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ABSTRACT 
 

The modulation recognition plays an important role in various civilian and military applications. 

In blind environments, an effective recognition algorithm is needed which should be able to 

discriminate between digital communication signals. Many researches have worked on the 

problem of modulation recognition of digitally modulated signals. Many of the algorithms 

developed need a priori information of a few parameters and thus crops up a space for a class of 

algorithms that are independent of any information of the signal. This novelty presents a strong 

case for a leap forward towards blind recognition of the modulation. A feature based algorithm 

extracts discriminatory features for data representation amongst different modulation schemes 

and then makes a decision based on thresholds. The first of the algorithm discussed is essentially 

a sequence of steps which employs statistical parameters such as fourth order cumulants, 

variance of the centered normalized signal amplitude, instantaneous phase, the zero-crossing 

sequence shape (ZCSS) and power spectral density as features for classification by employing 

opportunely set thresholds. The other algorithm approaches the classification problem as 

multiresolution analysis and comes up with the idea of employing wavelet transform of the 

signal. The variance of the magnitude of the signal wavelet transform (WT) after peak removal is 

compared against a set threshold and classification decision is made. It is prudent to mention 

that a digitally modulated waveform is cyclostationary and exhibits transients whenever a 

symbol undergoes a transition. The difference is thus exploited for modulation classification.  
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Chapter 1 

__________________________________________________________________ 

INTRODUCTION 

 

Modulation techniques revolutionized the communication systems as it was perceived and 

increased its impact by sheer multitude of its capability and capacity. Modulation provides a 

communication system with robustness to withstand noisy environments. It provides it the much 

needed flexibility in terms of techniques to be employed and the much needed security. 

 

1.1 Motivation 

This study deals with the problem of modulation characterization in the presence of varying 

noise and varying carrier frequency. Signal interception and modulation recognition is extremely 

important when spoken in context of military intelligence or keeping a check on unlicensed 

transmitters. Modulation classification is an intermediate step between signal detection and 

demodulation and plays a key role in military and civilian applications alike. At the heart of an 

electronic surveillance system lies an intelligent receiver which is busy classifying the incoming 

signals on basis of its parameters in presence of impediments like noise, effects of multipath 

fading etc. to name a few. Amongst various methods in practice the prime focus of this study is 

the ones using Wavelet transform and the other one using statistical parameters to validate the a 

particular modulation. 

An efficient system would follow an algorithm which doesn’t need any a priori knowledge of a 

modulated signal and still plays a pivotal role in signal verification and signal identification. The 

modulation classification algorithms has been three pronged. First, where only analog 

communications signals have been classified. Second, for digital modulations and third where a 

few schemes for both digital and analog modulated signals have been classified. A bottom up 

approach further reveals that the classification algorithm are either decision theory based 

approach or a feature matching based approach.  
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The first approach (decision theory) a maximum likelihood criterion is applied to the signal itself 

or to the transform of the signal which yields either a likelihood ratio or a likelihood functions. 

The classification is then made by comparing the result to a threshold. These formulation are 

computationally complex although it gives an optimal solution as misclassification probability is 

taken into account. The second approach dwells on one or more features extracted from a signal.  

This approach (features based) is easy to implement and does return a near optimal performance. 

 

1.1.2  Classification Algorithms Overview 

Although analog communication signals are not within the ambit of this study however a few 

algorithms are discussed. Nandi and Azzouz [1] based their algorithm on four features for 

classification of AM, DSB, LSB, USB, FM, vestigial-sideband (VSB) and combined AM-FM 

modulation signals. The four features being, max ,  ap ,  dp &  P , here (  /L U L UP P P P P   )

max is the maximum value of the estimated power spectral density (PSD) of the normalized 

centralized instantaneous amplitude of the input. ap  is the standard deviation of the absolute 

centralized instantaneous phase. dp  is the standard deviation of the centralized instantaneous 

phase.  P  is the received signal's power in the frequency range. The signals are then 

chronologically classified. 

 

The cyclostationarity of AM, DSB, SSB, CW and noise signals was exploited Seaman and Braun 

[2]. For a received signal the cyclic spectral density (CSD) is estimated and used for 

classification. The devised approach is validated by different figures for CSDs [2] which are 

perceptible for a human eye, but is intrinsically an arduous for a machine to recognize a CSD 

pattern. 

 

1.1.3 Digital Modulation Classification 

The digital modulation classification is based on assumptions of equi-probability of transmitted 

symbols and the symbols being independently & identically distributed. This leads to both the 

decision theory approach and feature based approach applicable towards modulation 

classification. During the course of the study some common underlying assumptions were made. 

(A1), the impulse response of the transmission filter or the pulse-shaping function was a standard 
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unit pulse defined for a duration T which is same as the symbol period and is reciprocal to the 

symbol rate. (A2), the communication channel does not introduce amplitude distortion except the 

additive white Gaussian noise (AWGN). (A3) the symbol rate of the received signal and carrier 

frequency is either known in advance or can be calculated by the algorithm itself. 

