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Abstract 
 

Accelerating the speed of the search in a game tree of game of chess, which is an 

irregular large tree, is the main objective. By employing parallel processing power of 

modern CPUs with a stable algorithm is the main idea behind the work. Apart from 

CPUs, the modern era is shifting towards GPU processing for massive parallelism and 

more computational power is also employed to be in use of searching a game tree. 

 

  



Chapter 1 

Introduction 
 

Since high speed parallel processing has evolved over the last few years, it’s a high 

time to employ the techniques in artificial search algorithms, to assist in various 

applications, like game playing which is basically the application in this thesis, rest of 

the applications include, machine learning, path finding problems, etc. 

The motivation behind this work is to combine the processing of multiple CPU cores 

including the GPU processing for faster (accelerated) game tree search for finding the 

goal. Game chosen is the game of chess because of its unrealistic complexity for 

modern computers and machines. Game of chess is chosen because the game tree will 

prove to be a better measure of performance, as well as a robust proof because of its 

branching factor, almost equal to 36.   

We will go into the details of the game tree and most importantly how the searching 

techniques are employed in it to find the best move. 

There can be two possibilities 

1. A brute force search, which searches every legal move with a min-max 

algorithm. But ofcourse it has a serious downside that it will be searching 

almost 10^9 positions for just going to a depth of 3 (6 plies). 

2. A selective search along with a quiescence search to finish off. 

We would employ a selective search strategy called alpha-beta search to select only 

good moves and discard (prune) the bad moves, so as to shorten the tree, and proceed 

quickly to larger depths. Enhancements such as iterative deepening and null move 

pruning have been employed to increase the strength of the chess engine more. 

Despite these techniques, we employ a full use of GPU processing, to increase the 

performance of the search algorithm more. We will go in detail of GPU processing 

further. 

Use of multiprocessing has been prioritized more than anything else in the search. 

Instead of using 1 CPU for the search task, we will be using upto 64 CPUs to do the 

similar task using parallel SMP search algorithm. 

We will describe the technologies used in section 1. In section 2, approach has been 

explained, section 3 and 4 cover various results and tests. 

  



Chapter 2 

Literature Survey   

2.1 Game Tree 
 

Game tree in games is a directed graph, in which vertices are the game positions, root 

node represents the current position of the game. The edges of the graph represent 

the legal moves from the position represented by the vertex. According to the rules, 

we can evaluate a vertex as a win, lose, draw, or a specific score on basis of some 

evaluation function. 

For some games the tree size is unrealistically huge. For example, size of game tree of 

a game called checkers is 10^20, and chess is around 10^120. The total number of 

nodes in game tree is roughly W^D, where W stands for the number of possible moves 

on average also known as the branching factor, and D is the depth of the tree. One 

way to minimize the complexity is to use evaluation function at a particular node to 

determine its probability of being a good move or not, but that’s what heuristic search 

employs. We can use the evaluation function on the leaf nodes. Here we have used 

iterative deepening, game playing programs depend on game tree search to find the 

best move for the current position, assuming the best play of the opponent. In a two-

player game, two players select a legal move alternately, and both of them try to 

maximize their advantage.  

Because of this reason, finding the best move for a player must assume the opponent 

also plays the best move. In other words, if the leaves are evaluated on the viewpoint 

of player A, player A will always play moves that maximize the value of the current 

position, while the opponent B plays moves that minimize the value of the following 

position. This gives us the MiniMax algorithm.   

 

 

Figure 1: MiniMax Search Tree 



Minimax Algorithm 

}  

 

 

For the sake of simplicity, we will use the variant of MinMax algorithm called NegaMax. 

Negamax relies on the property that max(a, b) = -min(-a, -b), it relies on the zero sum 

property of the game. The trick is to maximize the scores by negating the returned 

values from the children instead of taking the minimum. 

So our algorithm will become similar to the following. 



 

Figure 2: Negamax Search Tree 

NegaMax Algorithm: 

 

This will in turn later will become NegaScout with the addition of alpha beta pruning. 

This was just an example of algorithms to be used in the game tree. 

Now let’s choose which game which should select to employ these algorithms in. 

2.1 Choosing a game 
 

For purpose of explanation and innovation, game of chess has been chosen, as it has 

a large game tree size, and calculations of performance can be taken robustly. 



Chess game tree complexity is about 10^120 (Exponential), for modern computers 

chess remains unsolvable, so basically the motivation is solving the unsolvable, but still 

with the use of parallel search and deploying an efficient algorithm for GPU processing, 

the software strength will increase tremendously. 

