

Optimizing Effort Estimation Model Using Bat Algorithm

A Dissertation submitted in the partial fulfillment for the award of

MASTER OF TECHNOLOGY

IN

SOFTWARE ENGINEERING

by

Neha Gupta

Roll no. 2k12/SWE/16

Under the Esteemed Guidance of

Dr. Kapil Sharma

Department of Computer Engineering

Delhi Technological University

New Delhi-110042

2013-2014

ii

ABSTRACT

Software development is most difficult as compared to other types of projects

as there is uncertainty in the customer requirements, the process of development is

complex, and the final product is intangible in nature. As per the IBM report, “31%of

the project gets cancelled before they are completed, 53% overrun their cost estimates

by an average of 189% and for every 100 projects, and there are 94 restarts”. In order

to increase the likelihood of success of a software project, the project managers must

do project planning well and for that they need proper effort estimation of the project.

Software effort estimation is amongst the most important tasks in software

project management as many decisions like cost estimation, deadline of submitting of

project and timely planning a project are dependent on it. Many Algorithmic models

are used for effort estimation like COCOMO, Function Points, Use case points etc.

Most widely used software cost model or effort model is the Constructive Cost Model

(COCOMO).

This thesis introduces a new calibrated Intermediate COCOMO model (for all

types of system i.e. organic, semi-detached and embedded) with Bat Algorithm,

which is newest Algorithm amongst the category of Meta Heuristic and population

based Algorithms. For estimation we have used NASA 63 dataset and Results show

that Bat Algorithm gives better results in terms of MMRE (Mean Magnitude of

Relative Error) for projects as compared to COCOMO Model

Keywords:

Effort Estimation, Bat Algorithm, COCOMO Model

iii

CERTIFICATE

Date:

This is to certify that the thesis entitled Optimizing Effort Estimation Model

using Bat Algorithm submitted by NEHA GUPTA (Roll Number:

2K12/SWE/16), in partial fulfillment of the requirements for the award of

degree of Master of Technology in Software Engineering, is an authentic

research work carried out by her under my guidance. The content embodied in

this thesis has not been submitted by her earlier to any institution or

organization for any degree or diploma to the best of my knowledge and belief.

 Project Guide

 Dr. Kapil Sharma

 Associate Professor

 Department of Computer Engineering

 Delhi Technological University, Delhi-110042

iv

ACKNOWLEDGEMENT

With due regards, I hereby take this opportunity to acknowledge a lot of

people who have supported me with their words and deeds in completion of

my research work as part of this course of Master of Technology in Software

Engineering.

To start with I would like to thank the almighty for being with me in each and

every step of my life. Next, I thank my parents and family for their

encouragement and persistent support.

I would like to express my deepest sense of gratitude and indebtedness to my

guide and motivator, Dr. Kapil Sharma, Associate Professor, Department of

Computer Engineering, Delhi Technological University for his valuable

guidance and support in all the phases from conceptualization to final

completion of the project.

I wish to convey my sincere gratitude to Prof. O.P. Verma, Head of

Department, and all the faculties and Ph.D. Scholars of Computer Engineering

Department, Delhi Technological University who have enlightened me during

my thesis.

I humbly extend my grateful appreciation to my friends whose moral support

made this project possible.

Last but not the least; I would like to thank all the people directly and

indirectly involved in successfully completion of this project.

NEHA GUPTA

Roll No. 2K12/SWE/16

v

DECLARATION

I hereby declare that the thesis entitled “Optimizing Effort Estimation Model

using Bat Algorithm” which is being submitted to the Delhi Technological

University, in partial fulfillment of the requirements for the award of degree of

Master of Technology in Software Engineering is an authentic research

work carried out by me. The material contained in this thesis has not been

submitted to any university or institution for the award of any degree.

 NEHA GUPTA

 Master of Technology

 (Software Engineering)

 College Roll No. 2K12/SWE/16

 Department of Computer Engineering

 Delhi Technological University,

 Delhi.

vi

TABLE OF CONTENT

Abstract ……………………………………………………………………………...ii

Certificate……………………………………………………………………………iii

Acknowledgement…………………………………………………………………...iv

Declaration…………………………………………………………………………...v

Table of contents…………………………………………………………………….vi

List of Tables……………………………………………………………………......viii

List of Figures……………………………………………………………………......ix

Abbreviations…………………………………………………………………………x

Chapter One: INTRODUCTION ...1

1.1 EFFORT ESTIMATION ...1

1.2 MOTIVATION ..2

1.3 GOALS OF THE THESIS ...4

1.4 THESIS ORGANIZATION: ...4

Chapter Two: LITERATURE REVIEW ...6

2.1 PART A (SOFTWARE EFFORT ESTIMATION): ..6

2.1.1 ESTIMATION APPROACHES ...6
2.1.2 MEASURES FOR ACCURACY ASSESMENT ...19

PART B (OPTIMIZATION) ...22
2.1.3 META-HEURISTIC ALGORITHMS ..24

2.1.4 BAT ALGORITHM ...26

2.2 PART C (SIMILAR TYPES OF WORK) ...34

Chapter Three: OPTIMIZED COCOMO MODEL WITH BAT ALGORITHM37

3.1 PROPOSED METHODOLOGY ...37
3.1.1 DATASETS ..38

3.1.2 MODEL DESCRIPTION ...40
3.1.3 PROPOSED MODES ...42

vii

Chapter Four: RESULTS AND DISCUSSION ...45

4.1 ORGANIC MODE EXPERIMENTS ..45

4.2 SEMI DETACHED MODE EXPERIMENTS ..48

4.3 EMBEDDED MODE EXPERIMENTS ..52

Chapter Five: CONCLUSION AND FUTURE WORK ...56

5.1 CONCLUSION: ...56

5.2 FUTURE WORK: ..57

BIBLIOGRAPHY………………………………………………..…………………. 58

viii

LIST OF TABLES

Table 2.1: Categorization of Estimation Approaches ... 7

Table 2.2: The comparison of three classes of software projects 14

Table 2.3: Basic COCOMO coefficients ... 15

Table 2.4: Value of Effort Adjustment Factors (EAF) ... 17

Table 2.5: Intermediate COCOMO coefficients ... 19

Table 3.1: NASA 63 dataset for Organic systems ... 38

Table 3.2: NASA 63 Dataset for Semi Detached ... 39

Table 3.3 : NASA 63 Dataset for Embedded system... 39

Table 3.4: Parameters value for Organic Mode .. 42

Table 3.5: Parameters value for Semi-detached Mode ... 43

Table 3.6: Parameters value for Embedded Mode ... 44

Table 4.1: Comparison of MRE of Actual and Proposed Model for Organic

Mode .. 47

Table 4.2: Comparison of MRE of Actual and Proposed Model for Semi-

detached .. 50

Table 4.3: Comparison of MRE of Actual and Proposed Model for Embedded

Mode .. 54

Table 5.1: Actual and optimized values of a and b for all modes in

Intermediate ... 57

ix

LIST OF FIGURES

Figure 2.1: COCOMO Model ... 13

Figure 2.2: Classification of Optimization Algorithms .. 23

Figure 2.3: Biologically Inspired Algorithms .. 25

Figure 2.4: Categorization of Bat Algorithm .. 27

Figure 2.5: Bat using echolocation to catch its prey ... 27

Figure 2.6: Flowchart of Bat Algorithm .. 31

Figure 4.1: Plot of Bats searching for a_best and b_best for Organic Projects ... 46

Figure 4.2: MMRE of organic projects for all bats. ... 46

Figure 4.3: Comparison of MRE with COCOMO Model and Proposed Bat

Model for all organic projects. .. 48

Figure 4.4: Plot of Bats searching for a_best and b_best for semi-detached

projects .. 49

Figure 4.5: MMRE of semi-detached projects for all bats 50

Figure 4.6: Comparison of MRE with COCOMO Model and Proposed Bat

Model for all semi-detached projects. .. 51

Figure 4.7: Plot of Bats searching for a_best and b_best for embedded

projects .. 53

Figure 4.8: MMRE of embedded projects for all bats .. 53

Figure 4.9: Comparison of MRE with COCOMO Model and Proposed Bat

Model for all embedded projects .. 55

x

ABBREVIATIONS

NASA National Aeronautic and Space Administration

COCOMO Constructive Cost Model

KLOC Kilo Lines of Code

EAF Effort Adjustment Factor

MRE Mean Relative Error

MMRE Mean Magnitude of Relative Error

MAE Mean of Absolute Error

RMSRE Root Mean of square relative Error

a_best Best value of coefficient a in all iterations and among all

bats

b_best Best value of coefficient b in all iterations and among all

bats

 Optimizing Effort Estimation Model Using Bat Algorithm

1

Chapter One: INTRODUCTION

1.1 EFFORT ESTIMATION

Effort estimation of software means, we want to know the amount of effort to be

put in the development of software. It is usually measured by the number of person-hours

that were spent in developing the software from specification until delivery. The

prediction of the effort to be consumed in a software project is the most sought after

variable in the process of project management as its determination in the early stages of a

software project drives the planning of remaining activities.

It‟s been used as input to project plans, iteration plans, budgets, investment

analyses, pricing processes, bid proposals and deciding the execution boundaries of the

project (Molokken, 2007). It‟s a critical activity for planning and monitoring software

project development and for delivering the product on time and within budget.(Q. Alam)

 Why is proper effort estimation important?

 Effort estimation is essential for many people and different departments in

an organization as it is needed at various points of a project lifecycle.

 Presales teams need effort estimation in order to know the cost price of

custom software. Without effort estimation pricing is impossible and the

price you will give will probably bind you for the whole project, so it is

important to have a good estimation from the beginning.

 Project managers need it in order to allocate resources and timely plan a

project.

 In order to plan a project and inform the project owners about deadlines

for submitting the project.