 

A phase based approach (phase as a feature) was employed in [3] and classified CW, PSK2 and 

PSK4 based on the instantaneous phases. From an analytic signal, the instantaneous phase 

sequence was extracted (including phase unwrapping), and then the first-difference of the 

instantaneous phase (also called the delta-phases) are calculated. In the next step mean value of 

the delta phases is removed, and the modified delta-phases are then integrated, resulting in 

another phase sequence. The phase sequence thus obtained in the previous step is processed by 

using a filter that computes the absolute difference of samples separated by L samples (where L 

is a design factor). The classification is made by comparing the histogram of the filter outputs 

with two thresholds. This algorithm works with assumption A1 & A3, and the received signal is 

over-sampled with respect to the symbol rate as well as the carrier frequency. 

 

MPSK classifier as developed in [4] first forms the instantaneous phase's histogram with N bins 

as the estimate of the phase PDF followed by N-point discrete Fourier transform (DFT) of the 

histogram. On the basis of the maximum DFT magnitude amongst the DFT bins of interest the 

classification is made. 

 

A zero crossing based approach is introduced in [5]-[6] to classify CW, MPSK and MFSK 

signals. The variance of ZC intervals is shown to increase as the number of the sub-carrier 

frequencies increases. The variance of ZC intervals is analyzed, and then an ML criterion is 

employed to discriminate between MFSK and MPSK. For a signal classified as MFSK, the 

number of hills in the ZC interval histogram gives the estimate of the level of modulation in 

MFSK signal ( 2D
FN  ,  where 2DM  ). For MPSK, the estimation of its alphabet size is 

accomplished in a way similar to [7], and the phase histogram is employed to find the level of 

modulation. The algorithm has some serious limitations. The variance of ZC interval is a 

function of SNR, carrier frequency and frequency deviation (in MFSK). This algorithm gives an 

expression to handle first two but is non-committal on handling of frequency deviation especially 
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in blind modulation classification. Further the detection of inter symbol transients in events of 

low SNR a priori knowledge of level of modulation and frequency deviation is required which is 

not covered in the algorithm thus leads to an implementation dead lock. 

 

Another method in [8] proposed to classify ASK2, ASK4, PSK2, PSK4, PSK8, FSK2, FSK4, 

FSK8, QAM16, QAM64 and some orthogonal frequency division multiplexing (OFDM) signals. 

The fourth-order cumulants as described in [9]-[10] are adopted as the feature for discriminating 

between OFDM and non-OFDM signals. The feature max  as in [1] is employed to discriminate 

between amplitude modulations (i.e.,MASK & QAM) and phase modulations (i.e., MPSK & 

MFSK). A simple figure of merit which is nothing but the mean of normalized-centralized 

magnitudes is compared to a threshold to discriminate between MASK and QAM. The 

discrimination between MPSK and MFSK is ZCSS (zero crossing sequence shape) as in [5]-[6] 

and [11]. The alphabet size of MPSK is determined as in [7], and of MFSK is estimated by 

counting the hills in the ZC interval histogram, and that of MASK and QAM are estimated by 

counting the hills in the histogram of normalized-centralized magnitudes. In OFDM signals, the 

modulation type is recognized by comparing the estimated symbol rate and PSD with that of 

existing standards. 

 

In cumulants/moments based approaches some statistic of the received signal or its transforms as 

is taken to be the classification feature. The different modulation formats will correspond to 

different feature value range which is then compared to a threshold and a classification decision 

is made. An exact expressions of the moments of the instantaneous phase of MPSK signals was 

found in [13]  and was consequently observed that the even order moments are monotonic 

functions of M, which could be chosen to be the  feature for classifying MPSK signals.  Further 

the central limit theorem shows that the estimated moment is shown to be normally distributed. 

Then the decision thresholds are determined accordingly. 

 

In addition to the features max ,  ap ,  dp of [7], two new features namely the standard deviation 

of the absolute instantaneous amplitude aa , and the standard deviation of the absolute 

normalized-centralized instantaneous frequency af  are introduced in [14] for classifying ΑSΚ2, 

ΑSΚ4, PSK2, PSK4, FSΚ2 and FSΚ4. 
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In another technique [26] after dividing the received signal into short time segments a second 

order autoregressive (AR) model is employed to estimate the frequency and bandwidth of each 

segment. The FSK and non-FSK signals are then differentiated on the basis of the standard 

deviation of the frequencies as estimated from the segments. Further if the signal is classified as 

non-FSK the standard deviation of the bandwidths is used to discriminate between CW and PSK. 