Chess, Rules and Pieces 
 

Chess has 6 type of pieces. 2 sides, white and black. Starting board position of chess is as 

below 

 

 

Figure 3: Starting position of a chess game 

Rules of the game. 

1. Each player moves alternately. 

2. Pieces are moved according to their type 

3. Only one piece per square, pieces can be captured 

4. Goal is to checkmate the opponent’s king (king is not left with any unattacked 

square) 

5. If there are no moves left, and opponent is not in check, it’s a condition of a 

draw. (Stalemate) 

 

Moves according to the pieces type. Black dots indicate the piece can only move 

on these squares.  

  



 

 

Figure 4: Moves of different pieces of chess 

 

 

  



Chapter 3 

IMPLEMENTATION  
 

3.1 Board Representation 
 

Board has been represented  by bitboards also called bitsets or bitmaps, are among 

other things used to represent the board inside a chess program in a piece centric 

manner. Bitboards are finite sets of up to 64 elements - all the squares of 

a chessboard, one bit per square.  

In chess, we have bitboards for every piece type. 

So atleast we need six 64 bit unsigned long integers to represent 64bit number. 

 

3.1.1 Some Bitboard Constants Used 
 

a-file             0x0101010101010101 

h-file             0x8080808080808080 

8th rank           0xFF00000000000000 

a1-h8 diagonal     0x8040201008040201 

h1-a8 ant diagonal 0x0102040810204080 

light squares      0x55AA55AA55AA55AA 

dark squares       0xAA55AA55AA55AA55 

 

  

https://chessprogramming.wikispaces.com/Chessboard
http://en.wikipedia.org/wiki/Finite_set
http://en.wikipedia.org/wiki/64_%28number%29
http://en.wikipedia.org/wiki/Element_%28mathematics%29
https://chessprogramming.wikispaces.com/Squares
https://chessprogramming.wikispaces.com/Chessboard
https://chessprogramming.wikispaces.com/Bit


3.2 Move Generation 

 

With a board representation, one big consideration is the generation of moves. This is 

essential to the game playing aspect of a chess program, and it must be completely 

correct. Writing a good move generator is often the first basic step of creating a chess 

program. 

 

  

https://chessprogramming.wikispaces.com/Moves
https://chessprogramming.wikispaces.com/Chess+Game


3.3 Evaluation of a position on the board 
 

Evaluation is used to heuristically determine the value of the position on the board.  

We evaluate a position based on the basis of Material, mobility, pawn structure, king 

safety and attack threats. 

Material is calculated on the basis of fixed values of pieces, pawn has a value of 1, 

knight and bishop have value of 3, rooks are 5 and queen is 9. King has infinite value. 

Mobility is defined as the ability to maneuver the pieces on the board. It is calculated 

by number of undefended squares on the board on which our piece can safely move. 

Its calculated for every piece and then summed up. 

King safety is calculated by number of adjacent zone attacks, direct attacks on king, 

ability of opponent to give the check and how strong the shelter around the king is. 

Threat evaluation requires the knowledge of which type of piece is attacking which 

type of other piece. 

Eg, if a knight is attacking 2 rooks at the same time, threat is very high on the opponent. 

 

 

  



3.4 Search 
 

As stated by Claude Shannon, there are two types of search 

1. Brute Force – Search for all possibilities 

2. Selective search – Search for more promising moves first 

Search tree, as already stated is a subset in search space, a directed acyclic graph, with 

alternating white and black moves as the level increases in the tree. 

Brute force technique means exploring all possible nodes in a tree. So it’s a clearly 

impractical method of solving anything 

Selective search is more efficient in solving problems, in which more promising move 

is evaluated in a depth first manner, before back tracking occurs. 

We will use an enhanced alpha beta algorithm, an enhancement to negamax 

algorithm. 

3.4.1 Alpha Beta Algorithm 
 

When searching game trees in a two player game like chess, benefits can be made by 

pruning the branches in the tree which lead to a poor position, and does not affect the 

score at the root. This pruning method called Alpha Beta Algorithm. It applies to zero 

sum games with perfect information such as Chess and Checkers. It has 2 bounds called 

upper and lower bound to decide which branch to cut. This algorithm leads to heavy 

amount of pruning and making it easier to search the tree and doubling of search 

depth given the same time, over the normal MIniMax search algorithm. 

Recently, Monte Carlo Tree Search (MCTS), which is a type of simulation-based best-

first search algorithm, has been extended to allow for Alpha-Beta style pruning. 

How it works? 

