Major Project — Il
Report on

Accelerated Game Tree Search Using Hybrid Multithreaded CPU
and GPU Processing

Submitted to

Delhi Technological University

In partial fulfillment of the requirement for the award of the
degree of

Master of Technology
In

Software Engineering
By

Aditya
2K14/SWE/02

Under the guidance of

Mr. Manoj Kumar
Asst. Professor
Department of Computer Science and Engineering
Delhi Technological University

UNIVER P SR

&,

PN
. NOLOGICA g

Delhi Technological University
Main Bawana Road, Delhi

CERTIFICATE

This is to certify that the work contained in this dissertation entitle “Accelerated Game Tree
Search Using Hybrid Multithreaded CPU and GPU Processing” submitted in the partial
fulfilment, for the award of degree of M. Tech in Software Engineering, Department of
Computer Science & Engineering at Delhi Technological University by Aditya, Roll No.
2K14/SWE/02, is carried out by him under my supervision. The matter embodied in this
project work has not been submitted earlier for the award of any degree or diploma in any
university/institution to the best of my knowledge and belief.

Date: ..ccccvvevnnene Mr. Manoj Kumar
(Thesis Guide)
Assistant Professor
Dept. of Computer Science Engineering
Delhi Technological University

ACKNOWLEDGMENT

| take this opportunity to express my gratitude and regards to my guide Mr. Manoj Kumar for
her exemplary guidance, monitoring and constant encouragement throughout the course of
this project. | am extremely grateful to her for her valuable guidance and suggestions.

| am obliged to the Head of Department Prof. (Dr.) O.P. Verma and faculty members of the
Department of Computer Science & Engineering at Delhi Technological University, Delhi for
the valuable information provided by them in their respective fields. | am grateful for their
cooperation during the period of my assignment.

| also take this opportunity to express a deep sense of gratitude to my friends for their support
and motivation which helped me in completing this task through its various stages.

Lastly, | thank my parents for their constant encouragement without which this assignment
would not have been possible.

Aditya
Roll No. 2K14/SWE/02

Table of contents

LISE OF FIBUI@S ... ittt e ettt e e st e s s b te e e e s b bt e e e e ataeeesnsaeeeessaeeeessaeeesnnsseeenan 6
ADBSTIACE ...ttt ettt e s b e e e b et e s b et e hee e et e e s be e e sabee e beeeeareesneeenareean 7
[0 T] = e PP 8
INEFOTUCTION ...ttt e b e bt e s bt e st e et e e bt e s b e e s bt e satesaneebeeneennes 8
[0 T=1] = 7 2P UPR 9
LITEIAtUIE SUFNVEYooiiiiiieieee ettt e s ettt e e e e s e sttt e e e e e s s s sabbeeeeeeeesanssbaaeeesesnsannnnnes 9
2.0 GAME@ TR ..ottt ettt ettt e ettt e s et e e e s eab et e e s e b et e e s ea b e e e e s e be e e e s aare e e e s e be e e e s e beneesareeee e e reneesaanee 9
2.1 CROOSING @ BAIMEoooiiiiiec ettt e ettt e e et e e e e tte e e e s ataeeeeaataeeesssaeeeansaesesssaeeesnnseneenns 11
Chess, RUIES @NA PIECES...........oooooiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeee ettt ettt e e e e 12

[0 T-1 1 =T 2 TSRS 14
IMPLEIMENTATION ...ttt sssssssssssnnnnnas 14
3.1 Board RepresSentationc..cc.oiiiiiiiiiiiiiiii et et e e e araeeean 14
3.1.1 Some Bitboard Constants Usedcccccooiiiiiiiiiiiiiieeeeeee e 14

3.2 IMIOVE GENEIALION ... s e e s 15
3.3 Evaluation of a position onthe boardcoooiiiiiiiiii 16
BLB SEANCH ...ttt ettt e e b ee e s bt e e b bt e a b e e s beeesabeesbeeeaneeesbeeenns 17
3.4.1 Alpha Beta AlgOrItRM..........oooiiiiii e 17
3.4.2 Enhancements in Alpha Beta Algorithmccco oo 19

3.5 QUIESCENCE SEANCH..... ...ttt ettt s e st sttt e e e bt e beesbeesneesaeeeanean 25
3.6 Parallel SEArChc..coiiiiieee e e 26
BLB. 1 TRFEAAS ...ttt e s s n e n e 26
3.6.2 Young Brothers Wait CONCEPTooooiiiiiiiciiee ettt e et e e e tre e e e e naa e e e eanes 26
e 3 0 11 1RSSRt 27
3.6.4 Distributed Game-Tree SEarchcooiiiiiiiiiiiieeeee et 27

3.7 GPGPU Concepts and CUDA Programming LangUage.............ccuveeeeiirieeeiiieeeeiiieeeesiveeesseneeeens 28
THE CUDA PARALLEL COMPUTING PLATFORMcooiiiiiiiiiieeeeeetteeee ettt 29

BB APPROACH.......cceiiiiiiie ettt ettt et b e s bt e s he e s at e e te e bt e s bt e s bt e saee st e eabe e be e bt e s beesheeeaeeeatean 30
Monte Carlo Tree SEArCh...........oc.oiiiiiii ettt et e e e 30

1Y Lo IR =T Y A o] TR =T « SR 30

3.9 GPU IMPLEMENTATIONooiiiiiiiiiiieeteee ettt sttt ettt st st st be e s s e sme e eeeennees 32
Hybrid CPU-GPU ProCESSING...........oveiiiiiiieeeiiiee e ettt e este e e este e e e sare e e ssaaaeessabaeessnbaeeesntaeessnnsenas 33
(04T T o1 =T USRS 38
CONCIUSION ...ttt e st e s bt e e bt e e s b e e s ar e e sa b e e s abeeesareesneeeameeesaneeesaneesn 38
[0 T] = O PSSR 39

UL YT T o L 39

References

Appendix A

Snapshots of Code and SYStEM............coooiiiiiiiiiiii e e e e e e arae e s e naraeas

Figure 1:
Figure 2:
Figure 3:
Figure 4.
Figure 5:
Figure 6:
Figure 7:
Figure 8:

Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:

Figure 16:

List of Figures

Minimax Tree

NegaMax Tree

Chessboard starting position

Move pattern of pieces

Alpha Beta search tree

Principle variation search in alpha beta search tree
Ideal and practical speedup between n processors
Difference between standard C code and CUDA code
MCTS fundamental steps

Different types of parallelism

Block parallel scheme on hardware

Hybrid CPU and GPU processing

Speedup graph

Win Ratio graph comparing different parallel schemes
Performance comparison between GPU and multiple CPUs

Comparison between Hybrid and Non Hybrid approach

Abstract

Accelerating the speed of the search in a game tree of game of chess, which is an
irregular large tree, is the main objective. By employing parallel processing power of
modern CPUs with a stable algorithm is the main idea behind the work. Apart from
CPUs, the modern era is shifting towards GPU processing for massive parallelism and
more computational power is also employed to be in use of searching a game tree.

Chapter 1

Introduction

Since high speed parallel processing has evolved over the last few years, it’s a high
time to employ the techniques in artificial search algorithms, to assist in various
applications, like game playing which is basically the application in this thesis, rest of
the applications include, machine learning, path finding problems, etc.

The motivation behind this work is to combine the processing of multiple CPU cores
including the GPU processing for faster (accelerated) game tree search for finding the
goal. Game chosen is the game of chess because of its unrealistic complexity for
modern computers and machines. Game of chess is chosen because the game tree will
prove to be a better measure of performance, as well as a robust proof because of its
branching factor, almost equal to 36.

We will go into the details of the game tree and most importantly how the searching
techniques are employed in it to find the best move.