 
 
 
Wavelet based approach in [15] thrives on the fact that the magnitude of the amplitude of Haar 

wavelet transform |HWT| is a staircase function for MFSK, with Μ distinct DC levels with 

spikes at the instant of symbol transition. For MPSK the |HWT| gives DC with spikes at the 

instants of symbol transitions. The spikes are then removed by median filtering the |HWT| 

magnitudes and the variance is then calculated to discriminate between MFSK and MPSK. The 

classification threshold is then determined. The number of modulation levels, M, of an MPSK 

signal is determined counting the histogram of HWT magnitude peaks. In case of PSK the signal 

is classified as M-ary if the histogram has M/2 to M-1 number of peaks, and as M-ary FSK if the 

histogram has M/2 to M number of peaks. But the fact persist that for a machine to count no of 

peaks is no trivial task. In [16] the method as presented above has been modified and approach is 

also extended to include QAM signal as well. Now the |HWT| of the received signal and the 

|HWT| of amplitude normalized received signal are employed in tandem for signal classification. 

In variably the wavelet based methods require a high sampling rate.  

 

 

1.2 Scope of this Project 

The scope of this project is to present a chronological details of modulation identification 

algorithms as employed in intelligent receivers. With the phenomenal advancement of in field of 

digital electronics and communications the trend is heavily lopsided towards the use digital 

communications instead of analog communications. It is assumed that the PDF of the symbols of 

each modulation type is known in advance. Further the transmitted symbols are assumed to be 

independent identically distributed (i.i.d.) with equi-probability of occurrence. The algorithm we 

discuss both can find out symbol rate and carrier frequency itself. In the subsequent paragraphs 
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modulation identification techniques which are essentially feature based are discussed briefly. 

The first of the techniques discussed is essentially a series of tests which a signal is required to 

go through and then compared against a threshold and a classification decision/ discrimination 

decision amongst different class of modulations is made at every instance. On the other hand the 

second technique exploits the property of wavelets for location of transients in both frequency 

and time domain by virtue of scaling of wavelets over the entire range of the signal.  

 

1.3 Modulation Classification Method Based on ZCSS and Statistical Parameters 

A tree structure for the classification method is as shown in the Fig 1. This [8]-[10] method in 

itself follows different procedures at each step to ascertain a type of modulation and distinguish 

between one another. As a first step a single carrier and a multiple carrier signal is distinguished 

by using fourth order cumulants [9]-[10], and thus obviating the running the multiple carrier test 

on single carrier signals. Then in order to differentiate between amplitude and angle modulated 

signals an approximation of power spectral density is used as a feature [17] -[18]. 

 

 

 

  

 

 

 

 

  

  

 

 

 

Fig. 1.1. Structure for classification method. 
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Amongst angle modulated signals FSK/PSK classifications is made using the ZCSS-based 

technique presented in [12]-[13] & [19]-[21]. The OFDM modulation schemes are classified by 

virtue of cyclic extensions added to a particular standard [22]-[23]. 

 

1.4 Wavelet Transform Based Modulation Classification 

A wavelet transform based modulation identification algorithm computes the wavelet transform 

of the received modulation signal where the choice of wavelet varies as per user. The magnitude 

of the thus computed wavelet transform is median filtered to remove peaks as in [15]-[16]. The 

variance is then calculated of the filtered output and is compared against a threshold and thus the 

signal is classified as PSK or FSK as shown in the Fig 1.2. 

 

 

 

 

 

 

 

 

 

 

Fig. 1.2 A Wavelet transform based modulation identifier 

 

Once the classification decision is taken the in favor of either of the modulation scheme the level 

of modulation is found by computing respective histograms. 

 

1.5 Organization of Thesis 

Chapter 2: The chapter deals with statistical parameters identified for several of modulation 

schemes which can be employed to discriminate modulated signals amongst two classes. The 

tests based on evaluation of the aforesaid parameters are applied on the received signal. The 

results would essentially vary depending upon the innate modulation scheme of the received 

signal. ZCSS (zero crossing sequence shape) technique which is based on the zero crossings of 
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the signal is employed to amplify the inherent differences amongst different in modulation 

schemes. 

 

Chapter 3: The wavelet transform is a potent tool to capture transients when considering the 

multi resolution analysis. This property of wavelet transform is capitalized upon in tracking 

transients within a modulated signal be it phase, frequency or the amplitude. 

 

Chapter 4: It analyzes the results of the simulations & results, advantages and disadvantages of 

the algorithms are discussed. 

 

Chapter 5:  In this chapter we dwell upon the future scope of work and a way forward to 

envisage a framework which encompasses all modulations and obviates the operator to make a 

classification decision. 

