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ABSTRACT 

Hematopoiesis is a lifelong process of the production and maintenance of all the cells of 

the blood system from the hematopoietic stem cells (HSCs) in a hierarchical manner. In adult 

mammals the hematopoietic stem cells (HSCs) reside in the bone marrow cavity. HSCs give rise 

to all the types of blood cells of the lymphoid and myeloid lineages. Radiation therapy in cancer 

leads to loss of a large number of immune cells, so HSCs are transplanted into the bone marrow 

of irradiated patients but HSCs differentiate before reaching the bone marrow, so the main aim is 

to maintain the HSCs in their proliferative state until they reach bone marrow. HSCs have three 

main characteristics of proliferation, self- renewal and differentiation. The proliferative property 

of HSCs is regulated by a number of signaling pathways, ligands and molecules, but one of the 

main regulators is the c-kit/SCF signaling. The binding of the SCF (Stem Cell Factor) to the c-kit 

receptor results in receptor dimerization, thereby activating c-kit activity. Src homology 2 (SH2) 

domain containing phosphatase 1 (SHP1) negatively regulates the c-kit activity. Hence in this 

work we have identified the structural variations using structural alignment between the PTPases 

and observed that HePTP is having high identity with SHP1. Based on this result we have 

screened known inhibitors of HePTP against SHP1 and identified some ligands having higher 

binding affinity than NSC87877. In order to design SHP1 specific inhibitor a pharmacophore 

model was designed to search for a NCE (Novel Chemical Entity). 
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2.0 INTRODUCTION 

Stem cells are a class of undifferentiated and unspecialized cells in the human body capable of 

proliferation, differentiation and self-renewing themselves. The concept of “stem cell” was first 

proposed by Till and McCulloch. This concept came into existence following the extensive 

studies on in vivo blood system regeneration (Seita et al., 2010). Stem cells are mainly of two 

types i.e., embryonic and non- embryonic. Embryonic stem cells (ESCs) are pluripotent cells 

since they can differentiate into all cell types whereas non- embryonic stem cells (Non- ESCs) 

are multipotent cells due to their potential to differentiate into a number of cell types but not all 

cell types (Tuch, Bernard, 2006). Stem cells can be broadly classified into four types based on 

their origin, stem cells from embryos, stem cells from the fetus, stem cells from the umbilical 

cord, and stem cells from the adult (Forbes S et al., 2002). Adult stem cells include the 

hematopoietic stem cells.  

Hematopoietic stem cells have ability of haematopoiesis. Haematopoiesis is the 

production and maintenance of blood stem cells and their proliferation and differentiation into 

the cells of peripheral blood [Fig. 1]. Transplantation of stem cells from the original transplant 

recipient into secondary and tertiary irradiated recipients reconstitutes hematopoiesis with 

resultant normal life spans. Transplantation requires two essential properties proliferation to 

replenish the stem cell compartment (self-renewal) and lifelong production of blood (Pearce 

W et al., 2008). During transplantation high number of HSC is needed as the cells reaching 

target eventually decreases. Various signaling pathways regulate the proliferation of HSCs, but 

the SCF and c-Kit signaling plays a very pivotal role in this process. SCF is a cytokine that exists 

both as a soluble protein and transmembrane protein which induces proliferation on binding with 

c-kit. The SCF receptor, c-kit is a receptor tyrosine kinase. c-Kit consists of an extracellular 

domain (where the ligand binds), a transmembrane segment, a juxtamembrane segment and a 

protein kinase domain (Roskoski, Robert. 2005, Ronnstrand, L. 2004). The binding of SCF to c-

Kit results in receptor dimerization and activation of protein kinase activity. The activated 

receptor becomes autophosphorylated at tyrosine residues 568 and 570 in juxtamembrane region 

of c-Kit that serve as docking sites for signal transduction molecules containing SH2 domains 

SHP-1 and SHP-2. SHP-1 binds to the phosphotyrosine residue 570 of c-Kit and negatively 

regulates the proliferation of HSCs (Roskoski, Robert. 2005; Ronnstrand, L. 2004). NSC87877 

(CID: 16654632) is the only single inhibitor known to inhibit SHP1/2 (from PubChem database).  

In this work we have identified the structural variations using structural alignment between the 

PTPases and observed that HePTP is having high identity with SHP1. Based on this result we 

have screened known inhibitors of HePTP against SHP1 and identified some ligands having 

higher binding affinity than NSC87877. In order to design SHP1 specific inhibitor a 

pharmacophore model was designed to search for a NCE (Novel Chemical Entity). 

 



 

Fig. 1: Haematopoietic stem cell hierarchy. Self-renewing HSC give rise to several 

multipotent progenitors (colony forming units (CFU), common myeloid progenitor 

(CMP) and common lymphoid progenitors (CLP)), which, in turn, produce oligopotent 

progenitors, unipotent progenitors and eventually fully differentiated cells. The CMP is 

able to produce granulocyte-macrophage progenitors (GMP) and 

megakaryocyte/erythrocyte progenitors (MEP) giving rise to 

monocyte/macrophages/granulocytes and megakaryocytes/platelets/ erythrocytes, 

respectively. Erythoid burst forming unite (BFU-E) give rise to pro-erythroblast colony 

forming unit-erythroid (CFU-E) before erythrocytes are formed and the CLP gives rise to 

pre-B and pre-T cells which continue to mature into mature B and T lymphocytes.  
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3.0 REVIEW OF LITERATURE 

Stem cells are a type of undeveloped and unspecialized cells in the human body capable of 

proliferation, differentiation and self-renewing themselves. The concept of “stem cell” was first 

proposed by Till and McCulloch. This concept came into existence following the extensive 

studies on in vivo blood system regeneration (Seita et al., 2010). Stem cells are mainly of two 

types i.e., embryonic and non- embryonic. Embryonic stem cells (ESCs) are pluripotent cells 

since they can differentiate into all cell types whereas non- embryonic stem cells (Non- ESCs) 

are multipotent cells due to their potential to differentiate into a number of cell types but not all 

cell types (Tuch, Bernard, 2006). Stem cells can be broadly classified into four types based on 

their origin, stem cells from embryos, stem cells from the fetus, stem cells from the umbilical 

cord, and stem cells from the adult (Forbes S et al., 2002). Adult stem cells are located in tissues 

throughout the body and functions as a reservoir to replace the damaged and aging cells. 

However, under physiological conditions they are traditionally thought to be restricted to 

differentiate into cell lineages of the organ system in which they are located such as the brain 

cells, blood cells, etc. Adult stem cells include the hematopoietic stem cells. 

 Hematopoiesis is a lifelong process of the production and maintenance of all the cells of 

the blood system from the hematopoietic stem cells (HSCs) in a hierarchical manner. In adult 

mammals the hematopoietic stem cells (HSCs) reside in the bone marrow cavity (Pietras et al., 

2011, Crusio et al., 2012). All the mature blood cells in the body are derived from a small 

population of the hematopoietic stem cells (HSCs) and progenitors which becomes lineage 

restricted with each differentiation (Pietras et al., 2011). HSCs give rise to all the types of blood 

cells of the lymphoid and myeloid lineages. Some of the important cell types of the lymphoid 

lineage are B- cells, T- cells and the natural killer (NK) cells whereas those of the myeloid 

lineage are monocytes, granulocytes, macrophages, microglial cells and dendritic cells. Each of 

these cell types of the lymphoid and myeloid lineages can be derived from a single HSC and 

each HSC has the potential of producing large numbers of mature blood cells over a long period 

(Smith, 2002). Transplantation of the HSCs into secondary and tertiary irradiated recipients 

restores normal hematopoiesis. The process of transplantation requires two essential properties, 

self- renewal capacity, and lifelong production of blood cells (Pearce W et al., 2008). HSCs on 

the basis of their ability to self- renew can be divided into (1) Long term HSCs (LT- HSCs) and 

(2) Short term reconstituting HSCs (ST- HSCs). LT- HSCs have the ability of extensive self- 

renewal and sustaining lifelong hematopoiesis. ST- HSCs on the other hand have restricted self- 

renewal capacity (Blank et al., 2007). 

 Stem Cell Factor (SCF, kit-ligand or steel factor) is a cytokine plays a pivotal role in the 

process of hematopoiesis. SCF is expressed at all the sites where hematopoiesis takes place such 

as the bone marrow and fetal liver (Gali et al., 1994). SCF exists both as a soluble protein and 

transmembrane protein which induces proliferation on binding with c-kit.  



