
A DISSERTATION

ON

EFFECT ON COMMUNICATION USING N-LIST

STRUCTURE FOR DATA MINING IN DISTRIBUTED

DATABASE

SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS

FOR THE AWARD OF THE DEGREE

OF
MASTER OF TECHNOLOGY

IN

COMPUTER SCIENCE AND ENGINEERING

Submitted by:

Pallavi Batra
University Roll Number :- 2K14/SWE/12

Under the supervision of

Mr. Manoj Sethi

COMPUTER SCIENCE AND ENGINEERING DEPARTMENT

DELHI TECHNOLOGICAL UNIVERSITY

DELHI – 110042, INDIA

June 2016

Department of Computer Engineering, DTU i

DECLARATION

I hereby declare that the dissertation titled “Effect on communication using N-List structure for

data mining in distributed database” which is being submitted to Delhi Technological University,

in partial fulfillment of requirements for the award of degree of Master of Technology (Software

Engineering) is a bonafide report carried out by me. The material contained in the report has not been

submitted to any university or institution for the award of any degree.

Pallavi Batra

University Roll no: 2K14/SWE/12

M.Tech (Computer Science and Engineering)

Department of Computer Science and Engineering

Delhi Technological University

Delhi – 110042

Department of Computer Engineering, DTU ii

CERTIFICATE

This is to certify that the dissertation titled “Effect on communication using N-List structure for

data mining in distributed database” submitted by Pallavi (University Roll No 2K14/SWE/12) for

partial fulfillment of the requirement for the award of degree Master Of Technology (Software

Engineering) is a record of the candidate work carried out by her under my supervision

Mr. Manoj Sethi

SUPERVISOR

Assistant Professor

Department of Computer Science and Engineering

Delhi Technological University

Department of Computer Engineering, DTU 3 | P a g e

ACKNOWLEDGEMENT

First of all I would like to thank the Almighty, who has always guided me to work on the right

path of the life. My greatest thanks are to my parents who bestowed ability and strength in me

to complete this work.

I owe a profound gratitude to my project guide Manoj Sethi who has been a constant source of

inspiration to me throughout the period of this project. It was his competent guidance, constant

encouragement and critical evaluation that helped me to develop a new insight into my project.

His calm, collected and professionally impeccable style of handling situations not only steered

me through every problem, but also helped me to grow as a matured person.

Secondly, I am grateful to Dr. O.P.Verma, HOD, Computer Engineering Department, and Delhi

Technological University for his immense support. I would also like to acknowledge Delhi

Technological University library and staff for providing the right academic resources and

environment for this work to be carried out.

Last but not the least I would like to express sincere gratitude to my parents and friends for

constantly encouraging me during the completion of work.

Pallavi Date: 29th June, 2016

University Roll no: 2K14/SWE/12

M.Tech (Computer Science and Engineering)

Department of Computer Science and Engineering

Delhi Technological University

Delhi – 110042

Department of Computer Engineering, DTU 4 | P a g e

ABSTRACT

Finding association rules through data mining among different items in a large database

distributed over a large number of nodes is one of the challenges in the field of discovery of

knowledge. Extraction of frequent patterns in transaction-oriented database is crucial to several

data mining tasks such as association rule generation, time series analysis, classification, etc.

Most of these mining tasks require multiple passes over the database and if the database size is

large, which is usually the case, scalable high performance solutions involving multiple

processors are required. When the database is distributed among several different systems with

share-nothing memory architecture, the problem of mining data for finding frequent patters can

be done using distributed data mining algorithms. One such proposed algorithm is FDM (Fast

Distributed Mining) and CD (Count Distribution) which are Apriori based algorithms that

generates candidate set on each iteration.

The generation of candidate sets is same as that of Apriori algorithm. Once the candidate sets

have been generated, two pruning techniques, local pruning and global pruning, are developed

to prune away some infrequent candidate sets at each individual sites. All sites share a common

globally frequent itemset with identical support counts, so rules that are generated at different

participating sites have identical confidence. This approach focuses on a rule's exactness and

correctness.

The main problem with these algorithm is the number of iterations it goes through before

generating the final frequent itemsets. Every time it finds the candidate itemset, it

communicates them as per the polling site resulting in high communication cost and network

bandwidth. We propose a new algorithm which uses the advantage of N-List structure to find

out all the candidate itemsets in a one single scan resulting in less communication. We have

also proposed a solution to further study the effect on communication by communicating both

frequent and infrequent itemsets in a single pass rather than sending request and reply messages

for every infrequent itemset.

Department of Computer Engineering, DTU 5 | P a g e

TABLE OF CONTENT

Declaration i

Certificate ii

Acknowledgement iii

Abstract iv

Contents

1. Introduction 7

1.1. Association Rule Mining 7

1.2. Distributed Association Rule Mining and Approaches 8

1.3. Data Structures used for Data Mining 9

1.4. Motivation 10

1.5. Research Objective 11

1.6. Report Organization 13

2. Literature Review 14

2.1. Data Mining 14

2.2. Classification of Data Mining tasks 16

2.3. Association Rule Mining Algorithms 17

3. Problem Definition 20

4. Related Algorithms 22

4.1. PrePost[3] 22

4.2 FDM with FP-growth 27

5. Proposed Work 29

6. Results 33

6.1 Environment Used 33

1.2 Comparison of Running Time 34

7. Conclusion and Future Work 38

8. References 39

Department of Computer Engineering, DTU 6 | P a g e

LIST OF FIGURES AND TABLES

Table Description

Table 1. (a) A Transactional database

Table 1. (b) Some Association Rules found

Table 4. (a) Notation Table for FDM-FP

 Table 6. (a) Configuration of the Node

Table 6. (b) Summary of database

Figure
Description

Figure 6. (a) Graph for 2-Node setup with PUMSB database

Figure 6. (b) Graph for 2-Node setup with PUMSB database

Figure 6. (c) Graph for different number of nodes

Figure 6. (d) Graph for comparing performance with different

number of node

Department of Computer Engineering, DTU 7 | P a g e

1. Introduction

1.1. Association Rule Mining

The method of extracting useful and previously unknown or we can say implicit information

from data is called Data mining. From over the past two decades there has been a tremendous

acceleration or we can say increase in the amount of data being stored in database system as

well as the quantity of database applications in business and the scientific domain. The use of

relational model for storing data and development accelerated the explosion in the amount of

electronically stored data and the development and maturing of data retrieval and manipulation

techniques. Very little emphasis was being given to develop software for analyzing the data as

more importance was being given to the technology for storing the data fast to keep up with the

market demands. But recently the hidden information within these masses is explored by the

companies. This tremendous pool of information which was earlier being ignored is of great

value to the company. This vast quantity of stored data contains information about a number of

characteristics of their business waiting to be explored and used for more effective business

decision support. Database Management Systems used to manage these data bundles as of now

only allow the user to access information implicitly present in the database system i.e. the data.

The data which is there in the database is only a small part of the huge information' available

from it. Resided implicitly within this data is information about quantity of aspects of their

business waiting to be harnessed and used for more effective business decision support. One of

the most important domain of data mining is extracting association rules. We define Association

rules as the dependency rules which predict the occurrence of individual item who are

dependent on occurrences of other items. It is Simple as well as effective and can help the

commercial decision making like the storage layout, appending sale etc. Association rule

mining [1] consists of discovering associations between sets of items in transactions. It is one

of the most important data mining tasks. It has been integrated in many commercial data mining

software and has numerous applications [2].

Association rule mining is primarily defined as finding the association, correlations among the

data to be observed [1] and it is also used for pattern searching or finding the patterns which

are the most frequent in the whole database being under observation stored in a data warehouse

or some other repository of data. It guides in various business deals for making some decisions

Department of Computer Engineering, DTU 8 | P a g e

regarding sales of the product or making decisions for business deals like in big retail stores for

their product placement technique, their store design or for the sales of their product or to

compete in the market. Association rule mining consist of two main steps:

1. Frequent itemset: The count of items that has a frequency greater than the minimum

support count as set by the user are find in the database.

2. Association Rules: The itemsets which have a support count greater than the threshold

value are used to generate association rules and a confidence with a minimum value is

generated.

Of the two steps that are written above, the dominant one is the first step of finding frequent

itemsets in the database. There have been a number of algorithms that are being proposed to

calculate the frequent itemsets in an efficient manner. The term Association Rule Mining was

first proposed by R.S. Agarwal in 1993 [1]. Massive amount of work has been done in data

mining area and the algorithms that have been proposed so far that are formally divided into

these three main types: Apriori based, frequent pattern growth based and vertical database

format based.

1.2. Distributed Association Rule Mining and Approaches

Structured and unstructured data generated in bulk by a company is termed as Big Data.

Distributed data mining algorithms are needed to mine frequent itemsets or association rules

when data is very large and saved in a distributed environment. Relational database is unable

to handle such a voluminous amount of data and it takes too much time to load the data into the

relational database for analysis. Volume, Velocity and variety are the three characteristics for a

data to be called big data. All are three characteristics are defined as follows:

Volume refer as the amount or the quantity of the data generated for the analysis purpose.

Velocity is defined as the pace with which the data is being generated by the Internet or business

world.

Variety refers to the nature and the characteristic type of data.

The ability to extract the useful information from data or to process the data is not as fast as the

quantity of data that is being generated being created at a tremendous rate. There is a demand

Department of Computer Engineering, DTU 9 | P a g e

to solve the problem of analyzing such a huge amount of data to meet the current trends. Parallel

computing (Single machine with multiple processor or also known as shared memory

processors) or Distributed processing (Network consisting of many local computers with shared

nothing memory) can be the solutions to tackle such problem with huge data. Mining frequent

patterns from such a huge amount of data is one the various applications of big data.

The need of mining frequent patterns and the increase in the size of database demands

distributed mining being processed among number of nodes. The data to be mined is stored at

various locations and many different processors work in parallel to refine the data and provide

a fast and efficient result. Local frequent patters are mined and are communicated to the all the

nodes in the system to find the global frequent items. Many centralized as well as distributed

algorithms have been proposed to do the first step of association rule mining but these days a

lot of emphasis is on distributed mining. Some of the well-known algorithms are AprTidRec,

Fast DM, and Optimized DAM etc.

