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ABSTRACT 

This work presents single image dehazing based on dark channel prior. Firstly, lifting 
haar wavelet has been used to decompose the hazy image into approximation and 
details. Then only the approximation component which is just one-fourth of the actual 
image dimension is further processed for dehazing. The dark channel prior used in the 
proposed work for dehazing is based on statistics of haze free images. The property 
that the intensity of dark channel gives approximate thickness of the haze is used to 
estimate the transmission and atmospheric light. Instead of constant airlight, proposed 
method employs scene depth to estimate spatially varying atmospheric light as it truly 
occurs in nature. Haze imaging model together with soft matting method has been 
used in this work to obtain a high quality haze free image. Experimental results 
demonstrate that the proposed approach produces better results as color fidelity and 
contrast of haze free image are improved and no over saturation in the sky region is 
observed. Further, with the use of lifting wavelet transform, reduction in 
computational time by a factor of two to three as compared to the conventional 
approach has been observed. 
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CHAPTER 1  

INTRODUCTION 

While the whole world unites to curb air pollution that poses a serious threat to our 

environment, we focus to work on another phenomenon caused by air pollution called 

haze. Haze is an atmospheric phenomenon that degrades visual quality of an image 

thereby affecting the performance of many computer vision applications. Haze removal 

is a difficult task because thickness of haze depends upon depth, which is unknown. To 

estimate depth from a single image is an under constrained problem. Therefore many 

methods exist which are based upon multiple images or some additional information. 

Since in many real applications, obtaining multiple images of the same scene is not 

possible, single image dehazing has gained popularity. The success of various single 

image dehazing techniques depends on the accuracy and generality of their priors/ 

assumptions. 

Recently, in single image dehazing, Dark Channel Prior, proposed by He et al. [1], has 

gained popularity because of its simplicity and effectiveness to remove haze in most of 

the cases. DCP depends on the perception that in a large portion of the outdoor haze free 

images, no less than one color channel has negligible intensity in a patch. Though 

effective, DCP fails in sky regions and in case of near white objects. Moreover, due to 

solving of laplacian matte, DCP is computationally intensive. 
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In this work, we propose an approach, partly derived from some of the previously 

developed methodologies, to make DCP suitable for real time applications and at the 

same time ensuring high visual quality output. We apply lifting Haar wavelet 

decomposition to reduce computation runtime and memory requirement. We also apply 

depth based atmospheric light to estimate it correctly even in the presence of Sun or any 

other light source which form the reason for non-uniform airlight.  

This report is organized in following manner. In chapter 2, we discuss haze imaging 

model which is the baseline of our entire discussion and discuss our comprehensive 

study on various dehazing techniques built upon dark channel prior assumption. In 

chapter 3, we thoroughly review dark channel prior approach proposed by He et al. [1]. 

In chapter 4, we discuss the scenarios where the classical dark channel prior fails and 

propose methodology to eliminate the limitations. Further, we present our end to end 

algorithm for image dehazing. In chapter 5, we summarize results and simulations. 

Also, we present comparative study between our method and state-of-the-art DCP 

technique. In chapter 6, we conclude our work followed by future scope of work in 

chapter 7.  

1.1 Thesis Overview 
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CHAPTER 2  

BACKGROUND 

In this chapter, the first section presents Haze Imaging Model described by a 

mathematical equation. This model forms the basis for our thesis and has been used 

extensively in the report.    

The later section discusses the previous works on single image haze removal based on 

He‟s [1] Dark Channel Prior. Accordingly the performance and limitations of the stated 

works has been commented as evaluated during the course of our study.  

In 1975, McCartney proposed airlight scattering model [2]. Later, Narasimhan and 

Nayar [3] further simplified it. The haze imaging model, which is now widely used in 

image processing is: 

 𝐼(𝑥) = 𝑡(𝑥)𝐽(𝑥) + 𝐴(1 − 𝑡(𝑥)) (2.1) 

2.1 Haze Imaging Model 
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Figure 2.1: Haze Imaging Model [3] 

where,  

„x‟ denotes the position of the pixel in the image 

„I‟ denotes the observed hazy image intensity 

„J‟ denotes the scene radiance  

„A‟ is the atmospheric light. It is a 3D RGB vector that represents the color of the 

atmosphere or sky 

„t‟ is transmission of the medium associated with the portion of light reaching the 

camera. Now, suppose that a point in an image is situated at a distance „d‟ from the 

camera or in other words, it has depth „d‟, then, the relation between transmission and 

depth is given by the equation below:  

                       𝑡(𝑥) = 𝑒−𝛽𝑑(𝑥) (2.2) 

where, ′𝛽′ is known as the „scattering coefficient‟. 

Due to finite transmission of the medium, light reaching the camera directly from the 

object undergoes attenuation. This is expressed by the first term in (2.1) i.e. „J(x) t(x)‟. 
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This is termed as ‘direct attenuation’. This distortion to the scene radiance is 

multiplicative in nature as can be seen from the equation. 

Light reaching the camera not directly from the object but due to scattering from the 

particles present in the atmosphere is called ‘airlight’. This distortion to scene radiance 

is additive in nature and is expressed by the second term in (2.1) i.e. „A (1 - t(x))‟.  

Various researches have been built upon He‟s Dark Channel Prior assumption. Some of 

those techniques are studied and investigated as below. 

Yogesh et al. [4] used erosion and dilation to replace soft matting. Their technique is 

capable of removing halo to some extend for patch no larger than 3x3 and that too with 

oversaturation of image as a tradeoff. 