There can be two possibilities

1. A brute force search, which searches every legal move with a min-max
algorithm. But ofcourse it has a serious downside that it will be searching
almost 1079 positions for just going to a depth of 3 (6 plies).

2. Aselective search along with a quiescence search to finish off.

We would employ a selective search strategy called alpha-beta search to select only
good moves and discard (prune) the bad moves, so as to shorten the tree, and proceed
quickly to larger depths. Enhancements such as iterative deepening and null move
pruning have been employed to increase the strength of the chess engine more.

Despite these techniques, we employ a full use of GPU processing, to increase the
performance of the search algorithm more. We will go in detail of GPU processing
further.

Use of multiprocessing has been prioritized more than anything else in the search.
Instead of using 1 CPU for the search task, we will be using upto 64 CPUs to do the
similar task using parallel SMP search algorithm.

We will describe the technologies used in section 1. In section 2, approach has been
explained, section 3 and 4 cover various results and tests.

Chapter 2

Literature Survey

2.1 Game Tree

Game tree in games is a directed graph, in which vertices are the game positions, root
node represents the current position of the game. The edges of the graph represent
the legal moves from the position represented by the vertex. According to the rules,
we can evaluate a vertex as a win, lose, draw, or a specific score on basis of some
evaluation function.

For some games the tree size is unrealistically huge. For example, size of game tree of
a game called checkers is 10720, and chess is around 107120. The total number of
nodes in game tree is roughly WAD, where W stands for the number of possible moves
on average also known as the branching factor, and D is the depth of the tree. One
way to minimize the complexity is to use evaluation function at a particular node to
determine its probability of being a good move or not, but that’s what heuristic search
employs. We can use the evaluation function on the leaf nodes. Here we have used
iterative deepening, game playing programs depend on game tree search to find the
best move for the current position, assuming the best play of the opponent. In a two-
player game, two players select a legal move alternately, and both of them try to
maximize their advantage.

Because of this reason, finding the best move for a player must assume the opponent
also plays the best move. In other words, if the leaves are evaluated on the viewpoint
of player A, player A will always play moves that maximize the value of the current
position, while the opponent B plays moves that minimize the value of the following
position. This gives us the MiniMax algorithm.

OO ORI,
AVAWAVAWAVA

Figure 1: MiniMax Search Tree

Minimax Algorithm

1. function MAXValue(N)
2. bhegin
3. ifNisleaf then
4, return the value of this leaf
5. else
6. let v =-oa
7. for every successor N; of N do
8. let v= max{v, MINValue(N,)}
9. returnv
10. end MAXValue
1. function MINValue(N)
2. begin
3. ifNisaleaf then
4. return the value of this leaf
5. else
6. let v = +o0
7. for every successor N; of N do
8. let v= min{v, MAXValue(N;}
9. returnv
} 10. end MINValue

For the sake of simplicity, we will use the variant of MinMax algorithm called NegaMax.

Negamax relies on the property that max(a, b) = -min(-a, -b), it relies on the zero sum
property of the game. The trick is to maximize the scores by negating the returned
values from the children instead of taking the minimum.

So our algorithm will become similar to the following.

-1 ——- 0|—» Max=
—— M) — — 2 —
Max=11 Max=
211 [-11 -2 5 4 -9 2 -8 0
—————— r—————————p —————— —————
Max=-11 Max= Max= Max=

Figure 2: Negamax Search Tree

NegaMax Algorithm:

01 function negamax (node, depth, color)

02 if depth = 0 or node i=s a terminal mnode

03 return color * the heuristic value of node
04 bestValue ::= -m

a5 foreach child of node

J6 v = —negamax({child, depth - 1, —color)

a7 bestValue := max(bestvValue, v)

08 return beztValue

Initial call for FPlayer A's root node
roctNegamaxValue := negamax(rootNode, depth, 1)

roctMinimaxValue := rootNegamaxValue

Tnitial call for Player B's root node
roctNegamaxValue := negamax(rootNode, depth, -1)
roctMinimaxValue := —rootNegamaxValue

This will in turn later will become NegaScout with the addition of alpha beta pruning.
This was just an example of algorithms to be used in the game tree.

Now let’s choose which game which should select to employ these algorithms in.
2.1 Choosing a game

For purpose of explanation and innovation, game of chess has been chosen, as it has
a large game tree size, and calculations of performance can be taken robustly.

Chess game tree complexity is about 102120 (Exponential), for modern computers
chess remains unsolvable, so basically the motivation is solving the unsolvable, but still
with the use of parallel search and deploying an efficient algorithm for GPU processing,
the software strength will increase tremendously.

Chess, Rules and Pieces

Chess has 6 type of pieces. 2 sides, white and black. Starting board position of chess is as
below

a b ¢ d e

Initial position, first row: rook, knight,
bishop, queen, king, bishop, knight,
and rook; second row: pawns

Figure 3: Starting position of a chess game
Rules of the game.

Each player moves alternately.

Pieces are moved according to their type

Only one piece per square, pieces can be captured

Goal is to checkmate the opponent’s king (king is not left with any unattacked
square)

5. If there are no moves left, and opponent is not in check, it’s a condition of a
draw. (Stalemate)

il A\ S

Moves according to the pieces type. Black dots indicate the piece can only move
on these squares.

Moves of a king

Moves of a rook

Moves of a bishop

L L= R S & £ B = > B R = =}

a b c d e f g h

= MW o @~ e

a b c d e f g h

a b c d e f g h

= MW o @~ e

a b c d e f g h

= M W e o =

a b c d e f g h

= M W e o =
= M W e o =

a b c d e f g h

Moves of a queen

Moves of a knight

Moves of a pawn

= M W ko @ =~ e

a b c d e f g h

= M W o @ =~ e

a b c d e f g h

a b c d e f g h

= M W o @ =~ e

a b c d e f g h

= M W s D~ o

a b c d e f g h
]

= M W s D~ o
= M W s D~ o

a b c d e f g h

Figure 4:

Moves of different pieces of chess

Chapter 3

IMPLEMENTATION
3.1 Board Representation

Board has been represented by bitboards also called bitsets or bitmaps, are among
other things used to represent the board inside a chess program in a piece centric
manner. Bitboards are finite setsof up to64elements- all thesquares of
a chessboard, one bit per square.

In chess, we have bitboards for every piece type.

So atleast we need six 64 bit unsigned long integers to represent 64bit number.

3.1.1 Some Bitboard Constants Used

a-file 0x0101010101010101
h-file 0x8080808080808080
8th rank O0xFF00000000000000
al-h8 diagonal 0x8040201008040201
hl1-a8 ant diagonal 0x0102040810204080
light squares 0x55AA55AA55AA55AA

dark squares OxAAS55AA55AA55AA55

https://chessprogramming.wikispaces.com/Chessboard
http://en.wikipedia.org/wiki/Finite_set
http://en.wikipedia.org/wiki/64_%28number%29
http://en.wikipedia.org/wiki/Element_%28mathematics%29
https://chessprogramming.wikispaces.com/Squares
https://chessprogramming.wikispaces.com/Chessboard
https://chessprogramming.wikispaces.com/Bit

3.2 Move Generation

With a board representation, one big consideration is the generation of moves. This is
essential to the game playing aspect of a chess program, and it must be completely
correct. Writing a good move generator is often the first basic step of creating a chess
program.

https://chessprogramming.wikispaces.com/Moves
https://chessprogramming.wikispaces.com/Chess+Game

3.3 Evaluation of a position on the board

Evaluation is used to heuristically determine the value of the position on the board.

We evaluate a position based on the basis of Material, mobility, pawn structure, king
safety and attack threats.