1.3. Data Structures used for Data Mining

We organize the data through data structure in a database. Data structures are useful in a way

that help in reduce the complexity of the code and help in minimizing the computational

complexity of the implemented algorithms and making it better. A various number of frequent

item set mining algorithms have been proposed using different data structures for mining

association rules. The different data structures used in data mining are:

N-List: N list is a vertical data structure originated from FP-tree-like prefix tree. Also known

as PPC tree. Single path property of N-List is exploited to find frequent item sets without

actually finding candidate items in that database.

Trie data structure: in order to store dynamic set where the items are generally in the form of

strings we use tree data structure.

FP-tree: FP tree is a tree like data structure used to find frequent itemsets. The benefit of using

FP-Tree like data structure is that it does not generate candidate itemsets every time. It is more

efficient than Apriori like algorithms.

Department of Computer Engineering, DTU 10 | P a g e

1.4. Motivation

Last few decades have witnessed a tremendous amount of flow of information in the form of

data in this digital world to explore the hidden information and potentially useful patterns from

this large quantity of data in petabyte or Exabyte. We are getting data from social media data

collected from data sensors, customer retail data, transactional data and many others form of

financial data to be harnessed. The type of data is different from different source and the current

technologies are not able to handle, store such a huge pool of data at once and get relevant

information out of the system. Trillions of data is coming to these large multinational company

like Google, Facebook. Today e-commerce have gained a huge popularity resulting in gathering

more information about the customers through clicks, cookies, feedback forms, and from their

account information. Cleaning, segregating, handling these chunks of data to get insights about

the information is done by data developers for the benefits of their companies. It helps to better

understand the business and gather knowledge about the market trends and also against how the

business is performing against the competitors. Many decisions of the future works are

calculated based on this information available from this data. It is not fair to just handle and

store this large information without harnessing it. This data is of great value to the company to

succeed in the market. Mining is one of the crucial part while extracting information after

cleaning the data. It is used to find association or the relation between different set of data which

can be relevant from business point of view. Association rule mining or we can say finding

association rules among different patterns can be explained as follows. Consider a transactional

data of a store retail chain selling daily commodities. Using association rule mining we can find

from this data what is the most common product that is bought by the most of the population in

that respective area or we can also find which products are bought together most frequently.

This result is helpful in the sense that it can give us the combination of products that we should

put together to increase our profits and data show that people have more inclination towards

buying these products together.

The two main steps involved in mining are as follows:

1. In the first step all the item sets which are frequent of every size is generated using the various

association rule mining algorithms available.

2. From these frequent item sets generated in the first step, strong association rules are

generated.

Department of Computer Engineering, DTU 11 | P a g e

Frequent itemset mining is the very first step while finding association rules. After employing

a frequent item set algorithm for mining like Apriori or FP-Growth on the database stored in

data warehouse, those itemsets which are frequent item sets i.e. having support more than

minimum support count are generated. Once these itemsets which are frequent are obtained, we

can generate association rules.

The power of distributed systems for very large computation can be used which working with

this problem. Some of the already known algorithms in the field of distributed association rule

mining are Fast Distributed Mining (FDM) algorithms in which Apriori algorithm has been used

to generate local frequent item sets at each computational site at every round which then further

computes the global frequent item sets by communicating the local information i.e. the local

frequent item sets. A new algorithm has been proposed called PrePost algorithm which is based

on a novel data structure called N-List which use both the advantages of Apriori and FP growth

and can efficiently mine the data with better computational speed. Using N-List we compact the

space as well as the number of iterations the program goes through before outputting the final

result. So, in order to improve the performance of FDM, the apriori algorithm has been modified

And PrePost has been used instead. We have also worked on improving the communication cost

of the overall algorithm by sending the relevant information beforehand to save the bandwidth

and overall communication.

1.5. Research Objective

We generally use Distributed system for mining association rules when there is a mass data that

is available to us in data warehouse. As the technologies in web and distributed systems are

advancing, we are trying towards keeping the database in distributed environment. Mining of

association rule by exploring distributed system is gaining a tremendous hype as it can

marginally reduce the computation amount. They are highly available, less vulnerable to get

fail and are easy to be maintained. Though mining of frequent item sets in distributed

environment may require iterative scanning of all the database being fed into each system which

sometimes become a costly process. Therefore there is a need of an efficient mining algorithm

for transaction or relational database which can generate frequent item sets without much of

iterations and this has become a major part of database studies

Problem statement for finding association rules is as follows:

Department of Computer Engineering, DTU 12 | P a g e

Let I be a set of items called an itemset. Suppose there is a database called DB which contains

a set of transactions, where each transaction can be represented as having a particular set of

items in some specific order. Given a transaction containing an item set, we can say that the

implication of the form 𝑋 ⇒ 𝑌, where, 𝑋 𝑎𝑛𝑑 𝑌are itemsets in a transaction and is also called

association rule.

With a given a minimum threshold minimum confidence ‘c’, the association rule among

itemsets holds in DB if the likelihood of a operation 𝐴 ⟹ 𝐵 holds true. Let 𝑇 be the number

of transaction in DB which comprises 𝐴 also contains 𝐵. The association rule 𝐴 ⇒ 𝐵 has user

defined threshold least support "𝑠" in 𝐷𝐵 if the likelihood of a transaction in 𝐷𝐵 incorporates

both 𝑋 and 𝑌 is "𝑠". The problem of mining association rules deals with finding all the rules

where their individual support is larger than the minimum support threshold and confidence "𝑐"

is larger than least confidence threshold.The confidence of a rule is defined as conf () = sup () /

sup (). For example, Figure 1 shows a transaction database (left) and the association rules found

for minsup = 0.5 and minconf = 0.5 (right).

ID Transaction

t1 {a, b, c, e, f, g}

t2 {a, b, c, d, e, f}

t3 {a, b, e, f}

t4 {b, f, g}

Figure 1. (a) A Transactional Database

ID Rules Support Confidence

r1 {a}→ {b} 0.75 1

r2 {a}→ {c, e, f} 0.5 0.6

r3 {a, b}→ {e, f} 0.75 1

…. …. …. ….

Figure 1. (b) Some association rules found

Department of Computer Engineering, DTU 13 | P a g e

Mining associations is done in two steps [1]. Step 1 is to find all frequent item sets in the

database satisfying this given mathematical formula (minsup × |T| transactions) [1, 9]. Step 2 is

to use all the frequent item sets produced in the step 1 to conclude all the association rules. For

each frequent itemset , pairs of frequent item sets and = – are selected to form rules of the

form →. For each such rule →, if sup (→) ≥ and conf (→) ≥ , the rule is output. For an itemset,

its support is defined as the number of count in which it appears in a transaction. An itemset is

called a frequent occurring item if its support is not less than minimum support value. -item set

is an item set containing items. Step 1 mostly determines the total computation speed of the

overall association rule mining algorithms and there has been a lot of focus on developing fast

and efficient solutions to tackle this sub problem to overall minimize the time it takes to find

association rules.

1.6. Report Organization

The thesis is organized in following manner:

Chapter 2 gives an impression of previous work in the field of data mining.

Chapter 3 discusses the related algorithms that have been proposed so far.

Chapter 4 contains the new proposed algorithm on PrePost Distributed Mining

Chapter 5 analyze the result and compare the proposed with other algorithms.

Chapter 7 concludes the thesis work along with future work that can be done.

Department of Computer Engineering, DTU 14 | P a g e

2. Literature Review

2.1. Data Mining

A lot of studies have been done to examine efficient mining of association rules from many

different perspectives. Apriori was developed for rule mining in databases with large number of

transactions, which is one of the most influential algorithms. A DHP algorithm is kind of an

extension of Apriori which use a hashing technique. The scope of this study has also been

extended to efficient mining of sequential pattern, generalized association rules, quantitative

association rules, multiple-level association rules, etc. another area of study is maintenance of

discovered association rules by incremental updating. Although most of studies are on

sequential data mining techniques, parallel or distributed mining algorithms of association rules

have also been proposed recently. It is felt that the development of distributed algorithms for

efficient mining of association rules has its own unique role, based on the following reasoning.

(1) Large amount of data is stored in data warehouses and databases. Substantial processing

power is required for mining association rules in such databases, and a possible solution for this

is distributed system. Many large databases are distributed in nature. For example, transaction

records of thousands of retail department stores will be most probably stored at different sites.

This observation inspires us to study better and more efficient distributed algorithms for mining

association rules in databases. New light may also be shown upon parallel data mining.

Furthermore, a distributed mining algorithm should be used to mine association rules in a single

large database by dividing the database among a set of sites and processing all the tasks in a

distributed manner. Distributed system offers the scalability, high flexibility, low cost

performance ratio, and easy connectivity which makes DS an ideal platform for mining

association rules with ease. A lot of Literature on Data Mining consists of ARM algorithms

which are either parallel or distributed in nature. However, these algorithms were designed with

collective memory parallel execution environments. We can bifurcate the above mentioned

algorithms into two groups: parallel ARM and Distributed ARM (DARM) given their structure

and implementation.

Parallel ARM algorithms can be characterized as data-parallelism or task-parallelism

algorithms. In data-parallelism algorithms the data sets are divided among different nodes while

in task-parallelism algorithms each site must access the entire data set but performs the task

Department of Computer Engineering, DTU 15 | P a g e

independently. One of the simplest data-parallelism algorithm is the the Count Distribution

(CD) algorithm [2]. CD algorithm uses Apriori algorithm in a parallel environment and it is

assumed that data sets are partitioned horizontally among different sites. The main advantage

of CD algorithm is that it doesn't exchange data tuples between processors but only exchanges

counts. Depending on the items present in its local partition, local candidate itemset is generated

by each processor in the initial scan. The global counts are obtained by exchange of local counts

with all the other processors. The O (|C| · n) calculates the communication overhead of algorithm

at each phase, where |C| is the size of candidate itemsets and n is number of datasets. Data

Distribution is one of the task-parallelism-based algorithm that divides the candidate itemsets

among all the processors.

(2) Each processor computes the counts of the locally stored subset of the itemsets of candidate

for each transactions occurring in the database. Each processor must scan the portions of

transactions assigned to its locally stored portion as well as portions of different processors.

Therefore, it results in high communication overhead and performs inferior than the CD.