Cheng-Hsiung Hsieh et al. [5] proposed dual dark channel approach with 1x1 and 

15x15 patch to eliminate soft matting refinement, however it suffers from halos in depth 

discontinuities. 

Jiajie Liu et al. [6] aimed to accurately estimate the transmission based on distance 

between pixel intensity and atmospheric light. While it works well for sky region, 

performance is not satisfactory for purely non-sky images. 

Chia-Hung Yeh1 et al. [7] introduced bright channel prior as contrary to dark channel 

prior to identify the regions having minimum haze thickness. This prior fails due to the 

presence of black objects and shadow areas in most of the images. As per our study, we 

propose to determine minimum haze regions corresponding to the darkest pixels in the 

dark channel instead. 

For sky regions, dark channel of haze free image is not zero. He [1] assumed it zero 

when calculating transmission that leads to oversaturation in sky regions. Xipan Lu et 

2.2 Literature Survey 
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al. [8] tried to rectify this issue by introducing an adaptive compensation in transmission 

computation that varies for sky and non-sky regions accordingly. 

To deal with sky region, Ting Han and Yi Wan [9] modified transmission according to 

the difference between pixel intensity and atmospheric light. The proposed technique 

works well for the sky region but oversaturates rest of the image. When tuned for the 

non-sky region, it does not work well for the sky part, so it is tough to find parameters 

that suit sky and non-sky regions simultaneously. 

Hung-Yu Yang et al. [10] employed median filter as a refinement algorithm replacing 

soft matting for underwater image enhancement and is computationally very efficient to 

do so. However, it causes great loss to the color fidelity of the recovered image. 

Yanjing Yang et al. [11] speeded up the algorithm by processing only the low frequency 

sub-image obtained using discrete Haar wavelet transform. 

C. Chengtao et al. [12] segmented the hazy image into sky and non-sky regions and 

processed them separately to resolve the problem of dimness and oversaturation. The 

threshold segmentation employed here requires manual tuning as optimum threshold 

value may vary from image to image. 

There are many techniques deploying pixel based dark channel prior. Though it avoids 

any refinement process to remove halos and blocky artifacts, it cannot take care of 

white objects such as cars etc. Firstly, this leads to inaccurate estimation of atmospheric 

light. Secondly, dark channel of white objects is not dark causing underestimation of 

transmission. Both of the cases lead to oversaturation of haze free images. 
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CHAPTER 3  

DARK CHANNEL PRIOR BASED SINGLE IMAGE HAZE 

REMOVAL 

Our aim is to recover haze free image i.e. scene radiance. With reference to haze 

imaging equation (2.1) introduced in previous chapter, we need to find atmospheric 

light „A‟ and transmission „t‟ to recover the scene radiance „J‟ for a given hazy image 

‟I‟. It can be observed from the equation, for an image consisting of „N‟ pixels, there 

will be 3N constraints and 4N + 3 unknowns. Therefore, the problem of single image 

dehazing is highly under constrained. 

This chapter discusses Dark Channel Prior algorithm proposed by He et al. [1].  

Knowing image dehazing model is an ambiguous problem, two strategies are available:  

1. Multiple image dehazing and  

2. Single image dehazing.         

3.1 Dark Channel Prior 
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Multiple images of same scene under different conditions being not very practical, 

single image dehazing techniques are favorable. But due to ambiguity involved, 

assumptions or a priori knowledge is requisite. 

Tan‟s method [13] is based on the assumption that the contrast of the haze free images 

is more than the hazy image. This method though gives visually appealing results, it 

does not well maintain the color fidelity. 

Fattal [14] proposed that the luminance and transmission are independent statistically. 

Though effective, but the method fails for the thick haze regions. 

In the method proposed by He et al. [1], it is assumed that in a large portion of the 

outdoor haze free images, no less than one color channel has negligible intensity in a 

patch. He named this assumption as “Dark Channel Prior”. The prior can be easily 

validated from the observations below: 

 

Figure 3.1: (a & c) Haze free images; (b & d) corresponding dark channels 

Factors that contribute to the validity of this prior are colorful objects, shadows, 

irregular geometry, black objects etc. This condition is valid only for haze free images 

except where sky region or near white objects come into picture. 

For hazy images, dark channel is not really dark as shown below. This is so because 

addition of the airlight causes brightening of the pixels which are otherwise dark for 
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haze free image. The thicker the haze more is the extent of brightness. This distinction 

allows using the prior for dehazing purpose. 

 
Figure 3.2: (a & c) Haze free images; (b & d) corresponding dark channels 

Steps involved in the classical DCP algorithm are shown in the block diagram: 

 

Figure 3.3: Block Diagram for Classical DCP Algorithm 

To evaluate dark channel for an image, a window or patch of size 15 x 15 is moved over 

the whole image. Dark channel for the pixel at the center of the window is equal to the 

minimum intensity value among the three color channels, i.e. Red, Green and Blue, and 

3.2 Haze Removal Algorithm 

3.3 Dark Channel Computation 
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among all the pixels in that patch. Mathematically, the dark channel of an image can be 

expressed as: 

 𝐼𝑑𝑎𝑟𝑘(𝑥) = min
𝑦∈Ω(𝑥)

( min
𝑐∈*𝑅,𝐺,𝐵+

 𝐼𝑐(𝑦)) (3.1) 

where, Ω denotes the patch of 15 x 15 pixels and 𝑐 denotes the color channel. 

