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ABSTRACT 

 
 

The Electrocardiogram is the record of the electrical activities of the heart. During the 

acquisition process of the cardiac signal, several noises are added to the signal, making 

the medical diagnosis of this critical signal difficult. Important noises induced in the 

signal are: power line interference, baseline wander and electromyography noise.  In the 

case of exercise electrocardiogram, baseline wander noise is naturally present. 

Several works has been done in the field of noise cancellation in cardiac signals. In this 

thesis work, a novel approach for the removal of baseline noise has been implemented by 

using the hybrid of morphological filters and empirical mode decomposition technique. 

The proposed algorithm has been made partially adaptive to the variations of the heart 

rate. As, the heart rate increases, there are definite changes in the morphology of the 

characteristic waves of the heart signal. Thus it becomes essential to make the denoising 

specially in the case of baseline drift noise adaptive to these variations when using 

morphological filters. The results of the proposed algorithm are compared to the existing 

techniques and are found to perform better. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 

 

 

TABLE OF CONTENTS 
 

 

CERTIFICATE……………………………………………………………………….ii 

ACKNOWLEDGEMENT…………………………………………………………....iii 

ABSTRACT………………………….………………………………………………..iv 

TABLE OF CONTENTS.…………...………………………………………………..v 

LIST OF FIGURES…………………………………………………………………..vii 

LIST OF TABLES…………….……………………………………………………...viii 

LIST OF ABBREVIATIONS….……………………………………………………..ix 

 

Chapter 1 

INTRODUCTION .......................................................................................................... 1 

1.1 Scope of Work .................................................................................................... 1 

1.2 Generation of Electrocardiogram ....................................................................... 2 

1.3 Structure of Electrocardiogram .......................................................................... 3 

1.4 Artifacts in ECG ................................................................................................. 4 

1.4.1 Power Line Interference .............................................................................. 5 

1.4.2 Electromyography noise (EMG) ................................................................. 6 

1.4.3 Baseline Wander (Motion Artifact) ............................................................ 7 

1.5 Organization of the Thesis ................................................................................. 7 

 

Chapter 2 

ECG DENOISING ALGORITHMS ............................................................................. 8 

2.1 Literature Review .................................................................................................... 8 

2.2 Wavelets for ECG signal Denoising – Background Work ...................................... 9 

2.3 Baseline Noise Removing Algorithms .................................................................. 12 

2.3.1 Denoising by EMD and associated Hybrid Techniques ................................. 12 

2.3.2 Denoising by Morphological Operators ......................................................... 14 

2.4 Motivation for Proposed Work ............................................................................. 15 

2.5 Review of QRS Complex detection Algorithms ................................................... 16 

 

 

 

 

 

 

 

 



vi 

 

Chapter 3 

NOVEL TECHNIQUE FOR BASELINE REMOVAL IN ECG ............................. 17 

3.1 Empirical Mode Decomposition ........................................................................... 17 

3.1.1 Decomposition of Signal into IMF ................................................................. 18 

3.1.2 Advantages of EMD over Wavelet and Fourier Transforms .......................... 20 

3.1.3 Correction of Baseline drift noise using EMD ............................................... 21 

3.2 Morphological Filters ............................................................................................ 24 

3.2.1 Basics of Morphological Operations .............................................................. 24 

3.2.2 Designing of morphological filters for Baseline Wander removal ................ 25 

3.3 QRS Detection ...................................................................................................... 28 

3.3.1 QRS detection algorithm model ..................................................................... 29 

3.4 Proposed Algorithm .............................................................................................. 30 

 

Chapter 4 

RESULTS AND DISCUSSIONS ................................................................................. 36 

4.1 ECG Signal Database ............................................................................................ 36 

4.2 Quantification of Results ....................................................................................... 37 

4.3 Generation of Different Low Frequency Noise .................................................... 38 

4.4 Simulation Results for Simulated ECG................................................................. 39 

4.5 Simulation Results for Real ECG ......................................................................... 44 

 

Chapter 5 

CONCLUSION AND FUTURE SCOPE .................................................................... 46 

5.1 Conclusion............................................................................................................. 46 

5.2 Future Scope.......................................................................................................... 48 

 

REFERENCES .............................................................................................................. 49 

APPENDICES ............................................................................................................... 54 

 

 

 

 

 

 

 

 

 

 



vii 

 

 

LIST OF FIGURES 

 

 

 

Fig 1.1 Indicative electrical activities of Heart………………………………………….2 

Fig 1.2 A normal ECG with its components…………………………………………….3 

Fig 1.3 Principal noise sources in ECG…………………………………………………5 

Fig 1.4 Power line corrupted noisy signal with its magnitude spectrum………………..6 

Fig 2.1 Wavelet Shrinkage functions for different thresholding …………………..…..11 

Fig 3.1 Decomposition step of EMD…………………………………………………..19 

Fig 3.2 Decomposition of BW ECG with frequency spectrum………………………..23 

Fig 3.3 Block diagram of morphological filter design…………………………………26 

Fig 3.4 QRS detection-basic block description………………………………………...29 

Fig 3.5 Graphs for QRS complex detection……………………………………………30 

Fig 3.6 Detailed block level Description of complete Algorithm……………………...32 

Fig 4.1 Simulated ECG in MATLAB……………………………………………….…36 

Fig 4.2 Different noises with varied frequency and amplitude………………………...39 

Fig 4.3 Results for simulated ECG with noise 2……………………………………….40 

Fig 4.4 Results for simulated ECG with noise 1……………………………………….42 

Fig 4.5 Comparative results for synthetic ECG………………………………………..43 

Fig 4.6 Results for real ECG signal person_03/rec_02………………………………...44 

Fig 4.7 Results for real ECG signal person_17/recording_02………………………….45 

 

 

 

 

 



viii 

 

LIST OF TABLES 

 

 

Table 1.1 Characteristics of important ECG morphology………………………………..4 

Table 3.1 Time duration of characteristic waves in ECG……………………………….27 

Table 4.1 Results for Simulated ECG with Noise 1……………………………………40 

Table 4.2 Results for Simulated ECG with Noise 2……………………………………41 

Table 4.3 Results for Simulated ECG with Noise 3……………………………………41 

Table 4.4 Results for Simulated ECG with Noise 4……………………………………41 

Table 4.5 Results for Simulated ECG with Noise 5……………………………………41 

Table 4.6 Results for Simulated ECG with Noise 6……………………………………41 

Table 4.7 Comparison of SNR improvement for real ECG…………………………….44 

Table A-1 Output SNR in denoised ECG in case of Power line………………………..52 

Table A-2 Output SNR in denoised ECG in case of BW noise………………………...52 

Table A-3 Output SNR in denoised ECG in case of EMG noise……………………….52 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ix 

 

LIST OF ABBREVIATIONS 

 

 

 

ECG  Electrocardiogram 

EMG  Electromyography 

BW  Baseline Wander 

DWT  Discrete Wavelet Transform 

EMD  Empirical Mode Decomposition 

MO  Morphological Operations 

ECGIDDB ECG-ID Database 

SNR  Signal to Noise Ratio 

MSE  Mean Square Error 

HT  Hard Thresholding 

ST  Soft Thresholding 

SE  Structuring Element 

 

 

 

 

 



1 

 

Chapter 1 

INTRODUCTION 
 

 

Noise removal in medical signals is of vital importance and special care and caution 

should be observed in the process, since medical diagnosis is affected by the operations 

performed on the signal. Hence, losing an important information content in the process 

of denoising can adversely affect the diagnosis step. 

Electrocardiogram is nearly a quasi-periodic signal which measures the electrical 

activities of heart and thus give the details of the underlying physiology of the heart. 

Heart generates electrical waves in the process of depolarization and repolarization of 

certain cells because of the motion of Na+ and K+ ions in blood. The ECG signal 

information content is mostly present in a frequency band of 0.5Hz to 120 Hz [1]. The 

ECG signal is acquired by placing the electrodes at standard locations usually chest, arms 

and legs on human body [2]. If any subject is suffering from any cardiac arrhythmia, it is 

reflected in its ECG in the form of altered morphology of electrocardiogram. There are 

five important characteristic waves present in an ECG signal which reveals the state of 

heart namely P wave, QRS complex, S wave, T wave and U wave [1]. There amplitude, 

location and duration are of much clinical importance and should be preserved from any 

sort of noise and distortion. 

1.1 Scope of Work 

 

At the time of ECG signal acquisition different type of noises are introduced, corrupting 

the signal. Denoising of the ECG signal, thus becomes critical for proper medical 

diagnosis of the ECG. Thus the scope of this thesis work is limited to the denoising 

aspects of the ECG signal. One important factor related to the denoising concept is, the 

morphology of ECG signal. The characteristic waves embedded in the signal varies to a 

large extent in their shape, size and location and preserving there morphology is another 

key point, must be ensured for successful denoising. Software based analysis has thus 

gain high popularity. Thus this work covers an exhaustive study of the denoising 

algorithms with their advantages and limitations. Wavelets is emerging as an important 

tool in denoising, hence a comprehensive study of wavelets for ECG denoising has been 
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included in the work. This work is referred as the background work and comprehensive 

results of this work has been included in the Appendix, for easy reference. 

Another major issue at the time of ECG signal acquisition is the interference of a low 

frequency noise referred as Baseline Drift noise. The main motive of this work is the 

correction of this baseline noise by a proposed novel algorithm. All the basics of the 

hybrid technique has been discussed in detail while the course of this thesis. Lastly, 

detailed and exhaustive results with conclusive remarks has been taken up which 

validates the performance efficiency of the proposed algorithm. 

1.2 Generation of Electrocardiogram 

 

There are cardiac tissues that are excited on their own resulting into contraction without 

any command from the nervous system. They are responsible for generation of electrical 

impulses. Sinoatrial node or SA node, can be regarded as the natural pacemaker of the 

heart. Electrical impulses are generated at SA node and grows over the left and right atria 

in order to contract it, known as atrial depolarization. After the atrial depolarisation is 

initiated, the atrium begins to contract and the blood is emptied into ventricles before the 

electrical impulse reaches the Atrioventricular node (AV node). Then the impulse from 

AV node travels to Purkinje fibres with a natural delay of 0.1 seconds. Strong electrical 

impulse is generated by Purkinje fibres which empties the blood from the ventricles. The 

delay of 0.1 seconds ensures that the blood is completely drained from the atria before 

the ventricular contraction. The contraction is succeeded by ventricular repolarization, a 

recovery process where the previously excited cells are restored. A fraction of the 

electrical potential also flows to the surface of body. With the application of electrodes 

on the skin at some particular selected points, the potential can be captured as an ECG 

signal [3].  

