Certificate

This is to certify that the Dissertation entitled "A Noble Approach to Detect Salient Region from Images" by Mr. Krishan Sharma, student of Master of Technology (Signal Processing & Digital Design); Session [2012-2014], of Delhi Technological University, Delhi is hereby accepted and approved as a credible work. It is further certified that this work has not been submitted for similar purpose anywhere else.

Sh. Rajesh BirokAssociate ProfessorDepartment of Electronics & Comm. Eng.Delhi Technological University

Acknowledgement

I express my sincere gratitude to my guide **Sh. Rajesh Birok, Associate professor** for giving valuable advice during the course of the investigation, for his ever encouraging and moral support. His enormous knowledge and investigation always helped me unconditionally to solve various problems. I would like to thank him for suggesting me the problem of M.Tech thesis and providing valuable advice throughout the course of work. I truly admire his depth of knowledge and strong dedication to students and research that has made him one of the most successful professors ever. His mastery of any topic is amazing, but yet he is such a humble and down to earth person. I am glad that I was given opportunity to work with him. He surely brings out the best in his students.

I am greatly thankful to **Prof. Rajiv Kapoor, Professor and Head, Department of Electronics & Communication Engineering**, entire faculty and staff for their continuous support, encouragement and inspiration in the execution of this thesis work.

I would like to thanks my parents for their years of unyielding love and encouragement. I am thankful to almighty god who bestowed upon his grace and always with me whenever I felt lonely.

(KRISHAN SHARMA)

ROLL NO. – 2K12/SPD/09

Master of Technology Signal Processing and Digital Design (SPDD) Electronics and Communication Engineering Delhi Technological University Delhi-110042

ABSTRACT

Visual saliency is the perceptual quality that captures our attention and makes an object, person, or pixel stand out relative to its neighbors. The focus of this report is to design an algorithm for the automatic detection of visually salient regions in images, which is useful in applications such as adaptive content delivery, adaptive region-of-interest based image compression, image segmentation, object recognition, and content aware image resizing. In this work, an algorithm is designed to detect salient regions from images based on both global and local features and results are compared with several states of art methods given in literature. We found that our algorithm works best in term of precision, recall and f-measure. Also the computational complexity of our algorithm is very low so it can be used for real time applications.

CONTENTS

Certificate				i
Acknowledgement			ii	
Abstract				iii
Table of Cont	ents			iv
List of figures	5			vi
List of Tables	5			viii
4	. .		•	1.6
1.		olem Defin		1-6
	1.1		ction to Saliency	1
	1.2		Region Detection Techniques	1
	1.3	Problem	Identified	2
	1.4	Propose	d Technique	3
	1.5	Tool Us	ed	3
	1.6	Perform	nance Evolution Matrices	4
		1.6.1	Precision	4
		1.6.2	Recall	4
		1.6.3	F-measure	5
	1.7	Organi	zation of Thesis	6
2.	Intro	oduction (o Digital Images	7-9
	2.1	Types	of Digital Images	7
3.	Lite	rature Su	rvey and Problem Identification	10-31
	3.1	Previo	us Techniques Implemented	10
		3.1.1	Achanta Saliency Detection Method	10
		3.1.2	Frequency Tuned Method	12
		3.1.3	Maximum System Surround Method	15
		3.1.4	Compressed Domain Saliency Detection Method	17
		3.1.5	Non Parametric Low Level Vision Method	21
		3.1.6	Context Aware Saliency Detection Method	25
		3.1.7	Spectral Residual Approach Method	28

4.	Propos	osed Technique 32-38		
	4.1	RGB to CIE Lab Color Space Conversion	33	
	4.2	Frequency Feature Calculation	34	
		4.2.1 Log Gabor Filter	35	
	4.3	Color Feature Calculation	36	
	4.4	Centre Feature Calculation	37	
	4.5	Luminance Feature Calculation	38	
	4.6	Combining Features	38	
5.	5. Simulation and Results		39-46	
	5.1	Setup Parameters	39	
	5.2	Qualitative Evolution	39	
	5.3	Quantitative Evolution		
		5.3.1 Fixed Threshold Segmentation	44	
		5.3.2 Adaptive Threshold Segmentation	45	
	5.4	Computational Cost	46	
6.	Conclu	sion and Future Scope	47-48	
	6.1	Conclusion	47	
	6.2 Future Scope		48	

References

49-50

List of Figures

Figure	Description	Page no.
Fig. 1.1	Confusion matrix	5
Fig. 2.1	Digital Image representation	7
Fig. 2.2	Binary Image	7
Fig. 2.3	Grayscale Image	8
Fig. 2.4	True color Image	8
Fig. 2.5	Indexed Image	9
Fig. 3.1(a)	Contrast determination filter with inner & outer region	10
Fig. 3.1(b)	Variation of width of R_2 at different scale	10
Fig. 3.1(c)	Image filtering at one scale	10
Fig. 3.2	Band-pass filtering output with increasing bandwidth	15
Fig. 3.3 (A)	Frequency tuned method feature calculation representation	16
Fig. 3.3 (B)	Maximum system surround method feature calculation	16
	representation	
Fig. 3.4	DCT coefficient for 8*8 block	18
Fig. 3.5	Block diagram of non parametric low-level vision method	24
Fig. 3.6	Log spectrum, average spectrum and spectral residual for	30
	an image	
Fig. 3.7	Spectral residual saliency map for different filter size h(f)	30
Fig. 4.1	Flow chart of proposed algorithm	32
Fig. 4.2	CIE Lab color space	33
Fig. 4.3	Frequency response of Log Gabor filter	35
Fig. 5.1	Input Images	40
Fig. 5.2	Ground truth	40
Fig. 5.3	Achanta method saliency map	40
Fig. 5.4	Frequency tuned method saliency map	41
Fig. 5.5	Maximum system surround method saliency map	41
Fig. 5.6	Compressed domain method saliency map	42

Fig. 5.7	Non Parametric low level vision method saliency map	42
Fig. 5.8	Context aware method saliency map	42
Fig. 5.9	Spectral residual method saliency map	43
Fig. 5.10	Ours method saliency map	43
Fig. 5.11	Fixed threshold based comparison of precision, recall	44
	& f-measure	
Fig. 5.12	Adaptive threshold based comparison of precision, recall	46
	& f-measure	

•

List of Tables

Table	Description	Page no.
Table 5.1	Set-up Parameters	39
Table 5.2	Precision, Recall and F-measure	45
Table 5.3	Computational Cost	46

List of Abbreviations

AC	Achanta Saliency Detection method
FT	Frequency Tuned Method
MS	Maximum System Surround Method
CD	Compressed Domain Saliency Detection Method
NP	Non parametric Low level Vision Method
CA	Context Aware Saliency Detection Method
SR	Spectral Residual Method