Intuitively, the pixels representing the atmospheric light can be thought of as the 

brightest pixels. But this simple definition goes wrong when some white objects like 

white car or white building is present in the image. In this case the white object will 

have the brightest pixels but it is obviously not the airlight. The definition will also fail 

easily in the presence of sunlight which cannot be ignored in most of the outdoor 

images.  

For more accurate results, He et al. [1] make use of dark channel of the image. The dark 

channel depicts the thickness of haze and thus can be used for estimation of airlight. As 

dark channel is calculated in a patch, the white objects which are generally surrounded 

by colored objects become dark in dark channel image. Thus, the brightest pixels in the 

dark channel image are not the bright or white objects in the hazy image. Therefore, 

airlight now can be accurately estimated from the dark channel. He et al. [1] estimate 

atmospheric light as the average of the pixel intensities in the hazy image corresponding 

to 0.1 % of the bright pixels in the dark channel. Note that He et al. [1] considers 

atmospheric light „A‟ to be constant over the whole image.   

3.4 Atmospheric Light Estimation 
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Figure 3.4: (a) Hazy Image (b) Corresponding Dark Channel (c) Brightest pixels in the dark chaneel (d) 

& (e) shows the brightest pixel in the hazy image [1] 

Given atmospheric light A as calculated above and assuming that the transmission in a 

local patch is constant, we can estimate the transmission using haze imaging equation 

(2.1): 

 𝐼(𝑥) = 𝑡(𝑥)𝐽(𝑥) + 𝐴(1 − 𝑡(𝑥)) (2.1) 

Normalizing the haze imaging equation by atmospheric light A for each color channel 

independently, we get: 

 𝐼𝑐(𝑥)

𝐴𝑐
= 𝑡(𝑥)

𝐽𝑐(𝑥)

𝐴𝑐
+ 1 − 𝑡(𝑥) (3.2) 

We calculate the dark channel of either sides of equation (3.2) with an assumption that 

transmission remains constant in patch Ω(𝑥). Putting minimum operator on both sides, 

we get, 

3.5 Transmission Estimation 
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min
𝑦∈Ω(𝑥)

(min
𝑐

𝐼𝑐(𝑥)

𝐴𝑐
) = 𝑡̃(𝑥) min

𝑦∈Ω(𝑥)
(min

𝑐
(

𝐽𝑐(𝑥)

𝐴𝑐
+ (1 − 𝑡(𝑥))) (3.3) 

Here, 𝑡̃(𝑥) denotes transmission in a patch. Since transmission, 𝑡̃(𝑥) is constant for a 

patch it can be taken out of the minimum operator. Next, as observed in the previous 

section (3.1) the dark channel of haze free image or correspondingly the scene radiance 

J is close to zero. Thus we can write: 

 𝐽𝑑𝑎𝑟𝑘(𝑥) = min
𝑦∈Ω(𝑥)

(min
𝑐

𝐽𝑐(𝑦)) = 0 (3.4) 

This also implies that: 

 min
𝑦∈Ω(𝑥)

(min
𝑐

𝐽𝑐(𝑥)

𝐴𝑐
) = 0 (3.5) 

Substituting equation (3.5) in equation (3.3), we get, 

 𝑡̃(𝑥) = 1 − min
𝑦∈Ω(𝑥)

(min
𝑐

𝐼𝑐(𝑥)

𝐴𝑐
) (3.6) 

Since the transmission is assumed to be constant in a patch of size 15 x 15, there appear 

blocky artifacts and halos in the processed image. To deal with this problem, He et al. 

[1] employed soft matting proposed by A. Levin et al. [15] to refine the transmission 

and hence the scene radiance. 

3.6 Soft Matting 
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Figure 3.5: (a) Hazy Image, (b) Transmission with 15x15patch, (c) Recovered Haze free image, (d) 

Transmission after soft matting, (e) Recovered Haze free image after soft matting [1] 

The refined transmission 𝑡 is obtained from the coarse transmission 𝑡̃ by minimizing the 

following cost function: 

 𝐸(𝑡) = 𝑡𝑇𝐿𝑡 + 𝜆(𝑡 − 𝑡̃)𝑇(𝑡 − 𝑡̃) (3.7) 

where 𝜆 is the weight and L is N x N laplacian matrix whose (i, j)th element is given by: 

 ∑ (𝛿𝑖𝑗 −  
1

|𝜔𝑘|
(1 + (𝐼𝑖 − 𝜇𝑘)𝑇 (Σ𝑘 +

𝜀

|𝜔𝑘|
𝑈3)

−1

(𝐼𝑗 − 𝜇𝑘)))

𝑘|(𝑖,𝑗)𝜖𝜔𝑘

  (3.8) 

where, 
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𝐼𝑖 and 𝐼𝑗 : colors of the input image 𝐼 at pixels 𝑖 and 𝑗, 

 𝛿𝑖𝑗 : Kronecker delta, 𝜇𝑘 : mean matrix of colors in the window 𝜔𝑘, 

Σ𝑘 : covariance matrix of colors in the window 𝜔𝑘, 

 𝑈3 : 3x3 identity matrix,  : regularizing parameter, 

 |𝜔𝑘| : number of pixels in the window 𝜔𝑘. 