 

For example, it is White's turn to move, and we are searching to a depth of 2 (that is, 

we consider all the White's moves, and all of Black's moves followed to each of those 

moves.) First we select one of White's possible moves - let's call this Move #1. We 

expand this move and every possible move to this move by black. After this, we 

determine whether the result of making Move #1 results in an even position or not. 

Then, we go further and consider another of White's possible moves (Move #2.) When 

we evaluate the first counter-move by black, we find that playing this results in black 

winning a Rook. In this situation, we can safely ignore all of Black's other responses to 

Move #2 because we already know that Move #1 is better. We don't care about how 

much worse Move #2 is. Maybe another move wins a Queen, but it doesn't matter 

because we know that we can achieve at least an even game by playing Move #1. The 

https://chessprogramming.wikispaces.com/Depth


full analysis of Move #1 gave us a lower bound. We know that we can get at least 

something, so anything that is worse so anything that can be pruned can be ignored. 

The situation becomes too difficult to evaluate when we go to a depth of 3 or greater, 

because now both players will make choices which will affect the shape of the game 

tree searched. So now two bounds are maintained, lower bound and upper bound 

(alpha and beta), we maintain a lower bound because if a move is worse we don't 

discard it. But we also have to maintain an upper bound because if a move at depth 3 

or more leads to a sequence that is too good, the other player of course will try to 

avoid, because there was a better move higher up level on the game tree that he could 

play to avoid the situation. One player's lower bound is the opponent’s upper bound. 

 

Savings 

 

The savings in this algorithm are noticeable and major. If a normal minimax search tree 

has x nodes, an alpha beta tree in an efficient program can have a node count close to 

the square-root of x. Nodes that can be cut actually depends on how well ordered the 

game tree is. If the best possible move is searched first, we then can eliminate most of 

the useless nodes. Of course, we cannot predict the best move in the first place, or we 

wouldn't have to search in the first place. Conversely, if we always searched worse 

moves before the better moves, we wouldn't be able to cut any part of the tree at all! 

For this reason, good move ordering is very important, and is the focus of a lot of the 

effort of writing a good chess program. Assuming constantly b moves for each node 

visited and search depth n, the maximal number of leaves in alpha-beta is equivalent 

to minimax, bn. Taking always the best move first, it is bceil(n/2) + bfloor(n/2) - 1. The 

minimal number of leaves is shown in following table which also demonstrates 

the odd-even effect: 

 

Table 1 

 

https://chessprogramming.wikispaces.com/Lower+Bound
https://chessprogramming.wikispaces.com/Depth
https://chessprogramming.wikispaces.com/Node
https://chessprogramming.wikispaces.com/Move+Ordering
https://en.wikipedia.org/wiki/Floor_and_ceiling_functions
https://en.wikipedia.org/wiki/Floor_and_ceiling_functions
https://chessprogramming.wikispaces.com/Leaf+Node
https://chessprogramming.wikispaces.com/Odd-Even+Effect


The Algorithm 

 

 

Figure 5: Alpha beta tree search 

3.4.2 Enhancements in Alpha Beta Algorithm 
 

Few enhancements that are used to speed up the Alpha Beta are described below. 

They are essential since concurrency will increase as we move on to parallel search. So 

each thread must be executing an efficient code already. 

Move Ordering 

 

The efficiency of the alpha-beta rule depends on the move search order. For instance, 

if we tend to swap the positions of D, E and F, G in Figure 5, then a full tree search is 

going to be required to see the worth at the root. To maximize the efficiency of alpha-

beta cut-offs, the “best” move must be evaluated initially at every node. Hence several 

ordering schemes are made for ordering the moves in a very best to worst order. Some 

techniques are comparable to iterative deepening, transposition tables, killer moves 

and therefore the history heuristic have been quite eminent and reliable. 

 



Iterative – Deepening 

 

Iterative deepening was originally created as a time management mechanism for game 

tree search. It handles the matter that however we must always opt for the search 

depth depends on the quantity of your time the search can take. A simple fixed depth 

is inflexible because of the variation in the amount of time the program takes per 

move. So David Slate and Larry Atkin introduced the notion of iterative deepening: 

start from 1-ply search, repeatedly extend the search by one ply until we run out of 

time, then report the best move from the previous completed iteration. It seems to 

waste time since only the result of last search is used. But fortunately, due to the 

exponential nature of game tree search, the overhead cost of the preliminary D-1 

iterations is only a constant fraction of the D-ply search. Besides providing good 

control of time, iterative deepening is usually more efficient than an equivalent direct 

search. The reason is that the results of previous iterations can improve the move 

ordering of new iteration, which is critical for efficient searching. So compared to the 

additional cut-offs for the D-ply search because of improved move order, the overhead 

of iterative deepening is relatively small. Many techniques have proved to further 

improve the move order between iterations. In this thesis, we focus on three of them: 

transposition tables, killer moves and history heuristic. 