Material is calculated on the basis of fixed values of pieces, pawn has a value of 1,
knight and bishop have value of 3, rooks are 5 and queen is 9. King has infinite value.

Mobility is defined as the ability to maneuver the pieces on the board. It is calculated
by number of undefended squares on the board on which our piece can safely move.
Its calculated for every piece and then summed up.

King safety is calculated by number of adjacent zone attacks, direct attacks on king,
ability of opponent to give the check and how strong the shelter around the king is.

Threat evaluation requires the knowledge of which type of piece is attacking which
type of other piece.

Eg, if a knight is attacking 2 rooks at the same time, threat is very high on the opponent.

3.4 Search

As stated by Claude Shannon, there are two types of search

1. Brute Force — Search for all possibilities
2. Selective search — Search for more promising moves first

Search tree, as already stated is a subset in search space, a directed acyclic graph, with
alternating white and black moves as the level increases in the tree.

Brute force technique means exploring all possible nodes in a tree. So it’s a clearly
impractical method of solving anything

Selective search is more efficient in solving problems, in which more promising move
is evaluated in a depth first manner, before back tracking occurs.

We will use an enhanced alpha beta algorithm, an enhancement to negamax
algorithm.

3.4.1 Alpha Beta Algorithm

When searching game trees in a two player game like chess, benefits can be made by
pruning the branches in the tree which lead to a poor position, and does not affect the
score at the root. This pruning method called Alpha Beta Algorithm. It applies to zero
sum games with perfect information such as Chess and Checkers. It has 2 bounds called
upper and lower bound to decide which branch to cut. This algorithm leads to heavy
amount of pruning and making it easier to search the tree and doubling of search
depth given the same time, over the normal MIniMax search algorithm.

Recently, Monte Carlo Tree Search (MCTS), which is a type of simulation-based best-
first search algorithm, has been extended to allow for Alpha-Beta style pruning.

How it works?

For example, it is White's turn to move, and we are searching to a depth of 2 (that is,
we consider all the White's moves, and all of Black's moves followed to each of those
moves.) First we select one of White's possible moves - let's call this Move #1. We
expand this move and every possible move to this move by black. After this, we
determine whether the result of making Move #1 results in an even position or not.
Then, we go further and consider another of White's possible moves (Move #2.) When
we evaluate the first counter-move by black, we find that playing this results in black
winning a Rook. In this situation, we can safely ignore all of Black's other responses to
Move #2 because we already know that Move #1 is better. We don't care about how
much worse Move #2 is. Maybe another move wins a Queen, but it doesn't matter
because we know that we can achieve at least an even game by playing Move #1. The

https://chessprogramming.wikispaces.com/Depth

full analysis of Move #1 gave us a lower bound. We know that we can get at least
something, so anything that is worse so anything that can be pruned can be ignored.
The situation becomes too difficult to evaluate when we go to a depth of 3 or greater,
because now both players will make choices which will affect the shape of the game
tree searched. So now two bounds are maintained, lower bound and upper bound
(alpha and beta), we maintain a lower bound because if a move is worse we don't
discard it. But we also have to maintain an upper bound because if a move at depth 3
or more leads to a sequence that is too good, the other player of course will try to
avoid, because there was a better move higher up level on the game tree that he could
play to avoid the situation. One player's lower bound is the opponent’s upper bound.

Savings

The savings in this algorithm are noticeable and major. If a normal minimax search tree
has x nodes, an alpha beta tree in an efficient program can have a node count close to
the square-root of x. Nodes that can be cut actually depends on how well ordered the
game tree is. If the best possible move is searched first, we then can eliminate most of
the useless nodes. Of course, we cannot predict the best move in the first place, or we
wouldn't have to search in the first place. Conversely, if we always searched worse
moves before the better moves, we wouldn't be able to cut any part of the tree at all!
For this reason, good move ordering is very important, and is the focus of a lot of the
effort of writing a good chess program. Assuming constantly b moves for each node
visited and search depth n, the maximal number of leaves in alpha-beta is equivalent
to minimax, b". Taking always the best move first, it is beelln/2l 4 pfloor(n/2) _ 1 The
minimal number of leavesis shown in following table which also demonstrates
the odd-even effect:

number of leaves with depth n and b = 40

depth worst case best case

n b"| pIm/21 | pln/2] _ 1|

0 1 1
1 40 40
2 1,600 79
3 64,000 1,639
4 2,560,000 3,199
5 102,400,000 65,569
6 4,096,000,000 127,999
7 163,840,000,000 2,623,999
8 6.553,600,000,000 5,119,999

Table 1

https://chessprogramming.wikispaces.com/Lower+Bound
https://chessprogramming.wikispaces.com/Depth
https://chessprogramming.wikispaces.com/Node
https://chessprogramming.wikispaces.com/Move+Ordering
https://en.wikipedia.org/wiki/Floor_and_ceiling_functions
https://en.wikipedia.org/wiki/Floor_and_ceiling_functions
https://chessprogramming.wikispaces.com/Leaf+Node
https://chessprogramming.wikispaces.com/Odd-Even+Effect

The Algorithm

int alphaBeta(int alpha, int beta, int depthleft) {
if(depthleft == @) return guiesce(alpha, beta };
for { all moves) {
score = -alphaBeta(-beta, -alpha, depthleft - 1 };
if(score »= beta)
return beta; /f Tail hard beta-cutoff
if{ score > alpha)}
alpha = score; // alpha acts like max in MiniMax

i}

return alpha;

Ab

|-, 6]

Y o O‘HI;T,,_E}, | _-.f:-\wp f’O {‘:4
f=om, et y N, 6)]JG) ey ' oo, 6} o @
4 < a7 r <
[=emr, @ Q, ®1_ ®|-m.-_-:] @ @ ®

Figure 5: Alpha beta tree search

3.4.2 Enhancements in Alpha Beta Algorithm

Few enhancements that are used to speed up the Alpha Beta are described below.
They are essential since concurrency will increase as we move on to parallel search. So
each thread must be executing an efficient code already.

Move Ordering

The efficiency of the alpha-beta rule depends on the move search order. For instance,
if we tend to swap the positions of D, E and F, G in Figure 5, then a full tree search is
going to be required to see the worth at the root. To maximize the efficiency of alpha-
beta cut-offs, the “best” move must be evaluated initially at every node. Hence several
ordering schemes are made for ordering the moves in a very best to worst order. Some
techniques are comparable to iterative deepening, transposition tables, killer moves
and therefore the history heuristic have been quite eminent and reliable.

Iterative — Deepening

Iterative deepening was originally created as a time management mechanism for game
tree search. It handles the matter that however we must always opt for the search
depth depends on the quantity of your time the search can take. A simple fixed depth
is inflexible because of the variation in the amount of time the program takes per
move. So David Slate and Larry Atkin introduced the notion of iterative deepening:
start from 1-ply search, repeatedly extend the search by one ply until we run out of
time, then report the best move from the previous completed iteration. It seems to
waste time since only the result of last search is used. But fortunately, due to the
exponential nature of game tree search, the overhead cost of the preliminary D-1
iterations is only a constant fraction of the D-ply search. Besides providing good
control of time, iterative deepening is usually more efficient than an equivalent direct
search. The reason is that the results of previous iterations can improve the move
ordering of new iteration, which is critical for efficient searching. So compared to the
additional cut-offs for the D-ply search because of improved move order, the overhead
of iterative deepening is relatively small. Many techniques have proved to further
improve the move order between iterations. In this thesis, we focus on three of them:
transposition tables, killer moves and history heuristic.