Candidate Distribution (CD) divides the candidates during recurring iterations resulting in

generation of all the disjoint candidates independently [2]. It selectively replicates the database

at the same time so that the processor can create global counts in comparison to other

systems.CD performs better than Candidate Distribution. Common Candidate Partitioned

Database in a shared-memory architecture follows a data parallel approach. The algorithm then

creates database partitions logically into chunks of same size. A disjoint candidate subset is

generated by each processor which results in much better computational division. The PEAR

algorithm [3] is based mainly on the sequential SEAR algorithm. Apriori and SEAR algorithms

are very similar but it uses a prefix tree rather than a hash tree used by SEAR algorithm, hence

improving its working performance. Masaru Kitsuregawa, along with his colleagues have

proposed four algorithms known as Non Partitioned Apriori, Hash Partitioned Apriori, Simply

Partitioned Apriori, and Hash Partitioned Apriori with Extremely Large Itemset Duplication [4].

The candidate itemsets are copied into all processors in NPA, so each processor can work

autonomously. The final data are gathered from the coordinator processor and support count is

observed. The candidate itemsets created by SPA are distributed among different processors

which shares specifications to its local transaction to all processors. HPA differs from SPA by

using the hash functions like hash join so that it reduces the broadcasting cost.

Department of Computer Engineering, DTU 16 | P a g e

The candidate sets generated in HPA-ELD is more compact and the memory is more efficiently

used as compared to other algorithms that generate the same candidate sets and it efficiently use

the system and cache memory. Demographically partitioned database is used by DARM to

determine association rules which satisfy the minimum support criteria. The major issue with

distributed mining algorithms is that there is a lot of communication cost involved while

transferring of data and the network connection is not that fast in parallel environment. To

handle the problem of mining data from distributed database, Fast Distributed Mining (FDM)

algorithm was proposed by researchers which helped to tackle the problem of non-availability

of data ta one place. In each of these sites, all the itemsets which satisfy the local support count

are searched by FDM and all the infrequent itemsets are pruned away. Once the local pruning I

done, the frequent itemsets are broadcasted to all the sites and support count of remaining

itemset is also requested.

2.2. Classification of Data Mining tasks

So many redundant outcomes are produced during Data Mining which firstly appear to be useful

but are essentially not for other example of data or for future forecasts. So there is a great need

of implementing proper statistical testing of all the assumptions.

Association rule mining comprises two major steps:

1. Finding frequent itemsets: Itemsets which appear as frequently in the dataset as a pre-defined

minimum support count are found by the miner.

2. Using the frequent itemsets to generate strong association rules: The rules satisfying

conditions of minimum support and minimum confidence are generated. Finding frequent

itemsets is a vital step. Various algorithms had been created to find the recurring items. R.

Agrawal introduced the Association mining rule in 1993[1]. A lot of research has been done in

this field since then and a lot of new techniques and set of rules have been planned which are

primarily categorized in three types: Apriori based, frequent pattern growth based and Vertical

database format based.

Data mining is the analyzing step of the KDD process or knowledge Discovery in Database

process. It is a somewhat combination of machine learning, database system, artificial

intelligence and statistics and therefore we can say that it is the subfield of the computer science

which discover patterns and object relations in the database. The core objective of data mining

Department of Computer Engineering, DTU 17 | P a g e

is to take out the valuable information from the largest database and translate it into an easily

understandable form. Data mining also includes data preprocessing, modeling, interestingness

metrics, complexity consideration, visualization etc.

Database that is under observation in data warehouse is very vast and it is required to be

segregated, cleaned and altered into a more concise database so that we can find the hidden

patterns present in the database. To analyze the multivariate data sets, we need preprocessing to

remove unwanted and redundant information along with noise and missing data.

2.3. Association Rule Mining Algorithms

The foremost and the most important step in association mining rule is to look for recurrent

itemsets along with their count which satisfy the minimum support criteria. Association Rules

are then calculated from these frequent itemsets generated in the first step. The significant

algorithms, which have led to the emergence of distributed data mining from centralized mining,

are as follows:

Major push in popularity of Association rule mining was done by an article published by by

Agrawal in 1993 [1] which according to google scholar has been cited over 17000 times. Last

2-3 decades saw evolution of many algorithms for frequent itemset. These can be further

partitioned into three types:

 Frequent pattern growth based

 Apriori based

 Vertical database format based

The anti-monotone property forms the base of the apriori based algorithms [6], called Apriori,

which says that any k-size itemset will be frequent if and only if all its (k-1) sized itemsets are

frequent. These algorithms generates a candidate set and apply test plan to find the frequent

itemsets, which implies that all the candidate itemsets are created first followed by check of

their support counts. If the count is greater than or equal to the support threshold the candidate

itemset is termed frequent and then it is used to generate the larger candidate sets.

Department of Computer Engineering, DTU 18 | P a g e

Agrawal also proposed two variations of Apriori, viz. AprioriHybrid [6] andAprioriTID [6].

Apriori is a renowned algorithm in which the database passes through lot of scans and counts

the frequency of the candidate itemsets formerly calculated. In the initial scan we achieve the

frequency of the entire item in the database and least support items are size one frequent

itemsets. Those who allow the least support criteria are labeled frequent itemset, and these are

used to compute the candidate itemsets for the subsequent iteration. Apriori TID [6] has a very

beneficial feature i.e. after the initial pass, the database is not used for computing the frequency

of the items rather it uses alternative data structure to trim the transaction in the database. Apriori

Hybrid [6] is an alternative variation that uses Apriori in the initial pass and moves to Apriori

TID [6] at the end of the pass when it assumes that the candidate itemset will fit in the memory.

Apriori like algorithms performs fine by decreasing the size of candidate sets, however, they

are very costly since database has to be traversed several times over and over.

In 2000, another algorithm appeared termed as Eclat [7], discovered by M.J Zaki for quick

discovery of association rules in a large database having vertical layout of dataset using the

structural properties of itemsets that are frequent. It restructures the lattice search space into

small portions or sub-lattice. A lot of algorithms based on Elcat have also been developed using

an effective technique of the approach that could detect long frequent itemsets quickly.

Beside these methodologies, another algorithm FP-Growth [3] also found attention in 2000.

Instead of generating candidate itemsets the whole database is scanned once to find all the

possible frequent itemsets by using a tree like structure which stores all the items along with

their count. Later, this tree structure is utilized to mine the frequent itemsets. Its advantage is

that it diminishes the search space and discovers frequent itemsets without generating candidate

rather it lacks is that the process of constructing and mining process of the FP-Tree is too

complex than the alternative approaches.

AprTidRec [17] is based on basic apriori mining algorithm and it uses a record like structure

TidRec for each candidate frequent itemset that is generated. There is only one joint step but no

pruning step so there is only one scan of database and the time spent on I/O is saved marginally

resulting in less communication cost and in this algorithm if support is decreased the

communication cost increase.The disadvatages of using AprTidRec is that it requires large

Department of Computer Engineering, DTU 19 | P a g e

memory space when database is large and there is no balance between time and space

complexity.

ODAM [18] is also based on Apriori that firstly remove infrequent items from all the

transactions and insert each transaction into the main memory if it is not there into the memory.

It sends support count of each frequent item to a single site and are stored into a temporary file.

This file is further used to generate the global itemsets of various lengths. Advantages of using

ODAM involves using single site for communication from all the nodes in the network which

result in less communication cost and fewer exchange of messages. But one of the disadvantages

of using ODAM is that it is less secure and there are privacy errors also.

Distributed Mining of Association Rules [19] uses an optimization technique to eliminate the

duplicate itemsets from the candidate sets and there is no scanning of the partition for calculating

the support count. As the number of nodes increases the performance of DMA increases. It

requires more storage for keeping the messages exchanged and only those nodes having

identical schemas are used.

Distributed Decision Miner[20] also known as DDM is a well-known distributed mining

algorithm that works on unskewed data and it verifies if the itemset is large before aggregating

its support count from all the sites in the system. It is easily scalable and less communication is

required as itemsets are pruned beforehand but it requires more space as compared to other

algorithms.

Department of Computer Engineering, DTU 20 | P a g e

3. Problem Definition

Most of the challenges faced by data miners stem from the fact that data stored in real-world

databases was not collected with discovery as the main objective. Storage, retrieval and

manipulation of the data were the main objectives of the data being stored in databases. Thus

most companies interested in data mining poses data with the following typical characteristics:

 The stored data is large and noisy

 Conventional methods of data analysis are not useful due to the complexity of the data

structures and the size of the data

 The data is distributed and heterogeneous due to most of the data being collected over

time in legacy systems

Distributed data mining started gaining popularity from centralized mining because of the

following factors

Non-trivial and expensive integration of subset of distributed data. Scalability and performance

issues associated with data mining.

The advantage of using distributed data mining is that it provides a framework for scalability

that helps in splitting this large amount of data into smaller chunks that require less

computational power individually.

Now we inspect the excavating of association rules in a distributed environment. Let DB be a

database with D transactions. Suppose in a distributed system there are n-sites and the database

DB is partitioned over the n sites into are the partitions created by dividing the database DB.

Let be the size of each partition of database for. Let the support counts be and for the database

in and, respectively. The global support count is called, and the local support count of X at site

is called. X is globally large for a given minsup (minimum support) if it satisfies;

correspondingly, for a site,X is called the locally large if it satisfies . Gobally large itemsets in

DB are denoted by L for the above following algorithm and be the k size itemsets in L which

are globally large. The important job of a distributed association rule mining algorithm is

discovery of the globally large itemsets L.

The distributed association rule mining algorithm that have been proposed generally uses the

Apriori algorithm at each iteration to produce the local candidate itemsets at each of the site.It

Department of Computer Engineering, DTU 21 | P a g e

generally do not use any specific data structure but we can use hash tree to store the itemsets

generated after each iteration. There are multiple passes in which candidate sets are generated

and at teach passes these candidate sets are passed to all the other systems present in the network.

The termination of the algorithm happens when there are no candidates generated or no global

large frequent itemsets are found in the current pass. So, it traverse database at each system

many times which is a very time consuming for large databases.

Now in PrePost algorithm we have a new data structure called N-List which makes a tree

containing both the preorder and postorder traversal values along with each node and then N-

Lists for all frequent size-1 and size-2 itemsets are made and also it does not require scan the

database multiple times. The N-List structure present in PrePost Algorithm take advantages

present in both the horizontal and vertical data mining algorithm. It is more efficient from both

Apriori and FP-growth algorithm because instead of generating candidate sets at each iteration

it generates a data structure that does not requires iteration for candidate set generation for size-

1 itemset and the rest itemsets can be generated from that only.

