
Department of Computer Engineering, DTU Page i

A

Dissertation

On

 Hibernation Support for Wi-Fi Direct

Submitted in Partial Fulfillment of the Requirement

For the Award of the Degree of

Master of Technology

in

Software Technology

by

Baba Abinash

University Roll No. 2K11/SWT/05

Under the Esteemed Guidance of

Mr. R.K. Yadav

Assistant Professor, Computer Engineering Department, DTU

2011-2014

COMPUTER ENGINEERING DEPARTMENT

 DELHI TECHNOLOGICAL UNIVERSITY

DELHI – 110042, INDIA

Department of Computer Engineering, DTU Page ii

ABSTRACT

Wi-Fi Direct is defined by the Wi-Fi Alliance in order to enable efficient device-to-device

Communication. Portable devices are a main target of this technology and hence, power

saving is a key objective. Research presented in this paper enhances the power management

schemes of Wi-Fi Direct to provide better services for a wider range of Wi-Fi Peer-to-peer

(P2P) applications.

Lower power consumption means lower heat dissipation, which increases system stability,

and less energy use, which saves money and reduces the impact on the environment. For

mobile device and embedded system device, it’s much more important because the battery

power is very limited. Nowadays, android phone and iPhone are more and more pervasive.

There are more and more sensors and I/O in mobile device that can be used to improve the

effectiveness of PM.

 Although the Wi-Fi Direct defines two power management schemes to provide energy

efficiency in P2P devices, neither is enough to meet power efficiency and reliability

requirements for various services.

To alleviate this problem, the proposed scheme recognizes the properties of applications

and Implement Hibernate Mode in Wi-Fi Direct to analyse its effectiveness.

Department of Computer Engineering, DTU Page iii

ACKNOWLEDGEMENT

I take this opportunity to express my deepest gratitude and appreciation to all those who have

helped me directly or indirectly towards the successful completion of this thesis.

Foremost, I would like to express my sincere gratitude to my guide Mr. R.K. Yadav,

Assistant Professor, Department of Computer Engineering, Delhi Technological

University, Delhi whose benevolent guidance, constant support, encouragement and valuable

suggestions throughout the course of my work helped me successfully complete this thesis.

Without his continuous support and interest, this thesis would not have been the same as

presented here.

Besides my guide, I would like to thank the entire teaching and non-teaching staff in the

Department of Computer Engineering, DTU for all their help during my course of work.

Baba Abinash

 University Roll no: 2K11/SWT/05

 M.Tech (Software Technology)

 Department of Computer Engineering

 Delhi Technological University

Delhi – 11004

Department of Computer Engineering, DTU Page iv

 Computer Engineering Department

 Delhi Technological University

 Delhi-110042

 www.dce.edu

CERTIFICATE

This is to certify that the thesis entitled “Hibernation Support for Wifi Direct ” submitted

by Baba Abinash (Roll Number: 2K11/SWT/05), in partial fulfillment of the requirements

for the award of degree of Master of Technology in Software Technology, is an authentic

work carried out by her under my guidance. The content embodied in this thesis has not been

submitted by her earlier to any institution or organization for any degree or diploma to the

best of my knowledge and belief.

Date: __ __ ____

(Mr. R.K. Yadav)

