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ABSTRACT 

Squirrel Cage Induction Motors (SCIM) are largely prevailing machines which areused to convert 

electrical energy into mechanical energy in a wide number of applications in rolling mills, 

petrochemical industries, power plants etc. 

In the thesis work, I have discussed about the major Induction motor faults like rotor 

faults, bearing faults, stator winding faults, air-gap eccentricity, unbalance supply fault and load 

faults etc. The possible causes or stresses for the occurrence of these faults are also been listed in the 

thesis. Wide discussion on different types of harmonics, related to these faults, is also provided in 

this literature. Thesis also gives a detailed literature survey in the field of data dimension (Current 

signals) reduction using Park’s Vector approach. 

Fast Fourier Transform (FFT) is a spectrum estimation technique, comprehensively used 

with Motor Current Signature Analysis (MCSA). However FFT does not bestow us with 

substantial outcome when frequency resolution is taken into account. Multi Resolution Analysis 

(MRA) is used to analyse any signal in order to obtain better resolution. Discrete Wavelet 

Transform (DWT) gives a superior idea about the variation in specific frequency band all through 

the bearing fault(s). 

In this thesis, for fast analysis and minimalism, Current Signal Energy calculation is 

described. The different fault cases have been created using artificial signals for validation. The 

variation in the energy of healthy and faulty conditions gives us a fair idea relating to fault detection. 

Actual data analysis reveals that FFT is not suitable for practical situations. Comparative study of 

DWT and WPT has been done to provide a deep insight into early detection of rotor fault and 

bearing fault. 

MATLAB based analysis has developed a “Base-Algorithm” so that it can be processed 

on by any non-programming personal too for further implementations in the fields like condition 

monitoring of SCIM in case of severefaults, provided the studies are being held on Steady State 

Currents. 
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Chapter 1 

Introduction 

 

Squirrel Cage Induction Motors are widely used mode of converting electrical energy to 

mechanical energy. They consume more than 60% of the electrical energy produced. These are 

present in major industrial applications. Hence, the maintenance of induction machines is one of the 

aspects where the industry most focuses its efforts, particularly since the appearance of low-cost 

motors in the market. Traditionally, induction motors were conceived as robust machines. However, 

due to the fact that low-cost motors usually work near the critical part of material characteristics, 

non-security margins appear and the probability of a fault increases, even more since inverters are 

used to drive the motor. Inverter drives introduce alterations such as dv/dt or common mode voltages 

that could cause premature damage to the machine, which is likely to evolve into a mechanical crash. 

In a squirrel cage rotor laminated steel carries the magnetic flux and transfers heat. Also, 

it gives a cage like structure. Rotor bars are generally made of copper or aluminium. The squirrel 

cage winding carrying current will produce a torque. Shaft is provided with bearings. To cool the 

motor, air flow is provided by fans present on the rotor. Squirrel cage motor today includes around 

80% of all industrial and commercial sectors. Within an industry, motors have different levels of 

reliability that can vary in size, types, and their applications. 

The study of SCIM failure/fault is of great interest for researchers and plenty of 

algorithms of different kind have been advanced to detect it.The dominant reason of frequently 

occurring bearing failures are fatigue, wear, improper installation, electrical discharge, deficient 

lubrication, mechanical vibration, excessive temperatures, and operations at non-specified 

conditions. 

Study of these stresses is based on current monitoring; and so it is not very 

expensive.Steady state data based Motor Current Signature Analysis (MCSA) is an indispensable 

technique, used for extracting the current harmonics caused by faults, in which frequency domain 

signal processing technique like Fast Fourier Transform (FFT),Short-Time Fourier Transform 

(STFT), Park’s Vector Approach, Gabor Transform and Wavelet Transform are used for detection of 

common faults in Induction motors. FFT is easy to implement but it has a limitation that it cannot 

detect transient faults.  

Short-Time Fourier Transform can detect transient faults but it has a drawback to detect 

signals in fixed window size, which results in poor frequency resolution. However, Time-scale 

techniques have become popular because they can overcome all the above problems using variable 

size window. 

In this MCSA technique, current spectrum of Induction motor is used, which contains 

significant information of motor faults. The frequency spectrum of faulty motor is completely 
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different from that of healthy motor. It locates specific harmonic current component. Motor Current 

Signature Analysis (MCSA) are used to detect common faults in Induction motor such as rotor faults, 

bearing faults, stator winding faults, air-gap eccentricity fault and load faults. The above mentioned 

method requires continuous monitoring of motor stator current and explore for presence of various 

faults in Induction motor operated under constant and variable load conditions.   

For understanding how the strength (Energy) of the fault signals is distributed in the 

frequency domain, the Parseval’s theorem is used in a modified form. For instance, if a measured 

waveform is a current signal with additive disturbances due to any of the fault signals, we need to 

build a mechanics for categorizing the fault or suppress the frequency of the specific band. This can 

be done by being cognizant of energies of different bands. 

1.1 Objectives of Project Work  

The Objective of this project is to analyse the variations in Stator Current Signal by 

pursuing the Energy changes for different Frequency Bands caused by continuous variations in 

operating conditions due to Variable Loadings on 3-phase SCIM. 

In order to fulfil the mentioned objective, we first reduced the sophisticated 3-phase 

calculations into a more informative two-dimensional data viz. Direct (d) Axis and Quadrature (q) 

Axis by using the Park’s Vector approach. The first analysis is emphasized on to catch the most 

affected dimension due to load variations. The different components (dimensions) d and q are 

processed through the most recent Signal Processing Technique i.e. DWT to reduce the bulkiness 

of d/q- spectra. A 5-level DWT is used for this. This located only the data that comprise almost all 

the information related to the d/q- spectra. The approach to calculate the energy of this data is very 

much similar to the Spectrum Energy Calculation(𝐸 = ∑ |𝑋𝑖|2𝑛
𝑖=0 ) of any signal. 

Though, the deviation has not been a concern but the Energy, by processing the Current 

Signature through all above mentioned techniques without losing any information. The final 

approach isGraphical to study the various Energy Signals for different conditions.  All the 

signatures are compared in a graphical form and dominating dimensions have been found out. 

Moreover, the main advantage of using DWT can be significantlyseen in the graphical viewing as the 

most affected part is easy to recognize, be it a Detailed Component or an Approximate one. Due to 

the base of bifurcation being their Frequency Ranges, an insight of the frequency variation can be 

achieved significantly showing the introduction and reduction of various frequencies that might be 

useful for further studies. 

This MATLAB based analysis is further developed as a “Base- Algorithm” so that it 

can be processed on by any non-programming personal too for further implementations in the field 

like condition monitoring of SCIM in case of sever Faults provided the studies are being held on 

Study State Currents. 
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1.2 Orientation 

The project work explores the frequency bands affected due to harmonic after occurring 

of faults. The different operating conditions are depicted as Energy bar graphs and the whole process 

is compiled in this report as mentioned: 

Chapter 1 presents an overview of the work by providing a brief of various conditions and 

techniques included in work with an organized orientation. 

Chapter 2 provides a brief literature on Induction Motor. The various operating conditions, different 

faults and their relation with fundamental frequencies with formulas is also shown in this chapter. 

