: Parameters-COCOMO_model3 

Parameter Value 

a  7.7960 

b  0.6343 

c      -0.9401 

d   1.0841 

e    18.8382 

 

Table 12 shows the results of the simulation run of the COCOMO_model3 on the 

MATLAB. First column shows the value of LOC which is one of the independent 

variable. Second column shows the actual effort measured for the NASA data set. Third 

column corresponds to the value of ME. Fourth column shows the estimated effort by the 

COCOMO_model3 model. Values of parameter shown in the table above are used to 

calculate these efforts. LSE of 446.1398 is obtained for above parameters. 

Table 12: Estimated and Actual Efforts-COCOMO_model3 

loc actual_efforts me cocomo_model3_estimated 

90.2 115.8 30 116.8333 

46.2 96 20 83.31446 

46.5 79 19 84.9876 

54.5 90.8 20 93.11093 

31.1 39.6 35 43.44834 
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67.5 98.4 29 95.42207 

12.8 18.9 26 25.97107 

10.5 10.3 34 10.48273 

21.5 28.5 31 34.51784 

3.1 7 26 2.669481 

4.2 9 19 15.33051 

7.8 7.3 31 8.627129 

2.1 5 28 -3.51741 

5 8.4 29 4.289172 

78.6 98.7 35 98.67209 

9.7 15.6 27 18.29254 

12.5 23.9 27 24.04201 

100.8 138.3 34 121.2743 

  

Figure 10 shows the graphical representation for the deviation of estimated efforts 

from the actual effort for COCOMO_model3. Horizontal axis depicts the LOC which 

was input and vertical axis depicts the Efforts. LSE of 446.1398 was obtained. 

  

 

Figure 10: Graph for COCOMO_model3 
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6.4.4 Results obtained for COCOMO_model4 

Table 13 shows the value of two parameters obtained for the COCOMO_model4 

model. These value of a , b , c  , d  , e , f  and g  were giving minimum LSE. First 

column is showing the parameter and second column is showing the value obtained for 

that parameter. 

Table 13: Parameters-COCOMO_model4 

Parameter Value 

a  4.0933 

b  0.7577 

c  -1.9088 

d  0.9340 

e 4.1569 

f  1.5473 

g  20.7323 

 

Table 14 shows the results of the simulation run of the COCOMO_model4 on the 

MATLAB. Second column shows the value of LOC which is one of the independent 

variable. Third column shows the actual effort measured for the NASA data set. Fourth 

column corresponds to the value of ME. Fifth column shows the estimated effort by the 

COCOMO_model4 model. Values of parameter shown in the table above are used to 

calculate these efforts. LSE of 451.3753 is obtained for above parameters. 

Table 14: Estimated and Actual COCOMO_model4 

S.NO loc actual_efforts me cocomo_model4_estimated 

1 90.2 115.8 30 120.1186 

2 46.2 96 20 82.49775 

3 46.5 79 19 84.12727 

4 54.5 90.8 20 92.71668 
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5 31.1 39.6 35 43.34774 

6 67.5 98.4 29 96.49507 

7 12.8 18.9 26 26.44356 

8 10.5 10.3 34 11.91825 

9 21.5 28.5 31 34.42817 

10 3.1 7 26 5.646882 

11 4.2 9 19 17.47326 

12 7.8 7.3 31 10.42199 

13 2.1 5 28 0.01857 

14 5 8.4 29 6.753416 

15 78.6 98.7 35 101.1766 

16 9.7 15.6 27 19.38157 

17 12.5 23.9 27 24.62457 

18 100.8 138.3 34 126.0314 

 

 Figure 11: Graph for COCOMO_model4 shows the graphical representation for 

the deviation of estimated efforts from the actual effort for COCOMO_model4. 

Horizontal axis depicts the LOC which was input and vertical axis depicts the Efforts. 