Assistant Professor & Project Guide

Department of Computer Engineering

Delhi Technological University

Department of Computer Engineering, DTU Page v

Table of Contents

Abstract ii

Acknowledgment iii

Certificate iv

Chapter 1 1

Introduction 1

Chapter 2 2

Wi-Fi Direct

 2.1 Introduction 2

 2.2 Technical Overview 2

 2.3 Architecture 3

 2.4 Group formation 4

 2.5 Service Discovery 8

 2.6 Security 9

 2.7 Power Saving 10

 2.8 Packet Analysis 13

Chapter 3

Android Power Management 18

3.1 How does power management system work? 18

3.2 Android Architecture 21

 3.3 Power Management 22

 3.4 Implementation 26

Chapter 4

Proposed Work 27

 4.1 System Power Management 27

 4.1.1 Standby 27

 4.1.2 Suspend 27

 4.1.3 Hibernate 27

Department of Computer Engineering, DTU Page vi

4.2 Proposed Technique-Enhancement of Power Management in Wi-Fi Direct 28

 4.2.1 Problem Statement 28

 4.2.2 Proposed Solution-Hibernate Mode in Wi-Fi Direct 29

 4.2.2.1 High Level Designed 29

 4.2.2.2 Detailed Design (Software Implementation Detail) 30

 4.2.2.2.1 Sysfs Interface 30

 4.2.2.2.2 Power Management 31

 4.2.2.2.3 Memory Power Management 38

 4.2.2.2.4 Hibernate Algorithm 39

 4.2.2.2.5 Resume Algorithm 41

Chapter 5

Simulation Results and Analysis 44

 5.1 Simulation Setup 44

 5.2 Performance Evaluation- Hibernate Mode in Wi-Fi Direct 45

 5.2.1 Simulation Results 46

 5.2.2 Analysis 48

Chapter 6

Conclusion and Future Work 49

References 50

Department of Computer Engineering, DTU Page 1

CHAPTER 1

INTRODUCTION

Recent advances in mobile communication have opened opportunities for exciting new

mobile services. Applications utilizing Peer-to-Peer (P2P) communications are among them,

which enables more sophisticated methods of data exchange, visual conference, gaming, and

social media sharing through these mobile devices. One very promising technology for

supporting future P2P services is Wi-Fi Direct, which enables the popular IEEE 802.11

WLAN technology to provide reliable and high-rate wireless data transmission.

Various networking chip vendors have already announced their Wi-Fi Direct chipsets, and

recently applications have been developed in the Android operating system, being introduced

in the markets for usage in Smartphone’s .Following the recent advancement of Wi-Fi Direct

and mobile computing devices, the issue of energy preservation have also dramatically risen.

Quite differently to traditional networks, power management schemes in future mobile

devices cannot solely account for energy efficiency as the utmost goal to achieve. This is

because the future of Wi-Fi Direct considers not only the reliability of current applications

(Transmission of files and documents, data sharing), but also support of quality of service

(multimedia data) and better user experience (games, Human Interface Device: HID

peripherals) for potential future applications. To achieve these goals, research on power

saving exclusively for mobile P2P communications has become more important than ever.

Current power management modes in Wi-Fi Direct are Opportunistic Power save mode and

Notice of Absence (NoA) mode. Although either of these protocols can be utilized for better

energy efficiency depending on the application or environment, they do not provide enough

energy efficiency. Therefore, the power saving modes in Wi-Fi Direct need to be enhanced to

cope with various services and applications that has different properties.

The proposed scheme scheme recognizes the properties of applications and Implement

Hibernate Mode in Wi-Fi Direct to analyse its effectiveness is evaluated through simulator to

 Prove its superiority over existing Wi-Fi Direct power saving schemes.

Department of Computer Engineering, DTU Page 2

CHAPTER 2

Wi-Fi Direct

2.1. Introduction

Direct device to device connectivity was already possible in the original IEEE

802.11 standard by means of the ad-hoc mode of operation. However this never

became widely deployed in the market and hence presents several drawbacks when

facing nowadays requirements, e.g. lack of efficient power saving support

Wi-Fi direct takes a different approach to enhance device to device connectivity.

Instade of Ad-hoc mode of operation Wi-Fi direct build upon the successful IEEE

802.11 infrastructure mode. Wi-Fi Direct is an open source implementation which we

have used to enhance performance of this technology in realistic scenarios.

2.2. A Technical Overview

In a typical Wi-Fi network, client scans and associate to wireless networks

available, which are created and announced by Access Points (AP). Each of these

devices has roles involving a different set of functionality. A major novelty of Wi-Fi

Direct is that these roles are specified as dynamic, and hence a Wi- Fi Direct device

has to implement both the role of a client and the role of an AP (sometimes referred to

as Soft AP). These roles are therefore logical roles that could even be executed

simultaneously by the same device, this type of operation is called Concurrent mode.