 The SCF receptor, c-kit is a receptor tyrosine kinase which is expressed in HSCs, mast 

cells, germ cells and melanocytes. The hematopoietic progenitor cells such as megakaryocytes, 

myeloblasts and erythroblasts also express the c-Kit receptor. c-Kit consists of an extracellular 

domain (where the ligand binds), a transmembrane segment, a juxtamembrane segment and a 

protein kinase domain [Fig.2]. The protein kinase domain contains an 80 amino acid residue 

insert (Roskoski, Robert. 2005, Ronnstrand, L. 2004). Stem cell factor and c-kit signaling plays a 

vital role in the process of hematopoiesis, gametopoieseis, melanogenesis and mast cell 

development and function. When stem cell factor binds to the c-kit, it leads to receptor 

dimerization and the protein kinase activity is activated via auto-phosphorylation at Tyr568 and 

Tyr570 of juxtamembrane domain. In the kinase insert domain three residues are phosphorylated. 

These three residues attract the adaptor protein Grb2 at Tyr703, phosphatidylinositol 3-kinase at 

Tyr721 and phospholipase C at Tyr730. In the distal kinase domain phosphotyrosine 900 binds 

phosphatidylinositol 3-kinase which in turn binds the adaptor protein Crk and the 

phosphotyrosine 936 binds the adaptor proteins APS, Grb2 and Grb7 (Roskoski, Robert. 2005) 

[Fig.3]. 

SHP1, a cytosolic phosphotyrosyl phosphatase (non-membrane protein tyrosine 

phosphatase) primarily occurs in the hematopoietic and epithelial cells. SHP1 contains two 

tandem SH2 domains, a phosphatase domain and a C-terminal tail. SHP1 negatively regulates 

the growth factor signaling. SHP1 reduces the growth promoting properties of the colony 

stimulating factor 1, erythropoietin and interleukin 3 receptors in addition to inhibiting Kit 

signaling. This effect is mediated either by direct receptor dephosphorylation or indirect 

dephosphorylation of the receptor- associated protein tyrosine kinases. The catalytic domain of 

SHP1 is blocked by its N- terminal SH2 domain thereby maintaining the enzyme in an inactive 

conformation (Kozlowski et al., 1998).  

 SHP2 is a cytosolic phosphotyrosyl phosphatase (non-membrane protein tyrosine 

phosphatase) just like SHP1, but unlike SHP1 it occurs in many types of cells. SHP2 contains 

two tandem SH2 domains, a phosphatase domain and a C- terminal tail (Lawrence et al., 2008). 

The SH2 domain is responsible for targeting SHP2 to phosphotyrosine residues of a variety of 

signaling molecules. Thus, SHP1 and SHP2 negatively regulates the Kit signaling due to 

interactions with specific phosphotyrosine residues present on the c- kit receptor (Kozlowski et 

al., 1998). The cell signaling by the cytokines and growth factors is mediate by SHP2 by acting 

via the RAS/MAP Kinase pathway (Geronikaki et al., 2008). Usually the enzyme SHP2 is found 

in its inactivated state due to the autoinhibition of its catalytic domain (Lawrence et al., 2008, Yu 

et al., 2008). 

 The property of proliferation and self-renewal of HSCs is regulated by a number of 

signaling pathways, ligands, macromolecules, genes and drugs. Table 1 shows a list of 

molecules, genes and drugs which regulate the proliferation and self-renewal properties of HSCs 

along with their functions. There are a number of animal models which have been used for the 

study of the different signaling pathways regulating the proliferative and self- renewal capacity 



[Fig.5]. Some of the most studied signaling pathways are c-Mpl /TPO signaling pathway [Fig.4], 

Tie2/Ang signaling pathway, BMP signaling pathway, Hedgehog signaling pathway, Notch 

signaling pathway, Wnt signaling pathway, etc. (Chotinantakul et al., 2012, Zon, 2008). 

The binding of developmental regulators and chemical modulators to the appropriate cell-

surface receptors, initiates the signalling pathways, which leads to the translocation of 

transcription factors from the cytoplasm to the nucleus. (The receptor for retinoic acid is in the 

nucleus.) The transcription factors in turn interact with other cell-specific transcription factors 

for regulating self-renewal property of HSCs. The competition between the various transcription 

factors is a simple mechanism for regulating self-renewal capacity, and another level of 

competition and control is provided by the chromatin-associated factors, such as MLL and BMI1 

(Zon, 2008). 

 

 

 
Fig. 2: Structure of SCF receptor c-Kit (receptor tyrosine kinase). 

 



 
 

Fig. 3: Proteins and signal transduction molecules interacting with activated c-Kit receptor.  

 



 
Fig. 4: c-Mpl/TPO signaling pathway (Source: Chotinantakul et al., 2012). 

 

 

 

Fig. 5: Different developmental pathways involved in regulating HSC self renewal 

property. (Source: Zon, 2008). 



Table 1: Molecules/genes/drugs regulating HSC proliferation and their self-renewal 

characteristics along with their functions. 

S. 

No. 

Molecule/Gene/Drug Function 

1. Wnt3A Increases self renewal 3- fold in culture 

2. Wnt3A Induce proliferation of B- cell precursors in a LEF-1 dependent 

manner 

3. Wnt5 Suppresses tissue recovery 

4. Wnt8 Increased proliferation 

5. Hoxb4 and Hoxa9 Overexpression leads to increased self renewal in mouse bone 

marrow cells. 

6. Hoxa9 Increased myeloid lineage differentiation and leukaemogenesis 

7. Hoxb4 Normal bone marrow development and abnormal/aberrant 

expression increases the no. of transplantable HSCs both in vivo 

and in vitro 

8. Hoxa10 15- fold increase in self- renewal 

9. Hox gene Important in regulation of self- renewal 

10. Bmi-1 Defeciency results in decreased self- renewal 

11. Bmi-1 Overexpression results in increased self- renewal 

12. Bmi-1 Represses the gene encoding cell cycle regulator INK4A 

13. MLL fusion proteins Increased self-renewal whereas inactivation leads to decreased 

self- renewal 

14. Retenoic acid Alterations in Hox gene expression and also modifies Wnt 

mediated signaling pathway  

15. Retenoic acid Maintains HSCs in culture and can increase self- renewal in serial 

transplantation experiments 



NSC87877 (CID: 16654632) is the only single inhibitor known to inhibit SHP1/2 (from 

PubChem database). This inhibitor non-specifically binds with other PTPases like Acid 

phosphatase 1 (ACP1) (Song et al., 2009), Dual specificity phosphatase 14 (DUSP14) (Song et 

al., 2009), Dual specificity phosphatase 23 (DUSP23) (Song et al., 2009), Dual specificity 

phosphatase 26 (DUSP26) (Song et al., 2009) and Vaccinia H1- related (VHR) phosphatase 

activity (Park et al., 2009). NSC87877 has been found to have ten times more inhibitory effect 

on SHP2 as compared to DUSP14 (Song et al., 2009). NSC87877 has also been seen to be more 

specific for DUSP26 in comparison to SHP1 as it has more inhibitory effect on DUSP26. The 

binding mechanism of NSC87877 to the catalytic cleft of DUSP26 is the same as that of SHP2 

was suggested by kinetic studies with NSC87877 and DUSP26 (Song et al., 2009). 

16. DNMT3A and 

DNMT3B 

Required for DNA methylatin in HSCs 

17. p21 Lack results in higher rate of HSC proliferation and differentiation, 

lower self- renewal capacity. Hence required for maintaining HSC 

quiescence 

18. GATA-2 Inactivation inhibits HSC self- renewal 

19. GFI-1 Inactivation inhibits HSC self- renewal 

20. Myc Inactivation inhibits HSC self- renewal 

21. SMAD- 4 Inactivation inhibits HSC self- renewal 

22. Axin Abnormal/abberant expression inhibits HSC proliferation, 

increased cell death of HSCs in vitro and reduced reconstitution in 

vivo 

23. Valproic acid Increases both proliferation and self- renewal, accelerates cell 

cycle progression, down regulates p21cip1/waf1, inhibits GSK3β 

thereby activating Wnt signaling pathway, up regulates Hoxb4, 

induces differentiation or apoptosis in leukemic blasts, increases 

replating capacity of murine HSC 

24. Laq824 Properties similar to valproic acid on HSC 

25. CG152 Properties similar to valproic acid on HSC 

26. Stem Regenin (SR-1) Increases ex vivo expansion of peripheral blood derived CD34+ 

cells by 50 fold  
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4.0 MATERIALS AND METHODS 

 

4.0.1 Sequence Analysis of c-Kit and SHP1/2 

The sequence, secondary and tertiary structures of the c-Kit receptor was retrieved from the 

Protein Data Bank (PDB). The various domains of c-Kit in the tertiary structure were analyzed 

using Pymol. Sequence alignment of the SHP1 and SHP2 sequences was performed to determine 

the percentage identity and percentage similarity using EMBOSS. 