 

Note:  All the plots and tables as shown in this thesis were obtained during multiple simulation 

runs of the methods/ algorithms for different parameters. It is pertinent to mention that these 

plots and tables have not been copied / illegally acquired from any source whatsoever. 
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Chapter 2 

__________________________________________________________________ 

MODULATION CLASSIFICATION BASED ON HIGHER 
ORDER STATISTICS AND ZCSS 
 

The modulation classifications intrinsically differ in the manner the data is embedded in a carrier 

signal. Thus the modulated signal would also differ. These differences are thus reflected in 

various statistical parameters which are computed for a known modulated signal. Based on the 

knowledge of the feature set of known signals under different conditions such as variable noise, 

carrier signal power etc. a classification decision can be made for an unknown signal.  

2.1  Mathematical Representation Modulation Schemes 

The general model used for modulated signals with nomenclature during the course of this 

discussion is as shown below [24]. 

( ) ( ) ( )                                                                                                                           (2.1)s t x t n t   

Where ( )x t   depends on the modulation type and  ( )n t  is additive white Gaussian noise. 
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kC , kf , ,n kC , kA  map the transmitted symbols; sT  is the symbol period,  cf is the carrier 

frequency and the function  ( )g t is a finite energy signal with  sT  duration.  

 

 

2.2 SC/MC Selection – Fourth Order Cumulants  

To begin with it is prudent to ascertain the number of carriers involved in the modulation 

technique as shown in Fig.1. A modular structure obviates running tests meant for multiple 

carrier (MC) signaling techniques as OFDM on single carrier (SC) signaling techniques and vice 

versa, thus saving time and enhancing system efficiency. 

 

A sample of an OFDM signal comprises a great number of i.i.d. random variables by virtue of 

which, by applying central limit theorem (CLT) the amplitude distribution may be approximated 

as a Gaussian. However this is not the case for a single carrier signal which reduces the MC/SC 

test to a normality test. Thus a fourth order cumulants test is defined for separating MC and SC 

signal [9]-[10]. The 4
rc  calculation is done to obtain a ‘c’ vector estimate whose elements are 

defined as 4 ( )sc 
.   

2 21 1 1
2 2 2

4
0 0 0

0.4

1 1 1
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o o oN N N
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Where oN is number of samples in the acquired signal,  0,1.5 sN ,  sN is number of samples 

corresponding the sample period. Finally the following inequality is to be verified [8]. 

,4
T

G cd c c   , where c is threshold 

Consequently the threshold value of  ,4Gd = -3dB permits classification between SC ( ,4 3Gd dB  ) 

and MC ( ,4 3Gd dB  ). 
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         Fig 2.1 Trend for dG4 vs SNR for SC signals 

 

2.3 Amplitude Modulation Test 

The single carrier classified signal is now required to be discriminated between angle modulated 

signals and amplitude modulated signals. The instantaneous amplitude of the signal is evaluated 

from analytic representation of the signal  ( ( )s t ) [17].  

( ) ( ) ( )                                                                                                                           (2.3)s t s t js t   

here ( )s t


 is Hilbert transform of the original signal. The instantaneous amplitude of the signal is 

thus calculated as 

2 2( ) ( ) ( )                                                                                                                     (2.3 )a t s t s t a     

The sampled signal is the centered and normalized giving a sequence which is independent of 

channel gain. 

a

a[k]
[ ] 1                       a[k]                                                                   (2.3 ) 

mcn aa k where m is mean of b   

The classification is carried out by evaluating m  [18]. It can be seen as approximation of power 

spectral density (PSD) of the signal. 
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Here oN  is total number of samples of the received signal. Angle modulated signals have been 

observed to have m <1 so the threshold after considering SNR and different modulation 

schemes is kept at 1.5m  . 

 

Fig 2.2 Trend for m  vs SNR for SC signals 

 

2.4 ASK vs QAM Test 

The sequence [ ]cna k  is used to differentiate between ASK & QAM signals. The pdf of ASK 

modulated signal is centered around 0.5 while for QAM it is not symmetric and has lower mean 

value. A simple figure of merit enables to differentiate between the two. 

 
1

                                                                                                                           (2.4)
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a
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 
 

Thus the signal is classified ASK if aa am  where 0.5a   
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Fig 2.3 Figure of merit between ASK & QAM 

 

2.5 FSK vs PSK Test 

The classification between FSK and PSK is made by using zero crossing sequence shape (ZCSS) 

[5]-[6] & [12].  First the time tags of the zero crossing points of the modulated signal are 

recorded to form sequence ( )x i .  First of the other two sequences which are required to extract 

phase and frequency information is ( )y i  and is called as the zero crossing interval sequence. 

( ) ( 1) ( )                              1,2,............ 1                                                          (2.5)y i x i x i i N      

The second sequence is zero crossing interval difference sequence, given as  

( ) ( 1) ( )                              1,2,............ 2                                                       (2.5 )z i y i y i i N a      
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Fig 2.4 (a) Shows ZCSS for FSK, (b) Shows ZCSS for PSK  

 

The classification between FSK/PSK can clearly be made by analyzing the shape of the ZCSS. 