 Optimizing Effort Estimation Model Using Bat Algorithm

2

 It also shows if you have the resources to finish the project within

customer or project owner predefined time limits, based on your available

man power.

1.2 MOTIVATION

Software projects development can be considered to be the most uncertain and

complex when compared to other types of engineering projects. The 2009 Standish

Group Chaos report (The 10 laws of chaos, 2009) showed that only 32% of such projects

succeeded and were delivered on time, with the required features and functions within

budget: 44% did not meet these three requirements, and 24% failed, they were cancelled

prior to completion. Based on the results of several investigations of software

development projects, the main areas responsible for project failure were found to be as

follows: project goal setting, improper project scheduling, , ambiguous customer

requirements, unmanaged risks, improper project execution, project staffing (availability

and capabilities), stakeholder politics, and commercial pressures (Five reason why

software projects fail, 2002).

Reason for all these failures can be weak project planning and management. For

both we need proper effort estimation. When we get the requirements from customers, we

need to tell the customer about pricing and time required for its completion. This‟s

required as input to project plans, iteration plans, budgets, investment analyses, resource

allocation scheme etc. Thus we can say that proper effort estimation is important from the

starting point of project and till the end of it.

But over the past few years, software development effort is found to be one of the

worst estimated attributes. Scientific studies show the poor state of software effort

estimation. A recent review (M.jorgensen, 2003) reports that 70-80% of software

development projects overrun their estimates and that average overruns are about 30-

40%.Significant over or underestimation can be very expensive for company as

 Optimizing Effort Estimation Model Using Bat Algorithm

3

Overestimation results in wasting of resources, whereas underestimation results in

schedule/budget overruns and thus quality compromise. (F. Ferrucci, 2010)

The problem of accurate effort estimation is still open and the project manager is

confronted at the beginning of the project with the same question that what effort is

required for project (Dolado, 2009)

For support of project managers in a software development, several models have

been developed to calculate the required Effort. The most significant effort estimation

models that have been used in software development projects are:

 The Constructive Cost Model (COCOMO) (Boehm., 1981)

 The System Evaluation and Estimation of Resource Software Evaluation

Model (SEER-SEM) (Segundo, 2001)

 Putnam Model (Putnam, 1978)

 Function Point Model (Albrecht, 1979)

COCOMO is still the best approach for some software projects. If you're using a

fairly traditional approach, and using a 3GL (third generation language), such as C and

development tools and processes haven't changed much then COCOMO will give you

good results. Companies generally use two to three methods for effort estimation and one

of them is generally COCOMO. (Facts about COCOMO And Costar, 2012) Thus we can

say that COCOMO model is the most widely used estimation model for software project.

Further to solve the problem of accurate effort estimation many optimization

algorithms such as particle swarm optimization, genetic algorithm, firefly algorithm,

cuckoo search algorithm, Bat Algorithm etc. have been incorporated with these models to

further improve them. (Brajesh Kumar Singh, 2013), (F, 2006) (Reddy, 2010) (Sheta,

2007) (P.R Srivastava, 2014)

In this thesis, we propose a new calibrated Intermediate COCOMO model (for all

types of system i.e. Organic, semi-detached and embedded) with Bat Algorithm, where

 Optimizing Effort Estimation Model Using Bat Algorithm

4

we have calculated new values for coefficients a and b. For calculation we have used the

dataset of NASA 63 projects. Results show that optimized COCOMO model with Bat

Algorithm give more better results in terms of MMRE of all projects.

1.3 GOALS OF THE THESIS

1) To develop New calibrated COCOMO model with Bat Algorithm.

2) To do in deep study of Bat Algorithm and map BAT Algorithm to COCOMO

Model.

3) To develop calibrated model for all organic, semidetached and embedded systems

in Intermediate model of COCOMO.

4) Compare the result of original Intermediate COCOMO Model with newly

calibrated model in terms of MMRE (Mean Magnitude of Relative Error).

1.4 THESIS ORGANIZATION:

This thesis is structured as follows:

Chapter 2 (Literature Review)

Part A: Discussion about software Effort Estimation and models used for it (especially

COCOMO Model) and measures for accuracy assessment.

Part B: Discussion about optimization and various algorithms available for it. In

algorithms we mainly discuss about Bat Algorithm which we have used in this thesis

work.

Part C: Discussion about similar type of COCOMO optimization works which have been

already done by various Authors.

Chapter 3 (Optimized COCOMO Model with Bat Algorithm)

 In this chapter we introduce our proposed model and show how Bat Algorithm is used

for optimizing coefficients (a and b) in the Intermediate COCOMO Model (with all types

of system i.e. Organic, Semi-detached and embedded).

 Optimizing Effort Estimation Model Using Bat Algorithm

5

Chapter 4 (Result and discussion)

In this chapter we discuss about Result of the proposed model with available dataset

NASA 63.

Chapter 5 (Conclusions and Future Work)

In this chapter we summarize the conclusions reached based on the research activity and

describes the direction of future work in the area of software effort estimation.

 Optimizing Effort Estimation Model Using Bat Algorithm

6

Chapter Two: LITERATURE REVIEW

2.1 PART A (SOFTWARE EFFORT ESTIMATION):

Software development effort estimation is the process of predicting the effort

required to develop or maintain software based on incomplete, uncertain and noisy input.

Effort estimates may be used as input to project plans, iteration plans, budgets, and

investment analyses, pricing processes and bidding rounds etc.

Who should do effort estimation and who is interested in it?

 Usually Project Managers are responsible for effort estimation. Depending on the chosen

effort estimation method, they can estimate alone or with expert advice from developers,

designers and testers.

Apart from managers, project owners and sales people need most of the effort

estimation. Most of the times, your effort estimation may be challenged by sales or

management teams. There exists a bridge between sales people and developer‟s team

regarding efforts as Sales people want low cost whereas developers and designers know

the actual time and resources required for development. Thus when giving estimates, they

will take the worst case scenario.

2.1.1 ESTIMATION APPROACHES

Estimation Approaches can be categorized as (Shepperd, 2007):

 Expert estimation: It‟s based on judgment process by the experts. The

quantification step, i.e., the step where the estimate is produced is based on

previous knowledge of experts.

 Formal estimation model: The quantification step is based on mechanical

processes, e.g., the use of a formula derived from historical data.

 Combination-based estimation: The quantification step is based on a

judgmental and mechanical combination of estimates from different sources.

http://en.wikipedia.org/wiki/Software_development
http://en.wikipedia.org/wiki/Estimation
http://en.wikipedia.org/wiki/Software

 Optimizing Effort Estimation Model Using Bat Algorithm

7

In Table 2.1 classifications of estimation approaches within each category is

illustrated:

Table 2.1: Categorization of Estimation Approaches

Estimation approach Category Examples

Analogy-based

estimation

Formal estimation model ANGEL

WBS-based (bottom up)

estimation

Expert estimation company specific activity

templates

Parametric models Formal estimation model COCOMO, SLIM, SEER-SEM

Size-based models Formal estimation model Function Point Analysis, Use

Case Analysis

Group estimation Expert estimation Planning poker, Wideband Delphi

Mechanical combination Combination-based

estimation

Average of an analogy-based and

a Work breakdown structure-based

effort estimate

Judgmental combination Combination-based

estimation

Expert judgment based on

estimates from a parametric model

and group estimation

http://en.wikipedia.org/wiki/Analogy
http://en.wikipedia.org/wiki/Work_breakdown_structure
http://en.wikipedia.org/wiki/COCOMO
http://en.wikipedia.org/wiki/Putnam_model
http://en.wikipedia.org/wiki/SEER-SEM
http://en.wikipedia.org/wiki/Function_Point_Analysis
http://en.wikipedia.org/wiki/Use_Case
http://en.wikipedia.org/wiki/Use_Case
http://en.wikipedia.org/wiki/Planning_poker
http://en.wikipedia.org/wiki/Wideband_Delphi
http://en.wikipedia.org/wiki/Work_breakdown_structure

 Optimizing Effort Estimation Model Using Bat Algorithm

8

 EXPERT ESTIMATION 2.1.1.1

Expert Judgment Method: In this technique we consult with software cost estimation

expert or a group of the experts to use their experience and understanding of the proposed

project to arrive at an estimate of its cost. A group consensus technique or Delphi

technique is the best way to be used.

The estimation steps used in this method:

 Coordinators present each expert with a specification and an estimation form.

 Coordinator calls a group meeting in which the experts discuss estimation issues

with each other and coordinator

 Experts fill out forms anonymously

 Coordinator prepares and distributes a summary of the estimation on an iteration

form.

 Coordinator calls a group meeting, and experts discuss their points and estimates

which varied widely.

 Experts fill out forms, again anonymously, and steps 4 and 6 are iterated for as

many rounds as appropriate.

The advantages of this method are:

 The experts can tell about differences between past project experience and

requirements of the new proposed project.

 The experts can tell about impacts caused by new technologies, architectures,

applications and languages involved in the future project and can also factor in

exceptional personnel characteristics and interactions, etc.

 The disadvantages include:

 This method cannot be quantified. It is hard to document the factors used by the

experts or experts-group.

 Optimizing Effort Estimation Model Using Bat Algorithm

9

 FORMAL ESTIMATION MODELS 2.1.1.2

2.1.1.2.1 Estimating by Analogy

In this comparisons are made in between the proposed project and previously complete

similar project where the project development information id known. The proposed

project is estimated by extrapolating actual data from the completed project. This method

can be used either at system-level or at the component-level. Estimating by analogy is

relatively straightforward and in some respects, it is a systematic form of expert judgment

since experts often search for analogous situations so as to inform their opinion.

The steps used in estimation by analogy are:

 Characterizing the proposed project.

 Selecting the most similar completed projects whose characteristics have been

stored in the historical data base.