4.0.2 Structural Analysis of Protein Tyrosine Phosphatase and Search of its Antagonist 

PubChem Compound database was used to search for the antagonists or inhibitors of 

SHP1. Only one compound, NSC87877 is reported as SHP1/2 PTPase inhibitor. In order to 

design a novel inhibitor, other member inhibitors of the non-receptor protein tyrosine 

phosphatase family which are closely related to SHP1 were searched. The closely related 

member of SHP1 and SHP2 were superimposed with different members of the non-receptor 

PTPase family and their RMSD values were calculated using Pymol. 

4.0.3 Searching PubChem Database for SHP1/2 Inhibitors 

Superimposition of SHP1 with other members of the non-receptor PTPase family showed it 

to be closely related to HePTP with an RMSD value of 0.656. Hence, from PubChem two assay 

IDs (AID 1059 and AID 1077) were selected wherein IC50 values of compounds were reported 

against HePTP. Since NSC87877 was tested against HePTP using two different assays hence the 

inhibitors along with their IC50 values from both the assay IDs were collected as two different 

datasets. 

4.0.4 Virtual Screening of Ligands and Dataset Preparation 

The inhibitors were collected in SDF format from both the assay IDs (AID 1059 and AID 

1077) which were then screened against SHP-1 and subsequently binding energy of all the 

compounds were obtained using AUTODOCK Vina. Inhibitors which showed higher binding 

affinity than NSC87877 were further selected on the basis of similar structure and good 

biological activity. Hence the inhibitors with better binding energy, good biological activity and 

belonging to congeneric series were included in the dataset to be used for pharmacophore and 

QSAR studies. The clustering feature of PubChem was used to obtain the congeneric series. A 

dataset of 24 compounds (including NSC87877) with well-defined inhibitory activity given as 

IC50 values in µM concentration was prepared for building 3D-QSAR model. For the correlation 

purpose IC50 values were then converted to their molar values and subsequently calculated to 

free energy-related terms, i.e., -log (1/IC50). This dataset was then chosen for generating 

common pharmacophore hypotheses and then performing QSAR analysis. PHASE-3.1 module 



of Maestro-9 (Phase 3.1, Schrödinger, LLC, 2009) molecular modeling software was used to 

generate 3D pharmacophore models for selected series of inhibitors.  

4.0.5 Ligand Preparation and Conformation Generation 

 

The structures were sketched using maestro builder toolbar and were imported to develop 

pharmacophore model panel of the PHASE with their respective activity values. The ligands 

were assigned as actives and inactives by giving an appropriate activity threshold value 5.6. 

The activity threshold value was selected in the basis of dataset activity distribution and 

active ligands are chosen to derive a set of suitable pharmacophores. Sketched structures were 

energy minimized/cleaned up by Ligprep module using OPLS_2005 force field(LigPrep, 

Schrödinger, LLC, 2009) and proper protonation states were assigned with the ionizer 

subprogram at pH 7.2 ± 0.2. 

Conformation generation is an important step in PHASE. The conformations were 

generated with the help of ConfGen method taking GB/SA solvent model using OPLS_2005 

(MacroModel, Schrödinger, LLC, 2009) force field. 

About 1000 conformers were generated per structure ensuring 50 step minimization. The 

minimized conformers were filtered using a relative energy parameter limitation of 10kcal/mol 

and a minimum atom deviation of 1Å. Thus lowest energy non-redundant conformers of a ligand 

were used for pharmacophore model development. A couple of conformer was defined as 

identical if the relative distance between them is below 1Å. 

 

4.0.6 Creating Pharmacophore Sites and Common Pharmacophore Hypothesis   

Generation 

According to the bioactivity, the molecules were divided into actives and inactives,     

setting the maximum and minimum values in the activity threshold window of PHASE. 

Pharmacophore sites of a ligand are represented in the 3D space by a set of points. These points 

coincide with various chemical characteristics with type, location, and directionality, which 

facilitate non-covalent bonding with the receptor sites. The pharmacophore features like 

hydrogen bond acceptor (A), hydrogen bond donor (D), hydrophobic/Non-polar group (H), 

negatively ionizable (N), positively ionizable (P), and aromatic ring (R) were used to create the 

pharmacophore sites for the energy-calculated ligands. Tree-based partition algorithm is used by 

PHASE for detection of common pharmacophore from a set of variants taking maximum tree 

depth 3. To find common pharmacophore, PHASE algorithm use an exhaustive analysis of k-

point pharmacophore match picked from the conformations of a set of active ligands on the basis 

of inter site distances,  and then find all spatial arrangements of pharmacophore features those 

are common to at least 8 of 10 active ligands. The generated pharmacophores match different set 

of actives eliminating the chance of its exclusiveness toward a small subset of ligands. The 

different pharmacophore hypotheses were further examined by using a scoring function, so that it 

produced the best alignment of the ligands. 



4.0.7 Scoring Pharmacophore Hypothesis 

The scoring of the pharmacophore hypotheses was done in relation to the information 

from the active ligands considering various geometric and heuristic factors. The alignment to a 

reference pharmacophore is considered according to RMSD of the site points and the average 

cosine of the vectors keeping their tolerance 1.2 Å and 0.5, respectively. To get the reference 

ligand from the most active set, upper 10% was considered for score calculation. For further 

refinement, volume scoring was performed in order to measure quantitatively of how each non-

reference ligand is superimposing with the reference ligand. Here, the cutoff for volume scoring 

was kept at 1.00 for the non-reference pharmacophores. 

 

The resulting pharmacophore was then scored and ranked. The scoring was done to 

identify the best candidate hypothesis, and which provided an overall ranking of all the 

hypotheses. The scoring algorithm included the contributions from the alignment of site points 

and vectors, volume overlap, selectivity, number of ligands matched, relative conformational 

energy, and activity. Among which best hypothesis AAADRRR.190 was selected on the basis of 

score and discrimination of active and nonactive molecules i.e if active molecules score well, the 

hypothesis could be invalid as it does not discriminate between active and inactive. 

 

4.0.8 Building of QSAR model 

To produce a statistically significant 3D-QSAR model, the first and the foremost    

requirement is the alignment of ligands; therefore, to execute the QSAR study, a pharmacophore-

based alignment was considered. The PHASE algorithm uses a very flexible approach for the 

development of 3D QSAR model. It considers a rectangular grid of 1 Å grid distance in a 3D 

space. Thus, it creates cubes of said dimension in the 3D space. The atoms of the molecules 

which are considered as overlapping Vander Waal spheres fall inside these cubes depending on 

the volume of the atomic spheres. These occupied cube spaces are termed as volume bits. A 

volume bit is allocated for each different class of atom that occupies a cube. There are six atom 

classes, viz. two hydrogen bond acceptor (A), one positively ionizable (P), and two aromatic ring 

(R) used for classifying the atom characteristics. The total number of volume bits consigned to a 

specified cube is based on how many training set molecules occupy that cube. A single cube may 

represent the occupation by one or various atoms or sites, and even those from the same 

molecule or may be from unlike molecules of the training set. Thus, a molecule may be 

represented by a binary string concurrent to the occupied cubes, and also the various types of 

atomic sites that exist in those cubes. To create an atom-based QSAR model, these volume bits 

which encode the geometrics and chemical characteristics of the molecule are regarded as 

independent variables in PLS (Partial Least square) regression analysis.   The maximum PLS 

factor that can be taken is N/5, where N is the number of ligands present in the training set. In 

this study, a significant 3D-QSAR model was generated using AAADRRR-190 hypothesis. For 

QSAR model generation, training and test partition was done by random selection method. 

Atom-based model selection criterion was chosen for model building . PLS factor was set as 03, 



the maximum number of PLS factors in each model can be 1/5 the total number of training set 

molecules. More the PLS factor value, more will be the reliability of models. Various models 

have been generated and the best model was selected on the basis of the statistical significance. 
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5.0 RESULTS AND DISCUSSION 

 

5.0.1 Sequence Analysis of c-Kit and SHP1/2 

The secondary structure of c-kit shows structural rigidity of active site for SHP1. 

 

Fig. 6: Secondary structure of c- kit wherein arc depicts turn, yellow arrows depicts beta 

strand, black line depicts no assigned secondary structure, blue line depicts bend, arrow 

represents beta bridge and coils depict helix. 