Transposition Tables

In practice, interior nodes of game trees are not always distinct. The same position
may be re-visited multiple times. Therefore, we can record the information of each
sub-tree searched in a transposition table. The information saved typically includes the
score, the best move, the search depth, and whether the value is an upper bound, a
lower bound or an exact value. When an identical position occurs again, the previous
result can be reused in two ways:

1) If the previous search is at least the desired depth, then the score corresponding to
the position will be retrieved from the table. This score can be used to narrow the
search window when it is an upper or lower bound, and returned as a result directly
when it is an exact value.

2) Sometimes the previous search is not deep enough. In such a case the best move
from the previous search can be retrieved and should be tried first. The new search
can have a better move ordering, since the previous best move, with high probability,
is also the best for the current depth. This is especially helpful for iterative deepening,
where the interior nodes will be re-visited repeatedly. To minimize access time, the
transposition table is typically constructed as a hash table with a hash key generated
by the well-known Zobrist method.

Killer Move Heuristic

The transposition table can be used to suggest a likely candidate for best move when
an identical position occurs again. But it can neither order the remaining moves of
revisited positions, nor give any information on positions not in the table. So the “killer
move” heuristic is frequently used to further improve the move ordering. The
philosophy of the killer move heuristic is that different positions encountered at the
same search depth may have similar characters. So a good move in one branch of the
game tree is a good bet for another branch at the same depth. The killer heuristic
typically includes the following procedures:

1) Maintain killer moves that seem to be causing the most cutoffs at each depth. Every
successful cutoff by a non-killer move may cause the replacement of the killer moves.

2) When the same depth in the tree is reached, examine moves at each node to see
whether they match the killer moves of the same depth; if so, search these killer moves
before other moves are searched.

History Heuristic

The history heuristic, which is first introduced by Schaeffer, extends the basic idea of
the killer move heuristic. As in the killer move heuristic, the history heuristic also
uses a move’s previous effectiveness as the ordering criterion. But it maintains a
history for every legal move instead of only for killer moves. In addition, it
accumulates and shares previous search information throughout the tree, rather
than just among nodes at the same search depth. Below we illustrate how to
implement the history heuristic in the alpha-beta algorithm. The bold lines are the
part related to the history heuristic. Note that every time a move causes a cutoff or
yields the best minimax value, the associated history score is increased. So the score
of a move in the history table is in proportion to its history of success.

Ml pos : current board position

/{ d: search depth

/{ alpha: lower bound of expected value of the tree

/{ beta: upper bound of expected value of the tree

/{ Search game tree to given depth, and return evaluation of root.
int AlphaBeta(pos, d, alpha, beta)

i

1

if (d=0 || game 1s over)

return Eval (pos), /{ evaluate leaf position from current player’s standpoint
score = - INFINITY; /f preset return value
moves = Generate(pos), /{ generate successor moves

for i =1 to sizeof(moves) do // rating all moves
rating[i] = HistoryTable| moves|i] |;

Sort(moves, rating); I/ sorting moves according to their history scores
for 1 =1 to sizeofimoves) do | Ml look over all moves
Make(moves[i]); [l execute current move

cur = - AlphaBeta(pos, d-1, -beta, -alpha), /fcall other player, and switch sign of returned value

if (cur = score) | /f compare returned value and score value, note new best score if necessary

score = cur;

bestMove = moves[i]; // update best move if necessary

if (score > alpha) alpha = score; /fadjust the search window
Undo{moves[i]); // retract current move
if (alpha >= beta) goto done; // cut off

done:
/f update history score
HistoryTable[bestMove] = HistoryTable[bestMove] + Weight(d);
return score;

PVS / NegaScout

NegaScout and Principal Variation Search (PVS) are two similar refinements of alpha-
beta using minimal windows. The basic idea behind NegaScout is that most moves
after the first will result in cutoffs, so evaluating them precisely is useless. Instead it
tries to prove them inferior by searching a minimal alpha-beta window first. So for
subtrees that cannot improve the previously computed value, NegaScout is superior
to alphabeta due to the smaller window. However sometimes the move in question is
indeed a better choice. In such a case the corresponding subtree must be revisited to
compute the precise minimax value. Figure 6 demonstrates NegaScout search
procedures. Note that for the leftmost child moves, line 9 represents a search with the
interval (-beta, -alpha) whereas a minimal window search for the rest of children. If
the minimal window search fails, i.e., (cur > score) at line 10, that means the
corresponding subtree must be revisited with a more realistic window (-beta, -cur)
(line 15) to determine its exact value. The conditions at line 11 show that this re-search
can be exempted in only two cases: first, if the search performed at line 9 is identical
to actual alpha-beta search, i.e., n=beta, and second, if the search depth is less than 2.
In that case NegaScout’s search always returns the precise minimax value.

{f d: search depth

{/ alpha: lower bound of expected value of the tree

{/ beta: upper bound of expected value of the tree

/! Search game tree to given depth, and return evaluation of root.

1 int NegaScout(pos, d, alpha. beta) |
2 if (d=0 || game 1s over)
3 return Eval (pos); /! evaluate leaf position from current player’s standpoint
4 score = - INFINITY {/ preset return value
5 n = beta;
6 moves = Generate(pos), /! generate successor moves
7 for i =1 to sizeofimoves) do | /{ look over all moves
8 Make({moves[1]); /{ execute current move
9 cur = -NegaScout(pos, d-1, -n, -alpha);
10 if (cur > score) {
11 if (n=beta) OR (d <=2)
12 score = cur; /f compare returned value and score value, note new best score if necessary
13 else
15 score = -NegaScout(pos, d-1, -beta, -cur),

]

]
16 if (score > alpha) alpha = score; //adjust the search window
17 Undo(moves[i]); // retract current move
18 if (alpha >= beta) return alpha; // cut off
19 n=alpha+ I

]
]

20 return score;

B-6 C-4
(o=, 00) M T(5.6) 67 & Tk

el ole A O

s {-f, -5) M 0 -1

Figure 6: Alpha beta tree with PVS enhancement

A good move ordering is even more favorable to NegaScout than to alpha-beta. The
reason is that the number of re-searches can be dramatically reduced if the moves are
sorted in a best-first order. So other move ordering enhancements such as iterative
deepening, the killer heuristic, etc, can be expected to give more improvement to
NegaScout than to alpha-beta.B-6 D6-6-5-3-7--E7C-4F---9--—---—--4-1G4A6(-
7,-6) (-00,) (-0, =) (5, 6) (-°°, -6) (->°, -6) (-6, -5) (6, 7) (-7, -6) (-2,) M N O (6, 7)
(-7, -6) (-7, -6) When performing a re-search, NegaScout has to traverse the same
subtree again. This expensive overhead of extra searches can be prevented by caching

previous results. Therefore a transposition table of sufficient size is always preferred
in NegaScout.

3.5 Quiescence Search

A fixed-depth approximate algorithm searches all possible moves to the same depth.
At this maximum search depth, the program depends on the evaluation of
intermediate positions to estimate their final values. But actually all positions are not
equal. Some “quiescent” positions can be assessed accurately. Other positions may
have a threat just beyond the program’s horizon (maximum search depth), and so
cannot be evaluated correctly without further search. The solution, which is called
quiescence search, is increasing the search depth for positions that have potential and
should be explored further. For example, in chess positions with potential moves such
as capture, promotions or checks, are typically extended by one ply until no threats
exist. Although the idea of quiescence search is attractive, it is difficult to find out a
good way to provide automatic extensions of non-quiescence positions.

Pseudocode

int Quiesce(int alpha, int beta) {
int stand pat = Evaluate();
if (stand pat >= beta)
return beta;
if (alpha < stand pat)
alpha = stand pat;

until (every capture has been examined) {
MakeCapture () ;
score = -Quiesce(-beta, -alpha);
TakeBackMove () ;

if(score >= beta)
return beta;
if(score > alpha)
alpha = score;
}

return alpha;

3.6 Parallel Search

Parallel Search, also known as Multithreaded Search or SMP Search, is a way to
increase search speed by using additional processors. This topic that has been gaining
popularity recently with multiprocessor computers becoming widely available.
Utilizing these additional processors is an interesting domain of research, as traversing
a search treeis inherently serial. Several approaches have been devised, with the most
popular today being Young Brothers Wait Conceptand Shared Hash Table.