 Deriving the estimate for the proposed project from the most similar completed

projects by analogy.

The main advantages of this method are:

 The estimation is based on actual project characteristic data.

 The estimator's past knowledge and experience can be used which is not easy to

be quantified.

 The differences between the completed and the proposed project can be identified

and impacts estimated.

2.1.1.2.2 Top-Down Estimating Method

 Top-down estimating method is also called Macro Model. In top-down

estimating method, first an overall cost estimation for the project is derived from the

global properties of the software project, and then the project is partitioned into various

low-level components. This method has wide scope in early cost estimation when only

 Optimizing Effort Estimation Model Using Bat Algorithm

10

global properties are known. It is very useful in the early phase of the software

development as there is no detailed information available.

The advantages of this method are:

 Its main focus is on system-level activities such as integration, documentation,

configuration management, etc., many of which may be ignored in other

estimating methods and it does not miss the cost of system-level functions of the

project.

 It requires minimal project detail, and it is usually faster, easier to implement.

The disadvantages are:

 It often does not identify difficult low-level problems that are likely to escalate

costs and sometimes low-level components are overlooked by it.

 No detailed basis for justifying decisions or estimates is provided.

The leading method using this approach is Putnam model.

2.1.1.2.2.1 Putnam model:

 Another popular software cost model is the Putnam model. The form of this

model is:

Technical constant C= size * B
1/3

 * T
4/3

Total Person Months B=1/T
4
 *(size/C)

3

T= Required Development Time in years

Size is estimated in LOC Where: C is a parameter dependent on the development

environment and it is determined on the basis of historical data of the past projects.

 Rating: C=2,000 (poor), C=8000 (good) C=12,000 (excellent)

 Optimizing Effort Estimation Model Using Bat Algorithm

11

2.1.1.2.3 Function Point Analysis

The function point measurement method was developed by Allan Albrecht at

IBM. (Albrecht, 1979) The Function Point Analysis is another method of quantifying the

size and complexity of a software system in terms of the functionalities that user has

demanded. Albrecht believes function points offer several significant advantages over

SLOC counts of size measurement.

There are two steps in counting function points:

 Counting the user functions: The raw function counts are arrived at by

considering a linear combination of five basic software components: external

inputs, external outputs, external inquiries, logic internal files, and external

interfaces, each at one of three complexity levels: simple, average or complex.

Then the sum of these numbers, weighted according to the complexity level is

calculated, and is known as the number of function counts (FC).

 Adjusting for environmental processing complexity: The final function points

is arrived at by multiplying FC by an adjustment factor which is determined by

considering 14 aspects of processing complexity. This adjustment factor allows

the FC to be modified by at most 35% or -35%.

The collection of function point data has two primary motivations. One is the

desire by managers to monitor levels of productivity. Another use of it is in the

estimation of software development cost.

2.1.1.2.4 Bottom-up Estimating Method

Using bottom-up estimating method, the cost of each software components is

estimated and then combines the results to arrive at an estimated cost of overall project. It

aims at constructing the estimate of a system from the knowledge accumulated about the

small software components and their interactions.

 Optimizing Effort Estimation Model Using Bat Algorithm

12

The advantages:

 It allows the software group to handle an estimate in an almost traditional fashion.

 It is more stable because the estimation errors in the various components have a

chance to balance out.

 The disadvantages:

 It may overlook many of the system-level costs (integration, configuration

management, quality assurance, etc.) associated with software development.

 It may be inaccurate because the complete information may not available in the

early phase.

The leading method using this approach is COCOMO model.

 COCOMO MODEL 2.1.1.3

Constructive Cost Model (COCOMO) is an algorithmic model developed

by Barry W. Boehm. The model uses a basic regression formula with parameters that are

derived from historical project data and current as well as future project

characteristics. It drew on a study of 63 projects at TRW Aerospace where Boehm was

Director of Software Research and Technology. The study examined projects ranging in

size from 2,000 to 100,000 lines of code, and programming languages ranging

from assembly to PL/I. These projects were based on the waterfall model of software

development which was the prevalent software development process in

1981.(http://en.wikipedia.org/wiki/COCOMO)

The basic COCOMO model has a very simple form:

MAN-MONTHS = K1* (Thousands of Delivered Source Instructions)
K2

Where K1 and K2 are two parameters dependent on the application and development

environment.

http://en.wikipedia.org/wiki/Barry_Boehm
http://en.wikipedia.org/wiki/Regression_analysis
http://en.wikipedia.org/wiki/TRW_Inc.
http://en.wikipedia.org/wiki/Lines_of_code
http://en.wikipedia.org/wiki/Assembly_language
http://en.wikipedia.org/wiki/PL/I
http://en.wikipedia.org/wiki/Waterfall_model

 Optimizing Effort Estimation Model Using Bat Algorithm

13

COCOMO consists of a hierarchy of three increasingly detailed and accurate

forms illustrated in Figure 2.1:

 Basic Model

 Intermediate Model

 Detailed Model

Figure 2.1: COCOMO Model

All models of COCOMO are applied to three classes of software projects:

 Organic projects - "small" teams with "good" experience working with "less

than rigid" requirements

 Semi-detached projects - "medium" teams with mixed experience working with

a mix of rigid and less than rigid requirements

 Embedded projects - developed within a set of "tight" constraints. It is also

combination of organic and semi-detached projects.(hardware, software,

operational)

In Table 2.2 comparison of modes (organic, semi-detached and embedded) in

terms of size, nature of project and development environment is illustrated.

 Optimizing Effort Estimation Model Using Bat Algorithm

14

Table 2.2: The comparison of three classes of software projects

Mode Project Size Nature Of Project Innovation Deadline

of

Project

Development

Environment

Organic Typically2

to 50 KLOC

Small size project,

experienced

developers in the

familiar environment

For example : pay

roll , inventory

projects etc.

 Little Not tight Familiar and

in house.

Semidet

ached

Typically 50

to300

KLOC

Medium size project,

Medium size team,

Average previous

experience on similar

project. For example:

Utility systems like

compilers , database

systems , editors etc.

Medium Medium Medium

Embedd

ed

Typically

over 300

KLOC

Large projects, Real

time systems

complex interfaces.

Very little

previous experience

For example:

ATM‟S Air

Traffic Control etc.

Significant Tight Complex

Hardware/

customer

interfaces

required.

 Optimizing Effort Estimation Model Using Bat Algorithm

15

A) Basic Model

Basic COCOMO model takes the form

E = a (KLOC)
b

D = c (KLOC)
d

 Where E is effort applied in Person-Months, and D is the development time in months.

The coefficients a, b, c and d are given in table 2.3.

Table 2.3: Basic COCOMO coefficients

B) Intermediate COCOMO:

It computes software development effort as function of program size and a set of

"cost drivers" that include subjective assessment of product, hardware, personnel and

project attributes. This extension considers a set of four "cost drivers”, each with a

number of subsidiary attributes:-

1) Product attributes

 Required software reliability

 Size of application database

 Complexity of the product

2) Hardware attributes

 Run-time performance constraints

 Memory constraints

Software Project a B C d

Organic 2.4 1.05 2.5 0.38

Semidetached 3.0 1.12 2.5 0.35

Embedded 3.6 1.20 2.5 0.32

 Optimizing Effort Estimation Model Using Bat Algorithm

16

 Volatility of the virtual machine environment

 Required turnabout time

3) Personnel attributes

 Analyst capability

 Software engineering capability

 Applications experience

 Virtual machine experience

 Programming language experience

4) Project attributes

 Use of software tools

 Application of software engineering methods

 Required development schedule

Each of the 15 attributes receives a rating on a six-point scale that ranges from

"very low" to "extra high" (in importance or value). An effort multiplier from the table

below applies to the rating. The product of all effort multipliers results in an effort

adjustment factor (EAF) which ranges from 0.9 to 1.4.

The Intermediate COCOMO formula now takes the form:

E=a (KLOC)
b
 *EAF

D=c (E)
d

Where E is the effort in person-months, KLoC is the estimated number of

thousands of delivered lines of code for the project, and EAF is adjustment factor

calculated according to Table 2.4

 Optimizing Effort Estimation Model Using Bat Algorithm

17

Table 2.4: Value of Effort Adjustment Factors (EAF)

Cost Drivers

Ratings

Very

Low Low Nominal High

Very

High

Extra

High

Product attributes

Required software reliability 0.75 0.88 1.00 1.15 1.40 ------

Size of application database ------ 0.94 1.00 1.08 1.16 ------

Complexity of the product 0.70 0.85 1.00 1.15 1.30 1.65

Hardware attributes

Run-time performance constraints ------ ------ 1.00 1.11 1.30 1.66

Memory constraints ------ ------ 1.00 1.06 1.21 1.56

Volatility of the virtual machine environment ------ 0.87 1.00 1.15 1.30 ------

Required turnabout time ------ 0.87 1.00 1.07 1.15 -----

 Optimizing Effort Estimation Model Using Bat Algorithm

18

Personnel attributes

Analyst capability 1.46 1.19 1.00 0.86 0.71 ------

Applications experience 1.29 1.13 1.00 0.91 0.82 ------

Software engineer capability 1.42 1.17 1.00 0.86 0.70 ------

Virtual machine experience 1.21 1.10 1.00 0.90 ------ ------

Programming language experience 1.14 1.07 1.00 0.95 ------ ------

Project attributes

Application of software engineering methods 1.24 1.10 1.00 0.91 0.82 -----

Use of software tools 1.24 1.10 1.00 0.91 0.83 -----

The coefficient (a and b) are given in Table 2.5.

 Optimizing Effort Estimation Model Using Bat Algorithm

19

Table 2.5: Intermediate COCOMO coefficients

PROJECT A b c d

Organic 3.2 1.05 2.5 0.38

Semidetached 3.0 1.12 2.5 0.35

Embedded 2.8 1.20 2.5 0.32

C) Detailed COCOMO

Detailed COCOMO incorporates all characteristics of the intermediate version

with an assessment of the cost driver's impact on each step (analysis, design, etc.) of the

software engineering process.