Transposition Tables 

 

In practice, interior nodes of game trees are not always distinct. The same position 

may be re-visited multiple times. Therefore, we can record the information of each 

sub-tree searched in a transposition table. The information saved typically includes the 

score, the best move, the search depth, and whether the value is an upper bound, a 

lower bound or an exact value. When an identical position occurs again, the previous 

result can be reused in two ways:  

1) If the previous search is at least the desired depth, then the score corresponding to 

the position will be retrieved from the table. This score can be used to narrow the 

search window when it is an upper or lower bound, and returned as a result directly 

when it is an exact value.  

2) Sometimes the previous search is not deep enough. In such a case the best move 

from the previous search can be retrieved and should be tried first. The new search 

can have a better move ordering, since the previous best move, with high probability, 

is also the best for the current depth. This is especially helpful for iterative deepening, 

where the interior nodes will be re-visited repeatedly. To minimize access time, the 

transposition table is typically constructed as a hash table with a hash key generated 

by the well-known Zobrist method.  



Killer Move Heuristic 

 

The transposition table can be used to suggest a likely candidate for best move when 

an identical position occurs again. But it can neither order the remaining moves of 

revisited positions, nor give any information on positions not in the table. So the “killer 

move” heuristic is frequently used to further improve the move ordering. The 

philosophy of the killer move heuristic is that different positions encountered at the 

same search depth may have similar characters. So a good move in one branch of the 

game tree is a good bet for another branch at the same depth. The killer heuristic 

typically includes the following procedures:  

1) Maintain killer moves that seem to be causing the most cutoffs at each depth. Every 

successful cutoff by a non-killer move may cause the replacement of the killer moves.  

2) When the same depth in the tree is reached, examine moves at each node to see 

whether they match the killer moves of the same depth; if so, search these killer moves 

before other moves are searched. 

History Heuristic 

 

The history heuristic, which is first introduced by Schaeffer, extends the basic idea of 

the killer move heuristic. As in the killer move heuristic, the history heuristic also 

uses a move’s previous effectiveness as the ordering criterion. But it maintains a 

history for every legal move instead of only for killer moves. In addition, it 

accumulates and shares previous search information throughout the tree, rather 

than just among nodes at the same search depth. Below we illustrate how to 

implement the history heuristic in the alpha-beta algorithm. The bold lines are the 

part related to the history heuristic. Note that every time a move causes a cutoff or 

yields the best minimax value, the associated history score is increased. So the score 

of a move in the history table is in proportion to its history of success. 

 

 



 

 

PVS / NegaScout 

 

NegaScout and Principal Variation Search (PVS) are two similar refinements of alpha-

beta using minimal windows. The basic idea behind NegaScout is that most moves 

after the first will result in cutoffs, so evaluating them precisely is useless. Instead it 

tries to prove them inferior by searching a minimal alpha-beta window first. So for 

subtrees that cannot improve the previously computed value, NegaScout is superior 

to alphabeta due to the smaller window. However sometimes the move in question is 

indeed a better choice. In such a case the corresponding subtree must be revisited to 

compute the precise minimax value. Figure 6 demonstrates NegaScout search 

procedures. Note that for the leftmost child moves, line 9 represents a search with the 

interval (-beta, -alpha) whereas a minimal window search for the rest of children. If 

the minimal window search fails, i.e., (cur > score) at line 10, that means the 

corresponding subtree must be revisited with a more realistic window (-beta, -cur) 

(line 15) to determine its exact value. The conditions at line 11 show that this re-search 

can be exempted in only two cases: first, if the search performed at line 9 is identical 

to actual alpha-beta search, i.e., n=beta, and second, if the search depth is less than 2. 

In that case NegaScout’s search always returns the precise minimax value. 