Optimum value of 𝑡 is obtained by solving the following equation: 

 (𝐿 + 𝜆𝑈)𝑡 = 𝜆𝑡̃ (3.9) 

Where 𝑈 is an identity matrix of size N x N and 𝜆 is the weight set to 10
-4 

As observed from the figure above, recovered image obtained after soft matting is free 

from blocky artifacts and halo effects. 

Having estimated the transmission and atmospheric light, scene radiance can be 

calculated using the haze imaging model. However, the transmission can be very low 

for pixels resembling the atmospheric light. For very low transmission values, the scene 

radiance will be highly amplified leading to color distortion. To avoid this situation, He 

et al. [1] put a lower limit on 𝑡 i.e. 𝑡0 which is kept as 0.1. Mathematically,  

 𝐽(𝑥) = ( 
𝐼(𝑥) − 𝐴

𝑚𝑎𝑥(𝑡(𝑥), 𝑡0)
) + 𝐴 (3.10) 

3.7 Recovering Scene Radiance 
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CHAPTER 4  

PROPOSED METHOD 

In this chapter, we propose our algorithm discussing the shortcomings of classical DCP 

and providing solutions to overcome them. 

When viewed in frequency domain, haze is low frequency noise. So, to eliminate haze 

from an image, we may just process the low frequency component of image instead of 

processing the whole image. This leads to drastic reduction in run time of the dehazing 

algorithm. 

Yanjing Yang et al. [11], employed Haar discrete wavelet transform for image 

dehazing.  

We employ lifting Haar wavelet to decompose hazy image into four sub images. Out of 

these four, one image contains the low frequency components i.e. it contains haze. So,

4.1 Accelerate Using Lifting Wavelets 
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 we process further only this low frequency sub image for haze removal. This makes our 

algorithm fast.  

4.1.1  The Lifting Scheme 

First generation wavelets are translation and dilation of some function. Traditionally, 

they are implemented using filter banks and decimators. Lifting scheme, developed by 

Wim Sweldens[16]-[19], gives freedom to implement or construct a wavelet, which is 

not necessarily translation and dilation of any function, i.e., second generation wavelets. 

Lifting converts traditional filter bank based implementation of discrete wavelet 

transform to finite and simple steps. It starts with splitting the sequence into odd and 

even, which is termed as Lazy wavelet transform. This transform has no function as 

such but forms the basis on which more sophisticated wavelet with enhanced properties 

is built.   Lifting steps are composed of prediction and error in each stage. While scaling 

coefficients become the input data sequence to the next stage, wavelet coefficients are 

the difference in odd sample sequence and its prediction, i.e., prediction error. The 

simple steps of lifting are a benediction of similarities between the high pass and low 

pass filters used in filter bank implementation. This exploitation of similarities renders 

the speed to the lifting algorithm. The detail mathematical derivation for these is given 

in appendix section. 

Lifting scheme can be illustrated by diagram below: 

 

Figure 4.1: Lifting scheme implementation [27] 

As shown in the figure, Lifting involves three simple steps: Split, Predict and Update, 

which are discussed below: 
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Split: This step divides the data stream „x‟ into even and odd parts.  

 
𝑥𝑒(𝑛): 𝑥(2𝑛);        𝑥𝑜(𝑛): 𝑥(2𝑛 + 1) 

 

(4.1) 

Predict: This step predicts the next odd value from the even value. In case of Haar, the 

prediction is an identity function, i.e. the prediction is the even value itself. The 

predictions when subtracted from odd values give detail coefficients.  

 𝑥𝑜(𝑛) =  𝑃( 𝑥𝑒(𝑛))  +  𝑑(𝑛)  (4.2) 

Update: To maintain the average of the input, in the update step, the even stream is 

updated using odd values. In case of Haar wavelets, the updating step reduces to 

subtracting half of the details from even values. 

 𝑎(𝑛)  =  𝑥(2𝑛)  +  𝑈(𝑑(𝑛))  =  (𝑥(2𝑛) + 𝑥(2𝑛 + 1))/2 (4.4) 

Lifting scheme bear several benefits as given below: 

 Less computation speed and complexity 

 In place algorithm, i.e., does not require axillary memory 

 Makes implementation of integer to integer transform easy 

 Inverse lifting transform easily follows simply by reversing the order and sign 

 Enable to construct second generation wavelets. 
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4.1.2  Haar wavelet decomposition into Lifting  

Haar transform has 2 filter coefficients: 

Low pass 

 𝑕0 =  𝑕1 = 1 (4.5) 

High pass 

 𝑔0 = −
1

2
,    𝑔1 = 𝑕1 =

1

2
  (4.6) 

Using filter coefficients in equations A.25 to A.30 in appendix, 𝑃(𝑧) can be 

decomposed to  

 𝑃(𝑧) = [
𝑕𝑒(𝑧) 𝑔𝑒(𝑧)
𝑕𝑜(𝑧) 𝑔𝑜(𝑧)

] = [
1 −

1

2

1
1

2

] = [
1 0
1 1

] [1 −
1

2
0 1

] (4.7) 

Approximate and detail coefficients can be obtained from the relation: 

 [
𝜆(𝑧)
𝛾(𝑧)

] = 𝑃(𝑧)−1 [
𝑓𝑒(𝑧)

𝑧−1𝑓𝑜(𝑧)
] (A.17) 

where 

 𝑃(𝑧)−1 = [1
1

2
0 1

] [
1 0

−1 1
] (4.8) 

After normalization, we get 
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 𝑃(𝑧)−1 = *
√2 0

0
1

√2

+ [1
1

2
0 1

] [
1 0

−1 1
] (4.9) 

4.1.3  Lifting in 2D 

The block diagrams representing implementation of discrete wavelet transform using 

traditional filter bank technique and the lifting scheme are shown below. As can be 

easily observed, lifting involves simple operations whereas filter bank implementation 

involves complex operations of convolution, decimation and interpolation.  