Department of Computer Engineering, DTU 22 | P a g e

4. Related Algorithms

4.1. PrePost[3]

DENG ZhiHong∗, WANG ZhongHui & JIANG JiaJian first introduced the PrePost algorithm

in 2012[6]. N-List data structure is the data structure that is used to effectively find the frequent

itemsets in data mining. It ease up the process of finding items by using benefits of both vertical

and horizontal mining techniques. PrePost is efficient from the rest of the algorithms in three

ways. The transaction that have common prefix or the starting items share the same node in N-

List which helps in making it compact. The N-Lists generated by all the itemsets are transformed

by intersecting them and this process is achieved in an efficient manner of order O (m+n) where

cardinalities of the two lists are defined by m and n respectively. The plus point of using PrePost

algorithm is that without generating candidate we can directly mine frequent itemsets without

generating candidate itemsets like in Apriori by exploiting the single path property of N-List.

Algorithm 1 Construction of PPC-tree

Input 𝐴 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒𝐷𝐵 𝑎𝑛𝑑 𝑎 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 £

Output Frequent-1 item sets and a PPC Tree

Method Construct PPC-Tree (DB, £)

1) [𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑡 1 − 𝑖𝑡𝑒𝑚𝑠𝑒𝑡𝑠 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛]

2) 𝐴𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑡𝑜 £, 𝑠𝑐𝑎𝑛 𝑡ℎ𝑒 𝐷𝐵 𝑡𝑜 𝑓𝑖𝑛𝑑 𝐹1, 𝑡ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡 1 −

𝑖𝑡𝑒𝑚𝑠𝑒𝑡𝑠 𝑎𝑛𝑑 𝑡ℎ𝑒𝑖𝑟 𝑠𝑢𝑝𝑝𝑜𝑟𝑡.

3) 𝑆𝑜𝑟𝑡 𝑡ℎ𝑒 𝐹1 𝑖𝑛 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑑𝑒𝑠𝑐𝑒𝑛𝑑𝑖𝑛𝑔 𝑜𝑟𝑑𝑒𝑟 𝑎𝑠 𝐿1,𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 𝑡ℎ𝑒 𝑙𝑖𝑠𝑡

 𝑜𝑓 𝑜𝑟𝑑𝑒𝑟𝑒𝑑 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡 𝑖𝑡𝑒𝑚𝑠.

4) 𝑃𝑃𝐶 − 𝑡𝑟𝑒𝑒 𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛

5) 𝐶𝑟𝑒𝑎𝑡𝑒 𝑟𝑜𝑜𝑡 𝑜𝑓 𝑎 𝑃𝑃𝐶 − 𝑡𝑟𝑒𝑒, 𝑇𝑟 , 𝑎𝑛𝑑 𝑙𝑎𝑏𝑒𝑙 𝑖𝑡 𝑎𝑠 "null".

6) 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ

1. 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝑇𝑟𝑎𝑛𝑠 𝑖𝑛 𝐷𝐵 𝑑𝑜

2. 𝑆𝑒𝑙𝑒𝑐𝑡 𝑡ℎ𝑒 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡 𝑖𝑡𝑒𝑚𝑠 𝑖𝑛 𝑇𝑟𝑎𝑛𝑠 𝑎𝑛𝑑 𝑠𝑜𝑟𝑡 𝑜𝑢𝑡 𝑡ℎ𝑒𝑚 𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑡𝑜 𝑡ℎ𝑒

3. 𝑜𝑟𝑑𝑒𝑟 𝑜𝑓 𝐹1. 𝐿𝑒𝑡 𝑡ℎ𝑒 𝑙𝑖𝑠𝑡 𝑏𝑒 [𝑃|𝑝], 𝑤ℎ𝑒𝑟𝑒 𝑝 𝑖𝑠 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑎𝑛𝑑 𝑃

𝑖𝑠 𝑡ℎ𝑒 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑙𝑖𝑠𝑡.

4. 𝐶𝑎𝑙𝑙 𝑖𝑛𝑠𝑒𝑟𝑡_𝑡𝑟𝑒𝑒([𝑝|𝑃], 𝑇𝑟)

Department of Computer Engineering, DTU 23 | P a g e

7) 𝑒𝑛𝑑 𝑓𝑜𝑟

8) [𝑃𝑟𝑒 𝑃𝑜𝑠𝑡 𝐶𝑜𝑑𝑒 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛]

9) 𝑆𝑐𝑎𝑛 𝑃𝑃𝐶 − 𝑡𝑟𝑒𝑒 𝑡𝑜 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑡ℎ𝑒 𝑝𝑟𝑒 − 𝑜𝑟𝑑𝑒𝑟 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑝𝑜𝑠𝑡 −

𝑜𝑟𝑑𝑒𝑟 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑛𝑜𝑑𝑒.

10) [𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑖𝑛𝑠𝑒𝑟𝑡 𝑡𝑟𝑒𝑒([𝑝|𝑃], 𝑇𝑟)

11) 𝑖𝑓 𝑇𝑟 ℎ𝑎𝑠 𝑎 𝑐ℎ𝑖𝑙𝑑 𝑁 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑁. 𝑖𝑡𝑒𝑚𝑠 − 𝑛𝑎𝑚𝑒 = 𝑝. 𝑖𝑡𝑒𝑚 − 𝑛𝑎𝑚𝑒 𝑡ℎ𝑒𝑛

1) 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑁′𝑠𝑐𝑜𝑢𝑛𝑡 𝑏𝑦 1

12) 𝑒𝑙𝑠𝑒

1) 𝑇𝑟 𝑐𝑟𝑒𝑎𝑡𝑒 𝑎 𝑛𝑒𝑤 𝑛𝑜𝑑𝑒 𝑁, 𝑤𝑖𝑡ℎ 𝑖𝑡𝑠 𝑐𝑜𝑢𝑛𝑡 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑎𝑧𝑒𝑑 𝑡𝑜 1, 𝑎𝑛𝑑 𝑎𝑑𝑑 𝑖𝑡 𝑡𝑜 𝑇𝑟

13) 𝑒𝑛𝑑 𝑖𝑓

14) 𝑒𝑛𝑑 𝑖𝑓

Algorithm: N-lists construction

Input: PPC-tree and 𝐿1, the set of frequent 1-itemsets.

Output: 𝑁𝐿1, the set of the N-lists of frequent 1-itemsets.

Procedure N-lists construction (PPC-tree)

1. 𝐶𝑟𝑒𝑎𝑡𝑒 𝑁𝐿1, 𝑙𝑒𝑡 𝑁𝐿1[𝑘]𝑏𝑒 𝑡ℎ𝑒 𝑁 − 𝐿𝑖𝑠𝑡 𝑜𝑓 𝐿1[𝑘].

2. 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑛𝑜𝑑𝑒 𝑁 𝑜𝑓 𝑃𝑃𝐶 − 𝑡𝑟𝑒𝑒 𝑎𝑐𝑐𝑒𝑠𝑠𝑒𝑑 𝑏𝑦 𝑝𝑟𝑒 − 𝑜𝑟𝑑𝑒𝑟 𝑡𝑟𝑎𝑣𝑒𝑟𝑠𝑎𝑙 𝑑𝑜

3. 𝑖𝑓(𝑁. 𝑖𝑡𝑒𝑚 − 𝑛𝑎𝑚𝑒 = 𝐿1[𝑘]. 𝑖𝑡𝑒𝑚 − 𝑛𝑎𝑚𝑒)𝒕𝒉𝒆𝒏

4. Insert (𝑁. 𝑝𝑟𝑒 − 𝑜𝑟𝑑𝑒𝑟, 𝑁. 𝑝𝑜𝑠𝑡 − 𝑜𝑟𝑑𝑒𝑟) ∶ 𝑁. 𝑐𝑜𝑢𝑛𝑡 𝑖𝑛𝑡𝑜 𝑁𝐿1[𝑘]

5. 𝑒𝑛𝑑 𝑖𝑓

6. 𝑒𝑛𝑑 𝑓𝑜𝑟

Department of Computer Engineering, DTU 24 | P a g e

Algorithm 3: Mining frequent 2-itemsets

Input: PPC-tree and 𝐿1, the set of all frequent 1-itemsets

Output: 𝐿1, the set of all frequent 2-itemsets.

Procedure 𝐿1 Construction (PPC-tree)

1. 𝐿𝑒𝑡 𝐿1[𝑘]𝑏𝑒 𝑡ℎ𝑒 𝑘𝑡ℎ 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑖𝑛 𝐿1, 𝑠𝑒𝑡 𝐿1[𝑘]. 𝑜𝑟𝑑𝑒𝑟 = 𝑘.

2. 𝐶𝑟𝑒𝑎𝑡𝑒 𝑇𝑒𝑚𝑝2 = 𝑖𝑛𝑡[𝐿1. 𝑠𝑖𝑧𝑒()][𝐿1. 𝑠𝑖𝑧𝑒()].

3. 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑛𝑜𝑑𝑒 𝑁 𝑜𝑓 𝑃𝑃𝐶 𝑡𝑟𝑒𝑒 𝑎𝑐𝑐𝑒𝑠𝑠𝑒𝑑 𝑏𝑦 𝑝𝑟𝑒 − 𝑜𝑟𝑑𝑒𝑟 𝑡𝑟𝑎𝑣𝑒𝑟𝑠𝑎𝑙 𝑑𝑜

4. 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑎𝑛𝑐𝑒𝑠𝑡𝑜𝑟 𝑛𝑜𝑑𝑒 𝑜𝑓 𝑁, 𝐿𝑒𝑡 𝑖𝑡 𝑏𝑒 Na do

5. 𝑇𝑒𝑚𝑝2[𝑁. 𝑖𝑡𝑒𝑚 − 𝑛𝑎𝑚𝑒. 𝑜𝑟𝑑𝑒𝑟][𝑁𝑎. 𝑖𝑡𝑒𝑚 − 𝑛𝑎𝑚𝑒. 𝑜𝑟𝑑𝑒𝑟]+ = 𝑁. 𝑐𝑜𝑢𝑛𝑡.