 

 

Figure 6: Alpha beta tree with PVS enhancement 

A good move ordering is even more favorable to NegaScout than to alpha-beta. The 

reason is that the number of re-searches can be dramatically reduced if the moves are 

sorted in a best-first order. So other move ordering enhancements such as iterative 

deepening, the killer heuristic, etc, can be expected to give more improvement to 

NegaScout than to alpha-beta. B -6 D 6 -6 -5 -3 -7 -- E 7 C -4 F -- -9 --- --- -4 -1 G 4 A 6 (-

7, -6) (-∞, ∞) (-∞, ∞) (5, 6) (-∞, -6) (-∞, -6) (-6, -5) (6, 7) (-7, -6) (-∞, ∞) M N O (6, 7) 

(-7, -6) (-7, -6) When performing a re-search, NegaScout has to traverse the same 

subtree again. This expensive overhead of extra searches can be prevented by caching 



previous results. Therefore a transposition table of sufficient size is always preferred 

in NegaScout. 

  



3.5 Quiescence Search 
 

A fixed-depth approximate algorithm searches all possible moves to the same depth. 

At this maximum search depth, the program depends on the evaluation of 

intermediate positions to estimate their final values. But actually all positions are not 

equal. Some “quiescent” positions can be assessed accurately. Other positions may 

have a threat just beyond the program’s horizon (maximum search depth), and so 

cannot be evaluated correctly without further search. The solution, which is called 

quiescence search, is increasing the search depth for positions that have potential and 

should be explored further. For example, in chess positions with potential moves such 

as capture, promotions or checks, are typically extended by one ply until no threats 

exist. Although the idea of quiescence search is attractive, it is difficult to find out a 

good way to provide automatic extensions of non-quiescence positions. 

 

Pseudocode 

int Quiesce( int alpha, int beta ) { 

    int stand_pat = Evaluate(); 

    if( stand_pat >= beta ) 

        return beta; 

    if( alpha < stand_pat ) 

        alpha = stand_pat; 

  

    until( every_capture_has_been_examined )  { 

        MakeCapture(); 

        score = -Quiesce( -beta, -alpha ); 

        TakeBackMove(); 

  

        if( score >= beta ) 

            return beta; 

        if( score > alpha ) 

           alpha = score; 

    } 

    return alpha; 

} 

  



3.6 Parallel Search 
 

Parallel Search, also known as Multithreaded Search or SMP Search, is a way to 

increase search speed by using additional processors. This topic that has been gaining 

popularity recently with multiprocessor computers becoming widely available. 

Utilizing these additional processors is an interesting domain of research, as traversing 

a search tree is inherently serial. Several approaches have been devised, with the most 

popular today being Young Brothers Wait Concept and Shared Hash Table. 

 

A subtype of parallel algorithms, distributed algorithms are algorithms designed to 

work in cluster computing and distributed computing environments, where additional 

concerns beyond the scope of "classical" parallel algorithms need to be addressed. 

 

Figure 7: Comparison between Ideal and Practical speedup 

3.6.1 Threads 
 

Threads are the smallest program sequence that are managed independently by a 

scheduler.  

3.6.2 Young Brothers Wait Concept 
 

YBWC is a basic concept for a parallel alpha-beta search coined by Rainer Feldmann et 

al. in 1986, introduced 1989 to a wider audience in the ICCA Journal paper Distributed 

Game-Tree Search. Brothers are sibling nodes, the oldest brother is searched first, 

younger brothers, to be searched in parallel, have to wait until the oldest brother did 

not yield in a beta-cutoff and did possibly narrow the bounds in case of an alpha 

increase. 

https://en.wikipedia.org/wiki/Symmetric_multiprocessing
https://chessprogramming.wikispaces.com/Search
https://en.wikipedia.org/wiki/Central_Processing_Unit
https://en.wikipedia.org/wiki/Multiprocessing
https://chessprogramming.wikispaces.com/Young+Brothers+Wait+Concept
https://chessprogramming.wikispaces.com/Shared+Hash+Table
https://en.wikipedia.org/wiki/Parallel_algorithm
https://en.wikipedia.org/wiki/Distributed_algorithms
https://en.wikipedia.org/wiki/Cluster_computing
https://en.wikipedia.org/wiki/Distributed_computing
https://chessprogramming.wikispaces.com/Alpha-Beta
https://chessprogramming.wikispaces.com/Rainer+Feldmann
https://chessprogramming.wikispaces.com/ICGA+Journal
https://chessprogramming.wikispaces.com/Sibling+Node
https://chessprogramming.wikispaces.com/Beta-Cutoff
https://chessprogramming.wikispaces.com/Bound


3.6.3 Delay 
 

The Young Brothers Wait Concept, which in some situations delays the use of 

parallelism until subtrees are available which are relevant for the final result with high 

probability, prevents processors from searching irrelevant subtrees and reduces the 

search overhead. The use of the YBWC is possible only in combination with good load 

balancing possibilities. 