In order to establish a communication, P2P devices have to agree on the role that

each device will assume at the time of negotiation. In the following we describe how

this communication is configured using specified procedures, namely device

discovery, role negotiation, service discovery, security provisioning and power saving.

Department of Computer Engineering, DTU Page 3

2.3. Architecture

Wi-Fi Direct devices, formally known as P2P Devices, communicate by

establishing P2P Groups, which are functionally equivalent to traditional Wi-Fi

infrastructure networks. The device implementing AP like functionality in the P2P

Group is referred to as the P2P Group Owner (P2P GO), and devices acting as clients

are known as P2P Clients.

This GO and client functionality is dynamic and is negotiated at the time of initial

network setup. Two P2P devices discover each other; they negotiate their roles (P2P

Client and P2P GO) to establish a P2P Group. Once the P2P Group is established,

other P2P Clients can join the group as in a traditional Wi-Fi network. Legacy clients

can also communicate with the P2P GO, as long as they support the required security

mechanisms. By default Wi-Fi Direct uses WPA2PSK as security standard. In this

way, legacy devices do not formally belong to the P2P Group and do not support the

enhanced functionalities defined in Wi-Fi Direct, but they simply “see” the P2P GO as

a traditional AP.

The logical nature of the P2P roles supports different architectural deployments; one

of this is illustrated in below Figure 2.1 represents a scenario with two P2P groups.

The first scenario is a mobile phone sharing its 3G connection with two laptops; in this

first scenario, the three devices form a group, the phone is acting as P2P GO while the

two laptops behave as P2P Clients. In order to extend the network, one of the laptops

establishes a second P2P Group with a printer; for this second group, the laptop acts as

P2P GO. In order to act both as P2P Client and as P2P GO the laptop will typically

alternate between the two roles by time-sharing the Wi-Fi interface.

Like a traditional AP, a P2P GO announces itself through beacons containing

additional P2P Information Element. P2P IE is included in all management frames.

Legacy devices ignore these information elements and action frames. The Wi-Fi

Direct Specification requires that the P2P device which becomes the group owner

should also provide the DHCP server application in their system [3] to provide P2P

Clients with IP addresses. In addition, only the P2P GO is allowed to cross-connect the

devices in its P2P Group to an external network. Finally, Wi-Fi Direct does not allow

transferring the role of P2P GO within a P2P Group. In this way, if the P2P GO leaves

Department of Computer Engineering, DTU Page 4

the P2P Group then the group is torn down, and has to be re-established using some of

the specified procedures.

2.4. Group Formation

There are several ways in which two devices can establish a P2P Group. Three

types of group formation techniques are Standard, Autonomous and Persistent cases.

Group Formation procedure involves two phases-

1) Determination of P2P Group owner

Negotiated - Two P2P devices negotiate for P2P group owner based on

desire/capabilities to be a P2P GO. Selected - P2P group Owner role established at

formation or at an application level.

2) Provisioning of P2P Group

Establishment of P2P group session using appropriate credentials Using Wi-Fi

simple configuration to exchange credentials.

Department of Computer Engineering, DTU Page 5

Department of Computer Engineering, DTU Page 6

Standard: In this case the P2P devices have first to discover each other, and then

negotiate which device will act as P2P GO. Wi-Fi Direct devices usually start by

performing traditional Wi-Fi scan (active or passive), by means of which they can

discover existent P2P Groups and Wi-Fi networks. After this scan, a new Discovery

algorithm is executed. First, a P2P Device selects one of the Social channels, namely

channels 1, 6 or 11 in the 2.4 GHz band, as its Listen channel. Then, it alternates

between two states: a search state, in which the device performs active scanning by

sending Probe Requests in each of the social channels; and a listen state, in which the

device listens for Probe Requests in its listen channel to respond with Probe

Responses. Once the two P2P Devices have found each other, they start the GO

Negotiation phase. This is implemented using a three-way handshake, namely GO

Negotiation Request/ Response/ Confirmation, where by the two devices agree on

which device will act as P2P GO and on the channel where the group will operate,

which can be in the 2.4 GHz or 5GHz bands. In order to agree on the device that will

act as P2P GO, P2P devices send a numerical parameter, the GO Intent value, within

the three-way hand-shake, and the device declaring the highest value becomes the P2P

GO.