 

Figure 4.2: DWT and IDWT Block Diagram 

 

Figure 4.3: Block diagram showing lifting wavelet scheme implementation for images 
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Figure 4.5 illustrates the four components of the image shown in figure 4.4 obtained 

subsequent to wavelet decomposition. The approximation image contains the haze 

component and is the one which need to be further processed by dehazing algorithm. 

 

Figure 4.4: Hazy image 

 

Figure 4.5: Wavelet decomposition (a) Approximation image (b) Horizontal details (c) Vertical details (d) 

Diagonal details 
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In our algorithm, dark channel of an image is computed using the formula given below 

employing patch size of 15 x 15.  

 𝐼𝑑𝑎𝑟𝑘(𝑥) = min
𝑦∈Ω(𝑥)

( min
𝑐∈*𝑅,𝐺,𝐵+

 𝐼𝑐(𝑦)) (3.1) 

Following figure shows hazy image and its corresponding dark channel: 

 

Figure 4.6: (a) Hazy image (b) Corresponding dark channel 

In method proposed by He et al. [1], atmospheric light is assumed to be constant 

throughout the image. This is not true because: 

1) Haze density is different for different image regions and therefore atmospheric 

light should also vary accordingly. 

2) Due to the presence of sky region or say sunlight, atmospheric light is more in 

one part of the image than other. 

4.2 Computing Dark Channel Prior 

4.3 Optimizing Atmospheric Light Estimation  
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3) When localized light sources are present in the image like street light, vehicle 

headlights, and lamps etc., atmospheric light is more near the center of these 

sources. 

Thus, „A‟ is not constant. The impact of keeping „A‟ constant can be seen in the figure 

below: 

 

Figure 4.7: Nonconstant atmospheric light (a) Input image (b) He's result (c) Dark Channel. Red pixels 

indicate where the atmospheric light is estimated [1] 

As we observe, sky is oversaturated. This is because the atmospheric light is measured 

from the region near the light source because it is here where we get brightest pixels in 

the dark channel. Now, this airlight is kept constant to solve the image dehazing model. 

Though it works correctly near the light source, the airlight is overestimated for the rest 

of the image. As a result, the transmission which is calculated from atmosphere, is 

underestimated, this in turn leads to overestimation of recovered scene radiance.   

C. Chengtao et al. [12] segmented the image into sky and non-sky regions, using 

threshold based segmentation, and then calculated separately the critical parameters like 

atmosphere and transmission. The method required manual tuning of threshold value for 

different images. 

Chia – Hung Yeh et al. [7] formulates the expression for calculating atmospheric light 

at every pixel. The formula is based on the fact that atmospheric light is directly 

proportional to haze thickness. They estimate the haze thickness by finding the 

difference of every pixel in the image from the brightest pixel in HSV color space. 

Lesser the difference more is the thickness of haze. Then the parameter is converted 

such as it becomes directly proportional to haze thickness. This is finally multiplied to 
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constant atmospheric light to make it vary according to haze. Though the idea seems to 

be impressive, the metric chosen for estimating haze thickness fail in case of near white 

objects present in the scene for which the difference from the brightest pixel is low even 

when they are under thickest haze. 

In our proposed method, we estimate pixel based atmospheric light from scene depth. 

The idea is that more the scene depth more is the thickness of haze and more is the 

atmospheric light. Depth is estimated from the transmission using equation (2.2): 

                       𝑡(𝑥) = 𝑒−𝛽𝑑(𝑥) (2.2) 

where, 𝛽 is the scattering coefficient. Equation (2.2) can be rewritten as: 

 𝑑(𝑥) =
1

𝛽
ln (

1

𝑡(𝑥)
) (4.10) 

Based on this depth value, constant value of atmosphere is varied across the image 

using the expression below: 

 𝐴 ∝ 1 − 𝑒−𝑑𝑒𝑝𝑡ℎ (4.11) 

Proposed method is capable of working for varying sizes of light sources; it does not 

require manual tuning and also works correctly for near white scenes. 

The atmospheric light calculated by the proposed method is depicted below: 
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Figure 4.8: (a) Hazy iamge (b) Atmospheric light calculated using proposed method 

In proposed method, transmission is estimated using haze imaging model with the only 

difference that now atmospheric light is pixel based. Mathematically, 

 𝑡̃(𝑥) = 1 − min
𝑦∈Ω(𝑥)

(min
𝑐

(
𝐼𝑐(𝑥)

max 𝑐(A(𝑥))
)) (4.12) 

In detail, halos occur in patches having regions of different depths i.e. the patches 

having depth discontinuities. Due to varying depths, the transmission of the farther 

region is over estimated. Since scene radiance J has an inverse relation with 

transmission, over estimation of transmission leads to whiteness all along the edges of 

those discontinuities. 

Soft matting proposed by A. Levin et al. [15], has been used in the proposed algorithm 

to deal with halo effects. This step produces very good results as shown in the figure 

below. 

4.4 Optimizing Transmission Estimation  

4.5 Optimizing Transmission Refinement  
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Figure 4.9: Transmission Refinement (a) Hazy image (b) Coarse transmission (c) Refined transmission 

After having calculated the atmospheric light and transmission, scene radiance can be 

calculated using haze imaging model with the only change of pixel based 𝐴. 