The detailed model uses different effort multipliers for each cost driver attribute.

These Phase Sensitive effort multipliers are each to determine the amount of effort

required to complete each phase. In detailed COCOMO, the whole software is divided in

different modules and then we apply COCOMO in different modules to estimate effort

and then sum the effort. In detailed COCOMO, the effort is calculated as function of

program size and a set of cost drivers given according to each phase of software life

cycle.

2.1.2 MEASURES FOR ACCURACY ASSESMENT

Accuracy is defined as the measure of how close a result is to its correct value.

There are two ways to compare a result and its correct value: their difference and their

ratio.(Gao, 1997) Let n be the number of projects in a data set, acti be the actual effort of

i
th

 project (i= 1, 2, 3...n) and esti be the corresponding estimated value.

The difference measure of estimation accuracy is based on the difference between

estimated value and actual value

 Optimizing Effort Estimation Model Using Bat Algorithm

20

 () (1)

The ratio measure of accuracy is based on the ratio of estimated value to actual

value

 () (2)

In evaluating the accuracy of software cost estimation models, both difference and ratio

measures have been used. These are discussed below.

A) Difference Measures of Accuracy

(1) Mean of Absolute Errors (MAE)

∑ | |

 () (3)

(2) Root Mean of Squares of Error (RMSE)

 √

∑ ()

 For (i=1,) (4)

B) Ratio Measures of Accuracy

(1) Magnitude of Relative Errors (MRE)

| |

 For (i=1, 2, 3...n) (5)

 (2) Mean of Magnitude of Relative Errors (MMRE)

∑

| |

 For (i=1, 2, 3...n) (6)

 Optimizing Effort Estimation Model Using Bat Algorithm

21

(3)Root Mean of Square relative Errors (RMSRE)

 √

∑ (

)

 For (i=1, 2, 3...n) (7)

MMRE is the most widely used measure in the literature and we have also used it

for estimations

 Optimizing Effort Estimation Model Using Bat Algorithm

22

PART B (OPTIMIZATION)

 Optimization or mathematical programming is the selection of a best element

from some set of available alternatives with regard to some criteria.("The Nature of

Mathematical Programming)

 An optimization problem consists of maximizing or minimizing a real

function by systematically choosing input values from within a defined domain or a set of

constraints and computing the value of the function.

Optimization problems are of various types:

 Discrete optimization:

 In this the variables used in the optimization are restricted to assume only

a finite or discrete set of values, such as the integers.

 Continuous Optimization:

In continuous optimization the variables used in the objective function can

assume real values, e.g., values from intervals of the real line.

We can classify these algorithms into various types. Further we illustrate the

classification in Figure 2.2:

http://en.wikipedia.org/wiki/Optimization_problem
http://en.wikipedia.org/wiki/Maxima_and_minima
http://en.wikipedia.org/wiki/Function_of_a_real_variable
http://en.wikipedia.org/wiki/Function_of_a_real_variable
http://en.wikipedia.org/wiki/Argument_of_a_function
http://en.wikipedia.org/wiki/Domain_of_a_function
http://en.wikipedia.org/wiki/Value_(mathematics)
http://en.wikipedia.org/wiki/Variable_(mathematics)
http://en.wikipedia.org/wiki/Finite_set
http://en.wikipedia.org/wiki/Discrete_mathematics
http://en.wikipedia.org/wiki/Variable_(mathematics)
http://en.wikipedia.org/wiki/Optimization_(mathematics)
http://en.wikipedia.org/wiki/Real_number

 Optimizing Effort Estimation Model Using Bat Algorithm

23

Figure 2.2: Classification of Optimization Algorithms

 Optimizing Effort Estimation Model Using Bat Algorithm

24

We are going to study Meta Heuristic Algorithms in detail as Bat Algorithm is

one of the meta-heuristic and nature inspired Algorithm.

2.1.3 META-HEURISTIC ALGORITHMS

Meta-heuristic algorithms are high level procedure which is designed to find or

generate a low level procedure which may provide a sufficiently good solution to

optimize a problem. We also need not to have complete information about the problem to

get a solution. Thus we can conclude that “Meta-” means “beyond” or “higher level” and

“heuristic” means “search” or “discover by trial or error”.

Meta-heuristic algorithms usually consist of two major processes, i.e., solution

exploration and solution exploitation. These two processes are iteratively performed to

search for optimal or near-optimal solutions in reasonable computation time. The

exploration process not only increases the diversity of solutions found, but also helps to

overcome local optimal solutions to obtain better or optimal ones due to its

randomization.(X.S., 2008)

To improve the quality of solutions obtained from the exploration process and to

ensure that the solution converge to optimality, we use Exploitation. In some meta-

heuristic algorithms, this exploitation process also helps to overcome local optimal

solutions to search for better or optimal ones. The performance of meta-heuristic

algorithms depends on the appropriate combination between these two processes

(Exploration and Exploitation).

We have classified meta-heuristic algorithms into two major types, i.e., nature-

inspired algorithms and non-nature inspired algorithms. Nature has been evolving for

millions of years and hence learning from the nature‟s success, we can design meta-

heuristic algorithms (X.S., 2008). Nature-inspired algorithms can be further divided into

 Optimizing Effort Estimation Model Using Bat Algorithm

25

biologically inspired algorithms, botanically inspired algorithms. In Nature inspired

algorithms we are going to focus mainly on biologically inspired algorithms.

 BIOLOGICALLY INSPIRED ALGORITHMS 2.1.3.1

These algorithms are inspired by creatures in nature and they are further classified

into three major groups: evolutionary algorithms, stigmergic optimization algorithms, and

swarm-based optimization algorithms as illustrated in Figure2.3.

Figure 2.3: Biologically Inspired Algorithms

1) Evolutionary Algorithms

Evolutionary algorithms are based on the principles of natural evolution. Natural

evolution is a complex process which operates on chromosomes, instead of organisms

(Michalewicz, 1992). The chromosomes contain genetic information, called a gene,

which is passed from one generation to next generation through reproduction. In

reproduction, the most important operators are recombination and mutation. Organisms

with good chromosomes have a higher chance to exist and develop in nature. According

to Darwin‟s natural selection theory (Darwin, 1859), natural selection process selects best

environment-adapted organisms.

For example: Genetic algorithm (GA)

 Optimizing Effort Estimation Model Using Bat Algorithm

26

2) Stigmergic Optimization Algorithms

According to (Abraham A., 2006) for Self-Organization insects often require

interactions among themselves, such interactions can be direct or indirect. Direct

interactions are the “obvious” interactions like food or liquid exchange, visual contact,

chemical contact (the odour of nearby nest mates), etc. In Indirect interactions two

individuals interact indirectly when one of them modifies the environment and the other

responds to the new environment at a later time. Such an interaction is an example of

stigmergy”.

For example: Termite algorithm, Ant colony optimization and Bee colony optimization.

3) Swarm-Based Optimization Algorithms

 Swarm-based optimization algorithms are inspired by the social behaviour of

swarm-based animals or insects, such as a school of fish or a flock of birds, especially

those in which the property of historical information exchange among individuals is

magnified. These algorithms use many autonomous agents (particles) that act together in

simple ways to produce seemingly complex behaviour.(Banks A., 2007)

For example: Particle swarm optimization, Firefly algorithm and Bat algorithm.

2.1.4 BAT ALGORITHM

 Bat algorithm is a meta-heuristic, nature inspired, swarm based algorithm

proposed by (Yang, 2010), and its categorization is illustrated in Figure 2.4. It‟s an

optimization method based on the echolocation behaviour of bats. Micro bats

echolocation capability helps them to detect preys, distinguish different kinds of insects.

How Bat search for prey

 These bats emit a very loud sound pulse (echolocation) and listens for the echo

that bounces back from the surrounding objects as illustrated in figure 2.5.

 Bats use short, frequency-modulated signals to catch prey.

 Optimizing Effort Estimation Model Using Bat Algorithm

27

 Each Bat has a constant frequency of emitted pulse which is usually in the region

of 25 kHz to 150 kHz.

 Each ultrasonic burst may last typically 5 to 20 ms, and micro bats emit about 10

to 20 such sound bursts every second.

 With time as bat moves toward prey, it changes its velocity and position to get

more near about prey.

 As the bat goes near prey, the rate of pulse emission increases which can be up to

about 200 pulses per second and loudness decreases.

Figure 2.4: Categorization of Bat Algorithm

Figure 2.5: Bat using echolocation to catch its prey

 Optimizing Effort Estimation Model Using Bat Algorithm

28

This property of bat can be used to propose various algorithms and finally proposed

algorithm comes out with following idealized rules:

 All bats use echolocation to sense distance, and they also „know‟ the difference

between food/prey

 Bats fly randomly with velocity vi at position xi with a fixed frequency fmin,

varying wavelength and loudness A0 to search for prey. They can automatically

adjust the wavelength (or frequency) of their emitted pulses and adjust the rate of

pulse emission r [0, 1], depending on prey position.

 We also use the following approximations, for simplicity. In general the

frequency f in a range [fmin, fmax] corresponds to a range of wavelengths [λmin,

λmax]. For example a frequency range of [20 kHz, 500 kHz] corresponds to a

range of wavelengths from 0.7mm to 17mm.

 Although the loudness can vary in many ways, we assume that the loudness varies

from a large (positive) A0 to a minimum constant value Amin. Pulse rate increases

as the bat approaches prey.