To prevent conflicts when two devices declare the same GO Intent, a tie-breaker bit

is included in the GO Negotiation Request, which is randomly set every time a GO

Negotiation Request is sent.

Persistent: During the formation process, P2P devices can declare a group as

persistent, by using a flag in the P2P Capabilities attribute present in Beacon frames,

Probe Responses and GO negotiation frames. In this way, the devices forming the

group store network credentials and the assigned P2P GO and Client roles for

subsequent re-instantiations of the P2P group. Specifically, after the Discovery phase,

if a P2P Device recognizes to have formed a persistent group with the corresponding

peer in the past, any of the two P2P devices can use the Invitation Procedure (a two-

way handshake) to quickly re-instantiate the group. This is shown in Figure 2.2, where

the Standard case is assumed as baseline, and the GO Negotiation phase is replaced by

the invitation exchange, and the WPS Provisioning phase is significantly reduced

because the stored network credentials can be reused.

Department of Computer Engineering, DTU Page 7

Figure 2.2 Go Negotiation Flow Diagram

P2P Invitation procedure: The P2P Invitation Procedure is an optional procedure used

for the following:

A P2P Group Owner invites a P2P Device to become a P2P Client in its P2P Group.

A P2P Client inviting another P2P Device to join the P2P Group of which the P2P

Client is a member.

Requesting to invoke a Persistent P2P Group for which both P2P Devices have

previously been provisioned and one of the Devices is P2P Group Owner for the

Persistent P2P Group.

A P2P Device that is invited to join an operational P2P Group through successful

completion of the P2P Invitation Procedure, Use Wi-Fi Simple Configuration to obtain

Credentials. Provision Discovery and Wi-Fi Simple Configuration will take place on

the Operating Channel of the P2P Group Owner.

P2P Invitation Request: A P2P Invitation Request frame may be transmitted by:

1. A P2P Device that is a member of a P2P Group (i.e. P2P Group Owner or P2P

Client) to another P2P Device that supports P2P Invitation Procedure and is currently

not a member of the P2P Group to invite that P2P Device to join the P2P Group. When

used for this purpose, the invitation Type in the Invitation Flags attribute in the P2P

Invitation Request frame set to 0.

Department of Computer Engineering, DTU Page 8

2. A P2P Device that is a member of a Persistent P2P Group to another member of that

P2P Group and one of the Devices is the P2P Group Owner, to request that the P2P

Group be invoked. When used for this purpose, the Invitation Type in the Invitation

Flags attribute included in the P2P Invitation Request frame shall be set to 1.

P2P Invitation Response: A P2P Invitation Response frame (with the Status attribute

set to Success) transmitted by the P2P Group Owner of a Persistent P2P Group in

response to a request to invoke that P2P Group, include the P2P Group BSSID,

Channel List, Operating Channel and Configuration Timeout attributes to indicate the

Group BSSID, potential Operating Channels, intended Operating Channel and any GO

Configuration Time.

2.5. Service Discovery

A salient feature of Wi-Fi Direct is the ability to support service discovery at the

link layer. In this way, prior to the establishment of a P2P Group, P2P Devices can

exchange queries to discover the set of available services and, based on this, decide

whether to continue the group formation or not. Generic Advertisement Protocol

(GAS) specified by 802.11u [5]. GAS is a layer two query /response protocols

implemented through the use of public action frames, that allows two non-associated

802.11 devices to exchange queries belonging to a higher layer protocol (e.g. a service

discovery protocol). GAS is implemented by means of a generic container that

provides fragmentation and reassembly, and allows the recipient device to identify the

higher layer protocol being transported. GAS is used as a container for ANQP (Access

Network Query Protocol) elements sent between clients and APs

Department of Computer Engineering, DTU Page 9

WFD State Machine

 Figure 2.3 Wfd State machine

2.6. Security

Security provisioning starts after discovery has taken place and, if required, the

respective roles have been negotiated. Wi-Fi Direct devices are required to implement

Wi-Fi Protected Setup (WPS) to support a secure connection with minimal user

intervention. In particular, WPS allows establishing a secure connection by

introducing a PIN in the P2P Client, or pushing a button in the two P2P Devices.