Chapter 3 describes the need of condition monitoring by providing a brief of fault diagnosis. It also 

presents a view of various available techniques for the condition monitoring purpose. 

Chapter 4 discusses the Wavelet Transform as a novel approach for our work. It provides a deep 

insight of various signals and justifies the edge of DWT over other techniques like FFT while 

working in time-frequency domain. Filtration chart of DWT is also presented in the chapter. An 

overview of Parseval’s theorem is also provided. 

Chapter 5 is a transitory overview of the validation by use of artificial signals that are 

representatives of different working conditions. 

Chapter 6 embarks upon the significance of energy changes in various frequency bands in case of 

bearing faults and rotor cut faults. Depiction of all energy-bar-plots is concluded with a discussion 

over the results. 

The references are mentioned at the end of the report. 

 

 

 

 

 

 

 



Condition Monitoring Algorithm for Induction Motor using Wavelet Transform 

  5 
 

Chapter 2 

 

Common Faults in Induction Motor 
 

2.1 Introduction 

Nowadays a variety of industrial applicationsthree-phase make use of Squirrel Cage 

Induction Motors (SCIMs) due to their ruggedness, cheapness and requirement of low maintenance. 

The motor lifetime can be reduced considerably due to the voltage stresses caused by the modern 

high frequency power converters in addition to corrosive and dusty industrial environments where 

these motors are installedfor operation. 

2.2 Induction Motor - Overview  

Induction Motors are most widely used electro-mechanical device which converts 

electrical energy into mechanical energy via electromagnetic induction in industries as they are 

robust, cheap efficient and reliable. Also it requires less maintenance and sufficiently high starting 

torque. 

2.2.1 Squirrel Cage Induction Motor (SCIM) 

Generally, Induction motors are used in pumps, machine tools, conveyors, presses, 

elevators, centrifugal machines, packaging equipment etc. Other applications are in petro-chemical 

and natural gas plants, equipment for coal plants, shredders etc. Therefore, it becomes very important 

to run them smoothly so that production can be maintained. An Induction machine is an 

asynchronous machine which contains a magnetic circuit that links with two electric circuits and 

rotates with respect to each other and the power is transferred from one electrical circuit to other. The 

rotor winding in three-phase induction motor can be squirrel cage type or wound-rotor type. 

On the basis of rotor winding Induction motors can be classified under following two categories: 

 Squirrel Cage Induction Motor  

 Wound Rotor Induction Motor 

Out of the two above mentioned types, squirrel cage Induction motors are most often 

used as they are simpler, more rugged and are more efficient than slip-ring Induction motors. The 

squirrel cage Induction motors are preferred because they are low on cost, have no brushes and 

commutators and are more suitable for high speed applications[10], [11]. 
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Fig. 2.1. View of an Induction motor (Source: www.sawmill.creek.org) 

Around 90% of Induction motors are of squirrel cage type, because of their simple and 

rugged construction. The rotor contains a cylindrical laminated core with parallel slots carrying rotor 

conductors which are shorted at each end by end-rings. Rotor bars are generally made of copper, 

aluminum or alloys. The end-rings and conductors form a cage like structure which was earlier used 

for keeping squirrel, thus the name squirrel cage rotor. The rotor bars are slightly skewed to provide 

uniform torque, reduce noise during operation and also to reduce locking capacity of the rotor [2], 

[3]. 

The common faults that occur in induction motors are: bearing faults, rotor faults, short 

turn winding fault, gear fault and misalignment of shaft. The internal faults in induction motors are 

classified as: 
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 Electrical Faults 

 Mechanical Faults 

Electrical faults [30], [31] are either caused by winding insulation problems or due to 

rotor faults and include rotor faults and short turn faults. While mechanical faults [32] contains air-

gap eccentricity, bearing faults, load faults and misalignment of shaft. 

2.3 Electrical Faults 

2.3.1 Broken Rotor Bar/ End-rings: 

A squirrel cage induction motor contains rotor bars and end rings. Due to frequent start 

or manufacturing defect or thermal stresses a rotor bar may be completely broken or partially 

cracked. As per the survey, these causes around 5-10% faults in induction motor. This broken rotor 

bar condition causes sideband components to appear. These sideband components are found on the 

left and right sides of the fundamental frequency component when seen in the power spectrum of the 

stator current. The left sideband component are found due to electric and magnetic asymmetries in 

the induction motor rotor cage, while the right sideband components occur due to speed ripples 

caused by the torque pulsations [45]-[51]. The frequencies of this sideband can be given as [1], [5]-

[9]: 

ssb fsf )21(          (1) 

The frequencies of broken rotor bar/end-rings are given as [1], [5], [7]: 

















 
 s

p

s
kff sbb

1
   (2) 

where, k/p = 1,5,7,11,13,….(because of normal winding configuration), 

s = per unit slip,   sf = fundamental frequency of stator current (supply). 

The rotor fault produces a series of sideband frequencies given as [12], [13]: 

  ssb fsnf 21           (3) 

where, n = 1, 2, 3 … = order of harmonics. 

The broken rotor bar and end ring breakages also throw a light on torque ripples, speed oscillations, 

stator current envelope and instantaneous stator power oscillations.  

2.3.2 Stator Winding Fault: 

These causes around 35-40% induction motor failures. These fault results generally due 

to long-term thermal aging. These are usually caused by insulation failure in various turns of a stator 

coil. Due to stator turn fault in three phase induction motor a large circulating current is produced 

and consequently an excessive heat in the shorted turns is generated. If motor is operated above its 

temperature limit, the best insulation may fail easily. The life of insulation decreases by 50% for 
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every 10º C rise in the stator temperature limit.Thus, efficient detection of stator insulation failure is 

crucial for harmful motor failure [52], [53]. 

The major causes of winding insulation failures are [13]: 

 Short circuit 

 High winding temperature 

 Loose bracing on end winding 

 Contamination due to oil, dirt and moisture 

 Electrical discharges 

 Leakage in cooling system 

 The stator winding related failures are categorized into five main parts shown in Fig. 2.2: 

a) Turn-To-Turn 

b) Coil-To-Coil 

c) Line-To-Line 

d) Line-To-Ground 

e) Open-Circuit Fault  

Out of all the above mentioned faults, turn-to-turn faults are most difficult one to detect. 

Further these faults are very challenging to detect at their initial stages, still various condition 

monitoring techniques are used to detect them. 

 

 

 

 

 

Figure (2.2). Different types of short winding faults 

2.4 Mechanical Faults 

The commonly found mechanical faults in three phase induction motors are: 

2.4.1 Bearing Faults: 

These faults account for around 40% of all induction motor failures. Bearings are very 

common component of electrical machines. These are employed to support motor shaft. These 

consist of inner and outer rings. The main cause of bearing failure is improper installation of bearing 

or shafts. Corrosion and contamination also causes bearing failure in most of the industries. The most 

common reasons for bearing failures can be listed as follows [54]: 
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 Vibrations 

 Thermal Overloading 

 Shaft misalignment 

 Excessive overloading 

 Defects in machinery 

 Improper handling 

 Damaged during storage or transportation 

Due to abnormal running of bearing, large vibrations are produced and noise level is 

also increased. If any of the thermal, mechanical or magnetic stresses exceeds the bearing capacity, 

then, the bearing may get damaged and a catastrophic failure can occur. Exceeding the limiting speed 

and overload can also be the possible causes of bearing failure. Causes may include improper 

lubrication of bearings, improper maintenance and storage. Increased noise level or vibration level 

are the general indications of bearing failure [18], [23], [24], [55]-[56]. 