 

Fig 1.1: Indicative electrical activities of heart. 
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1.3 Structure of Electrocardiogram 

 

To be able to denoise ECG signal properly, it is critical to be equipped with the 

knowledge of ECG morphology. ECG waveform of a healthy subject comprises of five 

characteristic morphologies: P wave, ST segment, U wave, QRS complex and T wave. 

Figure below depicts a normal ECG: 

 

 

Fig 1.2: A normal ECG with its components 

 

P wave: It occurs at the time of depolarization of atria. Depolarization of atria occurs 

when the conduction of electrical impulse takes place from SA node to the AV node and 

the electrical impulse spreads from the right atrium to the left atrium.[20] 

QRS complex: this is the most distinctly visible wave of all. The QRS complex 

comprises of three constituent waves as: Q, R and S wave. This complex is a result of 

depolarization of the both ventricles. The ventricles muscles are much heavier and has 

larger mass, therefore a large potential is generated for contraction and hence a large 

amplitude QRS complex is formed. 

T wave: T wave and the initial segment of ST are a result of Ventricular repolarization. 

U wave: U wave is hardly seen and its origin is not clear. 

The amplitude, duration and the characteristic property has been discussed in the table 

1.1 for easy reference. 
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Table 1.1 Characteristics of important Electrocardiogram morphology 

Characteristic 

Feature 

Illustration Magnitude 

(in mV) 

Duration 

(in ms) 

P wave Due to depolarization of atrial 0.1 - 0.2  80 

PR interval Time taken by the electrical impulse 

to reach from SA node to the 

ventricles via AV node  

 

-  

 

120 - 200 

QRS complex Due to ventricle depolarization 1 – 1.2  80 – 120 

J point  Denotes the end of QRS complex - - 

ST interval Denotes the time period for the 

depolarization of ventricles 

 80 – 120 

T wave Due to ventricle repolarization 0.12 - 0.3 160 

QT interval Time period marked from the starting 

of the QRS complex to the end of T 

wave. 

As the heart rate (i.e. heart beat per 

minutes) increases, the QT interval 

shortens.  

 

 

- 

 

 

300-430 

RR interval Time period between two 

consecutive R peaks. This is also a 

measure of the heart rate. 

 

- 

 

0.2-1.2 

1.4 Artifacts in ECG  

Many sorts of artifacts can be added to the ECG signal at the time of signal acquisition. 

This corrupts and disturbs the measurements in ECG. Among all, the noises of primary 

interest are: 

1. Power line interference, 

2. EMG noise (wideband stochastic noise), and 

3. Baseline interference. 
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Though the noises are classified into further more types as described in the figure below, 

but these three can sufficiently represents the effect of all other noises. They are discussed 

in detail. The following figure is self-explanatory, depicting different noise sources:  

 

Fig. 1.3: Principal noise sources in ECG 

1.4.1 Power Line Interference 

 

Power line noise interference occurs due to inductive or capacitive coupling between the 

two circuits, the ECG acquisition circuit and the circuit used to feed the power to the 

device. This introduces the frequency band of the power supply in the ECG signal which 

is 50/60 Hz and its harmonics. Thus, the power line noise can be modeled as: 

𝑛60(𝑡) = 𝐴𝑠𝑖𝑛(2𝜋. 60. 𝑡 + 𝜑)    (1.1) 

The average value of A is a function the amount of coupling between the power lines and 

the acquisition equipment. The phase, represented by 𝜑 in the above equation is a random 

variable whose value varies in the band [−𝜋, 𝜋). Plotting the power spectrum of an ECG 

corrupted by power line noise clearly reveals the presence of a noise component of 60Hz 

as depicted in the graph below:  
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Fig 1.4: Power line corrupted noisy signal with its magnitude spectrum. 

1.4.2 Electromyography noise (EMG) 

  

Unintended capturing of the signal potential from muscles other than heart interferes in 

the frequency band of the ECG signal and hence corrupts the signal with noise. This noise 

is referred as EMG noise. The fraction of the crosstalk introduced in the signal is subject 

to the amount of movement of muscles in the vicinity of the electrodes. EMG noise is 

random noise and Gaussian distribution function can be used to model the noise. While 

the mean of the distribution can be assumed to be at zero but the variance of the 

distribution varies as a function of the environmental variables such as quality of probes, 

positioning of probes etc. Studies conforms that the maximum amplitude of the EMG 

noise is typically 10% of the maximum peak to peak amplitude of the signal. 

Amplitude ~ 10% of peak amplitude of ECG 

Frequency ~ broadband (20 – 1000 Hz) 

Many other noise sources such as instrumentation noise and contact potential noise have 

very much similar characteristics to that of EMG noise.  

Instrumentation Noise: the electrical instruments used for the acquisition of ECG signal 

such as analog to digital converter, amplifier, cables and electrode probes contributes to 

noise. 

Electrode contact noise: caused due to imperfect positioning of the electrode probes and 

due to poor impedance matching of the electrodes. 

The frequency characteristics and the nature of this noise is very similar to that of EMG 

noise and hence are not taken up separately.  
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1.4.3 Baseline Wander (Motion Artifact) 

 

Baseline wander or baseline drift noise is a low frequency noise introduced into the ECG 

signal due to movement because of respiration. In the process of respiration, the 

diaphragm moves up and down, hence the baseline of the ECG signal gets disoriented. 

Other possible causes of baseline drift includes movement and vibrations at the time of 

signal acquisition. This noise introduces an unusually low frequency into the ECG signal 

usually below 1 Hz. 

1.5 Organization of the Thesis 

 

The thesis has been segmented into five chapters as described below: 

Chapter 2: in this chapter an exhaustive study of the existing algorithms for ECG signal 

denoising has been done.  

Chapter 3: this chapter presents the proposed algorithm in a detailed manner. First the 

basics for the proposed algorithms are explained followed by a comprehensive flow chart 

of the proposed algorithm. 

Chapter 4: the results and associated discussions are presented in this chapter. 

Chapter 5: final conclusions and future scope of the proposed algorithm are discussed 

in detail in this chapter. 
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Chapter 2 

ECG DENOISING ALGORITHMS 

 

 

This chapter discusses about different denoising algorithms present in the Literature for 

noise removal in ECG signals. There advantages and limitations have been discussed in 

detail. A thorough study of the Literature reveals growing attention towards the wavelet 

transforms for the purpose of denoising. Hence, an exhaustive comparative study was 

carried out to study the noise removing capabilities of the wavelets for ECG signals. Also, 

since QRS detection has been used in the proposed algorithm, hence a brief overview of 

the detection techniques are covered in a later section. 

2.1 Literature Review 

 

From the past several years, constant efforts have been made in the field of denoising, 

beat detection (QRS detection), classification and signal compression of the cardiac 

signal. Most of the denoising algorithms can be classified on the basis of the domain 

information they utilise for the purpose of denoising i.e. Denoising algorithms based on 

time domain representation and denoising algorithms based on frequency domain 

representation of the ECG waveform. Wavelets utilises both the frequency domain and 

time domain information thus is studied under separate head. Algorithms concerning with 

the denoising of Baseline drift noise has been studied under another section. 

 

In the research paper by S.K. Jagtap et al., [4] window based, low pass and high pass FIR 

filters have been implemented using Kaiser, Hanning, Hamming and Rectangular 

windows for reduction of noise in ECG signals. Filter order of 100 was used. The 

performance was analysed by comparing the power of the signal before filtration and 

after the filtration. The FIR filter with this order, using rectangular window has ripples in 

the pass and stop bands and has sharp attenuation at the transition frequency. Phase 

response of the rectangular window was found to be linear and in comparison to other 

filters, this filter is more stable. In 2010, K.L. Yadav et al. used adaptive algorithms i.e. 

RLS and LMS for denoising of ECG signals in their paper [5]. It was concluded in their 

paper, that the adaptive filter using RLS algorithm performs better compared to others.  
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In the paper by M.Z.Rahman et al. [6] simple sign based adaptive filters are used for 

removing the noise from ECG signals which have an advantage of being computationally 

inexpensive. The proposed algorithm performs better in applications like biotelemetry. 

The performance of adaptive algorithms for noise removal has been compared by C.H. 

Chang et al. in their paper [7]. The study in this paper reveals that the adaptive filter with 

reference is not very effective for noise cancellation since the reference signal is not 

correlated well enough with the noise components in the primary input. 

  

There are many other approaches in the literature developed so far for the task of 

denoising. Initial efforts for denoising of ECG used the concepts of Linear Filters and 

Adaptive Filters [8][9][10] and lately Kalman Filter [11] but all had some added 

disadvantages like that of poor performance in case of FIR filter, minimum error 

constraint in adaptive filters. Fuzzy logic [12] when used for denoising had limitation in 

concern with its membership function. Some Statistical techniques such as independent 

component analysis [13], [14] (ICA), principal component analysis [15] (PCA), and 

neural networks [16] have been implemented for denoising of an ECG signal.  

2.2 Wavelets for ECG signal Denoising – Background Work 

 

Recent developments in past, introduced WTs as an effective tool to deal with such non-

stationary signals and complex stochastic noise process. The denoising with wavelet 

transforms, initially proposed by Donoho et al. [17], is carried forward to the field of 

ECG denoising and recently many algorithms [18][19][20] are built over it. 

To study the denoising capability and efficiency of wavelet transforms an exhaustive 

study was carried out to determine the optimize solution for wavelet and thresholding for 

each of the three major type of noises using five different thresholding techniques (viz. 

Hard thresholding, Soft thresholding, Semi-soft thresholding, Stein thresholding and 

Neighbourhood thresholding) and ten different wavelet functions. The functions chosen 

are such that there physical properties maximally resembles with that of ECG, so that 

better denoising results are obtained. These results provides an exhaustive comparative 

study of the denoising performance by wavelet in all domains and thus can prove to be 

critical when developing any hybrid model for denoising. The denoising method using 

the WTs comprises of three basic steps: First, performing forward WT and extracting the 

wavelet coefficients. Second is the 'Shrinkage step', where threshold and shrinking 
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operation is performed on the extracted coefficients in accordance with the defined 

technique. Third step involves taking the inverse wavelet transform.  