Following WPS terminology, the P2P GO is required to implement an internal

Registrar, and the P2P Client is required to implement an Enrollee. The operation of

WPS is composed of two parts. In the first part, the internal Registrar is in charge of

generating and issuing the network credentials, i.e., security keys, to the Enrollee.

WPS is based on WPA-2 security and uses Advanced Encryption Standard (AES)-

CCMP as cipher, and a randomly generated Pre-Shared Key (PSK) for mutual

authentication. In the second part, the Enrollee (P2P Client) disassociates and

Department of Computer Engineering, DTU Page 10

reconnects using its new authentication credentials. In this way, if two devices already

have the required network credentials (this is the case in the Persistent group

formation) , there is no need to trigger the first phase , and they can directly perform

the authentication .

2.7. Power Saving

Wi-Fi Direct application, in battery-constrained devices may typically act as P2P

GO (soft-AP), and therefore energy efficiency is importance. However, power saving

mechanisms in current Wi-Fi networks is not defined for APs but only for clients. To

support energy savings for the AP, Wi-Fi Direct defines two new power saving

mechanisms: the Opportunistic Power Save protocol and the Notice of Absence (NoA)

protocol.

1) Opportunistic Power Save: The basic idea of Opportunistic Power Save is to

leverage the sleeping periods of P2P Clients. The mechanism assumes the existence of

a legacy power saving protocol, and works as follows. The P2P GO advertises a time

window, denoted as CTWindow, within each Beacon and Probe Response frames.

This window specifies the minimum amount of time after the reception of a Beacon

during which the P2P GO will stay awake and therefore P2P Clients in power saving

can send their frames. If after the CTWindow the P2P GO determines that all

connected clients are in doze state, either because they announced a switch to that state

by sending a frame with the Power Management (PM) bit set to 1, or because they

were already in the doze state during the previous beacon interval, the P2P GO can

enter sleep mode until the next Beacon is scheduled; otherwise, if a P2P Client leaves

the power saving mode (which is announced by sending a frame with the PM bit set

to 0) the P2P GO is forced to stay awake until all P2P Clients return to power saving

mode.

Notice that, using this mechanism, a P2P GO does not have the final decision on

whether to switch to sleep mode or not, as this depends on the activity of the

associated P2P Clients. To give a P2P GO higher control on its own energy

consumption Wi-Fi Direct specifies the Notice of Absence protocol, which is

described next.

Department of Computer Engineering, DTU Page 11

 Figure 2.4 Opportunistic powersave Opeartion

2) Notice of Absence: The Notice of Absence (NoA) protocol allows a P2P GO to

announce time intervals, referred to as absence periods, where P2P Clients are not

allowed to access the channel, regardless of whether they are in power save or in

active mode. In this way, a P2P GO can autonomously decide to power down its radio

to save energy.

Like in the Opportunistic Power Save protocol, in the case of NoA the P2P GO

defines absence periods with a signaling element included in Beacon frames and Probe

Responses. In particular, a P2P GO defines a NoA schedule using four parameters: (I)

duration that specifies the length of each absence period, (II) interval that specifies the

time between consecutive absence periods, (III) start time that specifies the start time

of the first absence period after the current Beacon frame, and (IV) count that specifies

Department of Computer Engineering, DTU Page 12

how many absence periods will be scheduled during the current NoA schedule. A P2P

GO can either cancel or update the current NoA schedule at any time by respectively

omitting or modifying the signaling element. P2P Clients always adhere to the most

recently received NoA schedule.