 𝐽(𝑥) = ( 
𝐼(𝑥) − 𝐴(𝑥)

𝑚𝑎𝑥(𝑡(𝑥), 𝑡0)
) + 𝐴(𝑥) (4.13) 

  

4.6 Scene Radiance Computation 
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Figure 4.10 Algorithm Block Diagram 

4.7 Proposed Algorithm 
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CHAPTER 5  

SIMULATION AND RESULTS 

In this section, we illustrate the efficacy of the proposed algorithm over a set of 

different types of real images. The haze free images obtained from our approach are 

compared with respective input hazy images and He‟s outputs. The performance of our 

algorithm is measured with two approaches:  

1. Objective evaluation: where we check the run time of the algorithm critical for 

real time applications, Structural Similarity index (SSIM), entropy before and 

after dehazing algorithm and root mean square contras 

2. Subjective evaluation: where we evaluate results on basis of visual inspection 

Description of the simulation environment used for experimentation is Matlab-R2016a, 

Windows 7 professional (64bit), Intel core-i5 2.6 GHz (4CPUs), 4GB RAM. 
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Figure 5.1: New York. Sky saturation problem (a) Hazy image (b) He's result (c) Our result 

 

Figure 5.2: Mountain. Sky saturation problem (a) Hazy image (b) He's result (c) Our result 

 

Figure 5.3: Temple. Sky saturation problem (a) Hazy image (b) He's result (c) Our result 

 

5.1 Subjective Evaluation 
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Figure 5.4: Bird. (a) Hazy image (b) He's result (c) Our result 

 

Figure 5.5: Bird. Contrast and Color Fidelity Comparison (a) He's result (b) Our result 
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Figure 5.6: Canon. Contrast and Color Fidelity Comparison (a) He's result (b) Our result 

 

Figure 5.7:Canon. Contrast and Color Fidelity Comparison (a) He's result (b) Our result 

 

Figure 5.8: Market. (a) He's result (b) Our result 
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Figure 5.9: Tea Garden. Contrast and Brightness Comparison (a) Hazy image (b) He's result (c) Our 

result 

In figure 5.1, on applying conventional DCP algorithm, sky is badly saturated while the 

output from our algorithm reproduces natural sky shades without compromising on the 

non-sky region. Same can be observed in figure 5.2 and 5.3 results. 

In the next image showing a bird in grassland, natural colors are well preserved in our 

results which were otherwise lost using conventional method. This can be easily 

observed from the next zoomed in image focusing the red color on bird‟s tail. Despite 

color fidelity our results exhibit better contrast and brightness. Same can be noticed in 

figures 5.6 to 5.9. 
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In the table below we show the run time comparison between our and He‟s algorithm. 

As can be seen, our algorithm far exceeds the conventional DCP in terms of speed. 

Table 1: Run Time Comparison 

Image name Image Dimensions He's method Proposed method 

New York 1024x768 117.723s 42.530s 

Temple 600x450 29.042s 15.133s 

Canon 400x600 46.307s 12.313s 

Mountain 512x384 24.787s 10.890s 

Bird 1152x864 162.504s 55.959s 

Tea Garden 1152x864 161.940s 55.046s 

Market 332x500 23.546s 9.491s 

In order to quantify the image quality produced by our method in comparison to He‟s 

approach, we choose SSIM, entropy and contrast as performance parameters. Their 

physical significance to image dehazing along with formulation is as follows: 

 Structural Similarity Index 

It indicates the degree of structure retained in a processed image with respect to 

reference image. In our case, we measure the structural similarity index of 

images produced from conventional DCP and the proposed technique 

considering hazy image as reference image. To measure SSIM we use the 

following formula: 

 𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦 + 𝑐1)(2𝜎𝑥𝑦 + 𝑐2)

(𝜇𝑥
2 + 𝜇𝑦

2 + 𝑐1)(𝜎𝑥
2 + 𝜎𝑦

2 + 𝑐2)
 (5.1) 

As can be observed from the analysis table 2, haze free images produced from 

our method has higher values of SSIM than classical DCP technique 

 

 

5.2 Objective Evaluation  
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 Contrast 

Higher contrast makes it easy to differentiate among objects in an image. In 

present work, we use root mean square contrast as a metric. This is same as 

standard deviation. To measure rms contrast we use the following formula: 

 𝑅𝑀𝑆 𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = √
1

𝑀𝑁
∑ ∑ (𝐼𝑖𝑗 − 𝐼)̅

2
𝑀−1

𝑗=0

𝑁−1

𝑖=0

 (5.2) 

As can be easily observed from table 2, our method exceeds traditional 

technique in contrast as well. 

 Entropy 

Entropy signifies randomness. Low value of entropy corresponds to 

homogenous regions of image. Since haze is distributed all over image, hazy 

image has low entropy as compared to haze free image. Thus, entropy can be 

somewhat related to amount of haze removed from the image. To measure 

entropy we use the following formula: 

 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝐻 = − ∑ 𝑝𝑖(𝑙𝑜𝑔2𝑝𝑖)

𝑖

 (5.3) 

Our method once again outperforms the conventional DCP technique in terms of 

entropy as can be seen from the analysis table below. 