A subtype of parallel algorithms, distributed algorithms are algorithms designed to
work in cluster computing and distributed computing environments, where additional
concerns beyond the scope of "classical" parallel algorithms need to be addressed.

Parallel
Speedup
4

Superlinear .

Typical
Success

—» #Processors

Negative

Figure 7: Comparison between Ideal and Practical speedup
3.6.1 Threads
Threads are the smallest program sequence that are managed independently by a

scheduler.
3.6.2 Young Brothers Wait Concept

YBW(C is a basic concept for a parallel alpha-beta search coined by Rainer Feldmann et
al. in 1986, introduced 1989 to a wider audience in the ICCA Journal paper Distributed
Game-Tree Search. Brothers are sibling nodes, the oldest brother is searched first,
younger brothers, to be searched in parallel, have to wait until the oldest brother did
not yield in a beta-cutoff and did possibly narrow the bounds in case of an alpha
increase.

https://en.wikipedia.org/wiki/Symmetric_multiprocessing
https://chessprogramming.wikispaces.com/Search
https://en.wikipedia.org/wiki/Central_Processing_Unit
https://en.wikipedia.org/wiki/Multiprocessing
https://chessprogramming.wikispaces.com/Young+Brothers+Wait+Concept
https://chessprogramming.wikispaces.com/Shared+Hash+Table
https://en.wikipedia.org/wiki/Parallel_algorithm
https://en.wikipedia.org/wiki/Distributed_algorithms
https://en.wikipedia.org/wiki/Cluster_computing
https://en.wikipedia.org/wiki/Distributed_computing
https://chessprogramming.wikispaces.com/Alpha-Beta
https://chessprogramming.wikispaces.com/Rainer+Feldmann
https://chessprogramming.wikispaces.com/ICGA+Journal
https://chessprogramming.wikispaces.com/Sibling+Node
https://chessprogramming.wikispaces.com/Beta-Cutoff
https://chessprogramming.wikispaces.com/Bound

3.6.3 Delay

The Young Brothers Wait Concept, which in some situations delays the use of
parallelism until subtrees are available which are relevant for the final result with high
probability, prevents processors from searching irrelevant subtrees and reduces the
search overhead. The use of the YBWC is possible only in combination with good load
balancing possibilities.

The eldest son of any node must be completely evaluated before younger

brothers of that node may be transmitted.

3.6.4 Distributed Game-Tree Search

The Principal Variation Splitting (PVS) algorithm evaluates right sons of game-tree
nodes with a minimal window and re-evaluates them only if necessary.

Alternatively, game-tree nodes are evaluated in parallel only if they had acquired

an alpha-beta bound before. Yet another approach applies in a distributed chess
program running on a hypercube: if the transposition table proposes some move for a
game position, then this move is tried first. Parallel evaluation of the other moves is

started only of the evaluation of the transposition move yields no cutoff.

http://en.wikipedia.org/wiki/Load_balancing_%28computing%29
http://en.wikipedia.org/wiki/Load_balancing_%28computing%29
https://chessprogramming.wikispaces.com/Parallel+Search#PrincipalVariationSplitting
https://chessprogramming.wikispaces.com/Null+Window
https://chessprogramming.wikispaces.com/Bound
http://en.wikipedia.org/wiki/Hypercube
https://chessprogramming.wikispaces.com/Transposition+Table

3.7 GPGPU Concepts and CUDA Programming Language

General-purpose computing on graphics processing units is the use of a graphics
processing unit (GPU), which typically handles computation only for computer
graphics, to perform computation in applications traditionally handled by the central
processing unit (CPU). The use of multiple graphics cards in one computer, or large
numbers of graphics chips, further parallelizes the already parallel nature of graphics
processing. In addition, even a single GPU-CPU framework provides advantages that
multiple CPUs on their own do not offer due to the specialization in each chip.

Essentially, a GPGPU pipeline is a kind of parallel processing between one or more
GPUs and CPUs that analyzes data as if it were in image or other graphic form. While
GPUs generally operate at lower frequencies, they usually have many times more
cores to make up for it (up to hundreds at least) and can, thus, operate on pictures
and graphical data effectively much faster, dozens or even hundreds of times faster
than a traditional CPU, migrating data into graphical form and then using the GPU to
"look" at it and analyze it can result in profound speedup.

Originally, data was simply passed one-way from a CPU to a GPU, then to a display
device. However, as time progressed, it became valuable for GPUs to store at first
simple, then complex structures of data to be passed back to the CPU that analyzed
an image, or a set of scientific-data represented as a 2D or 3D format that a graphics
card can understand. Because the GPU has access to every draw operation, it can
analyze data in these forms very quickly, whereas a CPU must poll every pixel or data
element much more slowly, as the speed of access between a CPU and its larger pool
of random-access memory (or in an even worse case, a hard drive) is slower than GPUs
and graphics cards, which typically contain smaller amounts of more expensive
memory that is very much faster to access. Transferring the portion of the data set to
be actively analyzed to that GPU memory in the form of textures or other easily
readable GPU forms results in speed increase.

https://en.wikipedia.org/wiki/Graphics_processing_unit
https://en.wikipedia.org/wiki/Graphics_processing_unit
https://en.wikipedia.org/wiki/Computer_graphics
https://en.wikipedia.org/wiki/Computer_graphics
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Graphics_pipeline
https://en.wikipedia.org/wiki/Parallel_computing
https://en.wikipedia.org/wiki/Multi-core_processor
https://en.wikipedia.org/wiki/Speedup
https://en.wikipedia.org/wiki/CPU
https://en.wikipedia.org/wiki/GPU
https://en.wikipedia.org/wiki/Display_device
https://en.wikipedia.org/wiki/Display_device
https://en.wikipedia.org/wiki/Random-access_memory
https://en.wikipedia.org/wiki/Hard_drive

THE CUDA PARALLEL COMPUTING PLATFORM

The CUDA parallel computing platform provides a few simple C and C++ extensions
that enable expressing fine-grained and coarse-grained data and task parallelism. The
programmer can choose to express the parallelism in high-level languages such as C,
C++, Fortran or open standards as OpenACC directives. The CUDA parallel computing

platform is now widely deployed with 1000s of GPU-accelerated applications and
1000s of published research papers.

Below is the sample of a standard C code, and in comparison to Parallel CUDA C code

Standard C Code Parallel C Code

void saxpy _serial (int n, void saxpy _parallel(int n,
float a. Tfloat a,
Tloat *x, float =*x,
Tloat *y) Float *y)

int i = blockIdx.x*blockDim.X +
Tfor (Ot i =0; 1 < Ny ++i) LhreadTdx. x;
¥[i1 = a=x[i] + ¥Iil; if (0 < m y[i] = a=x[i] + y[il;

¥ 1

Jf pPerform SAXPY on 1M elements Jf Perform SAXPY on 1M €lements
saxpy_serial(4096*256, 2.0, X, ¥); saxpy_parallel 96, 256>>>(N, 2.0,X,¥);

Figure 8: Comparison of a C++ code and CUDA code

http://developer.nvidia.com/cuda-toolkit
http://developer.nvidia.com/cuda-toolkit
http://developer.nvidia.com/cuda-fortran
http://www.nvidia.com/object/vertical_solutions.html
http://scholar.google.com/scholar?q=cuda+gpu

3.8 APPROACH

In this we extend the general algorithm of Monte- Carlo Tree Search, to wider and
latest emerging field of GPGPU computing, where the Monte-Carlo Tree Search is
implemented on GPU instead of a CPU earlier. 2 more steps or schemes are added to
the algorithm. Later we will compare the performance of each scheme, and also
calculate the speed-up.