6. 𝑒𝑛𝑑 𝑓𝑜𝑟

7. 𝑒𝑛𝑑 𝑓𝑜𝑟

8. 𝒇𝒐𝒓 𝑒𝑎𝑐ℎ 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑇𝑒𝑚𝑝2[𝑖, 𝑗] 𝑖𝑛 𝑇𝑒𝑚𝑝2 𝑑𝑜

9. 𝑖𝑓 𝑇𝑒𝑚𝑝2[𝑖, 𝑗] = 𝜉 × |𝐷𝐵|𝑡ℎ𝑒𝑛

10. Insert L1[i] ∪ L1[j] into L2

11. end if

12. end for

Algorithm 4: NL intersection

Input: 𝑁𝐿1 = {(𝑥11, 𝑦11): 𝑧11, (𝑥12, 𝑦12): 𝑧12, . . . , (𝑥1𝑚, 𝑦1𝑚): 𝑧1𝑚} 𝑎𝑛𝑑 𝑁𝐿2 =

 {(𝑥21, 𝑦21): 𝑧21, (𝑥22, 𝑦22): 𝑧22, . . . , (𝑥2𝑛, 𝑦2𝑛): 𝑧2𝑛}, 𝑤ℎ𝑖𝑐ℎ 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑁 − 𝑙𝑖𝑠𝑡 𝑜𝑓 𝑃1 = 𝑖𝑢𝑖1𝑖2 ·

·· 𝑖𝑘−2 𝑎𝑛𝑑 𝑃2 = 𝑖𝑣𝑖1𝑖2 ··· 𝑖𝑘−2(𝑖𝑢 ≻ 𝑖𝑣) 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦.

Output: NL3, the N-list 𝑃3 = 𝑖𝑢𝑖𝑣𝑖1𝑖2 ··· 𝑖𝑘−2.

Procedure: 𝑁𝐿 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 (𝑁𝐿1, 𝑁𝐿2)(𝑃𝑃𝐶 − 𝑡𝑟𝑒𝑒

1. 𝑖 ← 1;

2. 𝑗 ← 1;

3. 𝑤ℎ𝑖𝑙𝑒 𝑖 ≤ 𝑚 && 𝑗 ≤ 𝑛 𝑑𝑜

4. 𝑖𝑓 (𝑥1𝑖 < 𝑥2𝑗) 𝑡ℎ𝑒𝑛

5. 𝑖𝑓 (𝑦1𝑖 < 𝑦2𝑗)𝑡ℎ𝑒𝑛

6. 𝑖𝑛𝑠𝑒𝑟𝑡 {(𝑥1𝑖, 𝑦1𝑖): 𝑧2𝑗} 𝑖𝑛𝑡𝑜 𝑁𝐿3;

7. 𝑗 + +;

Department of Computer Engineering, DTU 25 | P a g e

8. 𝑒𝑙𝑠𝑒

9. 𝑖 + +;

10. 𝑒𝑛𝑑 𝑖𝑓

11. 𝑒𝑙𝑠𝑒

12. 𝑗 + +;

13. 𝑒𝑛𝑑 𝑖𝑓

14. 𝑒𝑛𝑑 𝑤ℎ𝑖𝑙𝑒

15. 𝑝𝑡𝑟1 ← 𝑁𝐿3. 𝑓𝑖𝑟𝑠𝑡 𝑒𝑙𝑒𝑚𝑒𝑛𝑡; ////𝑡ℎ𝑒 fi𝑟𝑠𝑡 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑁𝐿3

16. 𝑝𝑡𝑟2 ← 𝑝𝑡𝑟1. 𝑛𝑒𝑥𝑡 𝑒𝑙𝑒𝑚𝑒𝑛𝑡; ////𝑡ℎ𝑒 𝑛𝑒𝑥𝑡 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑝𝑡𝑟1

17. 𝑤ℎ𝑖𝑙𝑒 𝑝𝑡𝑟1 𝑖𝑠 𝑛𝑜𝑡 𝑡ℎ𝑒 𝑙𝑎𝑠𝑡 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑁𝐿3 𝑑𝑜

18. 𝑖𝑓 𝑝𝑡𝑟1. 𝑝𝑟𝑒 − 𝑐𝑜𝑑𝑒 = 𝑝𝑡𝑟2. 𝑝𝑟𝑒 − 𝑐𝑜𝑑𝑒 𝑎𝑛𝑑 𝑝𝑡𝑟1. 𝑝𝑜𝑠𝑡 − 𝑐𝑜𝑑𝑒 =

 𝑝𝑡𝑟2. 𝑝𝑜𝑠𝑡 − 𝑐𝑜𝑑𝑒 𝑡ℎ𝑒𝑛

19. 𝑝𝑡𝑟1. 𝑐𝑜𝑢𝑛𝑡 ← 𝑝𝑡𝑟1. 𝑐𝑜𝑢𝑛𝑡 + 𝑝𝑡𝑟2. 𝑐𝑜𝑢𝑛𝑡;

20. 𝑑𝑒𝑙𝑒𝑡𝑒 𝑝𝑡𝑟2 𝑓𝑟𝑜𝑚 𝑁𝐿3;

21. 𝑝𝑡𝑟2 ← 𝑝𝑡𝑟1. 𝑛𝑒𝑥𝑡 𝑒𝑙𝑒𝑚𝑒𝑛𝑡;

22. 𝑒𝑙𝑠𝑒

23. 𝑝𝑡𝑟1 ← 𝑝𝑡𝑟2;

24. 𝑝𝑡𝑟2 ← 𝑝𝑡𝑟1. 𝑛𝑒𝑥𝑡 𝑒𝑙𝑒𝑚𝑒𝑛𝑡;
25. end if

26. end while

Algorithm 5: Mining frequent k-itemsets

Input: the minimum support ξ, the frequent 1-itemsets L1 and their N-lists NL1. Note that

frequent 1-itemsets in L1 are sorted in support descending order.

 Output: The frequent itemset set F.

 Method: Call mining (L1, NL1)

Procedure mining L (𝐿𝑘, 𝑁𝐿𝑘)

1: for 𝑖 ← 𝐿𝑘 . 𝑠𝑖𝑧𝑒() − 1 𝑡𝑜 1 do

2: 𝐿𝑘𝑖+1 ← ∅ ;

3: 𝑁𝐿𝑘𝑖+1 ← ∅

4: for 𝑗 ← 𝑖 − 1 to 0 do

5: Assume 𝐿𝑘 [𝑖] = 𝑥1𝑥2 ··· 𝑥𝑘 𝑎𝑛𝑑 𝐿𝑘 [𝑗] = 𝑦𝑥2 ··· 𝑥𝑘(𝑦 ≻ 𝑥1 ≻ 𝑥2 ≻···≻ 𝑥𝑘); 𝑦 ∈

 𝐿1, 𝑥𝑠(1 ≤ 𝑠 ≤ 𝑘) ∈ 𝐿1

6: 𝑙 ← 𝑦𝑥1𝑥2 ··· 𝑥𝑘; 𝐿𝑘[𝑖] ∪ 𝐿𝑘[𝑗]

7: 𝑙. 𝑁 − 𝑙𝑖𝑠𝑡 ← 𝑁𝐿_𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛(𝑁𝐿𝑘 [𝑖], 𝑁𝐿𝑘[𝑗]);

8: if 𝑙. 𝑐𝑜𝑢𝑛𝑡 ≥ |𝐷𝐵| × 𝜉 then

Department of Computer Engineering, DTU 26 | P a g e

9: 𝐿𝑘𝑖+1 ← 𝐿𝑘𝑖+1 ∪ { 𝑙};

10: 𝐹 ← 𝐹 ∪ { 𝑙};

11: 𝑁𝐿𝑘𝑖+1 ← 𝑁𝐿𝑘𝑖+1 ∪ { 𝑙. 𝑁 − 𝑙𝑖𝑠𝑡};

12: end if

13: end for

14: if 𝐿𝑘𝑖+1= ∅ then

15: if 𝑁𝐿𝑘[𝑖]. 𝑙𝑒𝑛𝑔𝑡ℎ() = 1 then

16: Assume 𝐿𝑘𝑖+1 = {𝑃1, . . . , 𝑃𝑛} 𝑤ℎ𝑒𝑟𝑒 𝑃𝑖 = 𝑦𝑖𝑥1𝑥2 ··· 𝑥𝑘

17: for any 𝑝 = 𝑦𝑣1𝑦𝑣2 ··· 𝑦𝑣𝑢𝑥1𝑥2 ··· 𝑥𝑘(1 ≤ 𝑣1 < 𝑣2 < ···< 𝑣𝑢 ≤ 𝑛) do

18: 𝑝. 𝑐𝑜𝑢𝑛𝑡 ← 𝑁𝐿𝑘[𝑖]. 𝑐𝑜𝑢𝑛𝑡;

19: F ← F ∪ { p};

20: end for

21: else

22: 𝐶𝑎𝑙𝑙 𝑚𝑖𝑛𝑖𝑛𝑔 𝐿 (𝐿𝑘+1𝑖 , 𝑁𝐿𝑘+1𝑖);

23: end if

24: end if

25: end for

Department of Computer Engineering, DTU 27 | P a g e

4.2 FDM with FP-growth

Symbol Description

D Total number of transactions

s Minimum support

𝐿𝑘 Global itemsets of size k

𝐶𝐴𝑘 Candidate sets generated from 𝐿𝑘

𝑋. 𝑠𝑢𝑝 Support count of global itemset

𝐷𝑖 Each partition in 𝐷𝐵𝑖

𝐺𝐿𝑖(𝑘) Global large k-itemset 𝑆𝑖

𝐶𝐺𝑖(𝑘) K size itemset generated from 𝐺𝐿𝑖(𝑘−1)

𝐿𝐿𝑖(𝑘) k-itemsets in 𝐶𝐺𝑖(𝑘) which are locally large

𝑋. 𝑠𝑢𝑝𝑖 Support count of locally large X at 𝑆𝑖

 Table 4. (a) Notation Table for FDM-FP

Pseudocode for FDM-FP: FDM with FP-growth algorithm

𝐼𝑛𝑝𝑢𝑡: 𝐷𝐵𝑖(𝑖 = 1,2, … 𝑛): 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝑎𝑡 𝑒𝑎𝑐ℎ 𝑠𝑖𝑡𝑒 𝑆𝑖.

𝑂𝑢𝑡𝑝𝑢𝑡: 𝐿: 𝑡ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑎𝑙𝑙 𝑔𝑙𝑜𝑏𝑎𝑙𝑙𝑦 𝑙𝑎𝑟𝑔𝑒 𝑖𝑡𝑒𝑚𝑠𝑒𝑡𝑠.