 

2.5.1 Carrier Frequency and CNR Estimation 

From the dense portion of the density histogram of  ( )z i  new sequence  ( )az i is formed and 

variance 2
za  is ascertained. A new sequence  ( )ay i is so formed by discarding those  ( )y i

samples whose 2( 1) 3.034 zaz i   .  The length of the resultant sequence is denoted as yN .  The 

carrier frequency and CNR can be found by using these equations. 
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 
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                                                                                                                              (2.5 )
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Here  is normalized autocorrelation function of noise. 

 

  

Fig 2.5 Carrier frequency estimates for PSK & FSK for carrier signal with unit power  

 

2.6 Modulation Level Estimate of SC Modulations -PSK 

The modulation level estimate of SC modulation is case of PSK modulation is ascertained by 

comparing the measured histogram of phase deviation with the theoretical one as in [8]. This 

method is not very effective and a better way out is by the process of phase deviation [4] 

histogram. The signal of interest is obtained and analytic representation of the signal is derived.  

Since the received signal is a modulated signal thus comprises of a carrier signal. The carrier is 

thus required to be removed by complex mixing and the phase samples are extracted. Since the 

carrier frequency has already been calculated as above the complex mixing is just the 
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the carrier frequency. The method in [4] assumes that the carrier frequency is known in advance. 

The output is then low pass filtered and what remains of the signal is the phase samples and the 

added noise (AWGN). The phase samples thus obtained are required to make a phase histogram 

with ‘N’ bins. The ‘N’ points of the histogram are thus operated upon by DFT. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Fig 2.6 Algorithmic Description of Classification of PSK Signal Using Phase Histogram 

  

The classification decision is made on the basis of the maximum DFT magnitude for the bins of 

interest. N is kept at least four times the highest symbol number. 

[ ( )]                                                                                                                          (2.6)n nMAX D   

n is the number of states in the nth PSK signal e.g. if 1,2,4 & 8 PSK is to be classified then the 

bins 1,2,4,8 are examined and whichever bin returns maximum magnitude the signal is classified 

to be as that PSK.  
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2.6.1 FSK 

For FSK the histogram of frequencies is calculated and the number of different levels is counted.  

However for a signal classified as FSK a DFT of the signal itself tells the level of modulations. 

 

Fig 2.7 DFT of 8FSK signal  

2.6.2 ASK & QAM 

For ASK and QAM modulations the histogram of is computed from the centered and normalized 

amplitude sequence as derived in equation 2.3b.  

2.7 OFDM Signal Identification 

OFDM transmission has two grave issues in particular. One being the problem of inter carrier 

interference which occurs due to loss of orthogonality amongst its many subcarriers. Second is 

the inter symbol interference, and both are a cumulative effect of transmission over dispersive 

channels. A scheme of adding cyclic extension where a part of the transmitted symbol is either 

added to front or to the tail of the next symbol is formulated. The duration of this cyclic 

extension prefix/suffix becomes a characterizing parameter for modulation identification. 
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   

2 2
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,                         0

( ) ( ) ( ) ,                                                                              (2.7)
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elsewhere

 



  


    



 

Where 2
s  is signal variance and 2

n  is noise variance 

Then the cyclic extension percentage of the total symbol duration is estimated as 

 
2

2 2

( )
                                                                                    (2.7 )

(0) 1
ss s s ce

ss s n ce s

r N T SNR
P k I b

r T T SNR


 

  
  


   

ceT


 &  sT

 are the estimated cyclic extension duration and estimated overall symbol duration 

respectively. 

Thus the modulation classification can be done by comparing the ceT


 &  sT

 with the values 

required for a particular standard. 
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Chapter 3 

__________________________________________________________________ 

MODULATION CLASSIFICATION USING WAVELET 
TRANSFORM  

   

This chapter gives a brief description of digital modulation techniques and signal model used for 

simulation. It also goes on to discuss the wavelet transform [15]-[16] technique used for 

modulation classification. 

 

3.1 Digital Modulation 

A general model for a modulated signal is taken as shown where ( )x t the modulated signal which  

( )

( ) ( ) ( )                                                                                                                       (3.1)

( ) ( ) c cj k

x t s t n t

s t s t e  

 

 
 

depends on modulation type and ( )n t is additive white Gaussian noise. The signal models thus 

has been used i.e. ( )s t  are [24] as given below. 
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                                                                                         (3.1 )

, , ,...............       0,2  

( ) ( ) ( - )                                 
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      
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 

 

 

                                                                    (3.1 )

, 2 1 , 1,2,3..........,i i

c

A B m M m M   

 

 

Here ( )s t  is modulated complex waveform c  is intermediate frequency after down conversion 

 c is the carrier phase and Tu is unit height rectangular function with support [0, T]. 
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3.2 Wavelet Transform 

Wavelet transform is a powerful tool to for analyzing non-stationary signals. The continuous 

wavelet transform (CWT) of signal ( )s t  is given as 

( , ) ( ) ( )                                                                                                                      (3.2)

1
= ( )                                  

aCWT a s t t dt

t
s t dt

aa

 









 
 
 



                                                                       (3.2 )a

 

where a  is the scale, is the translation and the superscript   denotes the complex conjugate. The 

baby wavelets ( )a t are time shifted and scaled versions of the mother wavelet ( )t . The wavelet 

means a small wave which refers to its small size or the finite length is thus compactly supported 

and wave implies that it is oscillatory in nature. 