The eldest son of any node must be completely evaluated before younger 

brothers of that node may be transmitted. 

 

 

3.6.4 Distributed Game-Tree Search 
 

The Principal Variation Splitting (PVS) algorithm evaluates right sons of game-tree 

nodes with a minimal window and re-evaluates them only if necessary.  

 

Alternatively, game-tree nodes are evaluated in parallel only if they had acquired 

an alpha-beta bound before. Yet another approach applies in a distributed chess 

program running on a hypercube: if the transposition table proposes some move for a 

game position, then this move is tried first. Parallel evaluation of the other moves is 

started only of the evaluation of the transposition move yields no cutoff. 

  

http://en.wikipedia.org/wiki/Load_balancing_%28computing%29
http://en.wikipedia.org/wiki/Load_balancing_%28computing%29
https://chessprogramming.wikispaces.com/Parallel+Search#PrincipalVariationSplitting
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3.7 GPGPU Concepts and CUDA Programming Language 

General-purpose computing on graphics processing units is the use of a graphics 
processing unit (GPU), which typically handles computation only for computer 
graphics, to perform computation in applications traditionally handled by the central 
processing unit (CPU). The use of multiple graphics cards in one computer, or large 
numbers of graphics chips, further parallelizes the already parallel nature of graphics 
processing. In addition, even a single GPU-CPU framework provides advantages that 
multiple CPUs on their own do not offer due to the specialization in each chip. 

Essentially, a GPGPU pipeline is a kind of parallel processing between one or more 
GPUs and CPUs that analyzes data as if it were in image or other graphic form. While 
GPUs generally operate at lower frequencies, they usually have many times more 
cores to make up for it (up to hundreds at least) and can, thus, operate on pictures 
and graphical data effectively much faster, dozens or even hundreds of times faster 
than a traditional CPU, migrating data into graphical form and then using the GPU to 
"look" at it and analyze it can result in profound speedup. 

Originally, data was simply passed one-way from a CPU to a GPU, then to a display 
device. However, as time progressed, it became valuable for GPUs to store at first 
simple, then complex structures of data to be passed back to the CPU that analyzed 
an image, or a set of scientific-data represented as a 2D or 3D format that a graphics 
card can understand. Because the GPU has access to every draw operation, it can 
analyze data in these forms very quickly, whereas a CPU must poll every pixel or data 
element much more slowly, as the speed of access between a CPU and its larger pool 
of random-access memory (or in an even worse case, a hard drive) is slower than GPUs 
and graphics cards, which typically contain smaller amounts of more expensive 
memory that is very much faster to access. Transferring the portion of the data set to 
be actively analyzed to that GPU memory in the form of textures or other easily 
readable GPU forms results in speed increase. 

  

https://en.wikipedia.org/wiki/Graphics_processing_unit
https://en.wikipedia.org/wiki/Graphics_processing_unit
https://en.wikipedia.org/wiki/Computer_graphics
https://en.wikipedia.org/wiki/Computer_graphics
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Graphics_pipeline
https://en.wikipedia.org/wiki/Parallel_computing
https://en.wikipedia.org/wiki/Multi-core_processor
https://en.wikipedia.org/wiki/Speedup
https://en.wikipedia.org/wiki/CPU
https://en.wikipedia.org/wiki/GPU
https://en.wikipedia.org/wiki/Display_device
https://en.wikipedia.org/wiki/Display_device
https://en.wikipedia.org/wiki/Random-access_memory
https://en.wikipedia.org/wiki/Hard_drive


THE CUDA PARALLEL COMPUTING PLATFORM 
 

The CUDA parallel computing platform provides a few simple C and C++ extensions 

that enable expressing fine-grained and coarse-grained data and task parallelism. The 

programmer can choose to express the parallelism in high-level languages such as C, 

C++, Fortran or open standards as OpenACC directives. The CUDA parallel computing 

platform is now widely deployed with 1000s of GPU-accelerated applications and 

1000s of published research papers. 

Below is the sample of a standard C code, and in comparison to Parallel CUDA C code 

 

Figure 8: Comparison of a C++ code and CUDA code 
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3.8 APPROACH 
 

In this we extend the general algorithm of Monte- Carlo Tree Search, to wider and 

latest emerging field of GPGPU computing, where the Monte-Carlo Tree Search is 

implemented on GPU instead of a CPU earlier. 2 more steps or schemes are added to 

the algorithm. Later we will compare the performance of each scheme, and also 

calculate the speed-up. 