The secondary structure of c-Kit shows that the receptor is 39% helical that is there are nearly 17 

helices and 18% beta sheet that is nearly 18 beta sheet strands. 

 

 

 

 



The various domains of c-kit receptor were analyzed in the tertiary structure.   

 

Fig. 7: Tertiary (3D) structure of c-kit. 

 

 



 

Fig. 8: Sequence alignment of SHP1 and SHP2 using BLAST to determine the sequence 

conservation. 

 

The % identity as determined by the local sequence alignment using BLAST was found to be 

59% with query coverage of 97%. 

 

  

 

 



5.0.2 Structural Analysis of Protein Tyrosine Phosphatase and Search of its Antagonist 

SHP1 and SHP2 were superimposed with other members of the non-receptor PTPase family such 

as PTP1B, PTPN9 and HePTP and their RMSD values were calculated. The RMSD values of the 

various members of the non-receptor PTPase family are tabulated in Table 3. 

Table 2: RMSD values of the various members of the non- receptor PTPase 

Members SHP1/PTPN6 SHP2/PTPN11 

PTP1B/PTPN1 0.729 0.665 

PTPN9 0.962 0.799 

HePTP/PTPN7 0.656 0.673 

 

 

 

 

 

 

Fig. 9: Superimposed structure of SHP-1(shown in red color) PDB_ID:2B30 and HePTP 

(shown in green color) PDB_ID 1ZCO.The RMSD value obtained from the superimposed 

structure of SHP-1 and HePTP was found to be 0 .656. 

Blue and pink regions indicate the 

inhibitor binding region in SHP-1 

and HePTP respectively. 

 

Blue and pink regions indicate the 

inhibitor binding region in SHP-1 

and HePTP respectively. 

 

RMSD: 0.656 



5.0.3 Dataset Collection 

Superimposition results showed that SHP1 is closely related to HePTP with an RMSD value of 

0.656. Hence from the PubChem Compound database, two assay IDs AID 1059 and AID 1077 in 

which NSC 87877 was tested against HePTP were selected. The inhibitors from both the assay 

IDs along with their IC50 values were collected (Table 3 and 4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 3: CIDs and their corresponding IC50 values under the assay ID (AID) 1059 

S.No. CID IC50 Value S.No. CID IC50 Value 

1. 2928673 2.38 37. 2940938 13.3 

2. 16654891 2.41 38. 654761 28 

3. 16654890 2.63 39. 16654690 28.3 

4. 4039540 2.51 40. 16654689 15.2 

5. 16654893 3.87 41. 16654688 0.792 

6. 652912 11.3 42. 1357397 1.26 

7. 3136927 1.63 43. 5341934 43.9 

8. 617227 5.06 44. 5341943 2.4 

9. 654089 0.503 45. 3112185 7.58 

10. 2859888 2.18 46. 2868734 47.3 

11. 3124342 6.05 47. 6456506 0.543 

12. 2269367 5.11 48. 3439114 71.4 

13. 16654892 11 49. 2276396 3.88 

14. 4715351 5.4 50. 3122746 13.2 

15. 2869196 3 51. 2901613 5.62 

16. 16654632 0.483 52. 2173774 3.63 

17. 646406 5.43 53. 3122747 70.2 

18. 2914536 2.04 54. 2872935 92.9 

19. 2243732 3.26 55. 2920908 44.8 

20. 2925672 3.3 56. 2921964 10.4 

21. 646096 15.6 57. 3124366 13.7 

22. 2865731 12.9    

23. 6492412 8.11    

24. 3115075 21    

25. 717599 3.93    

26. 2207086 6.28    

27. 2930528 2.8    

28. 2975102 9.63    

29. 976017 88    

30. 3453217 3.84    

31. 16654597 3.35    

32. 3053058 41.5    

33. 6400942 10.4    

34. 1780 15.4    

35. 16654691 0.801    



36. 1589738 12.8    

Table 4: CIDs and their corresponding IC50 values under the assay ID (AID) 1077 

S.No. CID IC50 Value S.No. CID IC50 Value 

1. 24761488 1.172 36. 2266660 5.46 

2. 24178237 1.42 37. 24178233 2.56 

3. 24178227 0.966 38. 3053058 2.84 

4. 892446 0.555 39. 44182133 36.3 

5. 889983 1.129 40. 5766720 1.051 

6. 1331726 1.71 41. 3157646 2.17 

7. 1331726 1.148 42. 1228861 0.44 

8. 16330874 0.05 43. 1796598 1.195 

9. 24178226 0.814 44. 2258411 35 

10. 1324805 1.007 45. 5076888 3.1 

11. 24178231 0.968 46. 901652 15.65 

12. 2301472 4.625 47. 652912 9.51 

13. 2925154 0.923 48. 2585712 2.59 

14. 1299158 9.44 49. 6000533 4.637 

15. 889170 2.225 50. 1072900 1.605 

16. 1209230 9.985 51. 2243732 2.7 

17. 654089 2.17 52. 2545524 0.066 

18. 24178215 3.458 53. 891589 14.3 

19. 16654688 1.76 54. 1213466 8.46 

20. 3883207 9.21 55. 20110352 4.253 

21. 24178235 2.52 56. 44182131 81.2 

22. 2301472 3.085 57. 3000187 4.1 

23. 24178230 2.04 58. 2240797 25.099 

24. 762708 5.055 59. 4715351 20.5 

25. 4039540 4.03 60. 2229326 2.286 

26. 2925555 3.01 61. 3239711 6.47 

27. 818221 22.2 62. 3157647 0.278 

28. 2826665 0.593 63. 1072898 2.705 

29. 5336454 1.037 64. 2214811 3.455 

30. 2214811 3.655 65. 2924978 2.935 

31. 6492412 16.071 66. 3792955 4.9 

32. 1587127 1.267 67. 5989418 7.51 

33. 1516220 7.081 68. 617227 20.8 

34. 3453217 7.98 69. 2928673 4.56 



35. 9595032 0.924 70. 3136927 4.17 

71. 2859888 7.45 110. 2230267 33.093 

72. 2878586 1.346 111. 1282000 27.329 

73. 1780 20 112. 1356098 31.4 

74. 16654632 2.67 113. 1209211 2.79 

75. 3266419 1.051 114. 2901613 12.9 

76. 3112185 16.6 115. 2545473 1.745 

77. 1357397 0.24 116. 1299058 2.465 

78. 646406 4.81 117. 2865731 42 

79. 2914536 4.68 118. 1092683 2.3 

80. 2869196 13.8 119. 3124366 32.5 

81. 2230291 35.111 120. 5765582 4.065 

82. 2226406 39.56 121. 3122746 29.5 

83. 16654890 31.7 122. 24178232 24.1 

84. 16654891 28.5 123. 3115075 58.9 

85. 1737079 3.1 124. 4969416 1.38 

86. 16654893 24.7 125. 3182456 84.779 

87. 2975102 26.6 126. 16654689 73.3 

88. 2930528 8.98 127. 16654690 72.1 

89. 5341934 4.94 128. 9512029 0.276 

90. 2921964 3.49 129. 1435211 6.378 

91. 1329592 10.85 130. 5765581 0.32 

92. 2300608 5.7 131. 2269367 22.2 

93. 4302116 1.838 132. 1328767 0.274 

94. 5341943 1.8 133. 44182134 4.167 

95. 2940938 31.675 134. 6400942 30.64 

96. 1589738 26.1 135. 5504142 75.4 

97. 3124342 23.4 136. 2260301 3.955 

98. 646096 6.26 137. 16654597 11.6 

99. 6456506 0.949 138. 2062730 66.934 

100. 2173774 3.568 139. 16654892 40.4 

101. 16217011 48.1 140. 2975144 27.611 

102. 24178225 2.14 141. 2545467 0.321 

103. 5346285 3.677 142. 2925672 10.8 

104. 44229065 3.515 143. 2207086 35 

105. 44229061 14.999 144. 717599 25 

106. 16654691 0.22 145. 2213073 10.775 

107. 2012947 4.513 146. 1756795 4.845 

108. 8853383 16.665 147. 2276396 2.738 



109. 1228895 7.47 148. 3236343 7.38 

149. 2924768 15.7    

 

5.0.4 Virtual Screening  

The binding affinity of all the compounds was calculated and tabulated in Table 6. 

The inhibitors with their high negative binding affinity greater than NSC87877 can be 

considered as more specific towards SHP1 and can be considered as more potential inhibitor or 

antagonist of SHP1. 