 PSEUDO CODE OF THE BAT ALGORITHM (BA) 2.1.4.1

Objective function f(x), x = (x1... xd)
T

Initialize the bat population:

Initialize position, xi (i = 1, 2... n bats) and velocity vi

Define pulse rate (ri), loudness (Ai) and frequency (fi) for all bats

While (t <Max number of iterations)

Generate new solutions by adjusting frequency,

And updating velocities and locations/solutions [using equations (8) to (10)]

 If (rand >ri)

 Select a solution among the best solutions

 Generate a local solution around the selected best solution [equation 11]

 Optimizing Effort Estimation Model Using Bat Algorithm

29

 End if

Generate a new solution by flying randomly

 If (rand < Ai && f (xi) < f(x*))

 Accept the new solutions

 Increase ri and reduce Ai

 End if

Rank the bats and find the current best x*

End while

Post process results and visualization

Movement of Virtual Bats

For simulations, we use virtual bats naturally. Their positions xi and velocities vi

in a d-dimensional search space has to be updated and for that we use following

equations. The new Solutions xi and velocities vi at time step t is given by:

 () (8)

 (
) (9)

 (10)

Where, β= [0, 1] is a random vector drawn from a uniform distribution. Here x* is

the Current global best location (solution) which is located after comparing all the

solutions among all the n bats. We can use either fi or λi to adjust the velocity change

while fixing the other factor.

For the local search part, once a solution is selected among the current best

solutions, a new solution for each bat is generated locally using random walk

 (11)

Where Є is [−1, 1] is a random number, while A
t
 is the average loudness of all the bats at

this time step.

 Optimizing Effort Estimation Model Using Bat Algorithm

30

Loudness and Pulse Emission

The loudness Ai and the rate ri of pulse emission have to be updated accordingly

as the iterations proceed. As the loudness usually decreases once a bat has found its prey,

while the rate of pulse emission increases, the loudness can be chosen as any value of

convenience. We can also use Amax = 1 and Amin = 0, assuming Amin = 0 means that a bat

has just found the prey and temporarily stop emitting any sound.

 [()] (12)

Where α and ϒ are constants with values: 0 < α <1 and ϒ > 0

Initially, each bat should have different values of loudness and pulse emission rate, and

this can be achieved by randomization.

Flow of algorithm, is illustrated in Figure 2.6:

 Optimizing Effort Estimation Model Using Bat Algorithm

31

Figure 2.6: Flowchart of Bat Algorithm

 Optimizing Effort Estimation Model Using Bat Algorithm

32

 VARIANTS OF BAT ALGORITHM 2.1.4.2

In order to improve the performance, many methods and strategies have been

attempted to increase the diversity of the solution and thus to enhance the performance,

which produced a few good variants of bat algorithm.

 Fuzzy Logic Bat Algorithm (FLBA): (Khan, 2011) presented a variant by

introducing fuzzy logic into the bat algorithm; they called their variant fuzzy bat

algorithm.

 Multi objective bat algorithm (MOBA): (Yang X. S., 2011)extended BA to deal

with multi objective optimization, which has demonstrated its effectiveness for

solving a few design benchmarks in engineering.

 K-Means Bat Algorithm (KMBA): (Komarasamy, 2012)presented a

combination of K-means and bat algorithm (KMBA) for efficient clustering.

 Chaotic Bat Algorithm (CBA): (Lin, 2012) presented a chaotic bat algorithm

using Levy flights and chaotic maps to carry out parameter estimation in dynamic

biological systems.

 Binary bat algorithm (BBA): (Nakamura, 2012) developed a discrete version of

bat algorithm to solve classifications and feature selection problems.

 Differential Operator and Levy flights Bat Algorithm (DLBA): (Xie, 2013)

presented a variant of bat algorithm using differential operator and Levy flights to

solve function optimization problems.

 Improved bat algorithm (IBA): (Jamil, 2013)extended the bat algorithm with a

good combination of Levy flights and subtle variations of loudness and pulse

emission rates. They tested the IBA versus over 70 different test functions and

proved to be very efficient.

 Optimizing Effort Estimation Model Using Bat Algorithm

33

 APPLICATIONS OF BAT ALGORITHM 2.1.4.3

Bat algorithm and its variants have been applied in almost every area of

optimization, classifications, image processing, feature selection, data mining. For e.g:

 (Bora, 2012)Optimized the brushless DC wheel motors using bat algorithm with

superior results.

 (Yang, X. S., Karamanoglu, M., Fong, S, 2012)Used the bat algorithm to study

topological shape optimization in microelectronic applications so that materials of

different thermal properties can be placed in such a way that the heat transfer is

most efficient under stringent constraints.

 (Jacob, 2014) used Bat algorithm to schedule resources in heterogeneous cloud

computing environment with high accurate values as compared to other

optimization techniques

 (Abdel-Rahman, E. M., Ahmad, A. R, 2012)Presented a study for full body

human pose estimation using bat algorithm, and they concluded that BA performs

better than particle swarm optimization (PSO), particle filter (PF) and annealed

particle filter (APF).

 (P.R Srivastava, 2014)Proposed a model using the meta-heuristic bat algorithm to

estimate the test effort. The proposed model is then used to optimize the effort by

iteratively improving the solutions.

 (Lemma, T. A., Bin Mohd Hashim, F, 2011)Used fuzzy systems and bat

algorithm for energy modelling, and later Tamiru and Hashim (2013) applied bat

algorithm to study fuzzy systems and to model energy changes in a gas turbine.

 (Du, 2012) presented a variant of bat algorithm with mutation for image

matching, and they indicated that their bat-based model is more effective and

feasible in imagine matching than other models such as differential evolution and

genetic algorithms.

 Optimizing Effort Estimation Model Using Bat Algorithm

34

2.2 PART C (SIMILAR TYPES OF WORK)

Review on COCOMO optimization work which have already been done

 (C.F, 1996)Performed an empirical validation of four algorithmic models (SLIM,

COCOMO, Estimates and FPA) using data from projects outside the original

model development environments without re-calibrating the models. The results

indicate to what extent these models are generalizable to different environments.

Most models showed a strong over-estimation bias and large estimation errors

with the mean absolute relative error (MARE) ranging from an average of 57

percent to almost 800 percent. Thus we can combine these models with non-

algorithmic models such as (PSO, Genetic Algorithm, Fuzzy Logic, Neural

Network)(S K Sehra, 2011) and get better results.

While doing this thesis, we have gone through some literature where non

algorithmic models are used with COCOMO model, which can be shown as:

 (Basili, 1981) Presented a model process which permits the development of effort

estimation model for any particular organization. The model is based on data

collected by that organization which captures its particular environment factors

and differences in its particular projects. The process provides capability for

producing a model tailored to the organization which can be more effective than

any model originally developed for other environment. They demonstrated it

using data collected for the Software Engineering laboratory at NASA and came

to conclusion that

 Effort= a (size in KLOC)
b
 + c * (methodology)

 (F, 2006) Presented two new model structures to estimate the effort required for

the development of software projects using Genetic Algorithms (GAs). A

modified version of the famous COCOMO model provided to explore the effect

of the software development adopted methodology in effort computation. The

 Optimizing Effort Estimation Model Using Bat Algorithm

35

performances of the developed models were tested on NASA software project

dataset. The developed models were able to provide good estimation capabilities.

 (Anish M, Kamal P and Harish M, 2010) Presented two new models, based on

fuzzy logic. Rather than using a single number, the software size is regarded as a

triangular fuzzy number. We can optimize the estimated effort for any application

by varying arbitrary constants for these models. The developed models were

tested on 10 NASA software projects, on the basis of four criterions for

assessment of software cost estimation models. Comparison of all the models was

done and it is found that the developed models provide better estimation.

 (Reddy, 2010) Proposed three software effort estimation models by using soft

computing techniques: Particle Swarm Optimization with inertia weight for

tuning effort parameters in COCOMO Model. The performance of the developed

models was tested by NASA software project dataset provided by (Basili, 1981).

The developed models were able to provide good estimation capabilities.

 (Sheta, 2007) Proposed Differential Evolution (DE) as an alternative technique

and powerful tool to estimate the COCOMO model parameters. The performances

of the developed models were tested on NASA software project dataset provided

by (Basili, 1981). The developed COCOMO-DE model was able to provide good

estimation capabilities.

 (Lin J.-C. , 2010) Used Pearson product moment correlation coefficient to select

several factors then used K-Means clustering algorithm to software project

clustering. After project clustering, he use Particle Swarm Optimization that take

mean of MRE (MMRE) as a fitness value and N-1 test method to optimization of

COCOMO parameters.

 (Anna Galinina, Olga Burceva, Sergei Parshutin, 2012)Used Genetic algorithm to

optimize COCOMO model coefficients which were determined in 1981 by means

of the regression analysis of statistical data based on 63 different types of project

 Optimizing Effort Estimation Model Using Bat Algorithm

36

data. The proposed algorithm was tested and the obtained results were compared

with the ones obtained using the current COCOMO model coefficients.

Coefficients optimized by the GA in the organic mode produces better results in

comparison with the results obtained using the current COCOMO model

coefficients.

 (Vishali, Anshu Sharma, Suchika Malik, 2014) Used Genetic algorithm and Ant

Colony Optimization to optimize COCOMO model coefficients which were

determined in 1981 by means of the regression analysis of statistical data based

on 63 different types of project data. Results were better for GA and ACO as

compared to normal COCOMO Model.

 Optimizing Effort Estimation Model Using Bat Algorithm

37

Chapter Three: OPTIMIZED COCOMO MODEL

WITH BAT ALGORITHM

In this chapter, we describe the proposed methodology by us for optimizing

coefficients (a & b) in Intermediate COCOMO Model of Effort estimation (for all types

of system i.e. organic, semi-detached and embedded) with Bat Algorithm. We have also

given the datasets which have been used.

3.1 PROPOSED METHODOLOGY

Bat Algorithm and Intermediate COCOMO Model of effort Estimation have

already been discussed in detail in Chapter 2.