The mechanical displacement in ball bearing due to the damaged bearing causes a 

change in machine air-gap. The characteristic frequency of ball bearing is related to ball-bearing 

dimension (fig. 2.3), rotational frequency of the machine. These variations produce stator current at 

frequencies [1], [5], [7]-[9]: 

 

oisb nfff ,
       

 (4) 









 cos1

2
,

PD

BD
f

n
f roi (5) 

where, bn = number of balls, 
rf = rotational frequency in RPM, 

             PD = bearing pitch diameter, 

             BD = ball diameter,  

             β = contact angle of ball with the races. 
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Figure (2.3): Ball-bearing dimension 

 

2.4.2 Air-gap Eccentricity: 

Air-gap eccentricity is very common fault in induction motor and this occurs due to the 

unequal air-gap between stator and rotor [57]-[59]. This fault generates problems of vibration and 

noise. These may lead to unequal magnetic pull (UMP) and subsequently can cause a stator to rotor 

rub which may lead to stator or rotor damage. UMP is the situation raised due to the non-uniform air-

gap between stator and rotor through deformations or manufacturing tolerances. 

 It also causes the rotor bending and striking to the stator winding. For an ideal case, the 

rotor is centrally placed in the air-gap and the balanced magnetic forces are in opposite direction, 

with no rotor deflection [60]. The main causes of air-gap eccentricity are: inaccurate positioning of 

rotor with respect to stator, shaft deflection, bearing damage and stator core movement. 

 

(a)                                          (b) 

Figure (2.4): (a) Static eccentricity and (b) Dynamic eccentricity 

There are following types of air-gap eccentricity: 

a) Static Eccentricity 
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b) Dynamic Eccentricity 

c) Mixed Eccentricity 

Static eccentricity means the condition of inaccurately placed motor shaft in the air-gap 

shown in Fig. 2.4 (a). Its main cause is incorrectly installed rotor or oval stator core. 

Dynamic eccentricity means centre of rotation and centre of rotor do not coincide with 

each other shown in Fig. 2.4 (b). It is caused due to bearing wear, misalignment of bearing or shaft. 

Static eccentricity is space dependent while dynamic eccentricity is space and time 

dependent. The combined static and dynamic eccentricity is known as mixed eccentricity. The air-

gap eccentricity up to 10% is usually allowed, however, it is kept low to avoid vibration, noise and 

UMPF. Air-gap eccentricities occur even in newly manufactured motors. These eccentricities can be 

detected by two methods. 

 

1. The sideband frequencies linked due to eccentricities are given as [28]: 

  















 
 wdseccslot n

p

s
nkRff

1
                                                         (6) 

2. The abnormal harmonic frequencies due to both static and dynamic eccentricities are given 

by [7]: 
















 


p

s
mff secc

1
1         (7) 

where, sf = supply frequency, k = 1, 2, 3…,R = rotor slot number; dn  = eccentricity order; 

            s = per-unit slip; p = no. of pole pairs; wn = stator mmf harmonics order. 

m = 1, 2, 3… 

 

2.4.3 Load Faults: 

If the load toque is not changing with rotor position, then current will have some 

spectral components which are similar to those arise due to fault condition. Motors are very 

commonly coupled to mechanical loads and gears in industries. Several faulty conditions may occur 

in this arrangement. Examples can be given by faulty gear system or coupling misalignment which 

couples a load to the motor [5], [7], [11]. 

 

2.4.4 Motor Shaft Failure: 

Majority of shaft failures occurs due to the combination of various stresses. Motor shaft 

is generally made of hot rolled carbon steel or alloyed steel. Major possible causes of shaft failures 

also include corrosion, brittle fracture, and fatigue or overload [61]. 80-90% shaft failures are fatigue 

related.  
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Common causes of shaft failures are listed in Table 2.1 below: 

Table 2.1 Causes of Shaft Failures. 

Failures Causes 

Corrosion wear pitting or cavitation 

Fatigue excessive rotary bending 

Overload quick stop or jam 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Condition Monitoring Algorithm for Induction Motor using Wavelet Transform 

  13 
 

Chapter 3 

 

Discussion of Various Existing Techniques 
3.1 Introduction 

This chapter includes, literature survey on condition monitoring techniques in Induction 

motors. This survey covers some important topics such as need for condition monitoring techniques, 

fault diagnosis and existing condition monitoring techniques.  

3.2 Need for Condition Monitoring 

Condition monitoring techniques have been defined as the continuous observation of 

the health of a plant and equipment throughout its entire service life. It is very crucial to detect faults 

in nascent conditions to provide a safe environment in plants and industries. These condition 

monitoring techniques give early warning of motor failure.  

As a result, we can easily plan what preventive measures to be taken in future and when 

to do the repair work. Consequently, outage time and down time is reduced. Therefore, by using 

effective condition monitoring techniques, we can improve reliability, productivity and safety of the 

system [11].  

All of the present conditions monitoring techniques require the operator to have deep 

knowledge so that one can easily make the difference between the healthy and faulty motor 

conditions. Many condition monitoring techniques have been proposed to diagnose faults in 

electrical machines. Many large machine systems are coupled with mechanical or vibration sensors. 

But these are very expensive and delicate.  

In many cases, vibration monitoring methods are used to diagnose faults. But it is 

advisable to go for stator current monitoring technique since it can provide the same result as in 

vibration monitoring but in non-invasive manner. This technique utilizes stator current data to detect 

fault. Sometimes transient time current data is also used for the fault detection.  

The parameters chosen for condition monitoring should be such that it will provide the 

complete information to the operator and maintainer for plant maintenance. Apart from traditional 

monitoring techniques like line currents, voltages, thermal and vibration monitoring, quantities like 

rotational speed and leakage fluxes are also being recently used for monitoring. 

 

3.3 Fault Diagnosis 

The study of induction motor behaviour and their diagnosis always has been a very 

challenging task for electrical engineers and researchers. Induction motors are prone to many types 

of faults. If a fault is not detected in its initial stage then it may become severe and induction motor 

may suffer from permanent damage. Thus, undetected motor fault cause motor failure, which in turn 

result into production shutdowns.    
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The term fault diagnosis means to determine a particular fault in the system. The fault 

diagnosis process usually consists of four phases, as shown in Fig. 3.1. Fault diagnosis will provide 

following advantages to the system: 

 

 Predict system failure. 

 Reduced maintenance cost. 

 Improved reliability. 

 Improved equipment performance. 

 

 

 

Figure (3.1): Fault Diagnosis Process 

1. Data Acquisition:  

This is the method of converting real-time signals into some numeric value so that 

computer can understand it [15]. Basically, data acquisition is a method to convert analog signals or 

waveforms into digital signals or values. The data acquisition system mainly consists of following 

components: 

 Sensors- These convert physical quantities into electrical signal. 