 

The five different thresholding techniques being used in the work are discussed. 

Thresholding is usually applied only on the detailed coefficients because approximation 

coefficients contains low frequency components and are least affected by noise. Let d 

represent a single detail wavelet coefficient and Sλ (.) represents Shrinkage function for λ 

threshold level [21]. 

 

A.  Hard Thresholding  

𝑆𝜆(𝑑) = 𝑑. (𝑎𝑏𝑠(𝑑) > 𝜆)                        (2.1) 

B. Soft Thresholding  

𝑆𝜆(𝑑) = {
𝑠𝑖𝑔𝑛(𝑑)(|𝑑| − 𝜆); |𝑑| ≥ 𝜆 

0;   |𝑑| < 𝜆                           
                (2.2) 

C. Semi-Soft Thresholding 

𝑆𝜆𝜆1
(𝑑) = {

0;   |𝑑| ≤ 𝜆                                

𝑠𝑖𝑔𝑛(𝑑)
𝜆1(|𝑑|−𝜆)

𝜆− 𝜆1 ; |𝑑| ≥ 𝜆  

𝑑;    |𝑑| > 𝜆1                             

                   (2.3) 

 

Where, λ1 = λ × µ, while µ is chosen on the basis of experimental results. In this paper, µ 

is taken as 1.8 for baseline noise and 1.2 for powerline and wideband noise. If µ = 1; it 

becomes hard thresholding and if µ = ; it becomes equivalent to soft thresholding [22]. 

 

D. Stein Thresholding 

Stein thresholding is achieved by squaring the scaled soft thresholding coefficients, thus 

making the transition much more gradual. 

 

E. Neighbouring Coefficients with Level Dependent Threshold Estimator (NE)  

This threshold estimator involves the neighbouring coefficients also, while determining 

the threshold function. Here, the single wavelet coefficient is assumed to be modified as:  

 

𝐷𝑘
2 =  𝑑𝑘−1   

2 +  𝑑𝑘   
2 + 𝑑𝑘+1   

2                           (2.4) 
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So, that effect of two of the neighbouring coefficients is taken into account. Now the 

shrinkage function is given as [7]: 

𝑆𝜆(𝑑𝑘) = {
𝑑𝑘 = 0; 𝐷𝑘

2  ≤  𝜆2                                        

𝑑𝑘 = 𝑑𝑘(1 −  
𝜆2  

𝐷𝑘
2  ) ;  𝐷𝑘

2  > 𝜆2                
   (2.5) 

 

 

Fig.2.1 Wavelet Shrinkage functions for different types of thresholding techniques 

 

A. Removal of EMG/wideband stochastic noise 

The whole process can be summarized in the following steps:- 

Step1: Decomposition of the noisy ECG signal is done into the wavelet coefficients using 

the wavelet decomposition tree. Any of the wavelet can be chosen from the wavelet 

family for this purpose.  

Step 2: From the obtained wavelet coefficients the noise variance is estimated and thus 

threshold level λ is estimated using the universal threshold formulae as discussed earlier.  

Step 3: Then the different thresholding schemes are implemented and finally modified 

coefficients are reconstructed using the IDWT. 

B. Removal of Baseline Drift 

Among the many proposed algorithms [24] for removal of baseline drift noise, in this 

paper the adopted algorithm [25] is based on wavelet approach for baseline wander 

suppression. This noise constitutes a frequency band of 0-0.5 Hz and thus for the purpose 

of denoising following steps are performed:-  

Step1: Signal is decomposed in a way that the final level of the approximation coefficients 

represents a frequency band of 0-0.5 Hz.  



12 

 

Step2: The noise variance is then estimated from this very level of the decomposed 

coefficients. For a 1 KHz signal, at a scale of 28, the approximation coefficient represents 

a frequency band of 0-0.5 Hz.  

Step3: These coefficients are modified in accordance with the thresholding scheme. 

C. Removal of Power Line Interference (PLI) 

The power-line signal is a narrow-band signal. For removing the PLI, whole process can 

be summarized in the following steps:- 

Step1: The noise is estimated using the 2nd level wavelet coefficients that correspond to 

the frequency band of this signal (50/60 Hz).  

Step2: Once the signal noise estimation is done, the threshold value is estimated and 

further the detailed coefficients are modified accordingly.   

Step3: The updated wavelet coefficients are then reconstructed to give the denoised 

signal. 

The results of this work has been compiled in the Appendix I. Very exhaustive results are 

presented which gives the optimized solution for each type of noise. These results are 

fruitful and valuable for developing any hybrid algorithm using wavelets. While 

removing Baseline wander noise using wavelet, little fluctuations are noticed in the 

results when the frequency of the baseline noise is varied thus conforming to the study of 

D.T. Luong et al. [26]. The denoising performance varies with different wavelet functions 

used. 

2.3 Baseline Noise Removing Algorithms 

 

In this section, a survey of the algorithms developed so far for the removal of baseline 

noise has been done. Though baseline noise has got little attention when compared to 

other noises, all the important work has been organised here with brief description of the 

algorithm and its limitations. Wavelets has been found ineffective for the removal of 

baseline noise as is confirmed in the study by Luong et al. [26]. Thus, baseline noise 

removal algorithms using empirical mode decomposition and morphological operators 

has been discussed in the following two sections. 
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2.3.1 Denoising by EMD and associated Hybrid Techniques 

 

Empirical mode decomposition is a very good signal filtering technique as exploited in 

the paper by Boudraa et al. in [27]. EMD finds many applications for denoising of the 

ECG signals. This can be attributed to the characteristic properties of the decomposed 

Intrinsic Modes which are a function of the local variance of the signal and hence proper 

decomposition of the signal is possible. Cardiac signal being non-stationary in nature, 

EMD is the best tool available to deal with such signals so far. Though many works have 

been done for denoising of ECG signal using EMD but relatively very low attention has 

been given in removing the low frequency noise/baseline noise.  

High frequency noise removal by EMD and hybrid techniques has been successfully done 

in many research works as discussed subsequently. Denoising of ECG signal using linear 

filtering [28] (Butterworth Low pass filter) gives improved result when compared to 

direct denoising by EMD method. Denoising of ECG signal by EMD combined with 

Adaptive Filtering gives better results as compared to the EMD with linear filtering 

techniques as the filter coefficients are adaptively derived in this case. Model based 

denoising [29] of ECG signal using EMD is a better denoising technique when compared 

to other techniques as it helps preserving the sharp edges, transitions and the QRS 

complex by fitting the modelled ECG to the noisy ECG. ECG denoising using EMD and 

Wavelet [30] is a very effective technique for denoising of ECG signal. To improve on 

this method another modification is done by Zhang et al. in [31]. This method analyses 

the Energy of each IMF and accordingly detects the noisy IMFs and thus only the noisy 

IMFs are denoised using Wavelet Soft thresholding Technique. This reduces the 

computation cost as well and thus is the better technique till now. The limitation of all 

the above described methods is that none of the method deals with removing of the 

baseline drift noise, since all these methods are processing lower order IMFs which 

basically contains high frequency components and higher order IMFs containing low 

frequency/baseline noise components are left untouched. 

In the paper by Zhi-Dong Zhao et al., [32] titled, “A New Method for Removal of 

Baseline Wander and Power Line Interference in ECG signals” first time EMD was used 

for removing of Baseline Noise. In this paper, the residue signal was regarded as an 

estimate of the Baseline noise and is removed to correct the noise signal. 
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In the paper titled, “Accurate Removal of Baseline Wander in ECG Using Empirical 

Mode Decomposition” by Na Pan et al. [33] the signal used is decomposed into 15 IMFs 

and the last 3 IMFs are said to be comprising of mostly Baseline Noise components. Thus 

denoised signal is reconstructed by eliminating the last 3 IMFs. 

Limitations and Scope: only one particular ECG signal was used which was decomposed 

into ‘n’ number of IMFs, and all discussions are carried out on that particular signal. 

While the decomposition process by EMD is a function of the sampling frequency and 

the amount of variations. Therefore, a rigid mechanism should be defined for selecting 

the number of IMFs to be selected. EMD alone does not possess strong denoising 

capabilities and hence should be combined with some other technique to fetch optimum 

results. 

2.3.2 Denoising by Morphological Operators 

 

In the paper by Chee-Hung et al. [34] titled, “Impulsive noise suppression and 

background normalization of electrocardiogram signals using morphological operators”, 

morphological operation was adopted first time for removing baseline wander from a 

biomedical signal. The signal used was an EKG signal for the analysis. First a triangular 

shaped structuring element was used and then experiments were carried out with a 

parameterized structuring element with a dome like structure having parameters as width, 

height and shape. Analysis were done to optimize the parameters of the structuring 

element. 

Limitations: ECG signal morphology is quite different from that of ECG signals. Hence 

the algorithm needs to be modified in accordance to the morphology of the ECG signal 

before applying. 

In the paper titled, “A Morphology based algorithm for baseline wander elimination in 

ECG records”, by OGUZ et al. [35] opening operation is followed by closing. The 

opening operation was used for removing the positive pulses i.e. P, R, T and U waves 

while the closing operation was used to extract the negative pulses i.e. Q and S wave. In 

this paper, a disk shaped structuring element was used. The opening operation was 

performed prior to the closing operation since the closing operation if would have been 

performed before, could have filled the negative valleys present between P and R pulse 

and R and T pulse.  
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Limitations: an ECG like, but not pure ECG signal was used for the analysis purpose 

where the morphology of the used signal is different from the original signal. Thus, the 

defined SE are not good approximate for a real ECG. A disk shaped SE was used without 

any evidence. 

In another paper by P. Sun et al. in [36], “An Improved Morphological Approach to 

Background Normalization of ECG Signals”, neonatal ECG signal was picked up for 

analysis. ECG signals of neonatal have a characteristic slope in QT segment. This paper 

specifically aims at preserving the QT interval. In this work opening and closing 

operations are used in tandem and then the average is taken. In this work, first the QRS 

complex is removed from the ECG signal. Then QT segment is estimated with the help 

of Bazett’s correction and is set as the structuring element for the second set of 

morphological filtering. A linear structuring element is used. 

Limitations and Scope: this paper specifically deals with only the ECG signals of neonatal 

which cannot be generalized to other ECG signals. Hence, a much more generalize 

approach can be developed which can adapt to the changes in the signal. 