 

3.2.1 Conditions for Transient Detection 

For a function ( )t  to best detect the transients in function ( , ( ))f t t  on account of change in 

parameter ( )t it must satisfy following conditions [25]. 

C1: If no transients occur, WT transform should yield a constant output 

( , / ) (constant)                                                                                                                         (3.2 )CWT a b    

C2: If the wavelets covers the transients, and ( )t  changes at time T the CWT should yield an 

output which is distinguishable from a constant value as yielded in the equation above. 

C3: The best choice of a wavelet would have the difference between the CWT and the constant 

( )a as given below maximized 

( , ) ( )                                                                                                             (3.2 )D CWT a T a c 
  

For digital implementation, the integral in eqn. 2.2a can be written as 

1
( , ) ( )                                                                                                        (3.2 )

k

k n
WT a n s k d

aa
    

 
  

 

3.3 The HAAR Wavelets 

The discrete time Haar wavelets can be given as  
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1 /         when  k = -a/2, -a/2+1,....................., -1 
1

1 /      when  k = 0,1................................,a/2+1                                     

0               otherwise

a
k

a
aa




    

  


                     (3.3)

 

Now let us consider a sampled PSK symbol within ( -1) ( 1)i T k i T   .  The phase change is 

denoted at k iT .  

( )

( ) ( )

        ( -1)
( )                                                                             (3.3 )

   ( 1)       

c c

c c i

i k i

i k i

Se e i T k iT
s k a

Se e iT k i T

  

   



 

   
  

 

When ( 1) / 2 / 2i T a n iT a      i.e. wavelet is within the symbol period, it doesn’t cover the 

phase transition the transform equation becomes  

1 / 2 1
( ) ( )

/ 2

( , )                                                                              (3.3 )c c i c c i

n n a
i k i k

P
k n a k n

S
WT a n e e b

a
     

  
   

  

   
 
   

Which can be solved using summation formula of geometric series. Taking magnitude we get  

2sin ( / 4)
( , ) 2                                                                                                               (3.3 )

sin( / 2)
c

P
c

S a
WT a n c

a




  

Which is clearly independent of ‘n’. At an instant when n=iT, i.e. wavelet covers the phase 

change the equation for a wavelet transform becomes 

1 / 2 1
( ) ( )

/ 2

( , )                                                                         (3.3 )

sin( / 4)sin( / 4 / 2)
( , ) 2         

sin( / 2)

c c i c c i
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P
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c c
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c

S
WT a n e e d

a

S a a
WT a n

a

      

  


  
    

  

 
  

 



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                                                                         (3.3 )e

 

 

It clearly indicates the change in magnitude because of a phase change. 
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    Fig. 3.1(a) BPSK modulated signal and Fig 3.1(b) Haar wavelet magnitudes for BPSK. 

  

    Fig 3.2(a) QPSK modulated signal, Fig. 3.2(b) |HWT| for QPSK. 

 

The difference in the peaks of wavelet magnitudes are attributed to the different phase changes in 

BPSK and QPSK signals i.e. different PSK types will give different set of peaks. Another point 

worth noting is that the DC level is the same in the magnitude plot as the frequency remains 

constant throughout, it is only the phase of the signal which undergoes the transition. Proceeding 

as in case of a PSK signal the wavelet transform of a FSK modulated signal can be calculated. 
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The following figures bring out the difference between |HWT| magnitudes of FSK and PSK 

signals. 

  

Fig. 3.3(a) BFSK modulated signal and Fig. 3.3(b) |HWT| for BFSK. 

 

Fig. 3.4(a) QFSK modulated signal and Fig. 3.4(b) |HWT| for QFSK. 

 

The plot of Haar wavelet magnitude for FSK signal resembles a multistep function with levels 

equal to the number of modulation frequencies. M-ary FSK can be identified determining the 

number of distinct DC levels in the |HWT| of FSK signal. Another approach [16] evaluates the 

|HWT| of amplitude normalized signals.  
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Amplitude normalization and corresponding amplitude normalized functions are of the form  
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Amplitude normalization does not affect FSK and PSK as these two schemes are independent of 

amplitude variations. However in QAM amplitude variations would disappear because of 

amplitude normalization. Thus QAM has a constant |HWT| with peaks which arise due to phase 

change.  