Here, we discuss how Bat algorithm is used to find a_best and b_best value for

Intermediate COCOMO model (for all types of system i.e. organic, semi-detached and

embedded). To derive the new values of coefficients for all types of system (organic,

semi-detached and embedded), we have taken NASA 63 dataset and divided it into three

sections:

 Dataset for Organic System

 Dataset for Semi-Detached System

 Dataset for Embedded System

Then we have applied Bat Algorithm to each section and calculate new values of

a and b for all three types of system (organic, semi-detached and embedded).

 Optimizing Effort Estimation Model Using Bat Algorithm

38

3.1.1 DATASETS

Each dataset consist of Project No, its size in KLOC, Effort Adjustment Factor

and actual effort for its development.

a) Dataset for Organic System

Table 3.1: NASA 63 dataset for Organic systems

PROJECT NO. KLOC EAF Actual Effort

1 132 0.320461 243

2 60 0.998141 240

3 16 0.656169 33

4 4 1.865036 43

5 25 0.85243 79

6 9.4 1.657303 88

7 15 0.68887 55

8 60 0.372242 47

9 15 0.358804 12

10 6.2 0.387744 8

11 3 0.964898 8

12 5.3 0.254454 6

13 45.5 0.587344 45

14 28.6 1.069813 83

15 30.6 1.336619 87

16 35 0.872678 106

17 73 0.824729 126

18 24 1.28037 176

19 10 2.304555 122

20 5.3 1.154275 14

21 4.4 0.77736 20

22 25 1.089608 130

23 23 1.006967 70

24 6.7 2.125489 57

25 10 0.386126 15

 Optimizing Effort Estimation Model Using Bat Algorithm

39

b) Dataset for semi-detached system

Table 3.2: NASA 63 Dataset for Semi Detached

PROJECT NO. KLOC EAF Actual Effort

1 293 0.842266296 1600

2 1150 0.675539854 6600

3 77 0.908416597 539

4 13 2.810694546 98

5 2.14 0.994394537 7.3

6 62 3.439167383 1063

7 13 2.178793679 82

8 23 0.380665662 36

9 464 0.758080034 1272

10 8.2 1.376017605 41

11 28 0.446598709 50

c) Dataset for Embedded system

Table 3.3 : NASA 63 Dataset for Embedded system

PROJECT NO. SIZE (KLOC) EFFORT

ADJUSTMENT

FACTOR (EAF)

Actual Effort

1 113 2.288114989 2040

2 6.9 0.531284635 8

3 22 5.509905793 1075

4 30 2.013772319 423

5 29 1.730150413 321

6 32 1.730150413 218

7 37 0.936262003 201

8 3 4.945017866 60

9 3.9 3.043530256 61

10 6.1 2.374955594 40

11 3.6 1.947463587 9

 Optimizing Effort Estimation Model Using Bat Algorithm

40

12 320 3.271167233 11400

13 299 3.487908449 6400

14 252 0.846066335 2455

15 118 0.96815931 724

16 90 0.702502121 453

17 38 1.163900531 523

18 48 0.952487929 387

19 1.98 0.994394537 5.9

20 390 0.569092582 702

21 42 2.301870948 605

22 23 1.476736523 230

23 91 0.301677206 156

24 6.3 0.340097967 18

25 27 2.660867206 958

26 17 3.306315857 237

27 9.1 1.053619034 38

3.1.2 MODEL DESCRIPTION

The following is the methodology employed to tune the parameters in each

proposed modes (organic, semi-detached and imbedded).

Input: Size of Software Projects, Measured Efforts, Effort Adjustment factor-EAF.

Output: Optimized coefficients a_best, b_best and fmin(Least MMRE of all projects)

Step 1: Initialize the bat population Xi (i = 1, 2... n) and Vi , where Xi represents the

position or solution and Vi represents the velocity of Bats. Each bat tries to find value for

a & b such that MMRE of all project decreases with iteration and after all iterations we

get the bat with least MMRE as the best Bat and its values as result.

Step 2: Define pulse frequency fi at xi. Thus each bat will have frequency. We have to set

Fmin and Fmax according to our problem as detectable range should be chosen such that it

is comparable to the size of the domain of interest.

Step 3: Initialize pulse rates ri and the loudness Ai, where (i= 1 to n). The rate of pulse

can simply be in the range of [0, 1] where 0 means no pulses at all, and 1 means the

 Optimizing Effort Estimation Model Using Bat Algorithm

41

maximum rate of pulse emission. For setting loudness we can use Amax = 1 and Amin = 0,

assuming Amin = 0 means that a bat has just found the prey and temporarily stop emitting

any sound.

Step 4: Repeat the following steps 5 to 9 until number of iterations specified by the user

Exhaust.

Step 5: for i = 1, 2… n do // for all the Bats

Step 6: Generate new solutions by adjusting frequency, and updating velocities and

locations/solutions [equations (8) to (10)]

Step 7: For each bat position with values of tuning parameters (a and b), evaluate the

fitness function. The fitness function here is Mean Magnitude of Relative Error (MMRE).

Thus we are calculating MMRE for each Bat and considering all projects at one time for

each bat. The objective in this method is to minimize the MMRE by selecting appropriate

values for a and b and then select the least MMRE among all bats as the final result. All

Bats fitness is stored in array Fitness (i)

Step 8: if (rand > ri), then

 Generate a new solution around the current global best Solution using

equation 11 and evaluate its Fitness as F_New.

Step 9: If (rand < Ai && F_New < Fitness (i))

 Accept the new solution and update the Fitness (i) =F_New

 Increase ri and reduce Ai using equation (12)

Step 10: Post process the result

Step 11: Stop

The proposed model is implemented in MATLAB for all modes.

 Optimizing Effort Estimation Model Using Bat Algorithm

42

3.1.3 PROPOSED MODES

1) Organic mode with Bat Algorithm: In this we have taken 25 organic type

projects from NASA 63 Dataset and then applied the model described in 3.1.2 to

get values a_best, b_best and fmin (Mean Magnitude of Relative Error). In the

whole process we are calculating a_best, b_best and fmin (MMRE) for all bats

and then taking the least fmin among all bats as global best value and its

corresponding best value as final a_best and b_best.

For tuning the parameters, we have taken the values as illustrated in Table 3.4.

Table 3.4: Parameters value for Organic Mode

Parameter Value

Dimension (d) 2; (a and b)

F_Min 0

F_Max 4

Lower Bound 0

Upper Bound 4

No. of Iterations 400

No. of Bats 27

Pulse Rate Range [0,1]

Amplitude Range [0,1]

Alpha(α) 0.976

Gamma(ϒ) 0.976

2) Semi Detached mode with Bat Algorithm: In this we have taken 11 semi-

detached type projects from NASA 63 Dataset and then applied the model

described in 3.1.2 to get values a_best, b_best and fmin (Mean Magnitude of

 Optimizing Effort Estimation Model Using Bat Algorithm

43

Relative Error). In the whole process we are calculating a_best, b_best and fmin

(MMRE) for all bats and then taking the least fmin among all bats as global best

value and its corresponding best value as final a_best and b_best.

For tuning the parameters, we have taken the values as illustrated in Table 3.5.

Table 3.5: Parameters value for Semi-detached Mode

3) Embedded mode with Bat Algorithm: In this we have taken 27 embedded type

projects from NASA 63 Dataset and then applied the model described in 3.1.2 to

get values a_best, b_best and fmin (Mean Magnitude of Relative Error). In the

whole process we are calculating a_best, b_best and fmin (MMRE) for all bats and

then taking the least fmin among all bats as global best value and its

corresponding best value as final a_best and b_best.

For tuning the parameters, we have taken the values as illustrated in Table 3.6.

Parameter Value

Dimension (d) 2; (a and b)

F_Min 0

F_Max 4

Lower Bound 0

Upper Bound 4

No. of Iterations 400

No. of Bats 27

Pulse Rate Range [0,1]

Amplitude Range [0,1]

Alpha(α) 0.976

Gamma(ϒ) 0.976

 Optimizing Effort Estimation Model Using Bat Algorithm

44

Table 3.6: Parameters value for Embedded Mode

Parameter Value

Dimension (d) 2; (a and b)

F_Min 0

F_Max 3

Lower Bound 0

Upper Bound 3

No. of Iterations 400

No. of Bats 27

Pulse Rate Range [0,1]

Amplitude Range [0,1]

Alpha(α) 0.976

Gamma(ϒ) 0.976

 Optimizing Effort Estimation Model Using Bat Algorithm

45

Chapter Four: RESULTS AND DISCUSSION

During the experiments, the initial population of 27 bats was generated. Then the

optimization of the COCOMO model coefficients was performed using the proposed

algorithm. Based on the fact that each of the three modes of COCOMO model has its

own coefficients, experiments were performed using datasets according to each mode.

Experiments were performed by changing the Bat algorithm parameters (No. of

iterations, No. of Bats, Fmin, Fmax, Lower Bound, Upper Bound, Pulse Rate, Loudness,

alpha and gamma). Value used for parameters is already discussed in chapter 3.

4.1 ORGANIC MODE EXPERIMENTS

In experiments using organic mode datasets, the best result was achieved using

400 iterations and 27 bats. As a result of algorithm execution, we got different values at

each execution and mostly the MMRE with Bat Execution was less than that of

COCOMO.

Solution:

MMRE by COCOMO: 0.3720

Fmin (Least Mean Magnitude of Relative Error) by Bat Algorithm: 0.3093

a_best=3.63

b_best=0.916

Figure 4.1 depicts how bats are searching for coefficient a and b in the given

range [0-4], while execution and Figure 4.2 depicts MMRE for all 27 bats. Bat no. 1 has

got the least MMRE for Organic projects.