In a recent paper by Zhongguo Liu et al. [37], “ECG Signal Denoising Based on 

Morphological Filtering”, the morphologies present in ECG are removed in two steps by 

using opening and closing operations in tandem and then taking the average. First, the 

QRS complex is removed and in second step the P and T pulses are removed. Linear 

structuring elements are set in accordance with the available biological data. 

Limitations: ECG being a quasi-periodic and dynamic signal, the pulse width is not fixed 

hence a much more comprehensive and adaptive structuring element should be formed. 

2.4 Motivation for Proposed Work 

 

In spite of recent development in the field of ECG signal denoising, baseline noise 

removal has always been a weak link. The noise adds heavy distortion to the signal and 

makes proper diagnosis of the signal difficult. Hence, it becomes very important to 

properly correct the baseline of the signal. Thus, there is a desperate need for devising 

such an algorithm. Another key motivating factor for this work is the normal changes 

observed in the Exercise ECG [38] recorded at high levels of heart rate. There is an 

inherent baseline drift, an upward slope in the ST interval as the heart rate increases and 

none of the baseline correction algorithms deals with this problem. Keeping this in mind, 
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a novel technique for baseline noise removal has been proposed which has better 

performance when compared to other denoising algorithms available and is also adaptive 

to the changes in heart rate. The proposed algorithm successfully overcomes the 

shortcomings of the empirical mode decomposition and the morphological operations to 

tackle the baseline noise. The limitation of EMD has been excelled by the use of Hybrid 

technique. A defined criterion has been formulated to identify and remove the number of 

IMFs corrupted by the baseline noise which was missing in the earlier algorithms 

proposed so far. Morphological operators has been merged with EMD technique, which 

gave good results in comparison to the available algorithms. The limitation concerning 

with setting the structuring element of morphological filters for ECG signal has also been 

looked after by taking a data driven structuring element. A little literature review for QRS 

complex detection algorithms has been carried out in the next section. 

2.5 Review of QRS Complex detection Algorithms 

 

QRS complex detection in ECG signals has always been an absorbing topic for 

researchers. Numerous algorithms such as derivative based algorithm [39][40]; algorithm 

based on Digital filters [41] [42]; Wavelet based QRS detection algorithm[43]; 

Singularity detection based algorithms [44]; QRS detection algorithm based on local 

maxima [45]; Filter bank Methods [46]; Neural network approaches; adaptive filters ; 

Hidden Markov Models[47]; Mathematical morphology based algorithms [34]; Genetic 

Algorithms; Hilbert Transform based QRS detection [48]; Zero-crossing based QRS 

detection, etc. are present in the literature all having their share of advantages and 

limitations . An exhaustive survey and comparative study of all the QRS detection 

algorithms has been done in the paper titled, “The Principles of Software QRS 

Detection”, by B.U. Kohler et al. [49].   
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Chapter 3 

NOVEL TECHNIQUE FOR 

BASELINE REMOVAL IN ECG 
 

 

In this section, a new approach developed for the removal of Baseline Wander noise in 

ECG signal is discussed. As mentioned before, Baseline drift is a low frequency noise 

and its removal is an important task for proper diagnosis of the signal. The algorithm is a 

hybrid of Empirical Mode Decomposition (EMD) and Morphological filters. The 

baseline corrupted ECG signal is first decomposed into its constituent IMFs and residue. 

The higher order IMFs broadly represents the low frequency components (i.e. the 

baseline noise) of the corrupted ECG. Thus a new ECG signal is reconstructed after 

removing the baseline corrupted higher order IMFs using EMD but the baseline noise 

removal capability of EMD is not very strong and hence the newly derived signal is 

subsequently given as input to the morphological filters. While the Structuring Element 

(SE) for the morphological filters is made to be partially adaptive and is derived from the 

data itself (for the II phase of filtering), making the algorithm robust against variations in 

the R-R interval due to change in the heart rate. Mild variations in R-R interval are 

observed from one subject to another while strong variations are observed in case of any 

arrhythmia, also high heart rates are observed in case of exercise ECGs. Therefore 

building a data driven ‘SE’ can prove to be a vital step for ECG signal denoising. In 

upcoming sections, first a detailed description of EMD, Morphological filters and the 

QRS complex detection algorithm is given followed by the algorithm flow chart which 

summarizes the complete picture of the method. 

3.1 Empirical Mode Decomposition 

 

As per the study of Huang et al. (1998, 2001), incomplete, distorted and false results may 

come up when standard Fourier-based applications are used with non-stationary and non-

linear signals. To manage such signals better, Huang presented Empirical Mode 

Decomposition (EMD), where the signal is decomposed into its constituent intrinsic 

mode functions (IMFs). These IMFs are symmetric, mono components derived from the 

initial compound components of the signal. The IMFs generates instantaneous 

frequencies as a function of time and thus enhances the identity of the imbedded 
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information at different frequency levels.  

In EMD, the decomposition step depends upon the local characteristic time scale of signal 

thus making it durable for non-stationary and non-linear signals. By using the local 

characteristic time scales, the embedded oscillatory modes of the signal are identified. 

Thus EMD emerges as a strong adaptive data processing technique for IMF extraction 

and the major benefit of using EMD is that the basis functions used for decomposition of 

the signal are not predefined but are adaptively derived from the signal itself and hence 

EMD finds special applications for signals like ECG which are non-stationary in nature. 

IMFs characterize the oscillating modes embedded in the signal. Two necessary 

conditions a constituent signal must satisfy to be termed as an IMF according to the 

definition are: 

1) The number of zero crossings and the number of local extrema must either be 

equal to each other or differ by at most unity. 

2) The mean of the upper envelopes defined by local maxima and that of lower 

envelopes defined by local minima should be zero. 

3.1.1 Decomposition of Signal into IMF 

 

The following steps should be followed for successful decomposition [50] of any signal 

into its constituent IMFs:   

 First, identify all the local maxima points in the signal and then connect all the points 

with a cubic spline thus forming the upper envelope. 

 Similarly, identify all the local minima points and repeat the procedure to form the 

lower envelope. 

 Now the mean of the two (upper and lower) envelopes is taken and is represented as 

𝑚1 . 

 Above steps are depicted in the image below. 
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Fig 3.1. Decomposition step of EMD [52] 

The thus obtained 𝑚1 is now subtracted from the data to give the first component ℎ1as:  

ℎ1 = 𝑥(𝑡) − 𝑚1                           (3.1) 

This sifting process is needed to be iterated as many number of times as required so as 

the extracted signal reduces to IMF. In the subsequent sifting processes, ℎ1is regarded as 

a proto IMF and is considered as a new data for further processing; i.e. 

ℎ11 = ℎ1 − 𝑚11       (3.2) 

After performing this sifting process repeatedly, up to k number of times, ℎ1𝑘 finally 

takes the form of an IMF as: 

ℎ1𝑘 = ℎ1(𝑘−1) − 𝑚1𝑘      (3.3) 

and is represented as: 𝑐1 = ℎ1𝑘, that is, the 1st IMF component obtained from the data.  

A convergence test of Cauchy type is carried out to determine the stoppage criteria i.e. 

the value of k in equation (3.3). This test is a function of the two successive sifting 

outcomes defined as: 

𝑆𝐷𝑘 =
∑ |ℎ𝑘−1(𝑡)−ℎ𝑘(𝑡)|2𝑇

𝑡=0

∑ ℎ2
𝑘−1

𝑇
𝑡=0

     (3.4) 

If the value of the squared difference at kth level i.e. SDk is less than that of a predefined 

threshold (typical value: 0.3) than further sifting is stopped and kth level IMF is obtained. 

Residue 𝑟1(𝑡) is obtained after subtracting the first IMF, i.e. 𝑐1(𝑡) from the original signal 

as: 

𝑟1(𝑡) = 𝑥(𝑡) − 𝑐1(𝑡)     (3.5) 
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The finest scale oscillation modes are represented by 𝑐1(𝑡) while oscillations at longer 

time scales and other useful information is still embedded in 𝑟1(𝑡). Hence, now residue 

signal is regarded as a new signal and repetitive sifting process is then applied onto it to 

obtain:         𝑟2(𝑡) = 𝑟1(𝑡) − 𝑐2(𝑡) 

𝑟3(𝑡) = 𝑟2(𝑡) − 𝑐3(𝑡) 

. 

𝑟𝑛(𝑡) = 𝑟𝑛−1(𝑡) − 𝑐𝑛(𝑡)    (3.6) 

The process is stopped when either 

1) 𝑟𝑛(𝑡) becomes smaller than a predefined threshold, or 

2) 𝑟𝑛(𝑡) becomes a monotonic or constant function. 

Finally, the original signal can be written in terms of decomposed as a sum of the 

constituent ‘n’ IMFs and one residue: 

𝑥(𝑡) = ∑ 𝑐𝑖 + 𝑟𝑛  . . . . . . . (3.7)
𝑛

𝑖=1
 

3.1.2 Advantages of EMD over Wavelet and Fourier Transforms 

 

 Basis function for EMD is adaptively derived from the data while that for Wavelet 

and Fourier transforms, it is a priori. 

 Feature extraction is not possible in Fourier, while for wavelets it is possible in 

continuous time domain only but is possible in EMD for both continuous and 

discrete time domain. 

 Operation on Non-linear signal is possible only in EMD while it is not possible 

for Wavelets nor for Fourier Transforms. 

 Operation on Non-stationary signals is possible both in EMD as well as Wavelets 

but is not possible in Fourier transforms. 

 In EMD, the frequency is derived by differentiation while it is derived by 

convolution in case of Wavelets and Fourier transforms, hence it is not restricted 

by uncertainty principle unlike Fourier transforms which have global uncertainty 

and Wavelet transforms which have regional uncertainty.   
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3.1.3 Correction of Baseline drift noise using EMD  

 

Empirical Mode Decomposition due to its characteristic nature has found plenty of 

applications in the denoising of ECG signals. The denoising in ECG signals using EMD 

has been mostly limited to EMG and Power line noises (high frequency noises) and very 

less attention has been given to baseline noise (low frequency noise). There are many 

works [28][29][30][31] in the literature which deals with the removing of high frequency 

noises by filtering the lower order IMFs but very few works has been proposed for 

correcting low frequency noise interference. Such works proposed by Na Pan et al. and 

Zhi-Dong Zhao et al. discusses about the baseline correction but comes with certain 

limitations as mentioned in the Literature review. The number of decomposition levels is 

a function of the variations (number of minima and maxima) in the original signal and 

the sampling frequency of the signal, thus the rigid approach of taking the last ‘n’ number 

of IMFs for the correction is not a robust way to deal with the problem.  