 Signal Conditioning Circuitry- It converts electrical signals into a form that can reliably be 

converted to data of relevance. 

 Analog to digital converter- These convert conditioned electrical signals to some numerical 

values. 

Thus, the data acquisition system starts with the measurement of physical properties 

like voltage, current, temperature, gas pressure etc. Before measuring these quantities, they must be 

first converted into a form which can be sampled by the data acquisition system.  

Therefore, sensors, here, acts as transducers, which convert a physical phenomenon into 

a corresponding electrical signal (e.g. strain gauge). Signal conditioning is required if the signals 

from the sensors are not suited to the data acquisition system hardware used. Then, the filtering or 

amplification of signal is required. Finally, these signals are converted to digital form and can be 

encoded to reduce transmission errors. 

2. Feature extraction: 

It is mainly a type of reduction in dimensions. If the input data to an algorithm is very 

large to be processed then, the input data is converted into a reduced set of significant data. 

Converting input data into the set of significant data is called Feature extraction. If the features 

Data Acquisition

Feature Extraction

Fault Progression and 
Trending Analysis

Decision Making
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extracted are suitably chosen then, it is expected to represent all relevant data in reduced form 

instead of taking full input data [14], [15]. 

3. Fault progression and Trending analysis: 

Fault progression is the deep observation of fault, how it develops and how it progresses 

with time. These features tell the behaviour of fault. Trending analysis is the analysis or observation 

of a system to develop a pattern or trend, in the observed data. It is generally used to predict future 

events. 

4. Decision making: 

This is the method of selection of an action which is based on outcomes of above 

mentioned procedures. This can be done by some classical or artificial intelligence techniques like 

expert system, fuzzy controller etc. 

 

3.4 Existing Condition Monitoring Techniques 

In recent years, many techniques [5]-[9] have been developed for detecting and 

monitoring above mentioned faults in Induction motors and these can be categorized as: 

 Thermal Monitoring 

 Torque Monitoring 

 Noise Monitoring  

 Vibration Monitoring 

 Electrical Monitoring- 

 Motor Current Signature Analysis 

i. Fast Fourier Analysis 

ii. Current Park’s Vector Approach 

iii. Wavelet Transform Analysis 

3.4.1 Thermal Monitoring: 

Thermal Monitoring in induction motor is completed by temperature measurement 

method or by the parameter estimation method. This method is an indirect method of motor fault 

detection. This method can be used to detect some of the stator faults like turn-to-turn and bearing 

faults. For a turn-to-turn fault, the temperature rise in the fault region is too slow to detect faults 

unless it becomes a more severe fault like phase-to-phase or phase-to-neutral fault. In the shorted 

turns of stator current fault, a large amount of heat is produced locally; and this heat proves the 

intensity of fault [17]. 

3.4.2 Torque Monitoring:  

In all induction motor faults, sidebands are produced around the characteristic 

frequency within air-gap torque. This air-gap torque cannot be measured directly. The instantaneous 
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power does not truly represent the instantaneous torque. A torsional spring system is accomplished 

by the output terminals, the shaft, the rotor and the mechanical load which has its own frequency. 

3.4.3 Noise Monitoring: 

By analysing the acoustic noise spectrum, noise monitoring is accomplished. For fault 

detection, acoustic noise from air-gap eccentricity can be used. This method of monitoring is not 

very accurate since measurement of noise due to air-gap eccentricity becomes difficult due to the 

noise coming from other machines. 

3.4.4 Vibration Monitoring: 

All electric motors produce noise & vibration & these can be used to find the condition 

of the motor. Forces of magnetic, mechanical and aerodynamic origin are the causes of noise and 

vibrations in electrical machines. The radial forces produced due to the air-gap field are the major 

causes of vibration & noise production in electrical motors. Vibration monitoring is the best 

condition monitoring technique but it requires costly accelerometers. Thus, cost is the major 

disadvantage in using vibration monitoring. Bearing faults, air-gap eccentricity and rotor asymmetry 

are usually detected using this method. Vibration monitoring is non-intrusive, continuous and 

convenient process of monitoring [18]-[21].  

3.4.5 Electrical Monitoring:  

Some techniques like Current Park’s vector approach, Current signature analysis, Fast 

Fourier Transform, Wavelet analysis all fall under this category. In this method, generally stator 

current is used to detect various motor faults. Thus, it is a non-intrusive current monitoring technique 

which does not require any extra equipment [18]-[20], [22]-[24]. 

 

3.5 Motor Current Signature Analysis  

MCSA technique has been used in numerous applications like nuclear generation, 

industries etc. Out of above mentioned techniques, MCSA is the best technique [4], [5], [7], [16], 

[25]-[27],  known till date since it does not require any additional device/ instrument, are not very 

expensive, easy to implement and also non-intrusive. 

A. Fast Fourier Analysis 

A Fourier Transform converts time-domain content to frequency-domain. A Fast 

Fourier Transform (FFT) is an algorithm to calculate the Discrete Fourier Transform (DFT) and its 

inverse. FFT is a very fast computation method and used in large calculation of engineering and 

mathematics [5], [7], [16], [26], [28], [29]. 

 

B. Current Park’s Vector Approach 

Next electrical monitoring technique is current Park’s vector approach [5], [7], [16], 

[30]-[33]. In general, a two-dimensional representation can be used to describe three-phase Induction 
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motor phenomenon, using Park’s Vector. The main phase variables ( cba iii ,, ) can be represented as 

Park’s vector components ( qd ii , ) as: 

cbad iiii
6

1

6

1

3

2
                       (8)                                      

cbq iii
2

1

2

1
                                                                                         (9) 

Under ideal conditions, the three-phase current results into following Park’s vector component: 

tii md sin
2

6
                                                                                          (10) 
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tii mq                                                                               (11) 

Where, mi  = maximum value of supply phase current; 

 = supply frequency; 

              t = time variable.  

For an ideal case, it is represented as a circular pattern centred at the origin of co-ordinates shown in 

Fig. (3.2). Abnormal condition is detected by monitoring the deviations from the acquired pattern.  

 

Figure (3.2): Current Park’s Vector for Ideal Condition 
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C. Wavelet Analysis 

Wavelet analysis is fast, more accurate, more convenient & highly sensitive for on-line 

detection of fault. This method is based on the idea of reconstruction of signal from some significant 

set of signals of variable amplitude fixed shape. This method can be used to detect any type of fault 

under any load condition [34]-[44], [62]. The explanatory details are provided in next chapter. 
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Chapter 4 

The Wavelet Transform 

4.1 Introduction 

The Wavelet Transform (WT) is a transform of the typethat provides the time-

frequency representation together. Many times a particular spectral component occurring at any 

instant can be of particular interest. In these cases it may be very beneficial to know the time 

intervals, these particular spectral components occur.  

For example, in EEGs (electroencephalogram), the latency of an event-related potential 

is of particular interest (Event-related potential is the response of the brain to a specific stimulus like 

flash-light, the latency of this response is the amount of time elapsed between the onset of the 

stimulus and the response). 