 

Fig. 3.5 |HWT| (a) of FSK and (b) |HWT| of FSK with amplitude normalization. 
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Fig. 3.6 |HWT| (a) of PSK and (b) |HWT| of PSK with amplitude normalization. 

 

Fig. 3.7 |HWT| (a) of QAM and (b) |HWT| of QAM with amplitude normalization. 

 

 

3.4 PSK vs FSK vs QAM 

Ignoring the peaks of |HWT| of PSK is a constant or has a one DC level whereas the FSK 
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function it is larger than zero. Thus a discriminating feature is the variance of |HWT| with and 

without amplitude normalization after removing peaks by median filtering. 

  

 

 

 
 

 

 

Fig. 3.8 Block diagram for the classifier 

 

The variance is calculated for PSK as the theoretical variance of the median filter output is 

unknown as it depends on unknown modulation frequencies on the other hand for PSK it can be 

calculated as its ideal output is constant with some random noise added to it. For a given median 

filter output the variance is calculated as  
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3.5 Symbol Time Estimation (PSK) 

The symbol time estimation procedure exploits the periodicity of transients. The WT magnitude 

is auto correlated which in effects reduces the noise and the peaks due to the transients become 

more apparent. The first step towards the estimation of estimation of symbol time is by 

evaluating the autocorrelation function. 
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N is total number of the WT magnitudes available. 
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The peaks to qualify to be the peaks due the transients in the modulation signal must exceed in 

their magnitude to a threshold. The threshold is set proportional to magnitude variance and is 

given as 

| |
( ) ( ,0)                                                                                                                 (3.5 )

N l
TH l R a a

N
 



 

Here   is a positive constant to control the probability of false peak detection. Clearly the 

threshold is lag dependent ‘l’ as the no of samples taken to calculate the autocorrelation depends 

on ‘l’.  

After checking each |WT| magnitude against the set threshold and the peaks thus segregated the 

difference between the successive peaks is generated. The mode of the histogram of this new 

sequence gives the symbol time estimate. The same method as discussed above is employed for 

FSK as well. 

 

3.6 Level of Modulation in M-ary PSK and M-ary FSK 

The signal is further classified as M-ary PSK if the histogram of the WT peaks has M/2 to M-1 

different peaks, and as M-ary FSK if the histogram has M/2 to M different peaks. 
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Chapter 4 
__________________________________________________________________ 

SIMULATIONS & RESULTS  
 

All simulation have been carried out in MATLAB (R2009a). The results are enumerated in 

succeeding paragraphs. 

 

4.1 Simulation Parameters 

The methods employed have been tested for varying SNR. The modulated signals were 

characterized as per the models discussed in previous sections. The carrier frequency ‘fc’ , 

sampling frequency ‘fs’ the symbol rate was taken to be 1kHz, 10kHz and 100Hz respectively. 

The frequency deviations for Mary-FSK modulation has been kept at 0.5 fc for 2FSK, 0.25 fc for 

4FSK and at 0.8 fc for 8 FSK. The SNR for all the modulation schemes has been varied from 0 to 

15 dB in order to ascertain and validate the results put forth. The number of samples for a signal 

taken are to the tune of 12600, with number of bits ‘N’ over 100. 

 

4.2 ZCSS Based Methods  

The method has returned quite accurate estimation of some important parameters and the carrier 

frequency estimations. Following are the carrier frequency estimates for varying signal power 

(3/2, 5/2, 7/2)  
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Fig 4.1 Carrier frequency estimates by ZCSS method for Carrier power (3/2) 

 

 

 

Fig 4.2 Carrier frequency estimates by ZCSS method for Carrier power (5/2) 

 

 

Fig 4.3 Carrier frequency estimates by ZCSS method for Carrier power (7/2) 
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 Below are tabulated the frequency estimates for PSK and FSK signals as calculated using ZCSS 

method for carrier power as unity. It is worth mentioning here that the accuracy of the frequency 

estimates increases with a signal of higher power & SNR and the same has been validated by 

using the above mentioned method.  

 

 

 

 

 

 

 
 
 
 
 
 

 

TABLE I 
FREQUENCY ESTIMATES FOR CARRIER SIGNAL WITH UNIT POWER 

 

 

4.2.1 SC Modulation Level Estimates -PSK 

For PSK modulation level estimates the method of phase deviations [4] was employed and the 

results were accurate. The details of the method are explained thoroughly in chapter 2. The 

assumption which this method requires is that the carrier frequency is estimated correctly. The 

results thus obtained are tabulated as below. 