Monte Carlo Tree Search

A simulation is defined as a series of random moves which are performed until the end
of a game is reached (until neither of the players can move). The result of this
simulation can be successful, when there was a win in the end or unsuccessful
otherwise. So, let every node i in the tree store the number of simulations 7" (visits)

and the number of successful simulations Si. The general MCTS algorithm comprises
4 steps (Figure 9) which are repeated.

MCTS iteration steps

1) Selection: - a node from the game tree is chosen based on the specified criteria.
The value of each node is calculated and the best one is selected. The formula used
to calculate the node value is the Upper Confidence Bound (UCB).

.:91; n c IIIII'IEO[}T
— +C %4/
ti Ve,

Ti - total number of simulations for the parent of node i
C - a parameter to be adjusted

Suppose that some simulations have been performed for a node, first the average
node value is taken and then the second term which includes the total number of
simulations for that node and its parent. The first one provides the best possible
node in the analyzed tree (exploitation), while the second one is responsible for
the tree exploration. That means that a node which has been rarely visited is more
likely to be chosen, because the value of the second terms is greater.

2) Expansion: - one or more successors of the selected node are added to the tree
depending on the strategy. This point is not strict, in our implementation | add one
node per iteration, so this number can be different.

3) Simulation: - for the added node(s) perform simulation(s) and update the node(s)

4)

values (successes, total) — here in the CPU implementation, one simulation per
iteration is performed. In the GPU implementations, the number of simulations
depends on the number of threads, blocks Selection Expansion Simulation
Backpropagation Repeat until time is left and the method (leaf of block
parallelism). l.e. the number of simulations can be equal to 1024 per iteration for
4 block 256 thread configuration using the leaf parallelization method.

Backpropagation: - update the parents’ values up to the root nodes. The numbers
are added, so that the root node has the total number of simulations and successes
for all of the nodes and each node contains the sum of values of all of its successors.
For the root/block parallel methods, the root node has to be updated by summing
up results from all other trees processed in parallel.

Repeat until time is left
Selection Expansion Simulation Backpropagation

A-AAY

Figure 9: MICTS Steps of iteration

3.9 GPU IMPLEMENTATION

In the GPU implementation, 2 approaches are considered and discussed. The first one
is the simple leaf parallelization, where one GPU is dedicated to one MCTS tree and
each GPU thread performs an independent simulation from the same node. Such a
parallelization should provide much better accuracy when the great number of GPU
threads is considered.

The second approach (Figure 10c), is the block parallelization method. It combines
both aforementioned schemes. Root parallelism is an efficient method of
parallelization MCTS on CPUs. It is more efficient than simple leaf parallelization,
because building more trees diminishes the effect of being stuck in a local
extremum/increases the chances of finding the true global maximum. Therefore

having n processors it is more efficient to build n trees rather than performing n
parallel simulations in the same node. Given that a problem can have many local
maximas, starting from one point and performing a search might not be very accurate
in the basic MCTS case. The second one, leaf parallelism should diminish this effect by
having more samples from a given point. The third one is root parallelism. Here a single
tree has the same properties as each tree in the sequential approach except for the
fact that there are many trees and the chance of finding the global maximum increases
with the number of trees. The last, our proposed algorithm, combines those two, so
each search should be more accurate and less local at the same time.

n trees n = blocks(trees) x threads (simulations at once)

AR A& A A

A A &
A\.

& A A A

a. Leaf parallelism b. Root parallelism c. Block parallelism

n simulations

Figure 10: Different types of parallism approach

5) Leaf-parallel scheme: This is the simplest parallelization method in terms of
implementation. Here GPU receives a root node from the CPU controlling process
and performs n simulations, where n depends on the dimensions of the grid (block
size and number of blocks). Afterwards the results are written to an array in the
GPU’s memory (0 = loss, 1 = victory) and CPU reads the results back. Based on that,

the obtained result is the same as in the basic CPU version except for the fact that
the number of simulations is greater and the accuracy is better.

6) Block-parallel scheme: To maximize the GPU’s simulating performance some
modifications had to be introduced. In this approach the threads are grouped and a
fixed number of them is dedicated to one tree. This method is introduced due to the
hierarchical GPU architecture, where threads form small SIMD groups called warps
and then these warps form blocks. It is crucial to find the best possible job division
scheme for achieving high GPU performance. The trees are still controlled by the CPU
threads, GPU simulates only. That means that at each simulation step in the algorithm,
all the GPU threads start and end simulating at the same time and that there is a
particular sequential part of this algorithm which decreases the number of simulations
per second a bit when the number of blocks is higher. This is caused by the necessity
of managing each tree by the CPU. On the other hand the more the trees, the better
the performance. In our experiments the smallest number of threads used is 32 which
corresponds to the warp size.

GPU Hardware GPU Program
Number of MPs fixed Number of blocks configurable
Multiprocassor | | Multiprocassor ‘_ Block 0 Block 1
Multiprocessor | | Multiprocessor — Block 2 Block 3
Root parallelism
Multiprocessor | | Multiprocessor .— Block 4 Block 5
Multiprocessor | | Multiprocessor — Block 6 Block 7
Block parallelism
Mumber of threads configurable
SIMD warp SIMD warp < [tveado |[theeac || Thread2 | [hreads |
1 Thraad 4 Thread 5 Thread & Thread 7
SIMD warp SIMD warp | || || | | f
‘ | Thread & || Thread @ || Thread 10| | Thread 11| Leafparallelism
32 threads (fixed, for current hardware) | Thread 12 'head13|| Thread 14| | Thread 15|
| Thirzad |§| | Thread 1F| | Thread 15| | Thread |‘3|
Thread 20 | | Thread 21| | Thread 22| | Thread 23

Figure 11: Block diagram with flowchart of parallelism approach on GPU hardware

Hybrid CPU-GPU processing

| observed that the trees formed by our algorithm using GPUs are not as deep as the
trees when CPUs and root parallelism are used. It is caused by the time spent on each
GPU’s kernel execution. CPU performs quick single simulations, whereas GPU needs
more time, but runs thousands, of threads at once. It would mean that the results are

less accurate, since the CPU tree grows faster in the direction of the optimal solution.
As a solution | experimented on using hybrid CPU-GPU algorithm. In this approach, the
GPU kernel is called asynchronously and the control is given back to CPU. Then CPU
operates on the same tree (in case of leaf parallelism) or trees (block parallelism) to
increase their depth. It means that while GPU processes some data, CPU repeats the
MCTS iterative process and checks for the GPU kernel completion.

processed by GPU
kel asecuf tion call —8»
expanded by CPU
in the meantime
CPU GPU
guema || CAN kernel
work execution
herel time
gpu ready evert f—————————————|
A,

Figure 12: Hybrid approach

| compare the speed(Figure 13) and results (Figure 14) of leaf parallelism and block
parallelism using different block sizes. The block size and their number corresponds to
the hardware’s properties. In those graphs a GPU Player is playing against one CPU
core running sequential MCTS.

x10°
9 T T T T T T
8.5 —e—Lsaf parallieliam (block size = §4) — =
B[—=—Block parallslizm (block size = 32) 7
751 ——Block parallelizm (block size = 128) ,-J
F [
6.5 [
: i/
2 s /
g 55 / 7
v g y
§ 45 /" /x
g ¢ 7Y
335
E 3 .""r /
@ 25 :
.2 /{ 78
15 f{;
. L
L
05 =
S
1 2 4 8 18 32 64 128 256 G512 1024 2048 40096 7168 14338

GPU Threads

Figure 13: Simulations per second or speedup graph

The main aspect of the analysis is that despite running fewer simulations in a given
amount of time using block parallelism, the results are much better compared to leaf
parallelism, where the maximal winning ratio stops at around 0.75 for 1024 threads
(16 blocks of 64 threads).