In order to foster vendor differentiation, the Wi-Fi Direct specification does not

define any mechanism to compute the CTWindow in the Opportunistic Power Save

protocol or the schedule of absence periods in the Notice of Absence protocol. In

Section III we provide some experimental results comparing the impact of different

power saving policies that can be used to configure the NoA protocol.

 Figure 2.5 Notice of Absence Powersave Opeartion

Department of Computer Engineering, DTU Page 13

2.8. Packet Analysis

This section describes packet details of Wi-Fi Direct protocol.

Wi-Fi Direct IE: The format of the P2P IE is shown figure 2.6. The P2P attributes are

defined to have a common general format consisting of a 1 octet P2P Attribute ID

field, a 2 octet Length field and variable-length attribute-specific information fields,

shown in figure 2.7.

A P2P Device that encounters an unknown or reserved Attribute ID value in a P2P IE

received without error shall ignore that P2P attribute and parse any remaining fields

for additional P2P attributes with recognizable Attribute ID values. A P2P Device that

encounters a recognizable but unexpected Attribute ID value in the received P2P IE

may ignore that P2P attribute. More than one P2P IE may be included in a single

frame. If multiple P2P IEs are present, the complete P2P attribute data consists of the

concatenation of the P2P Attribute fields of the P2P IEs. The P2P Attributes field of

each P2P IE may be any length up to the maximum (251 octets).

Field
Size Value

Description

(Octet) (Hexadecimal)

Element

ID 1 0xDD IEEE 802.11 vendor specific usage.

 Length of the following fields in the IE in octets. The length

 field is a variable and set to 4 plus the total length of P2P

Length 1 Variable attributes.

OUI 3 50 6F 9A WFA specific OUI

 0x09

OUI (to be Identifying the type or version of P2P IE.

Type 1 assigned) Setting to 0x09 indicates WFA P2P v1.0.

P2P

Attributes Variable One of more P2P attributes appear in the P2P IE.

Figure 2.6 P2p IE Format

Department of Computer Engineering, DTU Page 14

Field
Size Value

Description

(Octet) (Hexadecimal)

Attribute ID 1 Variable Identifying the type or version of P2P attribute.

Length 2 Variable Length of the following fields in the attribute.

Attribute

body field Variable Attribute specific information fields.

 Figure 2.7 General Format of P2P attributes

The P2P Capability attribute contains a set of parameters that can be used to establish

a P2P connection. The format of the P2P Capability attribute is shown in figure 2.8

Field
Size

Value Description

(Octet)

Attribute ID 1 2 Identifying the type of P2P attribute.

 Length of the following fields in the

Length 2 2 attribute.

Device Compatibility A set of parameters indicating P2P

Bitmap 1 Variable Device's capabilites.

Group Compatibility A set of parameters indicating the

Bitmap 1 Variable current state of a P2P Group.

 Figure 2.8 P2P Capability attribute format

Department of Computer Engineering, DTU Page 15

The Public Action frame format (as defined in IEEE 802.11k) is used to define the

P2P public action frames. The general format of the P2P public action frames is shown

in figure 2.9

Field

Size

Value

Description

(Octet)

(Hexadecimal)

 Category 1 0x04 IEEE 802.11 public action usage

Action field 1 0x09 IEEE 802.11 vendor specific usage

 OUI 3 50 6F 9A WFA specific OUI

 Identifying the type of version of action

 0x09 (to be frame. Setting to 09 indicates WFA P2P

OUI Type 1 assigned) v1.0

 Identifying the type of P2P public action

 OUI Subtype 1 frame.

 Set to non zero value to identify the

Dialogue Token 1 request/ response transaction.