We used EMD for denoising and tested its performance over different datasets 

constituting real time data as well as synthesised data but the results obtained were though 

good but not very satisfying. This is attributed to the fact that the baseline wander noise 

components are overlapping over different IMFs and are not limited to discrete IMF 

components. Therefore, if the BW noise components are tried to be completely removed, 

the information of the data is lost and if the information content is tried to be preserved, 

than the noise components also remains. Another major challenge with the described 

algorithms is to decide on the number of IMFs which are corrupted by the baseline noise 

components. Thus a criterion has been set which selects the minimum number of IMFs 

which do not contains any valuable information content. 

In the figure below, the decomposition of an ECG signal superimposed with low 

frequency baseline noise is illustrated. The noisy ECG signal when decomposed, breaks 

down into 14 unique IMFs and one residue. The frequency spectrum of each IMF is 

plotted against each decomposed signal. As can be observed from the graphs, the lower 

order IMFs constitutes the finest scale variations (high frequency) of the original signal 

while higher order IMFs constitutes the low frequency variations and thus contains the 

baseline noise components present in the original signal. Therefore, to filter out baseline 

noise using EMD these higher order IMFs containing low frequency noise components 

are discarded and the rest of the IMFs are reconstructed to give back the filtered signal. 
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Figure 3.2: Decomposition of Baseline noise corrupted real ECG signal (person1 - rec7) 

into constituent IMFs along with the frequency spectrum of each IMF. 
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3.2 Morphological Filters 

 

The discipline of mathematical morphology was introduced for the first time by G. 

Matheron and J. Serra on the basis of geometry. In the recent past, Mathematical 

Morphology has gained considerable attention and has emerged as a strong tool for signal 

processing. Initially the morphological filters find applications in image (2-D signals) 

processing [53]. The morphological filters have now also been extended to 1-D signals. 

The concept of 1-D morphology in the field of ECG was first time exploited by P. E. 

Trahanias [51] in his work, “An approach to QRS complex detection using mathematical 

morphology”. Many algorithms have been developed since then around the 

morphological filters for ECG denoising. 

3.2.1 Basics of Morphological Operations 

 

Mathematical morphology is a discipline of mathematics which is an efficient non-linear 

signal processing tool capable of retaining the shape information content of the signal. 

Structuring element or ‘SE’ is the most fundamental element of morphological filters. 

The geometry of these structuring element forms a very important role in determining the 

nature of the morphological filter. The shape information content of a signal can be 

extracted by varying the shape (a point, a line, a circle etc.) and size of the structuring 

element. Varied results are obtained by varying the geometry of a SE.  

The two most basic morphological operations [53] available are: 

1) Erosion, and 

2) Dilation 

For a one dimensional signal such as ECG erosion and dilation operations are defined as 

follows. Let 𝑓(𝑛), be the input to the morphological filter with structuring element as 

𝑙(𝑚), where 𝑛 = (0,1,2 … , 𝑁 − 1) and 𝑚 = (0,1,2, … , 𝑀 − 1) while 𝑁 ≫ 𝑀, then 

mathematically; 

Erosion is given as:  (𝑓𝛩𝑙)(𝑛) =
𝑚𝑖𝑛

𝑚 = 0, . . 𝑀 − 1
{𝑓(𝑛 + 𝑚) − 𝑙(𝑚)}  (3.8) 

        while, 𝑛 = (0,1, … , 𝑁 − 𝑀)    and, 

Dilation is given as:      (𝑓 ⊕ 𝑙)(𝑛) =
𝑚𝑎𝑥

𝑚 = 0, … 𝑀 − 1{𝑓(𝑛 − 𝑚) + 𝑙(𝑚)}             (3.9) 

while, 𝑛 = (0,1, … , 𝑁 − 𝑀). 
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Erosion operation when applied on two dimensional images is used for disjoining of two 

separate objects joined under the influence of noise. In the same manner, dilation 

operation fills the pits (holes) emerged in a noisy image. 

Two another very important signals derived from erosion and dilation operations are 

opening and closing operations defined as follows: 

Opening: (𝑓 ° 𝑙)(𝑛) = (𝑓 𝛩 𝑙 ⊕ 𝑙)(𝑛)     (3.10) 

Closing: (𝑓 ⦁ 𝑙)(𝑛) = (𝑓 ⊕ 𝑙 𝛩 𝑙)(𝑛)     (3.11) 

Opening operation is defined as erosion followed by dilation and is responsible for 

eliminating the peaks and smoothening the contour. Closing operation is defined as 

dilation followed by erosion and is responsible for eliminating pits, small gaps and 

discontinuities. 

The major advantage in using morphological filtering for noise removal in ECG signals 

is that the transform is a function of the morphology, shape of the input and is independent 

and uncorrelated to the frequency of the signal. Hence the morphology of the input signal 

is preserved which is an important consideration for denoising of ECG signals as the 

morphology of an ECG signal holds critical information of the state of heart. 

3.2.2 Designing of morphological filters for Baseline Wander removal  

 

The peak and pits of a signal can be removed by combining the two opening and closing 

operations together. This concept is utilised for removing the present morphologies (i.e. 

QRS complex, P and T waves) in an ECG signal. These morphologies are removed first 

from the original baseline noise corrupted signal so that the baseline noise can be 

estimated. This estimated baseline noise is then subtracted from the original signal to 

eliminate the baseline noise. To remove the morphologies present in the ECG signal, the 

size of the structuring element is needed to be set in proportion to that of the part to be 

extracted. This can be further understood as supposedly, QRS complex has to be extracted 

using morphological filter than the length of the SE must be slightly greater than that of 

the QRS complex. If ‘S1’ is the length of the SE, then if; 

o S1 > length of variation: variation is removed, and if; 

o S1 < length of variation: variation is retained. 
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In this way, removing all the morphologies present in the ECG we would be left with 

only the longer variations (low frequency baseline noise) and hence proper baseline can 

be estimated. 

In order to extract the morphologies in the cardio signal more evenly and prevent one-

way migration the opening and closing operations are merged (given by Margos [54]) 

together in both the possible orders and then the average is taken for both the 

combinations. The opening and closing functions are cascaded as following: 

𝑂𝐶(𝑓(𝑛)) = (𝑓 ° 𝑙 ⦁ 𝑙)(𝑛)        (3.12) 

𝐶𝑂(𝑓(𝑛)) = (𝑓 ⦁ 𝑙 ° 𝑙)(𝑛)    (3.13) 

The filters described in equations (3.12) and (3.13) are taken together and averaging is 

performed as:   

𝑂𝐶 − 𝐶𝑂 =
𝑂𝐶(𝑓(𝑛))+𝐶𝑂(𝑓(𝑛))

2
    (3.14) 

The model of the morphological filter used in this work is depicted in the block diagram: 

 

Fig.3.3 Block diagram representation of morphological filter design 

As seen from the block diagram, the ECG signal is initially fed to phase-I of the filtering 

operation. The phase-I is responsible for extracting the QRS complex from the ECG 

signal. The output of phase-I is given as input to the phase-II of morphological filters. 

Phase-II is responsible for removing the P and T waves present in the signal. Once these 

morphologies are extracted from the signal, the baseline of the signal can be 

approximated. This approximated baseline is then subtracted from the noisy signal to 
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obtain baseline corrected ECG signal. The extraction of the morphologies of the cardio 

signals is carried out in two separate steps as in [35][36][37] because if all the 

morphologies of varied lengths present in signal are tried to be removed at once, the 

signal information may be lost and severe distortion in the actual baseline may appear in 

the output. The duration of different morphologies are listed in the table below: 

Table 3.1 Time duration of characteristic waves in ECG 

Characteristic Wave duration in seconds 

QRS complex 0.06 ~ 0.10s 

P wave 0.08 ~ 0.11s 

T wave 0.05 ~ 0.25s 

As observed from the table, T wave is the longest wave present in the ECG signal while 

QRS complex has the shortest duration. The length of the structuring element has to be a 

function of these duration of characteristics waves. To extract any particular wave, the 

length of the structuring element must be greater than that of the duration of the wave. 

The QRS complex has highest amplitude and hence it is extracted out separately first and 

then the remaining two waves are removed. 

The structuring element as in [37] for phase-I designated as ‘SE1’ is chosen in a way such 

that the length of ‘SE1’ is greater than the number of samples consumed in QRS complex, 

i.e.:   SE1 >  number of samples of QRS complex; 

While; number of samples = PW * Fs; PW: pulse width and Fs: sampling frequency of 

signal. 

In a similar manner, ‘SE2’ for phase-II of the morphological filter is chosen to be greater 

than the number of samples consumed by the longest wave i.e. the T wave. In this way, 

all the waves present in the cardio signal are extracted. 

The major challenge encountered in deciding on the length of the structuring element for 

phase-II, i.e. SE2 is that, the duration of these characteristic waves are not fixed. There 

are variations observed in the duration of the characteristic waves in: 

 ECG of one subject to other: duration of QRS complex, R-R interval, P and T 

wave all varies in the average band from one subject to another. 
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 At higher heart rate: the R-R interval and thus QT and ST segment length reduces 

as the heart rate increases (as in case of exercise ECGs [38]). Also, an upward 

slope is observed in the ST segment as the heart rate increases considerably. 

 Within ECG of a single Subject: there may be slight variations in the lengths 

arising within the ECG of a same subject at different times. 

 In case of any arrhythmia: the duration of the important segments are altered in 

case the subject is suffering from any particular arrhythmia. For instance: in case 

of atrial fibrillation, the R-R interval continuously varies. 

 In infants and new-borns: the waves duration are different for infants.  

To tackle this problem in morphological filtering, some adaptive and data driven 

mechanism must be adopted. This challenge is taken up in this work and a data driven 

structuring element is suggested which makes the structuring element partially adaptive 

to the variations in ECG morphology. The duration of QRS complex sees much less 

variations as compared to other characteristics waves. Hence, the length of the structuring 

element for phase-I of the morphological filters is left unaltered and is taken as a measure 

of the defined biological duration of the QRS complex. However, the length of the 

structuring element ‘SE2’ defined for phase-II is made adaptive and is derived from the 

data. The details has been discussed in the following sections. 