 

SNR[dB] 2PSK 4PSK 8PSK

0 100 100 100

5 100 100 100

15 100 100 100

20 100 100 100

           

 TABLE II 
SUCCESS PERCENTAGE OF CLASSIFICATION OF PSK SIGNALS USING PHASE DEVIATION METHOD  

 

SNR[dB] 2PSK 4PSK 8PSK 2FSK 4FSK 8FSK

0 1995.8 2016.4 2012.7 1093.8  1065.9 1996.6

4     1536.8     1534.5     1538.9     1042.9     1016.6     1565.6

8     1179.4     1194.1     1160.1     1035.1     1009.8     1211.5

12     1044.2     1017.1     1028.8     1040.0     1006.9     1038.9

16     1029.2     1004.6     1005.0     1039.3     1005.5     982.8

20     1022.5     1004.7     1005.7     1041.2     1007.0     973.5
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4.2.2 FSK 

A zero-crossing interval histogram is obtained from the sample distribution where number of 

hills in the histogram, NF represents the number of states. As NF ≤ 2D, the modulation type 

MFSK is reported with M = 2D. However it is generally not very intuitive to classify based on 

the histogram of frequencies instead FFT of the signal may be used. 

 

 

 

Fig 4.4, 2FSK signal (a) Histogram of frequencies (b) DFT for the signal 
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Fig 4.5, 8FSK signal (a) Histogram of frequencies (b) DFT for the signal 

 

4.2.2 QAM & ASK  

The level of modulation for QAM and ASK is found by counting the hills in the histogram 

obtained from the normalized centered amplitude sequence as shown below.  
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Fig 4.6 Histogram for normalized centered amplitude of a 64 QAM signal 

 

 

Fig 4.7 Histogram for normalized centered amplitude of a 16 QAM signal 
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Fig 4.8 Histogram for normalized centered amplitude of ASK8 signal 

 

 

Fig 4.9 Histogram for normalized centered amplitude of ASK4 signal 
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4.3 Wavelet Transform Based Method 

The wavelet based approach in [15]-[16] calculates the variance of the median filtered output of 

the |HWT| magnitudes thus obtained and classifies to separate FSK, PSK. The QAM can also be 

discriminated against by observing the |HWT| of the normalized amplitudes. 

Variance Modulation scheme 
QAM PSK FSK 

Variance without Normalization (Va) 0.1276 0.0024 0.0141 

Variance with amplitude normalization (Van) 0.3150 x 10-35 0 0.0030 

  

TABLE III 
VARIANCE OF MEDIAN FILTERED |HWT| WITH AND WITHOUT NORMALISATION  

 

The median filter is of length 5, with all the signal parameters remaining the same as mentioned 

in section 4.1. The modulation schemes considered her are 16QAM, PSK4 & FSK4. The values 

of variances are calculated and the threshold is selected. The decision block then on basis of the 

difference between the threshold and the variance classifies the modulation type.  

 

 

 

 

 

  

Fig. 4.10 Decision block to classify a received signal on basis of variance 

 

The modulation levels in Mary-PSK is determined by either finding the DFT of phase histogram 

by matching the histogram of |HWT| peaks with theoretical PDF for different values of M. 
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4.3.1 Classification as M-ary PSK and M-ary FSK 

The histogram of the peaks at the time of transients gives the modulation level for FSK and PSK. 

If the number of peaks is between M/2 to M-1 the signal is classified as M-ary PSK and if the 

number of peaks is between M/2 to M the signal is classified as M-ary FSK. The results thus 

found are enumerated as below. 

 

Fig. 4.11(a) Histogram of peaks for PSK2 signal 

 

Fig. 4.11(b) Histogram of peaks for PSK4 signal 
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Fig. 4.11(c) Histogram of peaks for FSK2 signal 

 

 

Fig. 4.11(d) Histogram of peaks for FSK4 signal 
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Chapter 5 

__________________________________________________________________ 

FUTURE SCOPE OF WORK 

 

With the advent technologies such as realizable software defined radios which can dynamically 

adapt to communication channels the digital modulation classification is a promising research 

area. It has opened up avenues for cutting edge research where requirement is of real time 

classification algorithms. 

5.1 Future Scope 

In blind environments where the classifier is supposed to classify without any prior knowledge 

the two important aspects that are needed to be taken care of are carrier frequency and symbol 

time. The two approaches discussed perform favorably for different SNR conditions but 

advancement is required in field of a comprehensive algorithm to be present which classifies all 

possible modulation with no a priori information available. Further to identify OFDM based 

modulation rather than comparison with standard framework is required. In wavelet transform 

methods it is an inherent requirement of the system to oversample the data. Further no concrete 

method has been shown to decide on about the scale of wavelet transform to be employed. The 

wavelet transform can give more accurate estimations of instantaneous parameters which needs 

to be explored further. The methods still would rely on a human interface as the recognition is 

based on the shape of some sequence or the about counting the peaks in a histogram. The use of 

wavelet transform can give more accurate estimations of instantaneous parameters which can be 

explored further. 

It is therefore imperative that efforts be made in the directions of obviating the human element 

and comprehensive framework be designed reducing dependence of a human operator and thus 

increasing efficiency in real time environments.  
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