Fourier techniques have been the mainfrequency-domain analysis tool in many 

applications ofdigital relays. However, the signals generated by the powersystem faults and 

processed by these relays are rich inelectromagnetic transients. Thus, one of the main problems with 

these techniques or other similar ones is the width of thewindow function used as these signals are 

non-stationary. However, in a non-stationary signal there exists atransition period in which the 

moving data window containsboth pre-fault and post-fault samples. The ensuring Fourier transform 

results are unreliable.  

To overcome these problems the WT has been consideredas an alternative to the Fourier 

techniques. It is a linearoperation that decomposes a signal into several other signalsof different 

scales with different time and frequencyresolutions. These are resulting from the 

simultaneousperformance of two operations (scaling and translation) on asingle “window” function, 

called “mother wavelet”. This is acompact support and oscillatory function with zero averageand 

quick deadening at both ends. 

4.2 Characteristics of Wavelet Systems 

 Basis functions are generated from a single wavelet or scaling function by scaling and 

translation. 

 Exhibit multi resolution characteristics viz. dilating the scaling functions provides a higher 

resolution space that includes the original signal. 

 Lower resolution coefficients can be computed from higher resolution coefficients through 

a filter bank structure. 
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4.2.1 Reasons for Selecting Wavelet Transform: 

 Provide unconditional basis for large signal class.Wavelet coefficients drop-off rapidly 

thus, good for compression, de-noising, detection/recognition which is the goal of any 

expansion. 

 Having the coefficients which provide more information about signal than time-domain. 

 Having most of the coefficients be very small (sparserepresentation) while Fourier 

Transform (FT) is not sparse for transients. 

 Accurate local description and separation of signal characteristics.Fourier puts localization 

information in the phase in a complicated way whereas Short Time Fourier Transform 

(STFT) can’t give localization and orthogonality. 

 Computation of wavelet coefficient is well-suited to computer becauseno derivatives of 

integrals needed and turns out to be a digital filter bank. 

The wavelet transform, an extension of the Fourier transform, projects the original 

signal down onto wavelet basis functions and provides a mapping from the time domain to the 

timescale plane. The wavelet basis functions are localized in the time and frequency domain. They 

are obtained from a single prototype wavelet, the “mother” wavelet, through the process of dilation 

and translation. Using scaling and translation operations to the mother wavelet, a family of wavelet 

functions is created with the same shape as the mother wavelet but of differentsizes andlocation.  

The common families of wavelets are:  

 Wavelets for Continuous Wavelet Transform (Gaussian, Morlet etc.) 

 Symlets 

 Coiflets 

 DaubechiesMaxfelt Wavelets 

 Biorthogonal Spline Wavelets 

 Complex Wavelets 

4.3 Multi Resolution Analysis (MRA) 

MRA, as implied by its name, analyzes the signal at different frequencies with different 

resolutions.MRA is designed to give good time resolution and poor frequency resolution at high 

frequencies and good frequency resolution and poor time resolution at low frequencies. This 

approach makes sense especially when the signal at hand has high frequency components for short 

durations and low frequency components for long durations. Fortunately, the signals that are 

encountered in practical applications are often of this type. 

Wavelet transform gives both time-frequency and time-scale analysis with multi-

resolution characteristics. Due to these reasons, they are much efficient in fault diagnosis in 

Induction motors under variable load conditions.The WT has a good time and poor frequency 

resolution at high frequencies, and good frequency and poor time resolution at low frequencies: In 

Figure 4.1, lower scales (higher frequencies) have better scale resolution(narrower in scale, which 
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means that it is less ambiguous what the exact value of the scale) which correspond to poorer 

frequency resolution . 

 

 

 

Similarly, higher scales have scale frequency resolution (wider support in scale, which 

means it is more ambitious what the exact value of the scale is) , which correspond to better 

frequency resolution of lower frequencies.For the analysis purpose two types of wavelet transform 

can be used: 

 Continuous Wavelet Transform (CWT) 

 Discrete Wavelet Transform (DWT) 

4.4 Continuous Wavelet Transform (CWT) 

Here, for different parts of the time-domain signal, the transform is calculated 

separately. The CWT can be given as: 

dt
s

t
tx

s
sftCWT x

tw

x  






 



  *)(

1
),(),()(

 

Where, τ = translation parameter; s = scale parameter;Ψ (t) = transforming function (Mother 

Wavelet). 

Figure (4.1): Description of MRA 

(12) 
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For CWT the parameters vary in a continuous fashion. This representation offers the 

maximum freedom in the choice of the analysis wavelet. From an intuitive point of view, the CWT 

consists of calculating a “resemblance index” between the signal and the wavelet (recall the 

definition of autocorrelation function. 

4.5 Discrete Wavelet Transform (DWT) 

As all microprocessor systems do calculations in discrete domain we need a discrete 

version of wavelet transform also.In Discrete Wavelet Transform (DWT), to divide the signal into a 

coarse approximation and detail signal, the analysis of signal is done at different frequency bands 

with different resolutions using digital filtering techniques. The signal is passed through low pass 

and high pass filters. Low frequencies are analysed by low pass filters and high frequencies are 

analysed by high pass filter. Two functions, Scaling function and Wavelet function associate DWT 

with low pass and high pass filters.  

At the first stage, an original signal is divided into two halves of the frequency 

bandwidth, and sent to both the HPF and LPF. Then the output of the LPF is further cut into half of 

the frequency bandwidth, and sent to the second stage; this procedure is repeated until the signal is 

decomposed to a pre-defined level. If the original signal is being sampled at fsHz, the highest 

frequency that the signal could contain, from Nyquist’s theorem, would be fs/2 Hz. 

 
 

Figure (4.2): DWT Coefficients Representation 
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This frequency would be seen at the output of the high frequency filter, which is the first detail. 

Thus, the band of frequencies between fs/2 and fs/4 would be captured in detail 1; similarly, the band 

of frequencies between fs/4 and fs/8 would be captured in detail 2, and so on. 

For the enhanced investigation of the fault signature, wavelet based techniques were 

developed. Wavelet transform becomes inevitable among the modern techniques due to the fact that 

it gives multi-resolution by using scaling, superior logarithmic frequency coverage. It uses a single 

‘window’ function known as ‘mother wavelet’. For decomposing the signal the execution of 

decomposition is done through filtering and down sampling.  

The resolution of the signal, which is a measure of the amount of detail information in 

the signal, is changed by the filtering operations, and the scale is changed by upsampling and 

downsampling (subsampling) operations. Subsampling a signal corresponds to reducing the sampling 

rate, or removing some of the samples of the signal. For example, subsampling by two refers to 

dropping every other sample of the signal. Subsampling by a factor n reduces the number of samples 

in the signal n times. 

 

The procedure starts with passing this signal (sequence) through a half band digital low-

pass filter with impulse response h[n]. Filtering a signal corresponds to the mathematical operation 

of convolution of the signal with the impulse response of the filter. The convolution operation in 

discrete time is defined as follows: 

 

 

 

Here h[n] can be low-pass and high-pass filter’s impulse response. 