The results are better when the block size is smaller (32), but only when the number
of threads is small (up to 4096, 128 blocks/trees), then the lager block case (128)
performs better. It can be observed in Figure 5 that as | decrease the number of
threads per block and at the same time increase the number of trees, the number of
simulations per second decreases. This is due to the CPU’s sequential part.

0.85

0.9

0.e5

0.8

0.75
Q.7

= 085
(15
0.6

—

E .
= 055

0.5

0.45

0.4
0.25

0.2
0.25

—&— Laaf parallslizm (block size = 84)
—e— Block parallalism (block size = 32)

—a— Block parallslizm (block size = 128)

1 1 1 1 1 1
a4 128 256 512 1024 2048 4086 7168 14336
GPU Threads

0.2

16 3z

Figure 14: GPU Outperforms CPU (Results)

In Figure 7 and 8 | also show a different type of result, where the X-axis represents
current game step and the Y-axis is the average point difference between 2 players. In
Figure 7 | observe that one GPU outperforms 256 CPUs in terms both intermediate and
final scores. Also | see that the characteristics of the results using CPUs and GPU are
slightly different, where GPU is stronger at the beginning. | believe that it might be
caused by the larger search space and therefore | conclude that later the parallel effect
of the GPU is weaker, as the number of distinct samples decreases. Another reason for
this is mentioned depth of the tree which is lower in the GPU case.

2 B B F

—— I s

E

—— 1 oo
—— S s
1 P - bk

E

S = 130

E B

TNl o BeTera & DA AR - DpEOET s e

GETE HBp

Figure 15: Comparison of 1 GPU against many number of CPUs

Also | show that using our hybrid CPU/GPU approach both the tree depth and the
result are improved as expected especially in the last phase of the game.

-
10
a2 e
&
n B
4
z
10 2 30 A EO a0
Game slap
0 T T T T T
k. ;
| Y o : i -+
S : —=— 3P = CPU
] e, :
Lk o Tmagpeei 3
(‘i O i
i e ——EFL
-
9 H H .-"":*.J
: : : E—— :
.-.—p—g.—q—u'p—-—t—ﬁ-—t-—+- e e e | H
: 10 e 30 &1 50 80

Garma step

Figure 16: Comparison between hybrid approach and normal approach

Chapter 4

Conclusion

Performance comparison was done between a hybrid approach and non hybrid
approach and the results proved it to be successful. So we have a code which performs
better than previous approach.

Chapter 5

Future Work

e Application of the algorithm to other domain. A more general task can and
should be solved by the algorithm.

e Scalability analysis. This is a major challenge and requires analyzing certain
number of parameters and their effect on the overall performance. Currently |
implemented the MPI-GPU version of the algorithm, but the results are
inconclusive, there are several reason why the scalability can be limited
including Reversi itself.

e Application of algorithm to games with a huge branching factor like chess,
checkers etc. will simplify the current processing of such games.

e Major speed-up in search used in artificial intelligent machines.

e The evolution in game tree search algorithms as well as parallel libraries and
hardware will not only lead to solve complex games that were not solvable
before, but will also lead to solve more problems in real life. Many algorithms
designed during the past to run in parallel on CPU or GPU were able to reach 6x
speedup on CPU for 8-core processors and 40x speedup in 14 depth on GPU.

References

[1] Yun-Ching Liu, Yoshimasa Tsuruoka (2015). Adapting Improved Upper Confidence Bounds for
Monte-Carlo Tree Search.

[2] Chu-Hsuan Hsueh, I-Chen Wu, Wen-Jie Tseng, Shi-Jim Yen, Jr-Chang Chen (2015). Strength
Improvement and Analysis for an MCTS-Based Chinese Dark Chess Program.

[3] General Purpose Computing on GPUs, gpgpu.org

[4] CUDA Programming, http://www.nvidia.com/object/cuda-parallel-computing-platform.html

[5] Chess Programming Hub, https://chessprogramming.wikispaces.com/

[6] Kamil Rocki, Reiji Suda, Large-Scale Parallel Monte Carlo Tree Search on GPU

[7] Monte Carlo Tree Search (MCTS) research hub, http://www.mcts-hub.net/index.html|

[8] Kocsis L., Szepesvari C.: Bandit based Monte-Carlo Planning, 15th European. Conference on
Machine Learning Proceedings, 2006

[9] Guillaume M.J-B. Chaslot, Mark H.M. Winands, and H. Jaap van den Herik: Parallel Monte-Carlo
Tree Search, Computers and Games: 6th International Conference, 2008

[10] Rocki K., Suda R.: Massively Parallel Monte Carlo Tree Search, Proceedings of the 9th
International Meeting High Performance Computing for Computational Science, 2010

[11] Romaric Gaudel, Michle Sebag - Feature Selection as a one player game (2010)
[12] O. Teytaud et. al, High-dimensional planning with Monte-Carlo Tree Search (2008)

[13] Manohararajah V. Parallel Alpha-Beta Search on Shared Memory Multiprocessors. M.Sc. Thesis.
Toronto: University of Toronto; 2001

[14] Lu C-PP. Parallel Search of Narrow Game Trees. M.Sc. Thesis. Edmonton: University of Alberta;
1993.

[15] Sanders J, Kandrot E. CUDA by Example: An Introduction to General-Purpose GPU Programming.
New Jersey: Addison Wesley; 2010.

https://chessprogramming.wikispaces.com/Yun-Ching+Liu
https://chessprogramming.wikispaces.com/Yoshimasa+Tsuruoka
https://chessprogramming.wikispaces.com/Chu-Hsuan+Hsueh
https://chessprogramming.wikispaces.com/I-Chen+Wu
https://chessprogramming.wikispaces.com/Wen-Jie+Tseng
https://chessprogramming.wikispaces.com/Shi-Jim+Yen
https://chessprogramming.wikispaces.com/Jr-Chang+Chen
http://www.mcts-hub.net/index.html

Snapshots of Code and System

i
if

1. Evaluation function

// Imitialize attack and king safety hithoards

init_eval_ info<WHITE>(pos, ei):
init eval info<BLACE>(pos, el);

ei.attackedBy [WHITE] [ALL_PIECES]
ei.attackedBy [BLACK] [ALL_PIECES]

|= ei.attackedBy[WHITE] [KING]
|= ei.attackedBy[BLACK] [EING];

Appendix A

// Do mot include in mobility squares protected by enemy pawns or occupied by our pawns or king
PAWN, KING)),
PAWN, HING)) }:

Bitboard mobilityAreal[] = {

// Evaluate pieces and mobility
score 4=
score 4=

~{ei.attackedBy [BLACK] [PAWN]
~{ei.attackedBy [WHITE] [PAWN]

| pos.pieces (WHITE,
| pos.pieces (BLACK,

// Evaluate kings after z2ll other pieces because we need complete attack
S/ information when computing the king safety evaluation.

score +=

evaluate king<WHITE, Trace>(pos, ei)

- evaluate king<BLACEK, Trace>(pos, ei);

// Ewvaluate tactical threats, we need full attack information including king
evaluate threats<WHITE, Trace>(pos,
- evaluate_threats<BLACK, Trace>(pos,

Score 4=

ei)
ei);