 Optimizing Effort Estimation Model Using Bat Algorithm

46

Figure 4.1: Plot of Bats searching for a_best and b_best for Organic Projects

Figure 4.2: MMRE of organic projects for all bats.

 Optimizing Effort Estimation Model Using Bat Algorithm

47

Table 4.1 depicts comparison among the organic mode projects real effort,

predicted development effort using Bat coefficients and current COCOMO model

coefficients:

Table 4.1: Comparison of MRE of Actual and Proposed Model for Organic Mode

No Actual

Effort

COCOMO

Effort

BAT-

COCOMO

Effort

MRE (COCOMO-

Actual)

MRE(BAT-

COCOMO)

1 243 172.79365 101.88905 0.2889150 0.580703482

2 240 235.18016 154.12925 0.0200826 0.357794791

3 33 38.591500 30.192302 0.169439 0.085081734

4 43 25.585869 24.10353 0.4049797 0.439452602

5 79 80.102434 59.030763 0.0139548 0.252775149

6 88 55.76171 46.848280 0.3663441 0.467633176

7 55 37.86021 29.877447 0.3116324 0.456773684

8 47 87.706981 57.48023 0.8661059 0.222983747

9 12 19.719825 15.561931 0.6433188 0.29682761

10 8 8.4276470 7.4865632 0.0534558 0.064179592

11 8 9.7860786 9.5814469 0.2232598 0.197680872

12 6 4.6908216 4.2555196 0.2181963 0.290746719

13 45 103.50336 70.394317 1.3000748 0.564318161

14 83 115.78230 83.800340 0.3949675 0.009642655

15 87 155.29772 111.38714 0.7850313 0.280312039

16 106 116.75499 82.248309 0.1014621 0.22407255

17 126 238.75377 152.41286 0.8948712 0.209625924

18 176 115.26760 85.411355 0.3450704 0.51470821

19 122 82.744103 68.943559 0.3217696 0.434888856

20 14 21.278888 19.304235 0.5199205 0.378873977

21 20 11.786842 10.963051 0.4106578 0.45184741

22 130 102.38993 75.45533 0.2123851 0.41957434

23 70 86.692084 64.604766 0.2384583 0.077074765

24 57 50.117267 44.060559 0.1207496 0.227007731

25 15 13.863695 11.551427 0.0757536 0.229904808

∑MRE=9.3008576

05

∑MRE=7.73448

4583

MMRE:9.300857/

25

=0.3720

MMRE:7.73448/

25=

0.3093

 Optimizing Effort Estimation Model Using Bat Algorithm

48

Figure 4.3: Comparison of MRE with COCOMO Model and Proposed Bat Model

for all organic projects.

From Table 4.1 we can draw bar chart as depicted in Figure 4.3, which shows

comparison of MRE for all organic projects by Actual COCOMO Model and Bat-

COCOMO Model.

Results show that MMRE by proposed Bat-COCOMO Model (0.3093) is less

than that of Original COCOMO Model (0.3720). From figure we can also see that MRE

of most of the projects by proposed Bat-COCOMO Model is less as compared to that of

Original COCOMO Model.

4.2 SEMI DETACHED MODE EXPERIMENTS

In experiments using semi-detached mode datasets, the best result was achieved

using 400 iterations and 27 bats. As a result of algorithm execution, we got different

values at each execution and mostly the MMRE with Bat Execution was less than that of

COCOMO.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Error (COCOMO-

Actual)

Error(BAT-

COCOMO)

 Optimizing Effort Estimation Model Using Bat Algorithm

49

Solution:

MMRE by COCOMO: 0.2337

Fmin (Least Mean Magnitude of Relative Error) by Bat Algorithm: 0.2157

a_best= 2.9383

b_best= 1.1009

Figure 4.4 depicts how bats are searching for coefficient a and b in the given

range [0-3], while execution and Figure 4.2 depicts MMRE for all 27 bats. Bat no. 23 has

got the least MMRE for semi-detached projects.

Figure 4.4: Plot of Bats searching for a_best and b_best for semi-detached projects

 Optimizing Effort Estimation Model Using Bat Algorithm

50

Figure 4.5: MMRE of semi-detached projects for all bats

Table 4.2 depicts comparison among the semi-detached mode projects real

development effort, the predicted development effort using Bat coefficients and the

predicted development effort using current COCOMO model coefficients.

Table 4.2: Comparison of MRE of Actual and Proposed Model for Semi-detached

Mode

No. Actual

Effort

COCOMO

Effort

BAT

Effort

MRE(COCOMO-

Actual)

MRE(Bat-

COCOMO)

1 1600 1463.7348 1286.234 0.085165 0.196103

2 6600 5429.4246 4648.034 0.177359 0.295752

3 539 353.4076 318.5802 0.344327 0.408942

 Optimizing Effort Estimation Model Using Bat Algorithm

51

4 98 149.1253 139.0753 0.521687 0.419135

5 7.3 6.99428 6.75161 0.041878 0.075121

6 1063 1049.6711 950.1528 0.012538 0.106159

7 82 115.5989 107.8083 0.409743 0.314736

8 36 38.2648 35.2992 0.062912 0.01946

9 1272 2204.6337 1920.351 0.733202 0.509710

10 41 43.57292 40.99565 0.062755 0.000106

11 50 55.957166 51.42684 0.119143 0..28536

 ∑MRE=
2.570714

∑MRE=
2.373768

 MMRE=2.570714/11
=0.2337

MMRE=2.373768/11
=0.2157

Figure 4.6: Comparison of MRE with COCOMO Model and Proposed Bat Model

for all semi-detached projects.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5 6 7 8 9 10 11

Error (COCOMO-

Actual)

Error(BAT-COCOMO)

 Optimizing Effort Estimation Model Using Bat Algorithm

52

From Table 4.2 we can draw bar chart as depicted in Figure 4.6, which shows

comparison of MRE for all semi-detached projects by Actual COCOMO Model and Bat-

COCOMO Model.

Results show that MMRE by proposed Bat-COCOMO Model (0.2157) is less

than that of Original COCOMO Model (0.2337). From figure we can also see that MRE

of most of the projects by proposed Bat-COCOMO Model is less as compared to that of

Original COCOMO Model.

4.3 EMBEDDED MODE EXPERIMENTS

In experiments using embedded mode datasets, the best result was achieved using

400 iterations and 27 bats. As a result of algorithm execution, we got different values at

each execution and mostly the MMRE with Bat Execution was less than that of

COCOMO.

Solution:

MMRE by COCOMO: 0.3921

Fmin (Least Mean Magnitude of Relative Error) by Bat Algorithm: 0.3826

a_best= 2.8908

b_best=1.1689

Figure 4.7 depicts how bats are searching for coefficient a and b in the given

range [0-3], while execution and Figure 4.8 depicts MMRE for all 27 bats. Bat no. 5 has

got the least MMRE for embedded projects.

 Optimizing Effort Estimation Model Using Bat Algorithm

53

Figure 4.7: Plot of Bats searching for a_best and b_best for embedded projects

Figure 4.8: MMRE of embedded projects for all bats

 Optimizing Effort Estimation Model Using Bat Algorithm

54

Table 4.3 depicts comparison among the embedded mode projects real

development effort and predicted effort by Bat coefficients and COCOMO model

coefficients.

Table 4.3: Comparison of MRE of Actual and Proposed Model for Embedded Mode

NO Actual

Effort

COCOMO

Effort

BAT

Effort

MRE

(COCOMO-

Actual)

MRE (BAT-

COCOMO)

1 2040 1863.502628 1660.883936 0.086518319 0.185841208

2 8 15.10442497 14.68506943 0.888053122 0.835633679

3 1075 629.8098112 590.6362406 0.414130408 0.450570939

4 423 333.9749579 310.1954673 0.210461092 0.266677382

5 321 275.4986592 256.1526933 0.141748725 0.202016532

6 218 310.042954 287.3900424 0.422215385 0.318302947

7 201 199.7089364 184.2834948 0.006423202 0.083166692

8 60 51.74535872 51.62890875 0.137577355 0.139518188

9 61 43.63281003 43.18084022 0.284708032 0.292117373

10 40 58.23838554 56.83888946 0.455959638 0.420972237

11 9 25.36240179 25.16224492 1.818044644 1.795804991

12 11400 9290.535617 8016.607173 0.185040735 0.296788844

13 6400 9131.214279 7895.782472 0.426752231 0.233716011

14 2455 1804.027257 1568.265371 0.265162013 0.361195368

15 724 830.5451876 739.2439015 0.147161861 0.021055113

16 453 435.4082789 390.822677 0.038833821 0.137256784

17 523 256.3387213 236.3431168 0.509868602 0.548101115

18 387 277.6559578 254.1443206 0.282542745 0.343296329

19 5.9 6.319969602 6.387761855 0.071181288 0.082671501

20 702 2049.361082 1757.504274 1.91931778 1.503567342

21 605 571.6604562 525.4302996 0.055106684 0.131520166

22 230 178.046914 166.7418938 0.225882983 0.275035245

23 156 189.4742512 170.0137422 0.214578533 0.089831681

2 18 8.669034405 8.452228904 0.518386978 0.530431728

25 958 388.8819174 362.37844 0.59406898 0.621734405

26 237 277.3582427 262.2008711 0.170287944 0.10633279

27 38 41.75334845 40.24622374 0.098772328 0.059111151

∑MRE=10.5887 ∑MRE=10.33226

MMRE:10.5887

8/27=0.3921

MMRE:10.33226

7/27=0.3826

 Optimizing Effort Estimation Model Using Bat Algorithm

55

Figure 4.9: Comparison of MRE with COCOMO Model and Proposed Bat Model

for all embedded projects

From Table 4.3 we can draw bar chart as depicted in Figure 4.9, which shows

comparison of MRE for all embedded projects by Actual COCOMO Model and Bat-

COCOMO Model.