Table 5: Compounds from both the assay IDs (AID 1059 and AID1077) and their binding 

energy with SHP1 (PDB ID: 2B3O) 

S. No. Compound ID Binding Affinity S. No. Compound ID Binding Affinity 

1. cid 24178230 -9.5 28. cid 762708 -8.3 

2. cid 1209211 -9.5 29. cid 1072900 -8.3 

3. cid 1299058 -9.4 30. cid 5076888 -8.2 

4. cid 24178225 -9.3 31. cid 3453217 -8.2 

5. cid 2214811 -9.3 32. cid 2258411 -8.2 

6. cid 654089 -9.3 33. cid 901652 -8.2 

7. cid 1331726 -9.3 34. cid 20110352 -8.2 

8. cid 4715351 -9.3 35. cid 2240797 -8.2 

9. cid 1789 -9.3 36. cid 403950 -7.8 

10. cid 4715351 -9.3 37. cid 6492412 -7.7 

11. cid 128895 -9.2 38. cid 5766720 -7.7 

12. cid 372955 -9.0 39. cid 6000533 -7.7 

13. cid 24178231 -8.9 40. cid 24178237 -7.6 

14. cid 2925154 -8.9 41. cid 24178227 -7.6 

15. cid 892446 -8.9 42. cid 3239711 -7.6 

16. cid 2924978 -8.9 43. cid 3157647 -7.6 

17. cid 3239711 -8.9 44. cid 1228861 -7.4 

18. cid 24178215 -8.9 45. cid 5346285 -7.4 

19. cid 24178232 -8.8 46. cid 2266660 -7.4 

20. cid 901652 -8.8 47. cid 44182133 -7.3 

21. cid 1329592 -8.7 48. cid 889983 -7.3 

22. cid 1331766 -8.7 49. cid 1516220 -7.2 

23. cid 24178226 -8.5 50. cid 3157646 -7.2 

24. cid 176598 -8.4 51. cid 16654632 -7.1 

25. cid 24178233 -8.4 52. cid 2229326 -6.9 



26. cid 2301472 -8.3 53. cid 3000187 -6.9 

27. cid 1092683 -8.3 54. cid 3266419 -6.9 

55. cid 2878586 -6.9 94. cid 3883207 -5.8 

56. cid 1213466 -6.9 95. cid 5336454 -5.8 

57. cid 891589 -6.9 96. cid 2826665 -5.8 

58. cid 3157647 -6.9 97. cid 2266660 -5.7 

59. cid 1072898 -6.9 98. cid 9595032 -5.6 

60. cid 1357397 -6.9 99. cid 5765582 -5.6 

61. cid 646406 -6.8 100. cid 1756795 -5.6 

62. cid 2928673 -6.8 101. cid 2260301 -5.6 

63. cid 3136927 -6.5 102. cid 1435211 -5.6 

64. cid 44229061 -6.5 103. cid 3182456 -5.6 

65. cid 2012947 -6.5 104. cid 44182134 -5.5 

66. cid 8853383 -6.5 105. cid 2975144 -5.5 

67. cid 2230267 -6.3 106. cid 254573 -5.5 

68. cid 1282000 -6.3 107. cid 5504142 -5.5 

69. cid 2230291 -6.3 108. cid 2062730 -5.5 

70. cid 2226406 -6.3 109. cid 4969416 -5.4 

71. cid 4302116 -6.3 110. cid 2545467 -5.4 

72. cid 1329592 -6.3 111. cid 5765581 -5.3 

73. cid 16654893 -6.2 112. cid 9512029 -5.2 

74. cid 16654891 -6.1 113. cid 1328767 -5.1 

75. cid 16654890 -6.1 114. cid 24178232 -5.0 

76. cid 16654691 -6.1 115. cid 71599 -5.0 

77. cid 646096 -6.1 116. cid 2207086 -5.0 

78. cid 2940938 -6.1 117. cid 16654969 -5.0 

79. cid 1589738 -6.1 118. cid 2269367 -5.0 

80. cid 16217011 -6.0    

81. cid 2869196 -6.0    

82. cid 2975102 -6.0    

83. cid 2930528 -6.0    

84. cid 2300608 -6.0    

85. cid 2921964 -6.0    

86. cid 2914536 -5.9    

87. cid 2173774 -5.9    

88. cid 5341943 -5.9    

89. cid 65456566 -5.9    

90. cid 24761488 -5.9    

91. cid 818221 -5.9    



92. cid 889170 -5.9    

93. cid 1209230 -5.9    

Table 6 shows that compounds with binding affinity less than NSC87877 (CID: 16654632) are 

more specific for SHP1. Hence it can be concluded that the compounds with better binding 

efficiency than NSC87877 can prove to be more potent inhibitors of SHP1. 

5.0.5 Dataset Preparation 

The inhibitors having higher binding affinity than NSC87877 further underwent pharmacophore 

modeling to identify activity of inhibitors on the basis of structural similarity. Table 7 shows the 

compounds that were selected for pharmacophore and QSAR studies along with their structure,   

-logIC50 values and binding energy. 

Table 6: Compounds which were selected for pharmacophore and QSAR studies along 

with their structure, pIC50 values and binding energy. 

S. No. Compound 

ID    

Structure -log 

IC50 
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3. CID 

2924978 

 
N

N

O

O

N
H

O

N

 

  6.070 

 

-8.9  
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The B.A and the logIC50 value of most of the compounds in table 7 are in correlation to each 

other which means that the B.A of a compound with lower IC50 value is high. This indicates that 

the particular compound/inhibitor is interacting with the residues in the active site for the 

inhibitor with higher affinity. Some of the other compounds have B.A higher or lower in 

comparison to their high or low IC50 value. Higher B.A and high IC50 value of a compound may 

be due to the reason that the compound does not bind at the active site for the inhibitor and 

instead binds to a region other than the inhibitor binding site. While a lower B.A and low IC50 

value may be attributed to the fact that the compound binds to the inhibitor binding site but with 

lesser affinity and thus has loose interaction with the residues in the binding site. 

5.0.6 Pharmacophore Modeling 

Several seven- point common pharmacophore hypotheses were generated using active molecules 

with various combinations of site. Minimum and maximum sites considered to obtain optimum 

combinations of sites or features common to active compounds were 4 and 7 respectively. 

Identification of the pharmacophore features taking into consideration the highest active 

molecule was done by classifying the compounds into active and inactive categories based on the 

activity threshold. The survival scoring(s) function was used which identifies the best candidate 

from the generated models and assigns an overall ranking of all the hypotheses. The scoring 

algorithm includes contributions from the alignment of site points and vectors, volume overlap, 

selectivity, relative conformational energy, activity and number of ligands matched. However, 

the model should be able to discriminate between active and inactive molecules. Hypothesis 

generated and their scores are listed in Table 8. The hypotheses AAADRRR.190 was selected 

from among the various hypotheses generated based on the score and discrimination of active 

and inactive molecules. The best pharmacophore hypotheses AAADRRR.190 was selected for 

further QSAR study. The 3D pharmacophore hypotheses shows the following features: 3 



hydrogen bond acceptor (A) in pink color, 1 hydrogen bond donor (D) in blue color and 3 

aromatic rings (R) in yellow color. The best hypotheses was selected based on the survival score. 

A higher value of survival score indicates better fitness of the active ligands on the common 

pharmacophore and validates the model. Table 8 shows that AAADRRR.190 has the best 

survival score (3.581) amongst the hypotheses generated. The inactive survival score, vector 

score, site score, volume score and selectivity of the selected hypotheses AAADRRR.190 was 

calculated to be 1.787, 0.948, 0.880, 0.757 and 2.579 respectively.   

Table 7: Various PHASE hypotheses generated  

 

Phase 

hypothesis 

 

Survival 

 

Survival 

inactive 

 

Vector 

 

Site 

 

Volume 

 

Selectivity 

 

AAADRRR.190 

 

3.581 

 

1.787 

 

.948 

 

.88 

 

.757 

 

2.579 

 

AAADRRR.263 

 

3.543 

 

1.769 

 

.947 

 

.87 

 

.730 

 

2.476 

 

AAADRRR.235 

 

3.540 

 

1.755 

 

.947 

 

.87 

 

.720 

 

2.475 
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Fig. 10: 10a and 10b shows the common pharmacophore for active ligands which has the 

following features: 3 hydrogen bond acceptors (A) in pink color, 1 hydrogen bond donor 

(D) in blue color and 3 aromatic rings (R) in yellow color. 10c shows the 2D representation 

of common pharmacophore. 

5.0.7 Building of 3D QSAR model 

3D QSAR study was successfully performed on a series of inhibitors selected in order to 

understand the effect of the spatial arrangement of the structural features on the biological 

activity of the molecules selected. Figure 10 shows the results of the 3D QSAR study performed. 