𝑀𝑒𝑡ℎ𝑜𝑑: 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑣𝑒𝑙𝑦 𝑒𝑥𝑒𝑐𝑢𝑡𝑒 𝑡ℎ𝑒 𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛 𝑝𝑟𝑜𝑔𝑟𝑎𝑚 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡 (𝑓𝑜𝑟 𝑡ℎ𝑒 𝑘

− 𝑡ℎ 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛) 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑣𝑒𝑙𝑦 𝑎𝑡 𝑒𝑎𝑐ℎ 𝑠𝑖𝑡𝑒 𝑆𝑖. 𝑇ℎ𝑒 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑠 𝑤ℎ𝑒𝑛 𝑒𝑖𝑡ℎ𝑒𝑟 𝐿(𝑘)

= ∅, 𝑜𝑟 𝑡ℎ𝑒 𝑠𝑒𝑡𝑠 𝑜𝑓 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑠𝑒𝑡𝑠 𝐶𝐺(𝑘) = ∅.

1) 𝑖𝑓 𝑘 = 1, 𝑡ℎ𝑒𝑛

2) 𝑇𝑖(1) = 𝑔𝑒𝑡_𝑙𝑜𝑐𝑎𝑙_𝑐𝑜𝑢𝑛𝑡(𝐷𝐵𝑖, ∅, 1)

3) 𝑒𝑙𝑠𝑒

4) 𝐶𝐺(𝑘) =∪𝑖=1
𝑛 𝐶𝐺𝑖(𝑘)

=∪𝑖=1
𝑛 𝑓𝑝_𝑔𝑟𝑜𝑤𝑡ℎ(𝐺𝐿𝑖(𝑘−1));

5) 𝑇𝑖(𝑘) = 𝑔𝑒𝑡_𝑙𝑜𝑐𝑎𝑙_𝑐𝑜𝑢𝑛𝑡(𝐷𝐵𝑖, 𝐶𝐺(𝑘), 𝑖); }

6) 𝑓𝑜𝑟_𝑎𝑙𝑙 𝑋 ∈ 𝑇𝑖(𝑘) , 𝑑𝑜

7) 𝑖𝑓 𝑋. 𝑠𝑢𝑝𝑖 ≥ 𝑠 × 𝐷𝑖 𝑡ℎ𝑒𝑛

8) 𝑓𝑜𝑟 𝑗 = 1 𝑡𝑜 𝑛 𝑑𝑜

9) 𝑖𝑓 𝑝𝑜𝑙𝑙𝑖𝑛𝑔_𝑠𝑖𝑡𝑒(𝑋) = 𝑆𝑖𝑡ℎ𝑒𝑛

 𝑖𝑛𝑠𝑒𝑟𝑡(𝑋, 𝑋. 𝑠𝑢𝑝𝑖)𝑖𝑛𝑡𝑜 𝐿𝐿𝑖,𝑗(𝑘);

10) 𝑓𝑜𝑟 𝑗 = 1 𝑡𝑜 𝑛, 𝑑𝑜 𝑠𝑒𝑛𝑑 𝐿𝐿𝑖,𝑗(𝑘) 𝑡𝑜 𝑠𝑖𝑡𝑒 𝑆𝑗;

Department of Computer Engineering, DTU 28 | P a g e

11) 𝑓𝑜𝑟 𝑗 = 1 𝑡𝑜 𝑛, 𝑑𝑜 {

12) 𝑟𝑒𝑐𝑒𝑖𝑣𝑒 𝐿𝐿𝑖,𝑗(𝑘);

13) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑋 ∈ 𝐿𝐿𝑗,𝑖(𝑘) 𝑑𝑜 {

14) 𝑖𝑓 𝑋 ∉ 𝐿𝑃𝑖(𝑘) 𝑡ℎ𝑒𝑛

 𝑖𝑛𝑠𝑒𝑟𝑡 𝑋 𝑖𝑛𝑡𝑜 𝐿𝑃𝑖(𝑘);

15) 𝑢𝑝𝑑𝑎𝑡𝑒 𝑋. 𝑙𝑎𝑟𝑔𝑒_𝑠𝑖𝑡𝑒𝑠; } }

16) 𝑓𝑜𝑟_𝑎𝑙𝑙 𝑋 ∈ 𝐿𝑃𝑖(𝑘) 𝑑𝑜

17) 𝑠𝑒𝑛𝑑_𝑝𝑜𝑙𝑙𝑖𝑛𝑔_𝑟𝑒𝑞𝑢𝑒𝑠𝑡(𝑋);

18) 𝑟𝑒𝑝𝑙𝑦_𝑝𝑜𝑙𝑙𝑖𝑛𝑔_𝑟𝑒𝑞𝑢𝑒𝑠𝑡(𝑇𝑖(𝑘));

19) 𝑓𝑜𝑟_𝑎𝑙𝑙 𝑋 ∈ 𝐿𝑃𝑖(𝑘) 𝑑𝑜 {

20) 𝑟𝑒𝑐𝑒𝑖𝑣𝑒 𝑋. 𝑠𝑢𝑝𝑗 𝑓𝑟𝑜𝑚 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑠𝑖𝑡𝑒𝑠 𝑆𝑗

 𝑤ℎ𝑒𝑟𝑒 𝑆𝑗 ∉ 𝑋. 𝑙𝑎𝑟𝑔𝑒_𝑠𝑖𝑡𝑒𝑠;

21) 𝑋. 𝑠𝑢𝑝 = ∑ 𝑋. 𝑠𝑢𝑝𝑖
𝑛
𝑖=1 ;

22) 𝑖𝑓 𝑋. 𝑠𝑢𝑝 ≥ 𝑠 × 𝐷 𝑡ℎ𝑒𝑛

23) 𝑖𝑛𝑠𝑒𝑟𝑡 𝑋 𝑖𝑛𝑡𝑜 𝐺𝑖(𝑘) ; }

24) 𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡 𝐺𝑖(𝑘) ;

25) 𝑟𝑒𝑐𝑒𝑖𝑣𝑒 𝐺𝑗(𝑘) 𝑓𝑟𝑜𝑚 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑜𝑡ℎ𝑒𝑟 𝑠𝑖𝑡𝑒𝑠 𝑆𝑗 (𝑗 ≠ 𝑖);

26) 𝐿(𝑘) = ⋃ 𝐺𝑖(𝑘)
𝑛
𝑖=1 .

27) 𝑑𝑖𝑣𝑖𝑑𝑒 𝐿(𝑘) 𝑖𝑛𝑡𝑜 𝐺𝐿𝑖(𝑘), (𝑖 = 1, … , 𝑛);

28) 𝑟𝑒𝑡𝑢𝑟𝑛 𝐿(𝑘).

Department of Computer Engineering, DTU 29 | P a g e

5. Proposed Work

This chapter briefly explains the basic version of the proposed algorithm implemented to

support the work. The work is divided into two parts. Section 1 explain the new modified

distributed mining algorithm called Pre Post Distributed Mining. Section 2 explains a technique

on how to effectively reduce the communication while sending the data in one iteration. Most

of the distributed mining algorithms use Apriori algorithm that generate the candidate itemsets

after passing the candidate itemsets at each iteration. In order to improve the efficiency of FDM,

we added the N-List data structure of PrePost algorithm in FDM instead of using Apriori. There

are many advantages of using N-List instead of Apriori as we need only one scan of the database

to generate the N-List structure and from that we can generate all the candidate sets.

The main steps in the algorithm are explained below:

1. Firstly, the whole database is scanned to generate the support count of each item and if

satisfy the minimum support criteria, they are considered as the size-1 local frequent

items and polling site of each item is found and are send to their respective system

which are assigned their responsibility using the network.

2. After receiving the local size-1 frequent itemsets from each locally large site, the polling

site send request to all the nodes which have not send these items as the count was less

than the minimum support for these items at these sites.

3. After receiving the count from each node including the frequent and non-frequent sites,

the total count is calculated which determines whether the item is global or not. For an

itemset to be considered Global, its global count should be greater than the minimum

support count. These itemsets generated are called Global size-1 itemsets and are

broadcasted everywhere.

4. Once every site receive the broadcast itemset, it removes the local infrequent itemsets

that are not there in the broadcast list.

5. For the second pass, PrePostDM generates the N-list using the global frequent itemset

list. From this N-List all the possible candidate sets that can be generated are created.

6. Once the candidate sets are generated, those itemsets that satisfy minimum support are

again send to their respective polling site like we did in step 2-3.

7. Once the polling site find the count from non-frequent itemsets, it finally calculates the

global itemsets and broadcast the final result

Department of Computer Engineering, DTU 30 | P a g e

Symbol Description

D Number of transactions in DB

s Support threshold minsup

𝐿𝑘 Globally large k-itemsets

𝐶𝐴𝑘 Candidate sets generated from 𝐿𝑘

X.sup Global support count of X

𝐷𝑖 Number of transactions in 𝐷𝐵𝑖

𝐺𝐿𝑖(𝑘) gl-large k-itemsets at 𝑆𝑖

𝐶𝐺𝑖(𝑘) Candidate sets generated by FIN algorithm

𝐿𝐿𝑖(𝑘) Locally large k-itemsets in 𝐶𝐺𝑖(𝑘)

𝑋. 𝑠𝑢𝑝𝑖 Local support count of X at 𝑆𝑖

Table 4. (b) Notation table for PrePostDM

We named the algorithm as PrePost Distributed Mining (PrePostDM).It is described below:

𝑰𝒏𝒑𝒖𝒕: 𝐷𝐵𝑖(𝑖 = 1,2, … 𝑛): 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝑎𝑡 𝑒𝑎𝑐ℎ 𝑠𝑖𝑡𝑒 𝑆𝑖, 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑠𝑢𝑝𝑝𝑜𝑟𝑡,

𝑡𝑜𝑡𝑎𝑙 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑐𝑜𝑢𝑛𝑡, 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠

𝑶𝒖𝒕𝒑𝒖𝒕: 𝐿: 𝑡ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑎𝑙𝑙 𝑔𝑙𝑜𝑏𝑎𝑙𝑙𝑦 𝑙𝑎𝑟𝑔𝑒 𝑖𝑡𝑒𝑚𝑠𝑒𝑡𝑠.

