Major Project-II

FIRST AND SECOND LAW ANALYSIS OF AMMONIA WATER ABSORPTION REFRIGERATION SYSTEM USING WASTE HEAT OF AUTOMOBILE'S EXHAUST: A THERMODYNAMIC STUDY

Submitted in partial fulfillment of the requirement

for the award of the degree of

Master of Technology

In

Thermal Engineering

Submitted By

RAHUL SINGH

Roll No. 2K12/THR/17

Under the guidance of

DR. RAJESH KUMAR

Associate Professor

Mechanical Engineering Department

DEPARTMENT OF MECHANICAL, PRODUCTION & INDUSTRIAL
AND AUTOMOBILE ENGINEERING
DELHI TECHNOLOGICAL UNIVERSITY, DELHI
2012-2014

DECLARATION

I hereby declare that the work, which is being presented in this dissertation, entitled "First

and second law analysis of ammonia water absorption refrigeration system using waste

heat of automobile's exhaust: A Thermodynamic Study" towards the partial fulfillment of

the requirements for the award of the degree of Master of Technology with specialization in

Thermal Engineering, from Delhi Technological University Delhi, is an authentic record of

my own work carried out under the supervision of DR. RAJESH KUMAR Associate

Professor, Department of Mechanical Engineering, at Delhi Technological University, Delhi.

The matter embodied in this dissertation report has not been submitted by me for the award of

any other degree.

Rahul Singh

2K12/THR/17

Place: Delhi

Date:

This is to certify that the above statement made by the candidate is correct to the best of my

knowledge.

DR. RAJESH KUMAR

Associate Professor

Department of Mechanical Engineering

Delhi Technological University

Delhi-110042

CERTIFICATE

It is certified that Rahul Singh Roll no. 2K12/THR/17, student of M.Tech Thermal Engineering, Delhi Technological University, has submitted the dissertation titled "First and second law analysis of ammonia water absorption refrigeration system using waste heat of automobile's exhaust: A Thermodynamic Study" under my guidance towards the partial fulfillment of the requirements for the award of the degree of Master of Technology.

He has developed a mathematical computational model for performing the energy and exergy analysis of the single effect ammonia water absorption refrigeration system using EES software. His work is found to be satisfactory and his discipline impeccable during the course of the project. His enthusiasm, attitude towards the project is appreciated.

I wish him success in all his endeavors.

DR. RAJESH KUMAR

Associate Professor

Department of Mechanical Engineering

Delhi Technological University

Delhi-110042

ACKNOWLEDGEMENT

Generally, individuals set aims, but more often than not, their conquest are by the efforts of not just one but many determined people. This complete project could be accomplished because of contribution of a number of people. I take it as a privilege to appreciate and acknowledge the efforts of all those who have, directly or indirectly, helped me achieving my aim.

I take great pride in expressing my unfeigned appreciation and gratitude to my guide, DR. RAJESH KUMAR, Associate Professor, Department of Mechanical Engineering, for his invaluable inspiration, guidance and continuous encouragement throughout this project work.

Rahul Singh

2K12/THR/17

TABLE OF CONTENTS

List of Figures	i ,ii
List of Tables	ii
List of Symbols/Abbreviations	iv, v
Abstract	vi
1. Introduction	1
1.1. Overview	1
1.2. Motivation	2
1.3. Outline of the Thesis	3
2. Literature review	4
3. Vapour Absorption refrigeration system	10
3.1. Refrigeration	10
3.2. Types of refrigeration system	10
3.3. Vapour absorption refrigeration system	11
3.4. Principal of operation	12
3.5. Selection of refrigerant	15
3.6 Single effect vapour absorption refrigeration system	17
3.6.1 Single-Effect System Using Non-Volatility Absorbent	17
3.6.2. Single-Effect System Using Volatility Absorbent	19
4. Description of proposed system	22
4.1 Analysis of energy balance of diesel engine	22
4.2 Composition of exhaust gas	25
4.3 Description of proposed system and its working	25
5. First and second law analysis	28
5.1. Introduction	28
5.2. Assumptions involved in the analysis	28
5.3 Analysis of each component using first law	29
5.3.1 Steady flow process with binary mixture	29

5.3.1.1 Adiabatic mixing of two streams	29
5.3.1.2 Mixing of two streams with heat exchange	30
5.3.1.3 Throttle	31
5.4 Analysis of Rectifier of binary mixture	31
5.5 Energy balance and mathematical model	34
5.6 Analysis of each component using second law	36
5.7 Process simulation	38
6. Result and discussion	42
7. Conclusion	51
References	52