The blue cubes in the 3D plot of the 3D representation of the 3D pharmacophore refers to the 

sites or regions of the ligands in which a particular feature is favorable for the biological activity 

of the molecule, whereas the red cubes indicates those sites or regions which are unfavorable for 

the biological activity of the molecules with respect to a particular feature. Figure 11a shows that 

addition of a donor group is favorable at the carbon just adjacent to the hydrogen bond acceptor 

A4 and hence can lead to increase in the biological activity. Figure 11b shows that the addition 

of an electron withdrawing group to the carbon chain and near the aromatic ring R9 is favorable. 

Figure 11c shows that the addition of a hydrophobic group near the aromatic rings R9 and R10 

as well as to the carbon chain is favorable, whereas the addition of a hydrophobic group in the 

region near the hydrogen bond donor D7 is unfavorable. 

The reliability of the 3D QSAR analysis on the selected hypotheses is justified from the fact that 

all the statistical parameters calculated are significant. Table 9 shows the statistical results of the 

3D QSAR study. 
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Fig. 11: QSAR visualization of various substituent’s effect: 11a) hydrogen-bond donor 

effect, 11b) electron withdrawing feature, 11c) hydrophobic effect. 

 

Table 8: Statistical result of 3D QSAR study 

 

PLS 

factors 

 

SD 

 

r² 

 

F 

 

P 

 

RMSE 

 

q² 

 

Pearson R 

 

1. 

 

0.2271 

 

0.6496 

 

27.8 

 

9.378e-005 

 

0.1719 

 

0.6242 

 

0.9546 

 

2. 

 

0.1275 

 

0.897 

 

60.9 

 

1.233e-007 

 

0.1198 

 

0.8173 

 

0.9467 

 

3. 

 

0.0817 

 

0.9607 

 

105.9 

 

2.184e-009 

 

0.1749 

 

0.6111 

 

0.711 

 

SD is standard deviation of the regression, r² is regression, and F is variance ratio. Larger value 

of F indicates a statistically more significant regression; P is the significance level of variance 

ratio. Smaller value indicates a greater degree of confidence. RMSE is the root-mean-square 

error, q² indicates the predicted activity, and Pearson R value indicates the correlation between 

the predicted and observed activity for the test set. 

Validity of the model generated can be expressed by internal predictivity (q
2
) which is 0.81 in 

this case. The internal predictivity can be obtained by leave-one-out (LOO) method. q
2
 is a more 

reliable statistical parameter than r
2
 as it is obtained by external validation method by dividing 



the dataset into training and test set. Larger value of F (60.9) indicates a statistically significant 

model. It is further supported by a smaller value of P (1.233e-007) which is an indication of a 

higher degree of confidence. Also the smaller values of SD (0.1275) and RMSE (0.1198) 

indicate that the model or data used for QSAR analysis is best. The PLS factor was taken as 3 in 

this study. PLS factor is also another parameter that confirms the reliability of the model 

generated. Table 10 shows the fitness and PHASE predicted activity of the training and the test 

set compounds.  

 

The fitness graph (Fig.12) between the observed activity and the PHASE predicted activity of the 

training and test set compounds indicates the active compounds are closely fitted to the 

regression line while the inactive compounds are scattered. The solid line in the graph indicates 

the hypothetical best fit line between the predicted and experimental activity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 9: Fitness and PHASE predicted activity of the compounds 

 

 

CID 

 

QSAR set 

 

Activity 

 

PLS 

factors 

 

Phase 

predicted 

activity 

 

Pharm 

set 

 

Fitness 

 

1209211 

 

Training 

 

5.560 

 

1 2 3 

 

5.89,5.56,5.59 

 

Inactive 

 

2.75 

 

2925154 

 

Test 

 

6.250 

 

1 2 3 

 

6.16,6.36,6.33 

 

Active 

 

2.57 

 

2924978 

 

Test 

 

6.070 

 

1 2 3 

 

5.87,5.99,5.96 

 

Active 

 

2.16 

 

762708 

 

Training 

 

5.550 

 

1 2 3 

 

5.62,5.52,5.60 

 

Inactive 

 

1.95 

 

1092683 

 

Training 

 

6.080 

 

1 2 3 

 

6.06,6.12,6.02 

 

Active 

 

2.34 

 

1329592 

 

Training 

 

5.400 

 

1 2 3 

 

5.47,5.34,5.40 

 

Inactive 

 

2.34 

 

24178225 

 

Training 

 

6.020 

 

1 2 3 

 

6.22,6.09,5.92 

 

Active 

 

2.33 

 

2301472 

 

Training 

 

6.070 

 

1 2 3 

 

6.21,6.14,6.06 

 

Active 

 

2.51 

 

24178230 

 

Test 

 

5.890 

 

1 2 3 

 

6.12,6.04,6.10 

 

Active 

 

2.77 

 

1072900 

 

Training 

 

6.150 

 

1 2 3 

 

5.72,5.99,6.04 

 

Active 

 

2.12 

 

24178237 

 

Test 

 

6.160 

 

1 2 3 

 

6.24,6.27,6.42 

 

Active 

 

2.89 

 

3157647 

 

Training 

 

6.700 

 

1 2 3 

 

6.26,6.39,6.61 

 

Active 

 

3.00 

 

24178215 

 

Training 

 

5.470 

 

1 2 3 

 

5.60,5.69,5.62 

 

Inactive 

 

2.13 

 

24178233 

 

Training 

 

5.950 

 

1 2 3 

 

5.95,5.95,6.00 

 

Active 

 

2.71 

 

16654632 

 

Training 

 

5.530 

 

1 2 3 

 

5.44,5.44,5.48 

 

Inactive 

 

2.34 

 

24178232 

 

Test 

 

5.810 

 

1 2 3 

 

6.02,5.81,5.86 

 

Active 

 

2.79 

 

24178227 

 

Training 

 

6.400 

 

1 2 3 

 

6.28,6.43,6.42 

 

Active 

 

2.68 

 

3239711 

 

Test 

 

5.400 

 

1 2 3 

 

5.56,5.59,5.62 

 

Inactive 

 

2.35 

 

372955 

 

Test 

 

5.530 

 

1 2 3 

 

5.54,5.46,5.52 

 

Inactive 

 

2.66 

       



24178231 Training 6.240 1 2 3 6.30,6.37,6.31 Active 2.71 

 

2214811 

 

Training 

 

5.730 

 

1 2 3 

 

5.84,5.69,5.75 

 

Active 

 

2.77 

 

1299058 

 

Training 

 

5.670 

 

1 2 3 

 

5.96,5.62,5.66 

 

Inactive 

 

2.73 

 

1331726 

 

Training 

 

6.000 

 

1 2 3 

 

5.72,6.09,6.04 

 

Active 

 

2.22 

 

24178226 

 

Training 

 

6.320 

 

1 2 3 

 

6.30,6.32,6.43 

 

Active 

 

2.84 

 

 

 
 

Figure 12: Fitness graph between observed activity versus PHASE predicted activity for 

training and test set compounds. 
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6.0 CONCLUSION AND FUTURE PERSPECTIVE 

Radiation therapy in cancer leads to loss of a large number of immune cells, so HSCs are 

transplanted into the bone marrow of irradiated patients but HSCs differentiate before reaching 

the bone marrow. Hence, the focus of our study was to find and develop strategies by which 

HSCs can be maintained in their undifferentiated state and enhancing proliferation until they 

reach their target site i.e bone marrow. A number of signaling pathways, ligands and genes 

regulate the proliferative and self-renewal properties of the HSCs. One of the signaling pathways 

that plays a crucial role in the process of hematopoiesis is the SCF (Stem Cell Factor) and c-kit 

pathway. SCF binding induces c-kit receptor dimerization and a cascade of signal transduction is 

activated. As a result of the signaling cascade activation Tyr568 and Tyr570 residues present on 

the juxtamembrane domain of c-kit are phosphorylated. The phosphorylated Tyr568 and Tyr570 

residues are the binding site of its negative regulators. SHP1 and SHP2 are members of the non-

receptor tyrosine phosphatase which negatively regulates c-kit signaling. So to increase the 

proliferation through c-kit, we have targeted SHP-1. In this work both structure based (docking) 

and ligand based (pharmacophore modeling and 3D QSAR) approaches have been used to design 

SHP-1 specific inhibitor. A dataset of 24 compounds was built to carry out pharmacophore 

modeling and QSAR studies using PHASE module of Schrodinger. The dataset was classified 

into active and inactive molecules based on their IC50 values. Among the various hypotheses 

generated based on the score and discrimination of active and inactive molecules, hypotheses 

AAADRRR190 (survival score: 3.581) was selected as the best pharmacophore hypotheses on 

which further QSAR study was carried out. The 3D QSAR result of hypotheses AAADRRR190 

was found to be statistically good and significant. All the molecules showed good alignment with 

good fitness ranging from 3.00 (for most active) to 1.95 (for least active). QSAR model 

generation was carried out by randomly dividing the dataset into training set of 17 compounds 

and test set of 7 compounds. For good model generation 70% of the compounds in the dataset 

should be in the training set and 30% in the test set. PLS factor was taken as 3 as the maximum 

number of PLS factors in each model can be 1/5 of the total number of training set compounds. 