𝑴𝒆𝒕𝒉𝒐𝒅: 𝐸𝑥𝑒𝑐𝑢𝑡𝑒 𝑡ℎ𝑒 𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔 𝑝𝑟𝑜𝑔𝑟𝑎𝑚 𝑡𝑤𝑖𝑐𝑒 𝑖𝑒. 𝑘 = 2, 𝑓𝑖𝑟𝑠𝑡 𝑓𝑜𝑟 𝑠𝑖𝑧𝑒

−1 𝑖𝑡𝑒𝑚𝑠 𝑎𝑛𝑑 𝑡ℎ𝑒𝑛 𝑓𝑜𝑟 𝑖𝑡𝑒𝑚𝑠𝑒𝑡𝑠 𝑤𝑖𝑡ℎ 𝑠𝑖𝑧𝑒 𝑔𝑟𝑒𝑎𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 1.

1) 𝑖𝑓 𝑘 = 1, 𝑡ℎ𝑒𝑛

2) 𝑇𝑖(1) = 𝑔𝑒𝑡_𝑙𝑜𝑐𝑎𝑙_𝑐𝑜𝑢𝑛𝑡(𝐷𝐵𝑖)

3) 𝑒𝑙𝑠𝑒

4) 𝐶𝐺𝑘 = 𝐴𝑙𝑔𝑜_𝐹𝐼𝑁(𝐷𝐵𝑖, 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑠𝑢𝑝𝑝𝑜𝑟𝑡, 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑢𝑛𝑡);

5) 𝑇𝑖(𝑘) = 𝑔𝑒𝑡_𝑙𝑜𝑐𝑎𝑙_𝑐𝑜𝑢𝑛𝑡(𝐷𝐵𝑖, 𝐶𝐺(𝑘), 𝑖); }

6) 𝑓𝑜𝑟_𝑎𝑙𝑙 𝑋 ∈ 𝑇𝑖(𝑘) , 𝑑𝑜

7) 𝑖𝑓 𝑋. 𝑠𝑢𝑝𝑖 ≥ 𝑠 × 𝐷𝑖 𝑡ℎ𝑒𝑛

8) 𝑓𝑜𝑟 𝑗 = 1 𝑡𝑜 𝑛 𝑑𝑜

9) 𝑖𝑓 𝑝𝑜𝑙𝑙𝑖𝑛𝑔_𝑠𝑖𝑡𝑒(𝑋) = 𝑆𝑖𝑡ℎ𝑒𝑛

 𝑖𝑛𝑠𝑒𝑟𝑡(𝑋, 𝑋. 𝑠𝑢𝑝𝑖)𝑖𝑛𝑡𝑜 𝐿𝐿𝑖,𝑗(𝑘);

𝑒𝑙𝑠𝑒

𝑖𝑛𝑠𝑒𝑟𝑡(𝑋, 𝑋. 𝑠𝑢𝑝𝑖)𝑖𝑛𝑡𝑜 𝑖𝐿𝐿𝑖,𝑗(𝑘);

10) 𝑓𝑜𝑟 𝑗 = 1 𝑡𝑜 𝑛, 𝑑𝑜 𝑠𝑒𝑛𝑑 𝐿𝐿𝑖,𝑗(𝑘)𝑎𝑛𝑑 𝑖𝐿𝐿𝑖,𝑗(𝑘) 𝑡𝑜 𝑠𝑖𝑡𝑒 𝑆𝑗;

Department of Computer Engineering, DTU 31 | P a g e

11) 𝑓𝑜𝑟 𝑗 = 1 𝑡𝑜 𝑛, 𝑑𝑜 {

12) 𝑟𝑒𝑐𝑒𝑖𝑣𝑒 𝐿𝐿𝑖,𝑗(𝑘);

13) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑋 ∈ 𝐿𝐿𝑗,𝑖(𝑘) 𝑑𝑜 {

14) 𝑖𝑓 𝑋 ∉ 𝐿𝑃𝑖(𝑘) 𝑡ℎ𝑒𝑛

 𝑖𝑛𝑠𝑒𝑟𝑡 𝑋 𝑖𝑛𝑡𝑜 𝐿𝑃𝑖(𝑘);

15) 𝑢𝑝𝑑𝑎𝑡𝑒 𝑋. 𝑙𝑎𝑟𝑔𝑒_𝑠𝑖𝑡𝑒𝑠; } }

16) 𝑓𝑜𝑟 𝑗 = 1 𝑡𝑜 𝑛, 𝑑𝑜 {

17) 𝑟𝑒𝑐𝑒𝑖𝑣𝑒 𝑖𝐿𝐿𝑖,𝑗(𝑘);

18) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑋 ∈ 𝑖𝐿𝐿𝑗,𝑖(𝑘) 𝑑𝑜 {

19) 𝑖𝑓 𝑋 ∈ 𝐿𝑃𝑖(𝑘) 𝑡ℎ𝑒𝑛

20) 𝑋. 𝑠𝑢𝑝 = 𝑋. 𝑠𝑢𝑝𝑖(𝐿𝐿𝑗,𝑖(𝑘)) + 𝑋. 𝑠𝑢𝑝𝑖(𝑖𝐿𝐿𝑗,𝑖(𝑘)) ;

21) 𝑖𝑓 𝑋. 𝑠𝑢𝑝 ≥ 𝑠 × 𝐷

𝑡ℎ𝑒𝑛

 𝑖𝑛𝑠𝑒𝑟𝑡 𝑋 𝑖𝑛𝑡𝑜 𝐺𝑖(𝑘) ; }

22) 𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡 𝐺𝑖(𝑘) ;

23) 𝑟𝑒𝑐𝑒𝑖𝑣𝑒 𝐺𝑗(𝑘) 𝑓𝑟𝑜𝑚 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑜𝑡ℎ𝑒𝑟 𝑠𝑖𝑡𝑒𝑠 𝑆𝑗 (𝑗 ≠ 𝑖);

24) 𝐿(𝑘) = ⋃ 𝐺𝑖(𝑘)
𝑛
𝑖=1 .

25) 𝑖𝑓(𝑘 = 1)

26) 𝑖𝑓 𝑘 = 1, 𝑟𝑒𝑚𝑜𝑣𝑒_𝑖𝑛𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡(𝐷𝐵𝑖);

27) 𝑟𝑒𝑡𝑢𝑟𝑛 𝐿(𝑘)

Explanation of the algorithm:

1) Home Site: sets of candidates were created and they were submitted to the respective

sites of polling (line 1 to line 10)

When k equals to 1, the site calls get_local_count to input the 𝐷𝐵𝑖 one time and save the local

tally of size-1 objects and support in a map assembly𝑇𝑖(1). And for the next pass when all local

recurrent itemsets of size more than 1 are found, the candidate sets are created using the

PrePost [3] algorithm and are then saved in CG. Then the database is scanned and the local

Department of Computer Engineering, DTU 32 | P a g e

value of sum of each itemset in CG is saved in map assembly 𝑇𝑖. The polling site of the locally

huge itemsets is found and the itemsets are directed to respective sites.

2) Polling Site: candidate sets were received and polling request was sent (line 11-17)

As the polling site, site 𝑆𝑖 gets the candidate itemsets from other sites. It saves the itemsets in

𝐿𝑃𝑖(𝑘) and the sites from which the itemsets are received are saved in X.large_sites. Then a

polling request is sent to sites not in X.large_sites to collect the residual support of that itemset.

3) Remote site: support count was returned to polling site (line 18)

When a site receives polling request from some other site, it checks the support count of that

specific itemset in its map structure 𝑇𝑖 and transmit it to the polling site.

4) Polling site: support counts are received and the large itemsets are found (line 19-23)

As a polling site, 𝑆𝑖 receives the support count from the other sites for a candidate itemset.

Then it computes the global count of the candidate itemset and comparing it with the minimum

support condition, the global large itemsets are found and are stored in 𝐺𝑖(𝑘). This is finally

broadcasted to all the sites.

5) Home site: receive globally large itemsets (line 24-28)

Finally as a home site, all the frequent itemsets are received. And if it is the first pass then the

dataset is updated and all the infrequent size-1 itemsets are removed from the database. And the

final set of large itemsets is returned.

Department of Computer Engineering, DTU 33 | P a g e

6. Results

An in depth evaluation of the proposed work has been done to compare the PDM (Prepost

distributed mining) algorithm with FDM (fast distributed mining) on the various parameters

related to the field of mining and distributed mining.

6.1 Environment Used

The above algorithms are implemented on a distributed system. A series of two to five stations

, running the windows system, are connected by 5Mb LAN to perform the experiment. The

database used in this experiment is taken from http://fimi.cs.helsinki.fi/testdata.html). Three

real data and two synthetic data has been used in the experiment. These data has also been used

in previous study of frequent itemset mining. PUMSB, Accidents and Retail are the real

database. Retail database contains the real market basket data from some retail store. Census

data is contained in PUMS data.

In the experiment result, the number of candidate sets found in PrePostDM at each site is

between 10 - 25% of that in FDM. The overall message size in PrePostDM is between 10 - 15%

of that in FDM. It can be clearly seen from the graphs that the performance gain of PrePost DM

over FDM as well as normal sequential algorithm is higher in distributed systems in

communication bandwidth is an important performance factor. For example, if the mining is

being done on a distributed database over wide area or long haul network.The performance of

PrePost DM against sequential PrePost in a large database is also compared.

The configurations of the sites are listed below:

Operating System Windows 8.1

Random Access Memory 4GB

Hard Disk Drive 500 GB

CPU usage 2.10 GHz

System Information 64 bit

JAVA used JDK 1.8

Eclipse used Eclipse MARS

Table 6.1: Configuration of the Node

http://fimi.cs.helsinki.fi/testdata.html

Department of Computer Engineering, DTU 34 | P a g e

PUMSB is the dataset on which these algorithms are being run. The pumsb dataset is a real

dataset and is available in FIMI repository. Pumsb is quite dense, so a large number of frequent

itemsets will be mined even for very high values of minimum support various specifications are

given below:

Database Average Length #Items #Transactions

PUMSB 74 2113 49046

Accidents 33.8 468 340183

Retail 10.3 16470 88162

Figure 6.2 Summary of database

The results with those in some published papers may differ because of the different experiment

platforms, such as software and hardware, may differ marginally in the runtime for the same

algorithms. So, it is very fair that we compare these algorithms in the same running environment.