In the table below we compare our prosed method with DCP on the basis of entropy and 

structural symmetry index. As can be observed that here also our algorithm performs 

better than the classic method in majority of cases. 
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Table 2: Parameter comparison 

Parameter Entropy SSIM Contrast 

Image 
Hazy 

image 
Classical 

DCP 
Proposed 
Algorithm 

Classical 
DCP 

Proposed 
Algorithm 

Hazy 
image 

Classical 
DCP 

Proposed 
Algorithm 

Canon 6.89 7.23 7.2 0.58 0.66 6.28 6.02 5.66 

Tea Garden 6.34 7.33 7.37 0.61 0.61 2.92 5.81 6.64 

Bird 6.99 7.52 7.78 0.67 0.78 4.77 7.48 8.72 

Market 7.3 7.84 7.89 0.61 0.65 6.74 9.44 10.07 

Mountain 7.48 7.53 7.65 0.76 0.77 5.64 5.59 5.96 

New York 7.61 7.64 7.77 0.7 0.78 7.69 7.67 8.88 

Tiananmen 7.64 7.61 7.79 0.77 0.93 8.95 7.59 8.85 
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CHAPTER 6  

CONCLUSION 

In this thesis report, a novel single image dehazing method based on dark channel prior 

has been proposed. Atmospheric light is calculated for each pixel on the basis of its 

depth. This accurate estimation of airlight further leads to accuracy of transmission and 

scene radiance. The effectiveness of our method can be observed from the results 

produced. We do not require any additional correction factor or segmentation 

techniques to deal with sky region saturation; rather accurate estimation of atmospheric 

light enables the algorithm to implicitly retain natural sky shades. We used Haar lifting 

wavelet which made the algorithm fast and also simple and memory efficient. 
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CHAPTER 7  

FUTURE WORK  

In spite of much improvement over traditional DCP in our work, some common issue 

remains. Proposed algorithm still suffers from bluishness of scene area near the horizon 

as depicted below: 

 

Figure 7.1: (a) hazy image, (b) output image with bluish problem 

In future, we aim at taking our algorithm to the next level to overcome the above stated 

issue.
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APPENDIX A 

𝑧-transform of discrete data sequence say 𝑓(𝑘) is 

 𝑓(𝑧) = ∑ 𝑓(𝑘)𝑧−𝑘

𝑘

 (A.1) 

On expanding: 

  𝑓(𝑧) = 𝑓(0)𝑧0 + 𝑓(1)𝑧−1 + 𝑓(2)𝑧−2 + 𝑓(3)𝑧−3 + ⋯ (A.2) 

 𝑓(−𝑧) = 𝑓(0)𝑧0 − 𝑓(1)𝑧−1 + 𝑓(2)𝑧−2 − 𝑓(3)𝑧−3 + ⋯ (A.3) 

Adding above two: 

 
𝑓(𝑧) + 𝑓(−𝑧)

2
= 𝑓(0)𝑧0 + 𝑓(2)𝑧−2 + 𝑓(4)𝑧−4 + ⋯ = ∑ 𝑓(2𝑘)𝑧−2𝑘

𝑘

 (A.4) 

Sub-sampling 𝑓(𝑧) keeping even samples: 

Lifting Scheme Decomposition Steps  
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 𝑓𝑒(𝑧) = ∑ 𝑓(2𝑘)𝑧−𝑘

𝑘

 (A.5) 

From (A.4) and (A.5): 

 𝑓𝑒(𝑧2) =
𝑓(𝑧) + 𝑓(−𝑧)

2
 (A.6) 

In the same way, for odd samples, 

 𝑓𝑜(𝑧2) = *
𝑓(𝑧) − 𝑓(−𝑧)

2
+ 𝑧 (A.7) 

From (A.6) and (A.7), 

 𝑓(𝑧) =  𝑓𝑒(𝑧2) + 𝑧−1𝑓𝑜(𝑧2) (A.8) 

Upon low pass 𝑕(𝑧), and high pass 𝑔(𝑧) filtering of 𝑓(𝑧), 

 𝑙𝑝(𝑧) =  𝑓(𝑧)𝑕(𝑧) (A.9) 

 𝑕𝑝(𝑧) =  𝑓(𝑧)𝑔(𝑧) (A.10) 

In matrix form: 

 [
𝑙𝑝(𝑧)
𝑕𝑝(𝑧)

] = [
𝑕(𝑧)

𝑔(𝑧)
] 𝑓(𝑧) (A.11) 

Sub-sampling, 



 

- 42 - 

 

 𝐿𝑃(𝑧2) = 𝑙𝑝𝑒(𝑧2) =
𝑙𝑝(𝑧) + 𝑙𝑝(−𝑧)

2
=

𝑕(𝑧)𝑓(𝑧) + 𝑕(−𝑧)𝑓(−𝑧)

2
 (A.12) 

 𝐻𝑃(𝑧2) = 𝑕𝑝𝑒(𝑧2) =
𝑕𝑝(𝑧) + 𝑕𝑝(−𝑧)

2
=

𝑔(𝑧)𝑓(𝑧) + 𝑔(−𝑧)𝑓(−𝑧)

2
 (A.13) 

(A.12) and (A.13) in matrix form: 

 [
𝐿𝑃(𝑧2)

𝐻𝑃(𝑧2)
] = [

𝑙𝑝𝑒(𝑧2)

𝑕𝑝𝑒(𝑧2)
] =

1

2
[
𝑕(−𝑧) 𝑕(𝑧)
𝑔(−𝑧) 𝑔(𝑧)

] [
𝑓(−𝑧)
𝑓(𝑧)