 

A half band low-pass filter removes all frequencies that are above half of the highest 

frequency in the signal. For example, if a signal has a maximum of 1000 Hz component, then half 

band low-pass filtering removes all the frequencies above 500 Hz. Half the samples can be discarded 

without any loss of information by down sampling the output by two. 

 

This is possible only due to the fact that one DWT coefficient contains information of 

other three previous or next data also depending upon the type of filter. In summary, the low-pass 

filtering halves the resolution, but leaves the scale unchanged. The signal is then subsampled by two 

since half of the number of samples is redundant. This doubles the scale. 

This procedure can mathematically be expressed as 

 

 

 

 

 

The approximate and detailed components can be mathematically expressed as follows 

x[n] ∗ h[n] = ∑ x[n]. h[n − k]

∞

k=−∞

 

 

(13) 

 

y[n] = ∑ h[k]. x[2n− k]

∞

k=−∞

 
(14) 
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Whereyhigh[k]and ylow[k]are the outputs of the highpass and lowpass filters, 

respectively, after subsampling by 2.here yhigh[k] termed as detailed components and ylow[k]as 

approximate components. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The frequencies that are most prominent in the original signal will appear as high 

amplitudes in that region of the DWT signal that includes those particular frequencies. The 

difference of this transform from the Fourier transform is that the time localization of these 

frequencies will not be lost. However, the time localization will have a resolution that depends on 

which level they appear. If the main information of the signal lies in the high frequencies, as happens 

most often, the time localization of these frequencies will be more precise, since they are 

characterized by more number of samples. If the main information lies only at very low frequencies, 

the time localization will not be very precise, since few samples are used to express signal at these 

frequencies. This procedure in effect offers a good time resolution at high frequencies, and good 

frequency resolution at low frequencies. Most practical signals encountered are of this type. 

 

 

 

yhigh[k] =∑x[n]. g[2k − n]

n

 

 ylow[k] =∑x[n]. h[2k − n]

n

 

 
Figure (4.3) Representation of DWT 

(15) 

(16) 
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4.6 Wavelet Packet Transform  

Wavelet Packet Transform (WPT) is an enhanced form of wavelet transform which 

decomposes the signal to full level. It consents to the property of orthogonality and time frequency 

localization. The signal is down sampled and decomposed for increased time-frequency resolution. 

Selection of the right frequency band based on the signal features for consistent spectrum is done by 

WPT. The refinement of high frequency component is the main essence of WPT as it decomposes 

high frequency also and improves localization.  

The formulas of decomposition for DWT and WPT remain same-  

 

 

 

 

 

Here,  and  are approximate and detailed coefficients respectively. The 

approximate components are further decomposed up to a certain level in case of DWT while in WPT 

both approximate and detailed components are decomposed for the defined level and consequently 

impart the better frequency resolution.   

Wavelet Packet decomposes both low and high frequency components up to certain 

decomposition level with same length of frequency band. By n level decomposition we obtain 2 n 

Wavelet package coefficient vectors.  

4.7 Parseval’s Theorem 

 According to Parseval’s theorem, the energy of the signal is related to the energy in each of 

the expansion components and their wavelet coefficients. It means that the energy of the signal can 

be separated according the following expansions. 

 

 

Therefore the energy of signal is defined by wavelet coefficient as formula 

 

 

 

 

 

 

 

𝐴[𝑛] =∑𝑋[𝑛]. 𝑔[2𝑘 − 1] 

 𝐷[𝑛] =∑𝑋[𝑛]. ℎ[2𝑘 − 1] 

 

∫|f(t)|2 d(t) =∑|a(k)|2 +∑∑|dj|
2

k

j−1

j=0k

 

 

Esignal = Ea0 +∑Edj

j−1

j=0

 

 
𝐸𝑎𝑜 =∑|𝑎(𝑘)|2

𝑘

 

 
𝐸𝑑𝑗 =∑|𝑑(𝑘)|2

𝑘

 

 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 
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where𝐸𝑎𝑜 is the energy of the approximated version of the decomposed signal and 𝐸𝑑𝑗is the energy at 

the detail version. The energy distribution features of the detailed version from distorted signal will 

be utilized to extract the features of power disturbances. Therefore, the detailed energy will be 

calculated at each decomposition level to extract the feature curve. By using Parseval’s theorem, the 

number of transient signal features can be reduced without losing its fidelity 
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Chapter 5 

 

Proposed Algorithm and Validation 

 
5.1 Introduction  

The energy is calculated for both pre fault (Eh) and post fault (Ef) conditions. The percentage 

deviation in energy content of faulty signal vis-a-vis healthy one is treated as fault signature (FS). 

%FS =
Ef−Eh

Eh
×100       (23) 

A Fault Signature (FS) vector based on signal energy vector can be formed, which is then used for 

performing bearing fault analysis. This %FS can be used as a direct parameter of the fault content as 

it does not contain the signal energy of healthy time. 

Table 5.1 Artificial Signals for Validation 

Motor Condition Signal 

Healthy Sin(2πft)+(0.3)Sin(6πft)+(0.2)Sin(10πft) 

Faulty Case I Sin(2πft)+(0.31)Sin(6πft)+(0.19)Sin(10πft) 

Faulty Case II Sin(2πft)+(0.3)Sin(6πft)+(0.2)Sin(10πft)+(0.05)Sin(14πft) 

Faulty Case III 

Sin(2πft)+(0.3)Sin(6πft)+(0.2)Sin(10πft)+(0.05)Sin(14πft)+(0.02)

Sin(18πft) 

 

f=50 Hz (Let)  

The healthy current signal energy serves as a template in this formula on the basis of which other 

conditions are compared. It is worth mentioning here, that percentage deviation or error being an old 

and precise statistical method is used for the purpose of comparison between two values especially 

between ideal and measured. The proposed energy formulas are validated through some artificially 

created harmonic signals. Different fault cases are provided by introducing and eliminating some of 

the specific harmonic contents as shown in Table 5.1. %FS related to these signals are calculated by 

using equation (23).  
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Table 5.2 Nomenclature followed in Validation 

Nomenclature Representation 

1kAC1 Faulty signal Case 1 sampled at 1kHz  

1kAC2 Faulty signal Case 2 sampled at 1kHz  

1kAC3 Faulty signal Case 3 sampled at 1kHz  

10kAC1 Faulty signal Case 1 sampled at 10kHz  

10kAC2 Faulty signal Case 2 sampled at 10kHz  

10kAC3 Faulty signal Case 3 sampled at 10kHz  

 

Table 5.2 lists out the nomenclature followed in the validation of the proposed algorithm along with 

the detailed representations of the same. This nomenclature is followed throughout this chapter in 

various figures. Faulty signals corresponding to the three different cases have been samples at 1 kHz 

and 10 kHz and results noted down for each of these cases. The comparison shows that sampling at 

higher frequency is advantageous and helps to capture more minute details of the fault, thus proving 

more fruitful for better analysis. 