LSE of 451.3753 was obtained. 
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Figure 11: Graph for COCOMO_model4 

6.5 Results obtained after step 2  

 In the Table 15 we have listed all the 5 models in different rows and each column 

represent one of the 17 criteria discussed in 5.2. For all the models the values for each 

criterion were obtained by putting outcomes of MVFs i.e. estimated defects and also the 

observed defects, in the formulas of these criteria. In the last row of the table we can see 

OPTIMAL value which in this case in the absolute minimum value for each criterion 

except Rsq for which absolute maximum value is considered. This table is given as the 

input to the Step 3 of the experimental setup. 

6.6 Results obtained after step 3 

First step of DBA is to convert the Table 15 to Zstd table i.e. the standard matrix 

that can be obtained from eq. 5.8. The structure of the table is same as the above table. 

This table is the input to find out another intermediate table i.e. Zdis table or the distance 

matrix which can be obtained from eq. 5.9 In the Zdis which has the difference from each 

alternative to the reference point is the final table that is obtained before composite 

distance can be calculated. Zdis then serve as the input to find the Euclidean composite 

distance, between each alternative software cost estimation model to the optimal state. 

Both the Zstd table and Zdis table are shown in Table 16 and Table 17respectively. 
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Table 15: Comparison Criteria 

Model BIAS MSE MAE MEOP PRR VAR RMPSE RSQ SSE TS ED PA SD MD MMRE RMSE NRMS 

COCOMO 1.8258 92.6266 7.4186 -598.2238 1.3538 9.8877 10.0549 0.9583 1482.0257 13.6450 38.4971 -559.4336 9.3369 118.6980 -2.6487 9.6243 0.1945 

COCOMO_model1 -1.2152 58.7022 6.3987 -499.8800 6.4662 7.5158 7.6134 0.9752 880.5337 10.5176 29.6738 -433.2267 7.1970 95.9808 3.2926 7.6617 0.1549 

COCOMO_model2 -0.9628 40.9368 5.4640 -409.9736 2.5299 6.0545 6.1306 0.9839 573.1147 8.4853 23.9398 -324.9780 5.8063 76.4960 1.3837 6.3982 0.1293 

COCOMO_model3 -0.7073 58.4837 6.6631 -518.7131 0.8933 6.8053 6.8420 0.9786 760.2884 9.7731 27.5733 -381.2213 6.6875 86.6198 1.2232 7.6475 0.1546 

COCOMO_model4 0.7290 56.8766 7.6759 -603.6264 -267.1849 6.2041 6.2467 0.9824 625.6423 8.8656 25.0128 -369.0843 6.0665 84.4352 -1.0148 7.5417 0.1524 

Optimal 0.7073 40.9368 5.4640 409.9736 0.8933 6.0545 6.1306 0.9839 573.1147 8.4853 23.9398 324.9780 5.8063 76.4960 1.0148 6.3982 0.1293 
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Table 16: Zstd Matrix 

Model BIAS MSE MAE MEOP PRR VAR RMPSE RSQ SSE TS ED PA SD MD MMRE RMSE NRMS 

COCOMO 1.6287 1.8391 0.8841 -1.0114 0.4864 1.8588 1.8614 -1.8894 1.8894 1.8451 1.8451 -1.8080 1.8451 1.8080 -1.5000 1.7800 1.7800 

COCOMO_model
1 -0.9892 -0.1669 -0.4141 0.3674 0.5338 0.1593 0.1640 -0.0496 0.0496 0.1418 0.1418 -0.2434 0.1418 0.2434 1.3787 -0.1087 -0.1087 

COCOMO_model
2 -0.7719 -1.2174 -1.6040 1.6278 0.4973 -0.8877 -0.8669 0.8907 -0.8907 -0.9651 -0.9651 1.0985 -0.9651 -1.0985 0.4538 -1.3246 -1.3246 

COCOMO_model
3 -0.5520 -0.1798 -0.0777 0.1033 0.4822 -0.3498 -0.3723 0.3182 -0.3182 -0.2637 -0.2637 0.4012 -0.2637 -0.4012 0.3760 -0.1224 -0.1224 

COCOMO_model
4 0.6844 -0.2749 1.2116 -1.0871 -1.9997 -0.7806 -0.7862 0.7301 -0.7301 -0.7580 -0.7580 0.5517 -0.7580 -0.5517 -0.7084 -0.2242 -0.2242 