More is the number of PLS factors, more is the reliability of the model. The reliability of the 3D 

QSAR model generated is proved by the fact all the statistical measures are significant. The 

model generated showed statistically good results with r
2
 (Correlation coefficient) as 0.897, q

2
 

(Leave one out cross validation) as 0.8173. The correlation coefficient r signifies how closely the 

observed data tracks the fitted regression line. Leave one out cross validation involves using a 

single observation from original sample as the validation determinant and remaining observation 

as training data. This process is repeated such that each observation in the sample is used once as 

validation data. The reliability and the statistical significance of the model can also be confirmed 

by a higher value of Fischer ratio which is 60.9 in our case.  

The future perspective of this study is that various combinations of hydrogen bond donor, 

electron withdrawing and hydrophobic groups can be added at various favorable sites of the 

generated model thereby building new substituents. The physiochemical properties of the new 



substituents can be validated by Lipinski rule of 5. The substituents which pass the Lipinski rule 

filter can then be docked with SHP1. The substituents which satisfy both the above conditions 

(i.e. pass the Lipinski filter and exhibit B.A. better than the reference) can then be tested using 

3D-QSAR model generation.  

A good drug should exhibit a good ADMET profile. Once a compound clears the ADMET 

profile filter, wet lab synthesis along with the characterization of that compound can be carried 

out. 
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8.0 APPENDIX 

 Protein Tyrosine Phosphatases 

 

A cornerstone of many cell-signalling events rests on reversible phosphorylation of tyrosine 

residues on proteins. The reversibility relies on the co-ordinated actions of protein tyrosine 

`kinases and protein tyrosine phosphatases (PTPs), both of which exist as large protein families 

(Stoker et al., 2005).  PTPs   regulate a wide range of signalling pathways.PTPs work 

antagonistically with Protein Tyrosine Kinases (PTKs) and inhibit cell proliferation. PTPs are a 

group of enzymes that remove phosphate groups from phosphorylated tyrosine residues on 

proteins. s. Phosphorylation of proteins is one of the posttranslational modifications, which is 

reversible and plays a critical role in the regulation of many cellular functions.As a consequence, 

maintaining an appropriate level of protein tyrosine phosphorylation is essential for many 

cellular functions (Anderson et al., 2001). Tyrosine-specific protein phosphatases  catalyse the 

removal of a phosphate group attached to a tyrosine residue. These enzymes are key regulatory 

components in signal transduction pathways   cell cycle control, and are important in the control 

of  cell growth,  proliferation, differentiation  and transformation. PTPs have been implicated in 

regulation of many cellular processes, such as cell growth, cellular differentiation, Mitotic 

cycles, Oncogenic transformation (Anderson et al., 2001). 

 

All PTPases carry the highly conserved active site motif C(X)5R (PTP signature motif), employ 

a common catalytic mechanism, and possess a similar core structure made of a central parallel 

beta-sheet with flanking  alpha-helices containing a beta-loop-alpha-loop that encompasses the 

PTP signature motif(Dixon et al.,1998) 

Individual PTPs may be expressed by all cell types, or their expression may be strictly tissue-

specifc. Most cells express 30% to 60% of all the PTPs, however hematopoietic and neuronal 

cells express a higher number of PTPs in comparison to other cell types. T cells and B cells of 

hematopoietic origin express around 60 to 70 different PTPs. The expression of several PTPS is 

restricted to hematopoietic cells, for example, LYP, SHP1, CD45, and HePTP(Alonso  et 

al.,2004). Of the 107 PTP genes, 11 are catalytically inactive 2 dephosphorylate mRNA and 13 

dephosphorylate inositol phospholipids. Thus, 81 PTPs are active protein phosphatases with the 

ability to dephosphorylate phosphotyrosine (Alonso et al.,2004). 

Classification of PTPs  

The class I PTPs, are the largest group of PTPs with 99 members, which can be further 

subdivided into 38 classical PTPs and 61 VH-1-like or dual-specific phosphatases (DSPs) 

Classical PTPs  can be further divided into 21 receptor tyrosine phosphatase  and 17 

nonreceptor-type PTPs. Dual-specific phosphatases (DSPs) can be further divided into  11 

MAPK phosphatases (MPKs), 3 Slingshots,3 PRLs, 4 CDC14s,19 atypical DSPs,5 Phosphatase 

and tensin homologs (PTENs),16 Myotubularins 



Dual-specificity phosphatases (dTyr and dSer/dThr) dual-specificity protein-tyrosine 

phosphatases. Ser/Thr and Tyr dual-specificity phosphatases are a group of enzymes with both 

Ser/Thr and tyrosine-specific protein phosphatase activity able to remove the serine/threonine or 

the tyrosine-bound phosphate group from a wide range of phosphoproteins, including a number 

of enzymes that have been phosphorylated under the action of a kinase. Dual-specificity protein 

phosphatases (DSPs) regulate mitogenic signal transduction and control the cell cycle,Class II 

LMW (low-molecular-weight) phosphatases, or acidphosphatases, act on tyrosine 

phosphorylated proteins, low-MW aryl phosphates and natural and synthetic acyl phosphates.The 

class II PTPs contain only one member, low-molecular-weight phosphotyrosine phosphatase 

(LMPTP). The Class III Cdc25 phosphatases (dTyr and/or dThr) PTPs contains three members, 

CDC25 A, B, and C. 

 

Fig. 12  Classification and Substrate Specificity of PTPs .The PTP families are color coded: 

class I Cysbased PTPs (green), class II Cys-based PTPs(pale yellow), class III Cys-based 

PTPs (pale blue), and Asp-based PTPs (pink). The substrate specificity of each group or 

class of PTPs is listed (Alonso et al.,2004). 



Docking 

Docking is a method which predicts the preferred orientation of one molecule to a second when 

bound to each other to form a stable complex. Knowledge of the preferred orientation in turn 

may be used to predict the strength of association or binding affinity between two molecules 

Molecular docking is thought of as an optimization problem, which describes the “best-fit” 

Orientation of a ligand that binds to a particular protein of interest. It is similar to “lock-and-

key”model, where one is interested in finding the correct relative orientation of the “key which 

will open up the “lock”. Thus the protein can be thought of as the “lock” and the ligand can be 

thought of as a “key”. Docking is important as a binding interaction between a small molecule 

ligand and an enzyme protein may result in activation or inhibition of the enzyme. If the protein 

is a receptor, ligand binding may result in agonism or antagonism. Docking is the most 

commonly used in the field of drug design-most drugs are small organic molecules, and docking 

may be applied to: 

 

Hit identification-docking combined with a scoring function can be used to quickly screen large 

databases of potential drugs in silico to identify molecules that are likely to bind to protein or 

target of interest. 

 

Lead optimization-docking can be used to predict in where and in which relative orientation a 

ligand binds to a protein (also referred to as the binding mode or pose).This information may be 

used to design more potent and selective analogs.(Donald et al.,vol1) 

 

PyRx is a Virtual Screening software for Computational Drug Discovery that can be used to 

screen libraries of compounds against potential drug targets. PyRx enables Medicinal Chemists 

to run Virtual Screening form any platform and helps users in every step of this process - from 

data preparation to job submission and analysis of the results 

AutoDock is a suite of automated docking tools. It is designed to predict how small molecules, 

such as substrates or drug candidates, bind to a receptor of known 3D structure. 

 

Pharmacophore modelling 

The concept of pharmacophore was first introduced in 1990 by Paul Ehrlich, who defined the 

pharmacophore as “a molecular framework that carries (phoros) the essential features 

responsible for a drugs (pharmacon) biological activity”. Ligand-based pharmacophore 

modeling has become a key computational startergy for facilitating drug discovery in the 

absence of a macromolecular target structure. it is usually carried out by extracting common 

chemical features from 3D structures of a set of known ligands representative of essential 

interactions between ligands and a specific macromolecular target. In general,pharmacophore 

generation from multiple ligands (usually called training set compounds ) involves two main 

steps: 



Creating the conformational space for each ligand in the training set to represent conformational 

flexibility of ligands 

Aligning the multiple ligands in the training set and determining the essential common features 

to construct pharmacophore models (Simone, B.2009). 