Results show that MMRE by proposed Bat-COCOMO Model (0.3826) is less

than that of Original COCOMO Model (0.3921). From figure we can also see that MRE

of most of the projects by proposed Bat-COCOMO Model is less as compared to that of

Original COCOMO Model.

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Error (COCOMO-Actual)

Error(BAT-COCOMO)

 Optimizing Effort Estimation Model Using Bat Algorithm

56

Chapter Five: CONCLUSION AND FUTURE WORK

5.1 CONCLUSION:

The objective of this research was to optimize the Intermediate COCOMO model

coefficients using the Bat Algorithm. The task of the COCOMO coefficient optimization

is not new; different methods such as neural networks, fuzzy algorithms, genetic

algorithm, Particle swarm optimization etc. were applied to it by a number of scientists.

But none have applied Bat Algorithm for it.

The current research proposes a Bat algorithm based method for optimization of

the Intermediate COCOMO model coefficients for organic, semi-detached and embedded

modes. In a series of experiments, the proposed algorithm was tested and the obtained

results were compared with the ones obtained using the current COCOMO model

coefficients. The results show that in most cases the results obtained using the

coefficients optimized by the proposed algorithm are close and better compared to the

ones obtained using the current coefficients. We have Compared results for all modes

(organic, semidetached and embedded) and found out that mostly the results by proposed

methodology (Bat-COCOMO) produces better results in comparison with the results

obtained using the current COCOMO model coefficients.

According to the findings of the research, it should be stated that having the

appropriate statistical data describing the software development projects, we can generate

new model or optimize existing model such as COCOMO with Bat algorithm, which is

amongst the new meta-heuristic Algorithms.

We have concluded the final result of this research work in Table 5.1.

 Optimizing Effort Estimation Model Using Bat Algorithm

57

Table 5.1: Actual and optimized values of a and b for all modes in Intermediate

Model

5.2 FUTURE WORK:

 A lot of work can be done in Software Engineering using Bat algorithm.

 We can use Bat Algorithm to optimize other software effort estimation technique

such as Function Point Analysis, Use case points or COCOMO II model

parameters.

 We can compare the results of BAT-COCOMO optimization with other new

optimization algorithms (PSO, Genetic Algorithm, Firefly Algorithm, Ant Colony

Optimization) etc.

 We can use Bat Algorithm on our own datasets, to get a new model.

 We can use Bat Algorithm in other software Engineering domains such as

Software reliability, Testing etc.

Project Actual

a

Actual

b

Bat-

COCOMO

a

Bat-

COCOMO

b

MMRE by

COCOMO

MMRE

by Bat-

CCOMO

Organic 3.2 1.05 3.63 0.916 0.3720 0.3093

Semidetached 3.0 1.12 2.9383 1.1009 0.2337 0.2157

Embedded 2.8 1.20 2.8908 1.1689 0.3921 0.3826

 Optimizing Effort Estimation Model Using Bat Algorithm

58

Bibliography

"The Nature of Mathematical Programming. (n.d.).

Five reason why software projects fail. (2002, may 20). Retrieved from Computerworld.

(2009). The 10 laws of chaos. The Standish group International, Inc.

Facts about COCOMO And Costar. (2012). Retrieved from

http://www.softstarsystems.com/.

Abdel-Rahman, E. M., Ahmad, A. R. (2012). A metaheurisic bat inspired algorithm for

full body human pose estimation. Ninth Conference on Computer and Robot

Vision, (pp. 369–375).

Abraham A., C. G. (2006). Stigmergic Optimization. Springer.

Albrecht, A. (1979). Measuring Application Development Productivity. In Proc of the

IBM Applications Development Symposium , (pp. 83-92).

Anish M, Kamal P and Harish M. (2010). Software Cost Estimation using Fuzzy logic.

ACM SIGSOFT Software Engineering Notes, 1-7.

Anna Galinina, Olga Burceva, Sergei Parshutin. (2012). The Optimization of COCOMO

Model Coefficients Using Genetic Algorithms. Information Technology and

Management Science, 45-52.

Banks A., J. V. (2007). A Review of Particle Swarm Optimization- Part I: Background

and Development, Natural Computation. springer, 467–484.

Basili, J. B. (1981). A meta model for software development resource expenditures. Fifth

International conference on software Engineering, (pp. 107-129).

Boehm., B. (1981). Software Engineering Economics. New Jersey.

Bora, T. C. (2012). Bat-inspired optimization approach for the brushless DC wheel motor

problem. IEEE Trans. Magnetics, 947-950.

Brajesh Kumar Singh, S. T. (2013). Tuning of Cost Drivers by Significance Occurrences

and Their Calibration with Novel Software Effort Estimation Method. Advances

in Software Engineering.

C.F, K. (1996). An Empirical Validation of Software Cost Estimation Models. ACM,

416-429.

Dolado, J. J. (2009). On the Problem of the Software Cost Function,. spain.

Du, Z. Y. (2012). Image matching using a bat algorithm with mutation. Applied

Mechanics and Materials, 88-93.

F, s. (2006). Estimation of the COCOMO model parameters using genetic algorithms for

NASA software projects. Journal of computer science, 118-123.

F. Ferrucci, C. G. (2010). Genetic programming for effort estimation: an analysis of the

impact of different fitness functions. in Proceedings of the 2nd International

Symposium on Search Based Software Engineering (SSBSE ’10), (pp. 89-98).

IEEE Computer Society.

 Optimizing Effort Estimation Model Using Bat Algorithm

59

Gao, B. W. (1997). ASSESSING SOFTWARE COST ESTIMATION MODELS:

CRITERIA FOR ACCURACY, CONSISTENCY AND REGRESSION.

Advanced journal of Information sciences, 30-44.

http://en.wikipedia.org/wiki/COCOMO. (n.d.). Retrieved june 2014, from

http://en.wikipedia.org/: http://en.wikipedia.org/wiki/COCOMO

Jacob, L. (2014). Bat Algorithm for resource scheduling in cloud computing

enviornment. International Journal for research in applied sciences and

engineering technology.

Jamil, M. Z.-J. (2013). Improved bat algorithm for global optimization. Applied Soft

Computing.

Khan, K. N. (2011). A fuzzy bat clustering method for er-gonomic screening of office

workplaces,. Advances in Intelligent and Soft Computing, 59–66.

Komarasamy, G. a. (2012). An optimized K-means clustering techniqueusing bat

algorithm. European J. Scientific Research, 263-273.

Lemma, T. A., Bin Mohd Hashim, F. (2011). Use of fuzzy systems and bat algorithm for

exergy modelling in a gas turbine generator,. IEEE Colloquium, 305–310.

Lin, J. H. (2012). A chaotic Levy flight bat algorithm for parameter estimation in

nonlinear dynamic biological systems. J.Computer and Information Technology,

56–63.

Lin, J.-C. (2010). Applying Particle Swarm Optimization to Estimate Software Effort by

Multiple Factors Software Project Clustering. IEEE.

M.jorgensen, K. a. (2003). A review of software surveys on software effort estimation.

International symposium on Empirical Software Engineering, (pp. 223-230).

Michalewicz. (1992). Genetic Algorithms + Data Structures = Evolution Programs.

Springer.

Molokken, K. F. (2007). Increasing Software Effort Estimation Accuracy- using

experiance data, estimation models and checklists. &th International conference

on Quality Software, (pp. 342-347). portland.

Nakamura, R. Y. (2012). A binary bat algorithm for feature selection. 25th SIBGRAPI

Conference on Graphics, Patterns and Images (SIBGRAPI) (pp. 291-297). IEEE

Publication.

P.R Srivastava, A. B. (2014). An empirical study of test effort estimation based on bat

algorithm. Int. J. Bio-Inspired Computation, 57-70.

Putnam, L. (1978). A general Empirical Solution to the Macro Software Sizing and

Estimating Problem. IEEE Transactions on Software Engineering , (pp. 345-360).

Q. Alam, P. (n.d.). Systematic Review of Effort Estimation and cost Estimation. Roorkee:

Institute of management studies.

Reddy, P. (2010). Software effort estimation using Particle Swarm Optimization with

inertia weight. International journal of software Engineering , 12-23.

S K Sehra, Y. S. (2011). SOFT COMPUTING TECHNIQUES FOR SOFTWARE

PROJECT EFFORT ESTIMATION. “International Journal of Advanced

Computer and Mathematical Sciences, 160-167.

Segundo. (2001). SEER-SEM Users Manual .

 Optimizing Effort Estimation Model Using Bat Algorithm

60

Shepperd, M. J. (2007). A Systematic Review of Software Development Cost Estimation

Studies. IEEE Transactions on Software Engineering.

Sheta, S. A. (2007). Software Effort Estimation by Tuning COOCMO Model Parameters

Using Differential Evolution. IEEE congess on evolutionary computation, 1283-

1289.

Vishali, Anshu Sharma, Suchika Malik. (2014). COCOMO model Coefficients

Optimization Using GA and ACO. International Journal of Advanced Research

in Computer Science and Software Engineering, 771-776.

X.S., Y. (2008). Nature-Inspired Metaheuristic Algorithms. UK: Luniver. .

Xie, J. Z. (2013). A novel bat algorithm based on differential operator and Levy flights

trajectory. Computational Intelligence and Neuroscience.

Yang, X. S. (2011). Bat algorithm for multi-objective optimisation. Int. J. Bio-Inspired

Computation, 267-274.

Yang, X. S., Karamanoglu, M., Fong, S. (2012). Bat aglorithm for topology optimization

in microelectronic applications. Conference on Future Generation

Communication Technology, (pp. 150–155).

Yang, X.-S. (2010). A New Metaheuristic Bat-Inspired Algorithm. Nature Inspired

Coop-erative Strategies for Optimization (NISCO 2010) (pp. 65-74). Springer.