3.3 QRS Detection 

 

QRS complex in an ECG signal is the most salient and visible feature of the 

electrocardiogram. The QRS complex is a representation of the electrical activities that 

takes place in the heart during ventricular contraction. The shape as well as the time 

interval of its occurrence reveals a lot of information important for effective medical 

diagnosis of the signal. Because of its noticeable and distinct shape this characteristic 

wave is used as a reference for calculations of the heart beat and other details. Hence, 

QRS complex detection is a fundamental step for most of the automated ECG signal 

processing algorithms. 

Many algorithms have been developed till date which deals with the problem of accurate 

detection of the QRS pulse. Here we are using very basic derivative based approach given 

by Pan and Tompkins [55] which exploits the characteristic slope of QRS complex for 

successful detection of the pulse. Though many advanced algorithms have been 

developed lately, but this basic approach is used in this algorithm for the reasons stated 
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below: 

1) The baseline noise components have already been suppressed by EMD and the 

signal is pre filtered for other high frequency noises while the said algorithm by 

Pan and Tompkins, is proven to give good results when noise content in the signal 

is minimal. Hence, very high degree of accuracy is achieved. 

2) This algorithm is computationally inexpensive and is very easy to implement 

compared to other similar algorithms. 

3) Still if any erroneous R peak is detected, we are interested only in the average R-

R length and the erroneous R-R length is removed and is not included in the 

averaging process.  

Thus, without any alter effect this basic algorithm for QRS detection by Pan and 

Tompkins is utilised effectively in this algorithm, making the novel approach 

computationally efficient. 

3.3.1 QRS detection algorithm model 

 

The algorithm used for QRS detection is typically based on the characteristic slope of the 

QRS pulse. The QRS complex has the steepest and thus the maximum slope among all 

the variations present in the ECG signal. Thus taking the derivative of the ECG signal we 

can exploit this property for detecting the peaks of the QRS complex. This can be 

understood from the block diagram as under: 

 

Fig. 3.4: QRS detection-basic block description 

In the algorithm, two times derivative of the input signal has been taken so that the noises 

and false indicative slopes can be eliminated. The threshold has been selected as half of 
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the maximum value of the cumulative differentiation signal. This threshold has been 

validated with simulations on different signals and is found to give good results. The 

threshold is good enough to suppress all the unwanted details and retains only the peak 

of the QRS complexes. Thus at the end of it we get the locations of the QRS complexes. 

The graph in support to the above block diagram are presented in figure 3.5. In the graph, 

the graph at the top is the filtered ECG. First and second time differentiated signals are 

added to give the cumulative signal. The threshold is estimated from this signal. The 

graph at the bottom depicts the detected QRS complex which is detected very precisely 

at the correct locations. 

 

Figure 3.5: Graph for QRS complex detection. 
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3.4 Proposed Algorithm 

 

The overall algorithm can be understood from the flow diagram drawn below. The steps 

followed in the algorithm are listed below assuming 𝑥(𝑛) is the input baseline corrupted 

ECG: 

First, the signal is breakdown into its constituent IMFs using empirical mode 

decomposition.   𝑥(𝑛) = ∑ 𝑐𝑖(𝑛)𝑁
𝑖=1 ,                (3.15) 

Where, N denotes the number of IMFs the signal x(n) is decomposed to, and ci(n) 

represents the ith intrinsic mode, while the residue is assumed to be the last IMF. 

Secondly, for identifying ‘m’ baseline corrupted noisy IMFs, m is calculated as: 

𝑚 = 𝑟𝑜𝑢𝑛𝑑(0.24 ∗ 𝑁)    (3.16) 

N has been multiplied by a factor of 0.24. This factor is chosen on the experimental basis 

by simulating multiple times with different values of scaling factor. So that the new 

reconstructed signal with baseline correction is given as: 

�̂�𝑒𝑚𝑑(𝑛) = ∑ 𝑐𝑖(𝑛)𝑁−𝑚
𝑖=1     (3.17) 

Now this reconstructed signal �̂�𝑒𝑚𝑑(𝑛), with the help of empirical mode decomposition 

has been partially denoised by the empirical mode decomposition and is termed as 

approximate denoised ECG. This denoising is partially completed because the baseline 

noise is overlapping over a number of intrinsic modes. So, if more number of IMFs are 

eliminated the information content suffers. Hence, minimum number of IMFs are 

removed which contains most of the noise. 

Next, this baseline corrected signal is given as input to morphological filter (phase-I) with 

structuring element length given as:  

𝑆𝐸1 = 0.11 × 𝐹𝑠      (3.18) 

here, Fs is the sampling frequency of the input signal and the value ‘0.11’ has been taken 

as indicated in Table 3.1. This is the width of the QRS pulse known from medical terms 

and it hardly varies until in the case of serious cardiac abnormalities. There are many 

shapes possible for a structuring element for example: linear, circular, point etc., but for 

one dimensional ECG signal linear shape was found to give consistently good results, 

hence a linear structuring element has been used in this work. 
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So, morphological filtering is performed over the corrected ECG with a linear structuring 

element say l1 of length SE1 and with the origin kept at the centre then,  

�̂�𝑚𝑝1(𝑛) =
(�̂�𝑒𝑚𝑑 ° 𝑙1 ⦁ 𝑙1)(𝑛) + (�̂�𝑒𝑚𝑑⦁ 𝑙1 ° 𝑙1)(𝑛)

2
                              (3.19) 

�̂�𝑚𝑝1(𝑛) denotes the output of the morphological filters (phase-I), i.e. QRS extracted 

pulse from ECG signal previously denoised by the empirical mode decomposition. 

The same baseline corrected signal produced by EMD, i.e. �̂�𝑒𝑚𝑑(𝑛) is also given to the 

QRS detection algorithm designed for detection of R peaks. First, the differentiation step 

is performed as, first differentiation: 

�̇�(𝑛) =
𝑑�̂�𝑒𝑚𝑑(𝑛)

𝑑𝑛
                                                           (3.20) 

second differentiation: 

�̈�(𝑛) =
𝑑�̂�𝑒𝑚𝑑(𝑛)

𝑑𝑛
                                                           (3.21) 

cumulative differentiation: 

𝑦(𝑛) = �̇�(𝑛) + �̈�(𝑛)     (3.22) 

threshold (𝛽) selection: 

𝛽 =
𝑚𝑎𝑥 (𝑎𝑏𝑠(𝑦(𝑛)))

2
                                                    (3.23) 

with 𝛽 as the threshold, the signal containing peaks is described as: 

𝑦𝑅−𝑅(𝑛) = {
1 ;     𝑖𝑓 𝑦(𝑖) > 𝛽  

0;      𝑖𝑓 𝑦(𝑖) < 𝛽
                                      (3.24) 

while i = 0,1,….,L and L is the number of samples in the signal. 

With the help of this 𝑦𝑅−𝑅(𝑛) signal, the average distance between the two R-R peaks is 

calculated and is denoted by avg_R-R. This data derived value of RR peak distance is 

then used for estimation of the heart rate. 

As clear from the Table 3.1, characteristic wave T is of longer duration than the S wave. 

Therefore, conventionally the length of T is been used for morphological operation 

(phase-II) as in [37], but this value of T varies to a large extent under various 
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circumstances and is not a constant. Thus, a data driven approach is adopted to set the 

value for ‘SE2’. In this research work, ST interval has been used for setting the length of 

the structuring element for phase-II morphological filtering.  

There are various advantages associated with this modified length of SE. Under normal 

circumstances, ST interval is larger than the T wave duration. Thus both the P and T 

waves can easily be extracted using the ST interval as the structuring element for phase-

II of morphological filters. Another, very important factor that complements our decision 

of taking ST interval as the length for ‘SE2’ is that, as the heart rate increases, there has 

been an upward slope noticed in the ST segment. This finding is more popular in exercise 

ECGs. An excerpt from the book titled, “Practical ECG for Exercise Science and Sports 

Medicine” by Greg Whyte [56] is given in Appendix-II. 

This study reflects the important cardiac changes being recorded at the time when the 

heart rate is high. The important points that can be exploited for determining the length 

of structuring element are: 

1. QT interval shortens as the heart rate increases. 

2. An upward slope in ST interval as heart rate increases. 

3. Minimal shortening of QRS complex. 

Thus as the heart rate increases the upward slope induces much more baseline drift in the 

signal. Hence, taking ST interval as the length for structuring element also eliminates the 

induced slope in the ST interval due to high heart rate. Also as the heart rate increases, 

the ST interval experiences a heart rate related shortening. So, overall effect of taking ST 

interval as the length for structuring element makes the algorithm adaptive to the heart 

rate variations in the ECG signal. 

So, now a linear structuring element of length SE2 equivalent to the ST interval with its 

origin at center is constructed say, l2 then the output of morphological filter phase-I. i.e. 

�̂�𝑚𝑝1(𝑛) is given as the input to the morphological filter phase-II to give the final 

estimated baseline in approximated denoised ECG as �̂�𝑚𝑝2(𝑛): 

�̂�𝑚𝑝2(𝑛) =
(�̂�𝑚𝑝1 ° 𝑙2 ⦁ 𝑙2)(𝑛) + (�̂�𝑚𝑝1⦁ 𝑙2 ° 𝑙2)(𝑛)

2
                              (3.25) 
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The eq. (3.25) represents the estimated baseline in the approximated denoised ECG 

signal. This baseline is then subtracted from the approximated ECG signal to give the 

finally denoised ECG signal given as: 

�̂�𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑑(𝑛) = �̂�𝑒𝑚𝑑(𝑛) − �̂�𝑚𝑝2(𝑛)                                             (3.26) 

So, finally equation (3.26) gives the denoised ECG signal using the proposed algorithm. 
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Chapter 4 

RESULTS AND DISCUSSIONS 
 

 

In this chapter, the results after simulation have been compiled. This chapter is organized 

in the following manner. In the first section, the ECG Database used are described in 

detail, subsequent section describes the methods for quantification of results followed by 

a discussion on generated noises. Further sections shows the results for a simulated ECG, 

in followed by denoising results over the real ECG signal are presented.  