Molecular alignment is the major challenging issue in ligand based pharmacophore modeling. 

The alignment methods can be classified into two categories in terms of their fundamental 

nature: point –based and property-based approaches (Wolber, G.2008). 

The point (in the point-based method) can be further differentiated as atoms, fragments or 

chemical features. In point-based algorithm, pairs of atoms, fragments or chemical feature points 

are usually superimposed using a least square fitting. The biggest limitation of these approaches 

is the need for predefined anchor points because the generation of these points can become 

problematic in the case of dissimilar ligands. 

The property-based algorithms make use of molecular field descriptors,usually represented by set 

of Guassain functions, to generate alignments.The alignment optimization is carried out with 

some varaint of similarity measure of the intermolecular overlap of the Gaussians as the 

objective function. 

Another challenging problem lies in the practical task of proper selection of training set 

compounds .This problem,apparently being simple and non technical,often confuses users,even 

expereinced ones. it has been demonstrated that the type of ligand molecules ,the size of the 

dataset and its chemical diversity affect the final generated pharmacophore model considerably 

(Dror, O. 2006). 

Quantitative Structure Activity Relationship (QSAR) 

QSAR stands for “quantitative structure-activity relationships”, is a method that relates chemical 

structure to biological or chemical activity using mathematical models . If the activity of a set of 

ligands can be determined, a model can be constructed to describe this relationship. Unlike a 

pharmacophore model, which encodes only the essential features of an active ligand, the QSAR 

model allows one to determine the effect of a certain property on the activity of a molecule. For 

example, the QSAR model may reveal a property to have a highly negative, or alternatively a 

weak positive effect on ligand activity. Such information is not available using a pharmacophore 

model (Perkinson et al., 2003). 

Quantifying the structure and activity of a ligand is important in the modeling process. Structure 

quantification is not a trivial problem, since a structure cannot be represented by a mere value. 

Instead, a set of properties, usually known as the “descriptors”, is computed from the structure 

and used to quantify it. By using structural descriptors as independent variables and activity as a 

dependent variable, a model can be built to describe the relationship between the two. 

 



Building a QSAR Model: 

The process of constructing a QSAR model can be summarized as follows: First, ligands and 

their activities are collected. Descriptors are calculated and selected before a mathematical 

modeling method is chosen and the ligand data are then used to construct the QSAR models. 

After the models are completed, they are tested by internal and external validation procedures. 

Only then can a QSAR model be used in any practical applications, such as predicting the 

activity of a novel compound. As is the case when building a pharmacophore model, the active 

ligand set must be gathered from molecular databases or from literature searches before QSAR 

modeling begins. The process requires not only the collection of ligand structures but also of 

their activities. Generally, IC50s (half maximal inhibitory concentration), EC50s (half maximal 

effective concentration)   and  Ki values (inhibition constant)  are commonly used to quantify 

drug activity. However, the quantification of ligand activity as used in QSAR is not limited to 

pharmacokinetic parameters. Other activity indexes can also be incorporated into model 

depending on the phenomena one wishes to predict. In addition to structure verification as 

described in the section on pharmacophore model construction, ligand activity data should also 

be checked. All activity data should come from the same experimental procedure or assay, and it 

is preferable if the data comes from the same laboratory, and even the same researcher (Yvonne 

et al.,1981) 

 

Before a QSAR model can be built, ligand structure descriptors should be ascertained or 

calculated. Some descriptors obtained directly from data sources or calculated using simple 

arithmetic operations take into account the specific number of atoms, molecular chain length, 

molecular mass, etc. However, other descriptors may require complex computation, for example 

pharmacophore-based descriptors molecular field descriptors, which are derived from the 

interaction of probes and molecules and used in CoMFA and CoMSIA .  It is important that the 

descriptors are related to the biological or chemical activity which the model will be used to 

predict. In other words, if a descriptor is not related to activity, one should avoid incorporating 

the descriptor into the modeling process. 

 

After the activity index (the dependent variable) and descriptors (the independent variables) are 

prepared for each ligand, a variable selection method and a modeling method can be selected, 

and a model is built. The selection process If two descriptors represent a similar biological or 

chemical parameter, one of them should be disregarded. In order to select descriptors, genetic 

algorithms principle component analysis , artificial neural networks  and k-nearest neighbor 

approaches can all be used. If a linear model is assumed, some conventional statistical methods, 

such as the partial least squares method and multiple linear regression   can be used. If a 

nonlinear model is preferred on the other hand, machine learning methods like artificial neural 

networks  or support vector machines can be applied. The main differences among the frequently 

used QSAR algorithms reside in their means of descriptor generation. For example, most QSAR 

algorithms, like CoMFA,CoMSIA use similar linear statistical models to explore the relationship 



between activity and descriptors, which are calculated by different processes. In CoMFA and 

CoMSIA, pre-aligned molecules are put onto a grid, or lattice. The descriptors are calculated by 

the interaction of the molecule and a probe is placed at each intersection of the lattice. The 

differences between CoMFA and CoMSIA are in the use of different probes and interaction-

calculating functions. 

In CoMFA, only probes representing steric and electrostatic interactions can be used. In 

CoMSIA, probes representing hydrophobic and hydrogen bond interactions, in addition to 

CoMFA probes may be selected. In addition, CoMSIA uses a Gaussian-type function for 

calculating prober-molecule interaction. By using such a smooth function, the result value is 

more reasonable than the function used in CoMFA, and defining a cut-off limit to remove invalid 

values is no longer required.. The fit value describes the goodness of alignment between a ligand 

and a pharmacophore model and is obtained from a pharmacophore model generated and 

optimized using known structure and activity data. The model must then be validated before it 

can be used to predict activity. There are some popular methods used to validate a QSAR model  

including internal validation approaches (such as the “leave-one-out” or “leave-n-out” cross 

validation methods , and external validation approaches. In cross validation, one (leave-one-out) 

or more (leave-n-out) ligand of the training set is excluded. The excluded data is predicted by the 

model constructed with reduced training set data. These steps are repeated until all data has been 

excluded and predicted, and the power of a model is determined by the accuracy of prediction. 

External validation is a widely used method, and is considered important in the QSAR building 

pipeline. In external validation, the capability of the model is tested using data which is not 

included in the training set, in contrast to internal validation, which utilizes data taken from the 

training set to validate the model. In most of the studies, both internal and external validations 

are performed to ensure the reliability of the model. After the model has passed these strict 

validation tests, it can be used to predict the activity of novel molecules (John et al., 1983). 

 

Statistical concepts 

 

A QSAR generally takes the form of a linear equation 

Biological Activity = Const + (C1  P1) + (C2  P2) + (C3  P3) + ... 

where the parameters P1 through Pn are computed for each molecule in the series and the 

coefficients C1 through Cn are calculated by fitting variations in the parameters and the 

biological activity 

 

 

a) Standard deviation s: 

The standard deviation of the data, s, shows how far the activity values are spread about their 

average. This value provides an indication of the quality of the guess by showing the amount of 

variability inherent in the data The standard deviation is calculated as shown below 

 s=√ (compound activity-average activity)
2  

+ (compound activity-average activity)
2
+…….∕  (n-1) 



In the above equation n represents no of compounds. This formula gives how to calculate 

standard deviation 

 

 

b) Correlation coefficient r: 

Variation in the data can be quantified by correlation coefficient r which measures how closely 

the observed data tracks the fitted regression line 

               
          

Where original variance = (compound activity-average activity)
2
+(compound activity-average 

activity……. 

And regression variance = original variance-variance around the line 

 

r
2
= 0 and 1.  r

2
of 0 means that there is no relationship between activity and parameter     

r
2
=1mean there is perfect correlation. 

 

 

c) F statistics: 

While the fit of the data to the regression line is excellent, how can one decide if this correlation 

is based purely on chance 

 

F statistics is calculated as 

                                     
 This value can be checked in statistical table to determine the significance of regression 

equation. 

 

                                                                                            

d) Leave one out cross validation q
2
:       

It involves using a single observation from original sample as the validation determinant and 

remaining observation as training data. This is repeated such that each observation in the sample 

is used once as validation data. 

                            

                                   q
2
= (1-∑(Ypredicted-Yactual)

2
/∑(Yactual-Ymea)

2 

 

where Y is the activity.q
2
 should be close to r

2
. 