The data distributed among different database is different so we are using different range of minimum

support to determine the performance in a reasonable time. The total execution time is the difference

between the start time and the end time of the whole program.

1.2 Comparison of Running Time

On the basis of execution time, three algorithms are considered to run. These algorithms are

PrePost, PrePost DM and FDM using FP Growth. The PrePost algorithm is taken as the

reference algorithm for comparison and rest of the two are the new ones created by us. PrePost

is a sequential algorithm and rest of the two algorithms are having both distributed data and

distributed processing.

The algorithms are run with five minimum supports of 0.98, 0.9, 0.85, 0.8, 0.7, 0.6 and three

setups where 2 nodes, 3 nodes and 4 nodes are included and are compared on the basis of

execution time. The results are shown and compared below using line graphs.

The X and Y axes in the three figures show the running time and minimum support, respectively.

Figure 7(a) represents the running time of the compared algorithms on Pumsb. PrePostDM runs

fast in comparison to FDM with FP growth when the support is high but less than sequential

prepost when the support is low

Department of Computer Engineering, DTU 35 | P a g e

Figure 6.4: Graph for 2-Node setup with PUMSB database

Figure 6.5: Graph for 2-Node setup with PUMSB database

From these above two graphs we can infer that when the minimum support is high, sequential

data mining performs better than distributed mining algorithms as the communication time is

more than the processing time but when we decrease the value of minimum support i.e. when

0

50

100

150

200

250

300

350

400

0.98 0.9 0.85 0.8 0.75 0.7 0.6 0.5

Ex
ec

u
ti

o
n

 T
im

e
in

 M
ill

is
ec

o
n

d
s

Minimum Support

Retail database

PrePost PrePostDM FDM

0

2000

4000

6000

8000

10000

12000

0.98 0.95 0.8 0.75 0.7

Ex
ec

u
ti

o
n

 T
im

e
in

 m
ill

is
ec

o
n

d

Minumum Support

PUMSB database

PrePost PrePostDM FDM

Department of Computer Engineering, DTU 36 | P a g e

there are more frequent itemsets generated distributed mining performs better as the task of

finding the items is divided between the system and execution time becomes more than the

communication time. And if we consider PrePostDM with FDM, PrePostDM execution time is

almost equal or better than FDM because PrePostDM implements N-List data structure which

requires less number of passes in comparison to FDM which is based on Apriori.

Figure 6.5: Graph for different number of nodes

The above graph shows how all the algorithms PrePostDM, FDM-FP, FDM execute as per the

number of nodes in the system. Initially FDM performs better than the rest because there is no

data structures being created. PrePostDM is better than FDM-FP because of using N-List

structure which can be more efficiently traversed. Both PrePostDM and FDM-FP outperforms

FDM because it takes only two scans to complete the whole process while FDM iterates every

time it generates the candidate sets.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2 3 4 5

Ex
ec

u
ti

o
n

 T
im

e
in

 M
ill

is
ec

o
n

d
s

Number of Nodes

PUMSB database

PrePostDM FDM-FP FDM

Department of Computer Engineering, DTU 37 | P a g e

The above graph for four node setup shows that now our algorithm is performing better than the

sequential PrePost algorithm in terms of execution time.

To have a look of how the addition of nodes in the setup is helping to improve the performance

of the system, a graph is shown below in figure 6.4. Here the execution time for different number

of nodes for different support counts are compared.

Figure 6.4: Graph for comparing performance with different number of nodes and

different minimum support.

It can be clearly seen from the above graph that the performance improves upon addition of

nodes in the setup. The higher number of nodes, the less processing is to be done by each node

and the faster will be the work done.

Also, there is a tradeoff between the communication time and the actual processing time where

the packets have to be sent among the nodes. So it can be seen that when only 2 nodes were

there, lots of time was taken for the communication apart from the processing time, due to which

it could not perform good. As we keep on increasing the nodes in the system, there might be an

increase in the communication but the processing time per node is decreased and hence the

overall performance becomes better.

Department of Computer Engineering, DTU 38 | P a g e

7. Conclusion and Future Work

This research work focused mainly on the study of various approaches being used to find the

Frequent itemset in the field of data mining and the various data structures to make the process

more efficient. We propose a new algorithm which is based on PrePost algorithm using N-List

data structure to determine frequent itemsets in a more effective manner in terms of

communication and execution time. The evaluation results are better than the traditional

distributed mining algorithms. We saw that the performance is improving as compared to

sequential algorithms as we are using distributed system to find the desired result. There are two

major changes that effected the running time of the proposed algorithm

1. Using new data structure called N-List instead of using either Apriori or FP-tree

2. Reduction in communication cost by sending the infrequent itemsets along with the frequent

itemsets to their respective polling site.

There is a marginal improvement in the overall performance in terms of the overall execution time as

compared to its sequential counterpart while having less communication cost. Several issues related to

the extension of the proposed algorithm can be discussed. The technique of candidate set reduction and

global pruning of infrequent itemsets can be integrated with PrePostDM to perform mining in a parallel

environment which will be better than other distributed mining algorithms when considering both

message passing and synchronization of all the nodes in the system. It can be further improved by using

some advanced systems with better configurations to decrease the overall execution time. Also there can

be improvement by using some newer data structures like N-List proposed. The data distribution

technique that we have used for deciding polling site can also be further improved. Study of performance

of PrePostDM using the skewness of data distribution and the relaxation of support thresholds is also

discussed. Future study include comparing of this algorithm with other distributed mining algorithm

containing different data structure. Recently, there have been interesting studies on the mining of

generalized association rules, multiple level association rules, quantitative association rules etc.

Extension of our method to the mining of these kinds of rules in a distributed or parallel system are

interesting issues for future research. Also, parallel and distributed data mining of other kinds of rules,

such as characteristic rules, classification rules, clustering etc. is an important direction for future studies.

Department of Computer Engineering, DTU 39 | P a g e

8. References

[1] Agrawal, Rakesh, Tomasz Imieliński, and Arun Swami. "Mining association rules between

sets of items in large databases." ACM SIGMOD Record 22.2 (1993).

[2] Cheung, David W., et al. "A fast distributed algorithm for mining association

rules." Parallel and Distributed Information Systems, 1996, Fourth International

Conference on. IEEE (1996).

[3] Deng, ZhiHong, ZhongHui Wang, and JiaJian Jiang. "A new algorithm for fast mining

frequent itemsets using N-lists." Science China Information Sciences55.9 (2012).

[4] Manoj Sethi, Rajni Jindal “Distributed Data Association Rule Mining: Tools and

Techniques”. Proceedings of the 10th INDIACom; INDIACom-2016 3rd 2016

International Conference on “Computing for Sustainable Global Development”, 16th – 18th

March (2016).

[5] Liao, Jinggui, Yuelong Zhao, and Saiqin Long. "MRPrePost—a parallel algorithm adapted

for mining big data." Electronics, Computer and Applications, 2014 IEEE Workshop on.

IEEE (2014).

[6] Han, Jiawei, Jian Pei, and Yiwen Yin. "Mining frequent patterns without candidate

generation." ACM Sigmod Record. Vol. 29. No. 2. ACM, (2000).

[7] Agrawal, Rakesh, Tomasz Imieliński, and Arun Swami. "Mining association rules between

sets of items in large databases." ACM SIGMOD Record 22.2 (1993).

[8] Agrawal, Rakesh, and Ramakrishnan Srikant. "Fast algorithms for mining association

rules." Proc. 20th int. conf. very large data bases, VLDB. Vol. 1215. (1994).

[9] Zaki, Mohammed J. "Scalable algorithms for association mining." Knowledge and Data

Engineering, IEEE Transactions on 12.3 (2000).

[10] Zaki, Mohammed J., and Karam Gouda. "Fast vertical mining using diffsets." Proceedings

of the ninth ACM SIGKDD international conference on Knowledge discovery and data

mining. ACM, (2003).

[11] Deng, ZhiHong, ZhongHui Wang, and JiaJian Jiang. "A new algorithm for fast mining

frequent itemsets using N-lists." Science China Information Sciences55.9 (2012).

Department of Computer Engineering, DTU 40 | P a g e

[12] Deng, Zhi-Hong, and Sheng-Long Lv. "PrePost+: An efficient N-lists-based algorithm for

mining frequent itemsets via Children–Parent Equivalence pruning." Expert Systems with

Applications 42.13 (2015).

[13] Agrawal, Rakesh, and John C. Shafer. "Parallel mining of association rules."IEEE

Transactions on Knowledge & Data Engineering 6 (1996).

[14] Ailing, Wang. "An Improved Distributed Mining Algorithm of Association Rules." Journal

of Convergence Information Technology 6.4 (2011).

[15] Ashrafi, Mafruz Zaman, David Taniar, and Kate Smith. "ODAM: An optimized distributed

association rule mining algorithm." IEEE distributed systems online 3 (2004).

[16] Vinaya Sawant, Ketan Shah. “A Survey of Distributed Association Rule Mining

Algorithms.” Journal of Emerging Trends in Computing and Information Sciences (2014).

[17] Wang Ailing (2011), "An improved Distributed Mining Algorithm of Association Rules",

Journal of Convergence Information Technology, Vol. 6, No. 4, 2011.

[18] Mafruz Z. Ashrafi, Taniar, D. and Smith, K (2004), “ODAM: An Optimized Distributed

Association Rule Mining Algorithm” Distributed Systems Online, IEEE, Vol.5, 2004.

[19] David W. Cheung, Vincent T. Ng, Ada W. Fu and Yongjian Fu(1996a), “Efficient Mining

Of Association Rules In Distributed Databases”, IEEE Transactions On Knowledge And

Data Engineering, Vol. 8, No, 6, Digital Object Identifier: 10.1109/69.553158, December

1996.

[20] Assaf Schuster and Ran Wolff (2001), "Communication-Efficient Distributed Mining of

Association Rules", Proceedings of the 2001 ACM SIGMOD international conference on

Management of data (SIGMOD '01) 2001.

[21] VO, Bay, et al. "A hybrid approach for mining frequent itemsets." Systems, Man, and

Cybernetics (SMC), 2013 IEEE International Conference on. IEEE, 2013.

[22] Pyun, Gwangbum, Unil Yun, and Keun Ho Ryu. "Efficient frequent pattern mining based

on linear prefix tree." Knowledge-Based Systems 55 (2014).