Optimum -0.5520 -0.1669 -0.0777 0.1033 0.4822 0.1593 0.1640 -1.8894 0.0496 0.1418 0.1418 -0.2434 0.1418 0.2434 0.3760 -0.1087 -0.1087 

 
  



76 

 
 

 

Table 17: Zdis Matrix 

Model BIAS MSE MAE MEOP PRR VAR RMPSE RSQ SSE TS ED PA SD MD MMRE RMSE NRMS 

COCOMO -2.1806 -2.0060 -0.9618 1.1147 -0.0043 -1.6995 -1.6975 0.0000 -1.8398 -1.7033 -1.7033 1.5645 -1.7033 -1.5645 1.8760 -1.8886 -1.8886 

COCOMO_model
1 

0.4372 0.0000 0.3365 -0.2640 -0.0516 0.0000 0.0000 -1.8398 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -1.0027 0.0000 0.0000 

COCOMO_model
2 

0.2199 1.0505 1.5263 -1.5245 -0.0152 1.0470 1.0309 -2.7801 0.9403 1.1069 1.1069 -1.3419 1.1069 1.3419 -0.0778 1.2160 1.2160 

COCOMO_model
3 

0.0000 0.0129 0.0000 0.0000 0.0000 0.5090 0.5363 -2.2076 0.3678 0.4055 0.4055 -0.6447 0.4055 0.6447 0.0000 0.0137 0.0137 

COCOMO_model
4 

-1.2364 0.1080 -1.2893 1.1904 2.4818 0.9398 0.9501 -2.6195 0.7797 0.8998 0.8998 -0.7951 0.8998 0.7951 1.0844 0.1156 0.1156 

Optimum -0.5520 -0.1669 -0.0777 0.1033 0.4822 0.1593 0.1640 -1.8894 0.0496 0.1418 0.1418 -0.2434 0.1418 0.2434 0.3760 -0.1087 -0.1087 
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Once the composite distance value is known we can find out the rank of each 

model on the basis of this distance with shortest or lowest composite distance being the 

best is given rank 1 and longest composite distance being the worst is given rank 13 

which is the lowest rank in our case. The composite distance and ranks of the models 

based on the contributing criteria are shown in Table 18 

Table 18: Composite Distance and Ranking of Cost Estimation Models 

MODEL NAME 
COMPOSITE 

DISTANCE(CD) VALUE 
RANK 

COCOMO 6.6599 5 

COCOMO_MODEL1 2.1834 1 

COCOMO_MODEL2 5.1787 4 

COCOMO_MODEL3 2.6231 2 

COCOMO_MODEL4 4.9931 3 
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Chapter Seven: Conclusion and Future Scope 

From the above Table 18 we can conclude that the COCOMO_model1 is ranked 

as number one or the best based on the analysis which was done using the 17 criteria and 

DBA. After that COCOMO_model3 and COCOMO_model4 are ranked. COCOMO and 

COCOMO_model2 has highest composite distance i.e. five and four respectively.  

Parameters of BFOA can be studied in more detail. There are many parameters 

that are used in the BFOA algorithm. Effects of modifying these parameters can be 

analyzed. BFOA algorithm can be hybridized with various algorithms like Ant Colony 

Optimization, Particle Swarm Optimization, Genetic Algorithm, Artificial Bee Colony, 

Bat Algorithm so as to improve the convergence speed, accuracy of the algorithm. BFOA 

can be modified in order to mimic the exact natural process of E. Coli bacteria. For 

example population of bacteria can be kept variable; all bacteria may not undergo steps 

like chemotaxis, reproduction, elimination-dispersal at the same time etc.  BFOA can be 

converted be parallel algorithm i.e. it can be parallelized. This will improve the speed of 

convergence of algorithm because computations can be performed in parallel. Algorithm 

can also be converted to the Map Reduce form using Hadoop framework so as to handle 

the big data. Modifications of the BFOA for example Improved BFOA, Self Adapting 

BFOA, Hybridized BFOA can be applied to estimate the cost so as to obtain better 

results. BFOA can be applied to other engineering domains as well. 
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