LIST OF FIGURES

Figure name.	TITLE	page no.
Figure 3.1	Vapor absorption refrigeration system	12
Figure 3.2	Absorption phenomenon	13,14
Figure 3.3	A continuous absorption refrigeration cycle	
Figure 3.4	A single-effect LiBr / H_2O absorption refrigeration	17
	with a solution heat exchanger	
Figure 4.1	Energy balance of diesel engine	23
Figure 4.2	System Energy balance	
Figure 4.3	Schematic Diagram of Proposed System	
Figure 5.1	Mixing of binary fluid under steady flow	30
Figure 5.2	Mixing of binary fluid under steady flow with heat	30
	exchange	38
Figure 5.3	Rectifier	32
Figure 5.4	Showing locations of the rectifier	32
Figure 6.1	COP vs Generator temperature	43
Figure 6.2	Circulation ratio vs Generator temperature	
Figure 6.3	COP vs Absorber temperature	44
Figure 6.4	Circulation ratio vs Absorber temperature	44
Figure 6.5	COP vs Condenser temperature	45
Figure 6.6	Circulation ratio vs Condenser temperature	45
Figure 6.7	COP vs Evaporator temperature	46
Figure 6.8	Circulation ratio vs Evaporator temperature	46

Figure 6.9	Entropy generation	47
Figure 6.10	Entropy generation number	48
Figure 6.11	Second law efficiency vs Generator temperature	49
Figure 6.12	Second law efficiency vs Absorber temperature	50
Figure 6.13	Second law efficiency vs Evaporator temperature	50

LIST OF TABLES

Table no	TITLE	page no.
Table 3.1	Difference between VAR and VCR system	21
Table 4.1	Composition of exhaust gas	25
Table 5.1	Operating parameters used in the analysis	39
Table 5.2	Parameters that are fixed in the analysis	40
Table 5.3	Heat transfer rate of components of the system	40
Table 5.4	Thermodynamic property at each point	41

LIST OF SYMBOLS / ABBREVATIONS

СОР	Coefficient of Performance	
VAR	Vapour Absorption Refrigeration	
VCR	Vapour Compression Refrigeration	
PER	Primary Energy Ratio	
EV	Expansion Valve	
SHE	Solution Heat Exchanger	
А	Cross Sectional Area , m^2	
т́.	Mass Flow Rate, kg/s	
Р	Absolute Pressure, N/m ²	
V	Specific Volume, m ³ /kg	
u	Specific Internal Energy, kJ/kg	
V	Velocity, m/s	
h	Specific Enthalpy, kJ/kg-K	
Z	Elevation above an imaginary datum, m	
t	Time in seconds	
\dot{S}_{gen}	Entropy generation kW K ⁻¹	
T_0	Atmospheric Temperature	
А	Available Energy in kJ/kg	
S	Specific Entropy (kJ/kg-K)	
х	Ammonia Mass Fraction	
LiNO ₃	Lithium Nitrate	

NaSCN	Sodium Thiocyanate
R	Universal Gas Constant, kJ kmol ⁻¹ K ⁻¹
Т	Temperature in ⁰ C or K
Ŵ	Power in kW

GREEK SYMBOLS

η_I First Law Efficiency
'II I I I I I I I I I I I I I I I I I I

 η_{II} Second Law Efficiency

SUBSCRIPTS

v	Vapour phase
1	Liquid phase
WS	Weak solution
SS	Strong solution
S	Solid phase
р	Pump
e	Exit

ABSTRACT

In this work first and second law analysis of NH₃-H₂O Vapour absorption refrigeration system running on waste heat extracted from automobile's exhaust has been carried out. Thermodynamic property at each point of the proposed system has been calculated using related equations at that state with the help of EES software. Heat transfer rate of various components and various performance parameters are calculated using first law analysis by applying mass and energy balance. Here variations in generator temperature, condenser temperature, absorber temperature and evaporator temperature are examined and its effect on coefficient of performance and circulation ratio is observed. From the results obtained it is observed that with increase in generator and evaporator temperature coefficient of performance of the system increases but with increase in condenser and absorber temperature COP starts decreasing. Effect of circulation ratio is also analysed and it is observed that circulation ratio decreases with increase in generator and evaporator temperature while circulation ratio increases with increase in absorber and condenser temperature. Second law analysis is used to calculate entropy generation in each component and it was found that entropy generation is very high in generator.