// Evaluate passed pawns, we need full attack information including king

2. lterative deepening

Step 10.
[depth >=
&& lctHove
&& (FvHode

(FvHode 72

Internal iterative deepening

S % ONE PLY : 2 * CQNE PLY)

zz-»>ztaticEval + 256 >= beta))

Depth d = 2 * (depth - 2 * ONE PLY) -
zz->»zskipHullMove = true;

zearch<PvHNode ? PV : NonPV, false>(po=s, ==, alpha,
gs—r»skipullMove = false;

tte = TT.probe (posEey) ;

ttHowve tte ?

tte->move () :

MOVE_NONE ;

beta,

evaluate pieces<ENIGHT, WHITE, Trace>(pos, ei, mobility, mobilityArea);
apply_weight (mobility[WHITE] - mobility[BLACK], Weights[Mobilityl):

([2kipped when in check)

(EvNode ? DEPTH ZERO :

d /f

3. Quiescenece Search

halue gsearch{Positionk pos, Stack* ss, Value alpha, Value beta, Depth depth)

const bool PvNode = NT = PV;
assert (NT =— PV || NT = HNonPFV);
azszert (InCheck =— !lpos.checkers()) !

assert (alpha »>= -VRLUE_ INFINITE && alpha < beta && beta <= VALUE INFINITE):
assert (PvNode || {alpha = beta - 1});
assert (depth <= DEPTH ZERO) ;

StateInfo s=st;

const ITEntry* tte;

Eey posKey;

Mowve ttMove, mowve, bestMowve:

Value bestValue, value, ttValue, futilityValue, futilityBase, oldalpha;
kool givesCheck, ewvasionPrunakle;

Depth ttDepth;

To flag BOUND EXACT a node with gyal above alpha and no avallable moves
if (PvNode)

oldilpha = alpha;

gz-»currentMove = bestMove = MOVE NONE;

ss-»*ply = (ss-_)->ply + 1
4 Check for an instant draw or if the maximum ply has been reached
if (pos.is_draw() || ss->ply > MRX PLY)
return ss->ply > MAX PLY && !InCheck ? evaluate(pos) : DrawValue[pos.side to move()]:

4. Multithreaded splitting of search

Jf Brtep 19. Check for splitting the search
if | 1 5pNode

&& Threads.size() >= =

&& depth »>= Threads.minimumSplitDepth

//&& Threads.available slave (thisThread)

L& { IthisThread-»activeSplitPoint

|l '"thisThread-»activeSplitPoint->allS3lavesSearching)

&& thisThread-»splitPointsSize < MARX SPLITPOINTS FER THREAD)

i

agsert (bestValue > -VALUE INFINITE && bestValue < beta);

thisThread-»split<FakeSplit>(pos, ss, alpha, beta, &bestValue,

depth, moveCount, &mp, NT, cutHode):;

if (Signals.stop || thisThread->cutoff occurred())
return VALUE ZERO:

1f (bestValue »= beta)
break;

5. Command line version run
- Ny
B CAmmersion.exe | =RRe X

Immersion 288716 64 hy Aditya

go infinite
info depth 1 seldepth sCcore 82 nodes 27 nps 27808 thhitsz @ time 1 multipe 1
pv e2ed

1
info depth 2 seldepth 2 score ? nodes 155 nps 155888 thhits @ time 1 multipw
3

1 puv d2d4 47d5

info depth 3 seldepth
1 puv d2d4 d7d5 gif3
info depth 4 seldepth 4 score cp 7 nodes 794 nps 794008 thhits B time 1 multipw
1 puv d2d4 d7d5 gif3d gBf6

info depth 5 seldepth 5 score cp 51 nodes 1478 nps 21875 thhits B time 16 multip
v 1 puv d2dd d?d5 gif3 gBf6 bhic3

info depth 6 seldepth 6 score cp 7 nodes 2897 nps 181862 thhits @ time 16 multip
v 1 puv d2d4 d?d5 gif3 gBf6 bic3 hBch

info depth 7 seldepth 7 score cp 48 nodes 415%8 nps 259875 tbhhits B time 16 multi
pv 1 pu d2d4 d7dS gif3 gBfe bic3 bBctb eZeld

info depth 8 seldepth 8 score cp 7 nodes 7538 nps 235562 thhits @ time 32 multip
v 1 puv d2d4 d?d5 glif3d gBf6 hic3 bict eZeld eVeb

info depth ? seldepth 18 score cp 3?9 nodes 12969 nps 275936 thhits B time 47 mul
tipv 1 puv d2d4 d7?d5 gif3 g8f6 bhicd bh8ch e2eld aPab fid3

info depth 18 seldepth 13 score cp 18 nodes 35817 nps 288152 thhits B time 125 m
ultipe 1 puv eZed d?d5 ed4d5 gB8f6 bic3d fed5S gif3 hich dZ2d4d eVeb

info depth 11 seldepth 15 score cp 23 nodes 57684 nps JA6404 thhits B time 188 m
ultipr 1 puv eZed e?e5 hlicd gBf6 gif3 h8ch f1bh aPab bhS5ch d7ch F3eb

info depth 12 seldepth 15 score cp 36 nodes 99872 nps 333575 thhits B time 297 m

sCcore 62 nodes 316 nps 316808 thhits @ time 1 multipe

6. GUI version of the engine (GUI used: Deep Fritz)

arasan16.98

-‘M Home Insert Board Training Analysis Engine View

m [# Paste Position % e~ t @ Resign # * @ 7 Suggestion Z Edit Game Data
" Copy Game = © Offer Draw . - Ab Threat » Load Next Game
Paste N New Cancel Replay Move Blitz long Levels | Hint . Database §
Game [® CopyPosition | Game~ Move move Now [Stop Clocks || is Game game ~ [¥] Coach Is Watching < Load Previous Game
Clipboard game Levels Coach Database

Clocks: Blitz 4m+2s

B 0:00:32 | 00000

J ‘StockfishSHARK 1.0 x64 SSE4.2 TEST-2048MB/User-PC' 35.88s /30 BEST,
‘Stockfish 180314 64 SSE4.2 70314 64 SSE4.2-2048MB/User-PC' >50s

Engine: Immersion 280716 64

(o] o)

£ (061 | Depth=26 | | 1221k | 0:00:32

Immersion 280716 64 |

1.Qxe4 fxed 2.Ng5 Bxa2 3.Nxe4 a6 4.Ba4 Nd7 5.Bg5 Ne5 6.0-0 Rdc8 7.Bc2 Rab8 8.Ra1 Bc4 9.Rfc1 Nf7 10.Be3 Rb2
11.Rab1 Rcb8 12.Bxc5 a5 13.Ra1 Bh6 14.Rcb1 Rxb1+ 15.Rxb1 Rxb1+ 16.Bxb1
+/= (0.61) Depth: 25/46 00:00:25 29979kN

7. 8 CPUs usage, significant speedup and depth increase

Engine: Immersion 280716 64

Immersion 280716 64 (=] |
© + 29 Depth=38 1.Ng5 (1/39) 5110 kN/s | 0:04:14

1.Ng5 Qxe2+ 2.Kxe2 BxaZ 3.Ral Bb3 4.Rhb1 Bd3 5.Rd1 Bxc3 6.Rxd5 Rxd5 7.Bcd4 Bxal 8.Bxd5+ Kg7 9.Bxal Ndi
10.Bd5 Beb 11.Neb+ K7 12.NxcH+ Ke7 13.Be3 Nf6 14.Bb3 Ng4 15.Bg5+ Kd6 16.Nd3 Bc3 17.f3 N6 18.Bf4+ Kcb
19.Bad+ Kd5 20.Bb5 a5 21.Bc7 Ngb 22.Bd8 N6 23.Bb6

+- (2.93) Depth: 37/64 00:04:12 1290MM