Table 5.3 Frequency Band for Validation for 1 kHz sampling frequency 

DWT Nodes Frequency Band (Hz) 

A5 0-15.625 

D5 15.625-31.25 

D4 31.25-62.5 

D3 62.5-125 

D2 125-250 

D1 250-500 

 

Table 5.4 Frequency Band for Validation for 1 kHz sampling frequency 

WPT Nodes Frequency Band (Hz) 

30 0-62.5 

31 62.5-125 

32 125-187.5 
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33 187.5-250 

34 250-312.5 

35 312.5-375 

36 375-437.5 

37 437.5-500 

 

Table 5.5 Frequency Band for Validation for 10 kHz sampling frequency 

DWT Nodes Frequency Band (Hz) 

A5 0-156.25 

D5 156.25-312.5 

D4 312.5-625 

D3 625-1250 

D2 1250-2500 

D1 2500-5000 

 

Table 5.6 Frequency Band for Validation for 10 kHz sampling frequency 

WPT Nodes Frequency Band (Hz) 

30 0-625 

31 625-1250 

32 1250-1875 

33 1875-2500 

34 2500-3125 

35 3125-3750 

36 3750-4375 

37 4375-5000 

 

According to Nyquist’s theorem, if the original signal is being sampled at fsHz, the highest frequency 

that the signal could contain would be fs/2 Hz. In this validation, when the frequency of sampling of 

the original signal has been taken as first as 1 kHz, the highest frequency in the sampled signal is 500 

Hz as shown in the Table 5.3 and Table 5.4 above. And, when the frequency of sampling of the 

original signal has been taken as first as 10 kHz, the highest frequency in the sampled signal is 5 kHz 

as shown in the Table 5.5 and Table 5.6 above. In case of sampling at 1 kHz, introduction of up to 
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the tenth harmonic can be analysed. But, sometimes more parameters may be needed for better 

analysis. For this, sampling at higher frequency proves to be very useful. 

The tables give the complete list of frequency bands for analysis of the artificial signals by the 

proposed algorithm of Discreet Wavelet Transform and Wavelet Packet Transform. The DWT nodes 

corresponding to the frequency bands have been assigned the nomenclature as A5, D5, D4, D3, D2 

and D1 and the WPT nodes corresponding to the frequency bands have been assigned the 

nomenclature as 30, 31, 32, 33, 34, 35, 36, 37. This nomenclature is followed in the graphs that 

depict the results in the further discussion. 

5.2 Faulty Case-I (sampling frequency 1 kHz) 
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From the above graphs, it is clearly seen that in case of DWT d-components as well as q-

components, nodes D1 and D2 are most affected showing deviation in higher frequency components. 

Also, q-components’ D1 node is more affected than d- components’. WPT d-components’ all nodes 

are equally affected except 37 which is the most affected. In WPT q-components, all nodes are 

equally affected and show negative difference except node 37 being positive with %FS around 20%. 

It is found that even the minute changes in magnitude of harmonics are detected by the algorithm. 

From WPT d-component, thedifference is negative as the frequency component in faulty signal is 

reduced compared to healthy signal. 
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5.3 Faulty Case-II (sampling frequency 1 kHz) 
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When introduction of seventh harmonics (1kAC2) in faulty signal compared to healthy signal, the 

D1 node (250-500 Hz) of DWT d-components is most affected. The A5 and D2 nodes of q-

components are also affected to a small extent with D1 being the most affected one. In WPT d-

components and q-components, node 37(437.5-500) is most affected and that of q-component is 

showing larger variation on positive side. Small change on node 35(312.5-375) is also seen. 
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5.4 Faulty Case-III (sampling frequency 1 kHz) 
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On introducing seventh and ninth harmonics(1kAC3), the DWT d-components show variation in D1 

node only while in case of q-components, node D1 is most affected followed by D2, A5 and D5 

nodes which are less affected. The node 37 (437.5-500 Hz) of WPT d-components and q-components 

is vastly affected with 35 (312.5-375) being minutely affected. Comparison with the previous case 

shows that on introducing higher harmonics, the corresponding band is more affected in magnitude. 

Also, very small change is also easily detected. 
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5.5 Faulty Case-I (sampling frequency 10 kHz) 
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For the signals sampled at 10 kHz for faulty case in which third harmonic is increased and fifth 

harmonic is increased minutely, the D2, D3 and D4 nodes of DWT d and q- components show 

similar trends with %FS being nearly 95% on negative side. In DWT d-component, D5 and D1 

follow next with %FS being 90%. In DWT q-component, node D1 is same as other nodes followed 

by node D5. The WPT d-components’ nodes show negative %FS equal to 70% except node 35 

showing positive %FS equal to 90% followed by nodes 33 and 36. % FS of all nodes in WPT q-

components is negative. Node 36 shows minimum variation followed by 37. Here, q-components are 

more affected compared to d-components. 

30 31 32 33 34 35 36 37
-80

-60

-40

-20

0

20

40

60

80

100
10kAC1

WPT d-component

N
o

rm
a

li
z
e

d
 M

a
g

n
it
u

d
e

30 31 32 33 34 35 36 37
-70

-60

-50

-40

-30

-20

-10

0
10kAC1

WPT q-component

N
o

rm
a

li
z
e

d
 M

a
g

n
it
u

d
e



Condition Monitoring Algorithm for Induction Motor using Wavelet Transform 

  38 
 

5.6 Faulty Case-II (sampling frequency 10 kHz) 
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For the faulty case of introduction of seventh harmonic and the signals being sampled at 10 

kHz(10kAC2),the DWT d and q-components’ are affected similarly with node D1 being the most 

affected one followed by D2, D3, D4 and D5. For WPT q-components, node 35 is most affected on 

positive side followed by 33 with small effect on 36. Rest of the nodes are negatively affected with 

node 30 being the most. The WPT components show negative deviation in all nodes except 33 and 

35 with %FS of 37 being 90% followed by 30(about 70%) and the rest having % FS nearly 50%. 

Looking at WPT q-components, it seems that node 30 (0-625 Hz) is the affected one but this is a 

wide region. On further increasing the frequency resolution of lower frequencies via DWT, It is 

evidentthat A5 and D5 are not affected and D4 is very little affected. Also, DWT shows that D1 
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(2500-5000 Hz) is most affected. Again, for DWT this is a wide region. On looking at equally 

bifurcated smaller regions of WPT helps to conclude node 37 (4375-5000 Hz) being the most 

affected one.This particular situation shows that selection of DWT or WPT is based on frequency 

range and resolution required to capture the information required. 

5.7 Faulty Case-III (sampling frequency 10 kHz) 
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For introduction of seventh and ninth harmonics and sampling at 10 kHz, the DWT d-components 

shows similar variation in decreasing order of nodes D1, D2, D3, D4, D5, A5. In WPT d-

components, most affected node is 35 followed by 33, both on positive side with 36 having small % 

FS. Node 30 is affected most in negative side followed by remaining nodes.In WPT q-components, 

most affected node is 37 followed by 30, 31, 32 and 34 on negative side. Node 35 shows most effect 

on the positive side with 33 close behind. Even small changes in the harmonics compared are 

detected. Compared to the previous case, the similar combination of bands is affected with the 

magnitude differing slightly. 
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In this context, it is evident that the graphs obtained are not of actual phase currents but from their d-

q transformations, which are related to the magnetic properties, bearing no relation, whatsoever, the 

phase currents. Also, redistribution of energy takes place among different nodes in the algorithm and 

mere looking at the current equations does not give an idea of the frequency that would be most 

affected. The motto of the algorithm is to detect occurrence of faults in their nascent stages and not at 

all relates to the frequency that is affected due to fault. 