4.1 ECG Signal Database 

 

Several different signals have been tested against the algorithm to check the robustness 

and validity of the results. Built in simulated ECG available in MATLAB R2011b was 

used to derive the results for the simulated ECG. 512 samples per cycle is taken to 

construct the ECG signal. The ECG signal is then smoothed by a ninth order Savitzky-

Golay filter. The signal thus obtained is repeated eight times so that a natural looking 

ECG signal is obtained making the total number of samples count as 4096. One such 

sample signal is shown in the figure below: 

 

Fig 4.1: Simulated ECG in MATLAB 

Original ECG signals obtained from different subjects has also been taken up to test the 

algorithm for real ECG. A lot of signals were used while execution and compilation of 

results to test the adaptive nature of the proposed algorithm. The algorithm has been made 

robust against variations in the heart rate and hence signals with different heart rates are 

taken up to validate our results. 
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PhysioBank [57] is an emerging archive of well-characterized recordings in digital form 

of physiologic signals and the associated data for the use of community for biomedical 

research. It incorporates databases of multi-parameter neural, cardiopulmonary and other 

medical signals from healthy subjects and from patients with diverse conditions suffering 

from major public health implications, including congestive heart failure, sudden cardiac 

death, gait disorders, epilepsy, aging and sleep apnea. 

The ECG-ID Database [58]: It consists of 310 ECG recordings, obtained from 90 

persons. Each recording comprises of 20 seconds of recorded lead I of ECGs, sampled at 

500 Hz with 12-bit resolution for a range of ±10 mV;  

The obtained records are from volunteers out of which 46 were women and 44 were men 

whose age varies from 13 to 75 years. The total number of recordings taken for a single 

subject varies from 2 (collected in a day) to 20 (collected periodically over 6 months). 

The obtained raw ECG signals were noisy and contains both high frequency and low 

frequency components of noise. Each of the compiled record comprises of both raw ECG 

and filtered ECG signals: 

 Signal 0: ECG I (raw signal) 

 Signal 1: ECG I filtered (filtered signal) 

4.2 Quantification of Results 

 

To quantify the performance of our proposed algorithm compared to other algorithms, 

the performance is evaluated with Mean Square Error (MSE), Signal to Noise Ratio 

(SNR) and cross-correlation coefficient (𝜌𝑥−𝑑𝑛). Mathematically, mean square error is 

given as: 

 𝑀𝑆𝐸 =
1

𝑁
∑ (𝑥(𝑖) − 𝑑𝑛(𝑖))2𝑁

𝑖=1 ,                (4.1) 

Signal to Noise ratio (SNR) of the input (noisy) ECG and   SNR of output (denoised) 

ECG: 
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And, the cross-correlation is given as: 

𝜌𝑥−𝑑𝑛 =
∑ 𝑥(𝑖)𝑁

𝑖=0 𝑑𝑛(𝑖)

[∑ 𝑥2(𝑖)𝑁
𝑖=0 ∑ 𝑑𝑛2(𝑖)𝑁

𝑖=0 ]
1

2⁄
    (4.4) 

where, x(i) is the pure ECG signal, n(i) is noisy ECG, dn(i) is denoised ECG and N is the 

total number of samples. 

4.3 Generation of Different Low Frequency Noise 

 

The results for simulated ECG signal are compiled by first adding low frequency noise 

to the signal and then denoising it using the proposed algorithm. The same noisy signal 

is also denoised using wavelets, EMD technique and morphological filters. The final 

results are tabulated for an easy view. To check the robustness of the algorithm, different 

noises of varied amplitude, frequency and SNR are added to the pure simulated ECG. 

Mathematically, the six noises that has been added are described below: 

Noise 1: two sine waves of frequency 0.2 Hz and 0.45 Hz of amplitude 0.33 and 0.22V 

respectively with SNR (noisy) = -3.1043 and MSE (noisy) = 0.0781. 

Noise 2: two sine waves of frequency 0.15 Hz and 0.45 Hz of amplitude 0.22 and 0.33V 

respectively with SNR (noisy) = -2.7397 and MSE (noisy) = 0.0718. 

Noise 3: two sine waves of frequency 0.25 Hz and 0.50 Hz of amplitude 0.22 and 0.3V 

respectively with SNR (noisy) = -2.5784 and MSE (noisy) = 0.0692. 

Noise 4: two sine waves of frequency 0.25 Hz and 0.60 Hz of amplitude 0.33 and 0.22V 

respectively with SNR (noisy) = -3.0277 and MSE (noisy) = 0.0767. 

Noise 5: two sine waves of frequency 0.40 Hz and 0.60 Hz of amplitude 0.33 and 0.22V 

respectively with SNR (noisy) = -2.2758 and MSE (noisy) = 0.0645. 

Noise 6: triangular wave of frequency 0.20Hz of amplitude 0.1V and sine wave of 

frequency 0.15Hz of amplitude 0.22V with SNR (noisy) = 2.2903 and MSE (noisy) = 

0.0226. 
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While generating these noises, the maximum frequency of the noisy additive waves has 

always been kept below 0.6Hz, as baseline noise exists below this frequency band only. 

The noises are shown graphically below: 

 

Fig 4.2: Six different noises with varied frequency and amplitude added to ECG. 

 

4.4 Simulation Results for Simulated ECG 

 

The simulation results for the simulated ECG signal corrupted with different noises are 

compiled below in graphical and tabular form. Following graphs presents the algorithm 

in a step by step form, and finally the obtained result for a pure ECG signal corrupted 

with Noise 2 (as discussed above).  

In figure 4.3, the first graph shows the pure simulated ECG signal used for simulation. 

This ECG signal is pre-processed by using Savitzky-Golay filter. The ECG signal is then 

added with Noise 2 (as above), to give the noisy ECG as is shown in graph 2. Then, the 

noisy signal is decomposed into its constituent intrinsic modes. The signal decomposes 

into 10 IMFs. According to our set criterion, last 24% of the IMFs i.e. the last 3 (rounded 

off) IMFs are used to estimate the baseline noise from the signal as depicted in graph 3. 

This estimated baseline noise is then subtracted from the noisy signal to obtain baseline 

corrected ECG signal as shown in graph 4. Now, using this approximate baseline 
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corrected signal, QRS complex are detected as presented in graph 6. Graph 5, shows 

QRS extracted ECG signal. This QRS extracted signal is obtained from the approximated 

baseline corrected signal after passing it through morphological filters (phase-I). Next, 

the length of structuring element for morphological filters (phase-II) is selected as the 

approximated length of ST segment. So now, the QRS extracted signal is passed through 

the morphological filters (phase-II) to extract the remaining morphologies of the ECG 

signal. The left over signal represents the baseline variations present in the approximated 

baseline corrected ECG signal and is depicted in graph 7. These minute variations in the 

baseline are further subtracted from the approximated signal to give the final denoised 

ECG signal as in graph 8. 

 

Fig 4.3: Results for simulated ECG: corrupted with Noise 2 
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The tabulated results are shown below, which compares the effectiveness of the proposed 

algorithm as compared to Wavelets, only EMD and only morphological operators against 

all the six different noises discussed above. 

 Table 4.1: Results for Simulated ECG with Noise 1 

SNR (input) = -3.1043; MSE(noisy) = 0.0781 

 Using Wavelet 

 

Only EMD Only 

Morphological 

Our 

Algorithm 

HT ST 

MSE 0.0034 0.0221 0.0064 0.0017 0.00084 

SNR 10.5173 2.3821 7.7912 13.6166 16.5641 

Cross-

correlation 

0.9554 0.7987 0.9167 0.9783 0.9890 

 

Table 4.2: Results for Simulated ECG with Noise 2 

SNR (input) = -2.7397; MSE(noisy) = 0.0718 

 Using Wavelet 

 

Only EMD Only 

Morphological 

Our Algorithm 

HT ST 

MSE 0.0068 0.0215 0.0041 0.0023 0.00075 

SNR 7.5284 2.5070 9.6869 12.1739 17.0676 

Cross-

correlation 

0.9124 0.7991 0.9453 0.9693 0.9903 

 

Table 4.3: Results for Simulated ECG with Noise 3 

SNR (input) = -2.5784; MSE(noisy) = 0.0692 

 Using Wavelet 

 

Only EMD Only 

Morphological 

Our Algorithm 

HT ST 

MSE 0.0129 0.0158 0.0061 0.0023 0.0009 

SNR 4.7008 3.8326 7.9603 12.1253 16.2568 

Cross-

correlation 

0.8490 0.8280 0.9191 0.9691 0.9882 

 

Table 4.4: Results for Simulated ECG with Noise 4 

SNR (input) = -3.0277; MSE(noisy) = 0.0767 

 Using Wavelet 

 

Only EMD Only 

Morphological 

Our Algorithm 

HT ST 

MSE 0.0133 0.0197 0.0041 0.0021 0.0012 

SNR 4.5774 2.8849 9.6869 12.5007 15.1385 

Cross-

correlation 

0.8433 0.8047 0.9453 0.9718 0.9846 
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Table 4.5: Results for Simulated ECG with Noise 5 

SNR (input) = -2.2758; MSE(noisy) = 0.0645 

 Using Wavelet 

 

Only EMD Only 

Morphological 

Our Algorithm 

HT ST 

MSE 0.0252 0.0051 0.0087 0.0023 0.00099 

SNR 1.8052 8.7419 6.4030 12.2398 16.1116 

Cross-

correlation 

0.7400 0.9350 0.8881 0.9697 0.9879 

 

Table 4.6: Results for Simulated ECG with Noise 6 

SNR (input) = 2.2903; MSE(noisy) = 0.0226 

 Using Wavelet 

 

Only EMD Only 

Morphological 

Our 

Algorithm 

HT ST 

MSE 0.0088 0.0034 0.0033 0.0013 0.00081 

SNR 6.3795 10.5084 10.6047 14.8282 16.7256 

Cross-

correlation 

0.8888 0.9548 0.9559 0.9835 0.9894 

Following graphs, shows the proposed algorithm for the simulated ECG corrupted 

with noise 1.  

 

Fig 4.4: Results for Simulated ECG: corrupted with Noise1 
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Fig 4.5: Comparative results: (from top to bottom) (a) pure ECG (b) noisy ECG     

(c) denoised using wavelet & hard thresholding (d) denoised using EMD only       

(e) denoised using only Morphological method (f) denoised using novel technique  
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4.5 Simulation Results for Real ECG 

 

For the purpose of testing our algorithm against real ECG data, it is important to perform 

the denoising operation over a real data. The major challenge in the implementation of 

algorithm for real ECG, is in quantification of results because of the pre-existing noise 

which adds to the real data at the time of signal acquisition. One such database was 

discovered at physiobank database, named ECG-ID Database (ecgiddb) which has both 

raw ECG data and filtered ECG data. So, filtered ECG data are used for simulation and 

compilation of results. 

