CERTIFICATE

This is to certify that this report entitled **Condition Monitoring Algorithm for Induction Motor using Wavelet Transform**is an authentic report of the Major Project-II done by **Vasant Raj Mutha** in the partial fulfilment of the requirement for the award of the degree of Master of Technology in Control & Instrumentation by the Delhi Technological University during the year 2016.

Project Guide: Head of the Department:

Prof. Narendra Kumar Prof. Madhusudan Singh

Dept. of Electrical Engg. Dept. of Electrical Engg.

DTU, Delhi DTU, Delhi

ACKNOWLEDGEMENT

I take this opportunity to express my sincere gratitude to all those who have been

instrumental in the successful completion of this project.

Professor Narendra Kumar, Deptt. Of Electrical Engineering, Delhi Technological

University, my project guide, has guided me for the successful completion of this

project. It is worth mentioning that he always provided the necessary guidance and

support.

I would like to express my sincere thanks to M.Tech. Coordinator, Dr. Bharat

Bhushan, Associate Professor, Deptt. Of Electrical Engineering, Delhi Technological

University.

I am grateful for the help and cooperation of HOD, Prof. Madhusudan Singh. To all

the named and many unnamed, my sincere thanks. Surely it is Almighty's grace to get

things done fruitfully.

Vasant Raj Mutha (2K13/C&I/20)

M.Tech. (Control &Instrumentation)

4th Semester

LIST OF CONTENTS

ACKNOWLEDGEMENT	2
LIST OF CONTENTS	3
LIST OF FIGURES	5
LIST OF TABLES	6
ABSTRACT	7
Chapter-1. Introduction	8
1.1 Objectives of Project Work	9
1.2 Orientation	10
Chapter-2. Common Faults in Induction Motor	11
2.1 Introduction	11
2.2 Induction Motor - Overview	11
2.2.1 Squirrel Cage Induction motor(SCIM)	11
2.3 Electrical Fault	13
2.3.1 Broken Rotor Bar/End Rings	13
2.3.2 Stator Winding Fault	13
2.4 Mechanical Fault	14
2.4.1 Bearing Fault	14
2.4.2 Air Gap Eccentricity	16
2.4.3 Load Faults	17
2.4.4 Motor Shaft Failure	17
Chapter-3. Discussion of Various Existing Techniques	19
3.1 Introduction	19
3.2 Need for Condition Monitoring	19
3.3 Fault Diagnosis	19
3.4 Existing Condition Monitoring Techniques	21
3.4.1 Thermal Monitoring	21
3.4.2 Torque Monitoring	22
3.4.3 Noise Monitoring	22
3.4.4 Vibration Monitoring	22
3.4.5 Electrical Monitoring	22
3.5 Motor Current Signature Analysis	22
Chapter-4. Wavelet Transform	25
4.1 Introduction	25
4.2 Characteristics of Wavelet Systems	25
4.2.1 Reasons for selecting Wavelet Transform	26
4.3 Multi Resolution Analysis (MRA)	26
4.4 Continuous Wavelet Transform	27
4.5 Discreet Wavelet Transform	28
4.6 Wavelet Packet Transform	31
4.7 Parseval's Theorum	31
Chapter-5. Proposed Algorithm and Validation	33
Chapter-6. Results and Discussion	35

Condition Monitoring Algorithm for Induction Motor using Wavelet Transform

6.1 Introduction	35
6.2 Faulty Case-I	36
6.3 Faulty Case-II	37
6.4 Faulty Case-III	38
6.5 Faulty Case-IV	39
6.6 Faulty Case-V	40
6.7 Faulty Case-VI	41
6.8 Discussion	42
6.9 Future Expansion	42
REFERENCES	43

LIST OF FIGURES

Figure 2.1: View of an Induction Motor	12
Figure 2.2: Different Types of Short Winding Faults	14
Figure 2.3: Ball Bearing Dimension	16
Figure 2.4a: Static Eccentricity	16
Figure 2.4b Dynamic Eccentricity	16
Figure 3.1: Fault Diagnosis Process	20
Figure 3.2: Current Park's Vector	23
Figure 4.1: Description of MRA	27
Figure 4.2: DWT Coefficients Representation	28
Figure 4.3: Representation of DWT	30

LIST OF TABLES

Table 2.1 Causes of Shaft Failures	18
Table 5.1 Artificial Signals for Validation	33
Table 6.1 Frequency Bands for Validation	35
Table 6.2 Most Affected Frequency Bands for Various Operating Conditions	42