It can be verified that for faulty case II and III, the introduction of higher order 

harmonics increase the %FS very significantly.Comparative study of faulty caseII and III validates 

the fact that after applying d-q transform, frequency band selection for a particular signature cannot 

be governed theoretically since energy is distributed throughout the range, and this reasons for 

greater emphasis on the importance of proposed work. 

Change in different parameters affects different frequency ranges. Severity of fault can 

be judged by the practically observed fact that as severity increases, higher order frequency ranges 

viz. 1250-2500 Hz, 2500-5000Hz get affected significantly.  

Also all faults contain some out-of-box results like reduction in difference of signal 

energies in case of some fault. This can be a major hurdle for the identification of fault. This drives 

us to an important conclusion that physical observation and expert systems applied on signal energies 

calculated for such worst conditions can’t fulfil the purpose of fault classification. Nevertheless, it is 

clear that this algorithm is sufficient for fault detection purpose.   

Signal energy is a parameter independent of the nature of signal. It gives an idea about 

the energy required for signal to maintain its existence in nature. So the current signal energy can 

serve as an excellent tool of MCSA. In this report, analysis of faults gives clear indication that due to 

the faults, change in magnetic flux, air gap eccentricity, rotor resistance, and friction in bearings 

cause change in current signal energy.   
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Chapter 6 

 

Results and Discussion 

 
6.1 Introduction 

The aim of this thesis is to advance the field of condition monitoring and fault diagnosis 

in induction motor operating in variety of operating conditions. The fast growth in applications of the 

induction motor in sensitive areas as nuclear power plants has increased the need for continuous 

condition monitoring of motors. The reflection of fault on frequency spectrum is depicted by plotting 

the normalized energies of stator current signal with frequencies itself. The variation shown here for 

the actual signals* directly points the severity and the frequency spread of that fault. 

Table 6.1 Frequency Band for analysis by DWT 

DWT Nodes Frequency Band (Hz) 

A5 0-156.25 

D5 156.25-312.5 

D4 312.5-625 

D3 625-1250 

D2 1250-2500 

D1 2500-5000 

 

Table 6.2 Frequency Band for analysis by WPT 

WPT Nodes Frequency Band (Hz) 

30 0-625 

31 625-1250 

32 1250-1875 

33 1875-2500 

34 2500-3125 

35 3125-3750 

36 3750-4375 

37 4375-5000 
 

*obtained from the author of “Bearing Fault Analysis by Signal Energy Calculation based Signal Processing Technique 

in Squirrel Cage Induction Motor”[63] 
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6.2 Bearing Fault analysis by DWT 

 

In case of d-components, maximum change is seen in D3 (625-1250 Hz) and %FS is positive 

implying introduction of new frequency in this range due to fault. All coefficients below 625 Hz (A5, 

D5, D4) have negative %FS which is surprising. This is because the supply harmonics of lower order 

get reduced due to the bearing fault. In bearing fault, q- component is affected more than d-

component. The maximum change is notable in the same range. %FS increases 3-4 times in 

comparison to d-component in D3. 
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6.3 Bearing Fault analysis by WPT 

 

 
Major change is seen in component 31 (625-1250 Hz) in case of d-components. The lower frequency 

coefficient (30) has negative %FS.Bearing fault, being a mechanical fault, the %FS in case of q-

component increases 3-4 times. Component 30 is most affected. Component 33 is also significantly 

affected. This is in the range of 1875-2500 Hz. 
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6.4 Rotor-Cut Fault analysis by DWT 

 

 

In case of d-components, major change is seen in D4 (312.5-625 Hz) which is closer to the power 

frequency in comparison to the bearing fault affected coefficient. Negative % FS reflects harmonic 

elimination. In q-components, all components are negative. Major change is again seen in D4. 
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6.5 Rotor-Cut Fault analysis by WPT 

 

 
In d- components, 31 is most affected but %FS is around 10% only which is minimum compared to 

most affected coefficient of other fault cases. Component 30 also gets affected significantly. Higher 

range coefficient 35 (3125-3750 Hz) also gets affected with %FS around 40% of component 31. The 

component 33 is affected to a degree of around 17% of component 31. The components 34 and 37 

are also affected by the same amount as component 33 but in these, frequencies in the range of 2500-

3125 Hz and 4375-5000 Hz respectively are eliminated as compared to healthy signal, therefore, the 

change is negative. 
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In case of q-components, 34 and 37 are most affected followed  by 32 and 36. All coefficients’ %FS 

is negative due to elimination of some frequencies. Trend is same as of DWT analysis for same 

fault’s same axis current. 

Table 6.3 Most Affected Frequency Bands (DWT) for Various Operating Conditions 

 

Table 6.4 Most Affected Frequency Bands (WPT) for Various Operating Conditions 

 

6.6 Discussion 

In case of rotor faults, fault signature was also found forhigher frequencies. Being an electrical fault, 

in this case, both elimination as well as introduction of harmonics is much lesser than bearing fault. 

This is due to the fact that rotor cut fault does not affect the air gap flux and air gap magnetic field. 

All these reasons forced us to move on to WPT. WPT is a tool for equal emphasized analysis for 

entire frequency range. In a three level WPT tree, the bandwidth of each coefficient remains same 

and that is of 625 Hz.  

As our data signal is sampled at 10 kHz sampling frequency, we are getting the results for the 

frequency up to 5000 Hz. In DWT, coefficient D1 takes into account frequency range 2500-5000 Hz 

while this range is eventually segregated into equally spaced four different coefficients in WPT. This 

in turn gives a big advantage compared to DWT.  

Near power frequency 50 Hz, analysis is more suited by DWT as it gives excellent and desired 

frequency resolution for lower frequencies. Problem with %FS related to fundamental, third and fifth 

harmonics is that change in these components is quite obvious and hence cannot be used for fault 

identification and classification. DWT coefficient D3 has a unique similarity with its counterparts 

that it also has a bandwidth of frequency 625 Hz. By observing the analysis of bearing fault in both 

FAULT TYPE 
FREQUENCY BAND(Hz) 

D-Component Q-Component 

Bearing fault 625-1250 625-1250 

Rotor cut fault 312.5-625 312.5-625 

FAULT TYPE 
FREQUENCY BAND(Hz) 

D-Component Q-Component 

Bearing fault 625-1250 625-1250 

Rotor cut fault 625-1250 4375-5000 
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DWT and WPT, it can be seen that major change arrives in D3 or 31 component as both carry same 

625-1250 Hz frequency. 

6.7 Future Expansion 

In the work done above, a base algorithm is discussed for detection of faults in 

induction motor at different operating conditions. This algorithm might be useful in industries for 

detecting fault which will save time and money as well. Sampling at higher frequencies, though 

increases the parameters for analysis but also increases the complexity of the algorithm and may take 

time in calculation. There is no specified set of rules or formulae regarding this and calls for large 

number of cases to make a better judgement. This calls for a scope of future expansion of this work. 
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