Following figure shows the denoising of a real ECG signal taken from ecgiddb: signal 

person_03/rec_02. 

 

 

Fig 4.6: Results for real ECG signal person_03/rec_02 (ecgiddb) 
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In a similar way, as explained in above section for synthetic ECG (Figure. 4.3), the Fig. 

4.4 represents the steps in denoising for a real ECG signal. While the first graph in Fig. 

4.4 is real ECG signal taken from ECG-ID Database. The noise added here is Noise 1 as 

described in the above section. As evident from, graph 4 EMD is unable to remove the 

baseline drift completely, hence the approximate corrected ECG is then filtered with 

morphological filters to completely eliminate the baseline drift noise. 

In a similar manner, this denoising algorithm is executed with different real ECG signals 

taken from the same database to check for the robustness of the chosen structuring 

element. The results are compiled in a tabular form as below: 

Table 4.7: Comparison of SNR improvement by conventional SE and modified SE for 

real ECG with different heart rates. 

Input ECG 

(ECG-ID Database) 

Heart 

Rate 

SNR improvement by 

conventional structuring 

element 

SNR improvement 

by modified 

structuring element 

Person_03/rec_2  70 13.3453 14.1052 

Person_17/rec_2  57.5 16.1774 16.8521 

Person_01/rec_5  67.5 12.0948 12.3932 

Person_08/rec_1  77.5 13.1512 13.7185 

 

Figure below, shows another real ECG data of person_17/recording_02 denoised using 

the novel algorithm: 

 

Fig 4.7: Results for real ECG signal person_17/recording_02.   
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Chapter 5 

CONCLUSION AND FUTURE SCOPE 
 

 

In this chapter, final conclusions are drawn on the basis of the results. The limitations of 

the existing algorithms and the future scope of the proposed work are also elaborated. 

5.1 Conclusion 

 

This thesis work, throws light on the denoising of the ECG signals. Starting with the 

basics of electrocardiogram, the type of noises that are added with the ECG signal at the 

time of signal acquisition and the basics of ECG morphology all parts were thoroughly 

covered, followed by a very comprehensive Literature review, in which most of the 

earlier efforts are examined in detail. The inefficiency of wavelet transforms in the 

denoising of baseline noise is brought into notice. 

A hybrid model is proposed in this work, in which empirical mode decomposition and 

morphological filters are cascaded. The structuring element of the morphological filters 

has been modified so as to make the proposed algorithm partially adaptive. The algorithm 

is said to be partially adaptive because only the structuring element for morphological 

filtering phase-II has been adaptively derived from the data while the structuring element 

for morphological filters phase-I has been set according to the theoretically known 

duration of the QRS complex from medical sciences as the duration of the QRS complex 

is almost independent of the heartbeat. 

The proposed method is tested against wavelet transform, only EMD and only 

morphological filtering. As observed in Table 4.1 to 4.6, wavelet transform gives 

inconsistent results with the varying frequency. Also the results are varying between hard 

thresholding and soft thresholding. For some frequency of noise hard thresholding 

performed better while for others soft thresholding gave better results. Thus a particular 

threshold cannot be optimally selected with the wavelet to obtain good results for baseline 

correction. Hence, wavelet transforms is not a good tool for baseline correction. This is 

because the wavelet is a time-frequency dependent transform and as the noise frequency 

varies the results also varies. As is also seen from the fig 4.4, baseline correction using 
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wavelet transform does not give good results and the ST segment is heavily distorted due 

to the presence of baseline drift. 

Baseline correction using empirical mode decomposition is better than that of wavelet 

transforms as the decomposition is not a function of time-frequency but is a function of 

the local variations present in the signal. Hence, the results for denoising using EMD are 

consistent with the varying frequency. All the smaller variations are left in the higher 

order IMFs but generally smaller variations in ECG signals (low frequency information 

content) also gets added to some of the IMFs. Thus, this overlapping does not allows 

complete elimination of the baseline drift. Hence, EMD alone without any processing of 

the IMFs cannot be used for baseline correction.  

Morphological filtering is independent of any time-frequency information of the data. It 

is simply related with the morphology of the input signal. Hence, among all the suggested 

algorithms in the literature so far, morphological filters is the finest algorithm for removal 

of baseline noise from the signal. But again if a data heavily corrupted by baseline noise 

is directly fed into morphological filter, the finer variations in the baseline are not 

removed. Hence, an input with relatively low baseline noise component is denoised very 

nicely, and very fine variations present in the baseline are also detected and removed. 

Thus, the proposed algorithm shows very good results for baseline correction. A 

correlation coefficient as high as 0.99 is achieved using the proposed algorithm, which is 

far more than that achieved using other techniques for same noise level. The proposed 

algorithm is simulated over synthetic ECG, generated in MATLAB and also real ECG 

signal. For the synthetic ECG quantification of the results is done properly because of the 

availability of 100% pure signal. For synthetic ECG signal, SNR improvement of as high 

as 19.45 db is obtained which is very high compared to 14.91 db obtained using 

morphological filters (the closest to the proposed algorithm among all others). For testing 

of the modified structuring element used in the proposed algorithm real ECG signal is 

used from ECG-ID Database. Consistently, in spite of varying heart rate the proposed 

algorithm with adaptive SE gave better results compared to the hybrid algorithm with 

conventional SE. 

This proposed algorithm, with adaptive SE is expected to perform even better for exercise 

ECGs or ECGs recorded at higher heart rate because of the induced upward slope of ST 
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interval at high heart rate. This upward sloping with increase in heart rate can be 

effectively managed by the adaptive SE which is a function of the heart rate. 

5.2 Future Scope 

 

Though a lot of efforts has been put in to build this algorithm optimally, but some 

developments can still be made to this work as follows: 

 Making the algorithm completely adaptive and choosing the QRS complex also 

from the data itself.  

 Preprocessing of the IMFs being deleted can be done to further enhance the 

results. 

 An adaptive approach for estimation of noisy IMFs can be formulated to improve 

the performance. 

 Synthesis of high heart rate ECG signals, which are originally 100% pure can be 

used for better compilation of results at higher heart rates. 
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APPENDICES 

Appendix – I 

In the tables A-1 to A-3, the comparative results of different wavelets and thresholding 

technique for three possible different noises are compiled. 

 

Table A-1: Output SNR in denoised ECG in case of Powerline 

 Interference Noise (Input SNR = 8.0437 dB) 
           Thresholding 

 

Wavelet 

Hard Soft Semi- 

soft 

Stein NE 

Haar  11.0631 11.4889 11.4895 10.3383 14.3268 

Db5 11.9387 19.1262 19.1265 17.4667 12.7945 

Coif3 10.1017 19.2341 19.2342 16.5323 12.5641 

Bior3.1 9.4413 13.0481 13.0490 11.5702 11.4507 

Db4 10.3578 19.9982 19.9986 17.7033 12.7656 

Sym8 10.2601 20.8799 20.8806 19.1266 12.4789 

Sym10 11.1715 20.3877 20.3882 18.3906 12.5524 

Bior6.8 10.9729 20.4565 20.4573 18.4721 12.4772 

Db6 11.7305 20.4982 20.4985 18.8580 12.7532 

Coif4 9.9168 20.8490 20.8499 19.0435 12.4336 

 

Table A-2: Output SNR in denoised ECG in case of Baseline Drift  

Noise (Input SNR = –2.4526 dB) 
         Thresholding 

 

Wavelet 

Hard Soft Semi- 

soft 

Stein NE 

Haar  2.0808 6.0234 6.0238 6.0278 5.4726 

Db5 3.2726 8.7624 10.5035 9.0564 4.6949 

Coif3 3.5440 7.6518 11.1640 4.7805 4.3106 

Bior3.1 3.5462 9.1473 11.2209 10.6766 4.4560 

Db4 4.7123 6.6061 10.3418 3.6177 2.8443 

Sym8 4.8903 6.3779 12.4014 2.2835 3.4155 

Sym10 5.0004 6.0479 12.5427 1.9325 3.2476 

Bior6.8 4.8951 7.3764 11.4303 4.0869 4.1252 

Db6 3.2855 9.5187 11.3540 9.5994 4.9697 

Coif4 5.0092 7.3531 11.4993 3.8982 4.0011 

 

Table 6: Output SNR in denoised ECG in case of Wideband Stochastic Noise/EMG  

Noise (Input SNR = 6.1817 dB) 
         Thresholding 

 

Wavelet 

Hard Soft Semi- 

soft 

Stein NE 

Haar  10.8378 10.4503 10.6720 10.0344 12.2022 

Db5 14.3871 14.3873 14.3877 13.8203 14.4354 

Coif3 14.4541 14.4348 14.4348 13.7311 14.5024 

Bior3.1 8.8339 8.8895 8.8899 8.2269 9.9710 

Db4 14.6813 14.7270 14.7272 13.9550 14.7367 

Sym8 14.8125 14.8805 14.9015 14.1674 14.9112 

Sym10 14.6565 14.8566 14.8566 14.1133 14.9125 

Bior6.8 14.6840 14.8837 14.8840 14.1553 14.9004 

Db6 14.6376 14.8371 14.8376 14.1353 14.8376 

Coif4 14.6459 14.8885 14.8888 14.1541 14.8894 
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Appendix – II 

The following is the excerpt taken from the book “Practical ECG for Exercise Science 

and Sports Medicine”, by Greg Whyte and Sanjay Sharma. This excerpt is helpful in 

understanding the important changes in the morphology of the heart for post-exercise 

ECG records and thus selecting the length of SE2. 

 

 

 

 

 

Expected ECG Changes in the Normal Heart 

The altered action potential duration, conduction velocity, and contractile velocity 

associated with the increase in heart rate during exercise results in a number of ECG 

changes in normal people, including the following: 

 RR interval decreases. 

 P-wave amplitude and morphology undergo minor changes. 

 Septal Q-wave amplitude increases. 

 R-wave height increases from rest to submaximal exercise and then reduces to a 

minimum at maximal exercise. 

 The QRS complex experiences minimal shortening. 

 J-point depression occurs. 

 Tall, peaked T waves occur (high interindividual variability). 

 ST segment becomes upsloping. 

 QT interval experiences a rate-related shortening.  

 Superimposition of P waves and T waves on successive beats may be observed. 

 

Heart Rate (in bpm) QT duration (in ms) 

60 330-430 

80 290-380 

100 270-350 

120 250-320 

140 230-280 

160 210-260 

180 190-240 

  

 

 