] (A.14) 

Here, coefficients are calculated first and then subsampling is performed. This renders it 

highly inefficient. So to raise efficiency sub-sampling is performed before filtering, 

 𝑙𝑝𝑒(𝑧) = ,𝑕(𝑧)𝑓(𝑧)-𝑒 = 𝑕𝑒(𝑧)𝑓𝑒(𝑧) + 𝑧−1𝑕𝑜(𝑧)𝑓𝑜(𝑧) (A.15) 

 𝑕𝑝𝑒(𝑧) = ,𝑔(𝑧)𝑓(𝑧)-𝑒 = 𝑔𝑒(𝑧)𝑓𝑒(𝑧) + 𝑧−1𝑔𝑜(𝑧)𝑓𝑜(𝑧) (A.16) 

Let output of sub-sampler and then low pass filter be 𝜆(𝑧), and output of sub-sampler 

and then high pass filter be 𝛾(𝑧) 

 [
𝜆(𝑧)

𝛾(𝑧)
] = 𝑃(𝑧) [

𝑓𝑒(𝑧)

𝑧−1𝑓𝑜(𝑧)
] (A.17) 

Where 𝑃(𝑧) is poly-phase matrix: 

 𝑃(𝑧) = [
𝑕𝑒(𝑧) 𝑕𝑜(𝑧)
𝑔𝑒(𝑧) 𝑔𝑜(𝑧)

] (A.18) 
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To ensure perfect reconstruction, low pass filter 𝑕(𝑧) and high pass filter 𝑔(𝑧) need to 

be complimentary, i.e. determinant of poly-phase matrix be unity:  

 𝑃(𝑧) = [
1 0
0 1

] (A.19) 

New filter complimentary to 𝑔 say 𝑕𝑛𝑒𝑤 can be derived using primal lifting and new 

filter complimentary to 𝑕 say 𝑔𝑛𝑒𝑤can be derived using dual lifting as: 

  𝑕𝑛𝑒𝑤 = 𝑕(𝑧) + 𝑠(𝑧2)𝑔(𝑧) (A.20) 

 𝑔𝑛𝑒𝑤 = 𝑔(𝑧) + 𝑡(𝑧2)𝑕(𝑧) (A.21) 

(A.20) and (A.21) in poly-phase representation: 

 𝑃𝑛𝑒𝑤(𝑧) = [
𝑕𝑒

𝑛𝑒𝑤(𝑧) 𝑕𝑜
𝑛𝑒𝑤(𝑧)

𝑔𝑒(𝑧) 𝑔𝑜(𝑧)
] = [

1 𝑠(𝑧)
0 1

] [
𝑕𝑒(𝑧) 𝑕𝑜(𝑧)

𝑔𝑒(𝑧) 𝑔𝑜(𝑧)
] (A.22) 

 𝑃𝑛𝑒𝑤(𝑧) = [
𝑕𝑒(𝑧) 𝑕𝑜(𝑧)

𝑔𝑒
𝑛𝑒𝑤(𝑧) 𝑔𝑜

𝑛𝑒𝑤(𝑧)
] = [

1 0
𝑡(𝑧) 1

] [
𝑕𝑒(𝑧) 𝑕𝑜(𝑧)
𝑔𝑒(𝑧) 𝑔𝑜(𝑧)

] (A.23) 

Poly-phase matrix can be written as product of upper and lower triangular matrices as: 

 𝑃(𝑧) = [
𝐾1 0
0 𝐾2

] ∏ [
1 𝑠𝑖(𝑧)
0 1

] [
1 0

𝑡𝑖(𝑧) 1
]

1

𝑖=𝑚

 (A.24) 

Factorizing 𝑃(𝑧) as: 
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 𝑃(𝑧) = [
𝑕𝑒(𝑧) 𝑕𝑜(𝑧)
𝑔𝑒(𝑧) 𝑔𝑜(𝑧)

] = [
𝑕𝑒(𝑧) 𝑕𝑜

𝑛𝑒𝑤(𝑧)

𝑔𝑒(𝑧) 𝑔𝑜
𝑛𝑒𝑤(𝑧)

] [
1 𝑠(𝑧)
0 1

] (A.25) 

That is 

 𝑕𝑜(𝑧) = 𝑠(𝑧)𝑕𝑒(𝑧) + 𝑕𝑜
𝑛𝑒𝑤(𝑧) (A.26) 

 𝑔𝑜(𝑧) = 𝑠(𝑧)𝑔𝑒(𝑧) + 𝑔𝑜
𝑛𝑒𝑤(𝑧) (A.27) 

In the same way, 

 𝑃(𝑧) = [
𝑕𝑒(𝑧) 𝑕𝑜(𝑧)
𝑔𝑒(𝑧) 𝑔𝑜(𝑧)

] = [
𝑕𝑒

𝑛𝑒𝑤(𝑧) 𝑕𝑜(𝑧)

𝑔𝑒
𝑛𝑒𝑤(𝑧) 𝑔𝑜(𝑧)

] [
1 0

𝑡(𝑧) 1
] (A.28) 

That is, 

 𝑕𝑒(𝑧) = 𝑕𝑒
𝑛𝑒𝑤(𝑧) + 𝑡(𝑧)𝑕𝑜(𝑧) (A.29) 

 𝑔𝑒(𝑧) = 𝑔𝑒
𝑛𝑒𝑤(𝑧) + 𝑠(𝑧)𝑔𝑜(𝑧) (A.30) 
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