Monte Carlo Tree Search 
 

A simulation is defined as a series of random moves which are performed until the end 
of a game is reached (until neither of the players can move). The result of this 
simulation can be successful, when there was a win in the end or unsuccessful 

otherwise. So, let every node i in the tree store the number of simulations T (visits) 

and the number of successful simulations Si. The general MCTS algorithm comprises 
4 steps (Figure 9) which are repeated. 
 

MCTS iteration steps 

 
1) Selection: - a node from the game tree is chosen based on the specified criteria. 

The value of each node is calculated and the best one is selected. The formula used 
to calculate the node value is the Upper Confidence Bound (UCB). 

                       
 

Ti - total number of simulations for the parent of node i 

C - a parameter to be adjusted 
 

Suppose that some simulations have been performed for a node, first the average 
node value is taken and then the second term which includes the total number of 
simulations for that node and its parent. The first one provides the best possible 
node in the analyzed tree (exploitation), while the second one is responsible for 
the tree exploration. That means that a node which has been rarely visited is more 
likely to be chosen, because the value of the second terms is greater. 

 
2) Expansion: - one or more successors of the selected node are added to the tree 

depending on the strategy. This point is not strict, in our implementation I add one 
node per iteration, so this number can be different. 

 



3) Simulation: - for the added node(s) perform simulation(s) and update the node(s) 

values (successes, total) – here in the CPU implementation, one simulation per 

iteration is performed. In the GPU implementations, the number of simulations 

depends on the number of threads, blocks Selection Expansion Simulation 

Backpropagation Repeat until time is left and the method (leaf of block 

parallelism). I.e. the number of simulations can be equal to 1024 per iteration for 

4 block 256 thread configuration using the leaf parallelization method. 

 

4) Backpropagation: - update the parents’ values up to the root nodes. The numbers 
are added, so that the root node has the total number of simulations and successes 
for all of the nodes and each node contains the sum of values of all of its successors. 
For the root/block parallel methods, the root node has to be updated by summing 
up results from all other trees processed in parallel. 

 
 

 
 

Figure 9: MCTS Steps of iteration 
 
  



3.9 GPU IMPLEMENTATION 

 

In the GPU implementation, 2 approaches are considered and discussed. The first one 
is the simple leaf parallelization, where one GPU is dedicated to one MCTS tree and 
each GPU thread performs an independent simulation from the same node. Such a 
parallelization should provide much better accuracy when the great number of GPU 
threads is considered.  
 
The second approach (Figure 10c), is the block parallelization method. It combines 
both aforementioned schemes. Root parallelism is an efficient method of 
parallelization MCTS on CPUs. It is more efficient than simple leaf parallelization, 
because building more trees diminishes the effect of being stuck in a local 
extremum/increases the chances of finding the true global maximum. Therefore 

having n processors it is more efficient to build n trees rather than performing n 
parallel simulations in the same node. Given that a problem can have many local 
maximas, starting from one point and performing a search might not be very accurate 
in the basic MCTS case. The second one, leaf parallelism should diminish this effect by 
having more samples from a given point. The third one is root parallelism. Here a single 
tree has the same properties as each tree in the sequential approach except for the 
fact that there are many trees and the chance of finding the global maximum increases 
with the number of trees. The last, our proposed algorithm, combines those two, so 
each search should be more accurate and less local at the same time.  
 

 
Figure 10: Different types of parallism approach 

 
5) Leaf-parallel scheme: This is the simplest parallelization method in terms of 
implementation. Here GPU receives a root node from the CPU controlling process 
and performs n simulations, where n depends on the dimensions of the grid (block 
size and number of blocks). Afterwards the results are written to an array in the 
GPU’s memory (0 = loss, 1 = victory) and CPU reads the results back.  Based on that, 



the obtained result is the same as in the basic CPU version except for the fact that 
the number of simulations is greater and the accuracy is better. 
 
6) Block-parallel scheme: To maximize the GPU’s simulating performance some 
modifications had to be introduced. In this approach the threads are grouped and a 
fixed number of them is dedicated to one tree. This method is introduced due to the 
hierarchical GPU architecture, where threads form small SIMD groups called warps 
and then these warps form blocks. It is crucial to find the best possible job division 
scheme for achieving high GPU performance. The trees are still controlled by the CPU 
threads, GPU simulates only. That means that at each simulation step in the algorithm, 
all the GPU threads start and end simulating at the same time and that there is a 
particular sequential part of this algorithm which decreases the number of simulations 
per second a bit when the number of blocks is higher. This is caused by the necessity 
of managing each tree by the CPU. On the other hand the more the trees, the better 
the performance. In our experiments the smallest number of threads used is 32 which 
corresponds to the warp size. 

 

Figure 11: Block diagram with flowchart of parallelism approach on GPU hardware 

Hybrid CPU-GPU processing 
 

I observed that the trees formed by our algorithm using GPUs are not as deep as the 

trees when CPUs and root parallelism are used. It is caused by the time spent on each 

GPU’s kernel execution. CPU performs quick single simulations, whereas GPU needs 

more time, but runs thousands, of threads at once. It would mean that the results are 



less accurate, since the CPU tree grows faster in the direction of the optimal solution. 

As a solution I experimented on using hybrid CPU-GPU algorithm. In this approach, the 

GPU kernel is called asynchronously and the control is given back to CPU. Then CPU 

operates on the same tree (in case of leaf parallelism) or trees (block parallelism) to 

increase their depth. It means that while GPU processes some data, CPU repeats the 

MCTS iterative process and checks for the GPU kernel completion. 

 
 

Figure 12: Hybrid approach 
 

 

  



I compare the speed(Figure 13) and results (Figure 14) of leaf parallelism and block 
parallelism using different block sizes. The block size and their number corresponds to 
the hardware’s properties. In those graphs a GPU Player is playing against one CPU 
core running sequential MCTS.  
 

 
Figure 13: Simulations per second or speedup graph 

 
 
 
The main aspect of the analysis is that despite running fewer simulations in a given 
amount of time using block parallelism, the results are much better compared to leaf 
parallelism, where the maximal winning ratio stops at around 0.75 for 1024 threads 
(16 blocks of 64 threads).  
 
The results are better when the block size is smaller (32), but only when the number 
of threads is small (up to 4096, 128 blocks/trees), then the lager block case (128) 
performs better. It can be observed in Figure 5 that as I decrease the number of 
threads per block and at the same time increase the number of trees, the number of 
simulations per second decreases. This is due to the CPU’s sequential part. 

 



 
Figure 14: GPU Outperforms CPU (Results) 

 

In Figure 7 and 8 I also show a different type of result, where the X-axis represents 
current game step and the Y-axis is the average point difference between 2 players. In 
Figure 7 I observe that one GPU outperforms 256 CPUs in terms both intermediate and 
final scores. Also I see that the characteristics of the results using CPUs and GPU are 
slightly different, where GPU is stronger at the beginning. I believe that it might be 
caused by the larger search space and therefore I conclude that later the parallel effect 
of the GPU is weaker, as the number of distinct samples decreases. Another reason for 
this is mentioned depth of the tree which is lower in the GPU case. 

 
 

 
Figure 15: Comparison of 1 GPU against many number of CPUs 

 
 
 
 



Also I show that using our hybrid CPU/GPU approach both the tree depth and the 
result are improved as expected especially in the last phase of the game. 

 

 
Figure 16: Comparison between hybrid approach and normal approach 

 

 
  



Chapter 4 

Conclusion  
 

Performance comparison was done between a hybrid approach and non hybrid 

approach and the results proved it to be successful. So we have a code which performs 

better than previous approach. 

 

  



Chapter 5 

Future Work 
 

 Application of the algorithm to other domain. A more general task can and 
should be solved by the algorithm.  

 

 Scalability analysis. This is a major challenge and requires analyzing certain 
number of parameters and their effect on the overall performance. Currently I 
implemented the MPI-GPU version of the algorithm, but the results are 
inconclusive, there are several reason why the scalability can be limited 
including Reversi itself. 

 

 Application of algorithm to games with a huge branching factor like chess, 
checkers etc. will simplify the current processing of such games. 

 

 Major speed-up in search used in artificial intelligent machines. 
 

 The evolution in game tree search algorithms as well as parallel libraries and 
hardware will not only lead to solve complex games that were not solvable 
before, but will also lead to solve more problems in real life. Many algorithms 
designed during the past to run in parallel on CPU or GPU were able to reach 6x 
speedup on CPU for 8-core processors and 40x speedup in 14 depth on GPU. 
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Appendix A 

Snapshots of Code and System 
 

1. Evaluation function 

 

 

2. Iterative deepening 

 

 

 

 

 

 



3. Quiescenece Search 

 

4. Multithreaded splitting of search

 



5. Command line version run

 

  



 

6. GUI version of the engine (GUI used: Deep Fritz)

 

  



 

7. 8 CPUs usage, significant speedup and depth increase 

 

 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 