 Including P2P IE or any other information

 elements defined in IEEE std. 802.11-

 Elements variable 2007

Figure 2.9 General Format of P2P Public Action Frame

Department of Computer Engineering, DTU Page 16

 Figure 2.10 P2P Information Element shown from a captured Packet

Department of Computer Engineering, DTU Page 17

Figure 2.11 P2P Packet Captured with detail view

Department of Computer Engineering, DTU Page 18

CHAPTER 3

Android power management

3.1. How does power management system work?

One power management standard for computers is ACPI, which supersedes APM. All

recent (consumer) computers have ACPI support. Why ACPI has more advantage than

APM? We’ll write a brief introduction both of them and compare the difference.

APM (Advanced Power Management)

APM consists of one or more layers of software that support power management in

computers with power manageable hardware. APM defines the hardware independent

software interface between hardware-specific power management software and an

operating system power management policy driver. It masks the details of the

hardware, allowing higher-level software to use APM without any knowledge of the

hardware interface.

The APM software interface specification defines a layered cooperative environment

in which applications, operating systems, device drivers and the APM BIOS work

together to reduce power consumption. In brief, APM can extend the life of system

batteries and thereby increases productivity and system availability.

ACPI (Advanced Configuration & Power Interface)

The ACPI specification was developed to establish industry common interfaces

enabling robust operating system (OS)-directed motherboard device configuration and

power management of both devices and entire systems. Different from APM, ACPI

allows control of power management from within the operating system. The previous

industry standard for power management, APM, is controlled at the BIOS level. APM

Department of Computer Engineering, DTU Page 19

is activated when the system becomes idle. The longer the system idles, the less power

it consumes (e.g. screen saver vs. sleep vs. suspend). In APM, the operating system

has no knowledge of when the system will change power states.

There are several software components that ACPI has:

A subsystem which controls hardware states and functions that may have previously

been in the BIOS configuration

These states include:

Thermal control

Motherboard configuration

Power states (sleep, suspend)

a policy manager, which is software that sits on top of the operating system and allows

user input on the system policies

The ACPI also has device drivers those control/monitor devices such as a laptop

battery, SMBus (communication/transmission path) and EC (embedded controller).

Department of Computer Engineering, DTU Page 20

 Figure 3.1 CPI architecture

 Figure 3 .2 CPI power state transition diagram

Department of Computer Engineering, DTU Page 21

3.2. Android architecture

First of all, Android OS design is based on Linux kernel. Linux has its own power

management that we have described in previous section. The following diagram (Figure 3.3)

shows the main components of the Android OS.

Figure 3.3 Android architecture

Android inherits many kernel components from Linux including power management

component. Original power management of Linux is designed for personal computers, so

there are some power saving status such as suspend and hibernation. However, these

mechanisms of Linux PM do not satisfied and suitable for mobile devices or embedded

systems. Mobile devices such as cell phones are not as same as PCs that have unlimited

power supply. Because mobile devices have a hard constraint of limited battery power

capacity, they need a special power management mechanism. Therefore, Android has an

additional methodology for power saving.

Department of Computer Engineering, DTU Page 22

3.3. Power Management

The implementation of Android power management was sitting on top of Linux Power

Management. Nevertheless, Android has a more aggressive Power Management policy than

Linux, in which app and services must request CPU resource with "wake locks" through the

Android application framework and native Linux libraries in order to keep power on,

otherwise, Android will shut down the CPU.

 Figure 3.4 Android Power Management.

Refer to Figure 3.4, Android try not to modify the Linux kernel and it implements an

applications framework on top of the kernel called Android Power Management Application

s Framework. The Android PM Framework is like a driver. It is written by Java which

connects to Android power driver through JNI. However, what is JNI? JNI (Java Native

Interface) is a framework that allows Java code running in a Java Virtual Machine (JVM) to

Department of Computer Engineering, DTU Page 23

call native C applications and libraries. Through JNI, the PM framework written by Java can

call function from libraries written by C.

Android PM has a simple and aggressive mechanism called “Wake locks”. The PM

supports several types of “Wake locks” . Applications and components need to get “Wake

locks” to keep CPU on. If there is no active wake locks, CP U will turn off. Android supports

different types of “Wake locks” (Table 3.1).

Table 3.1 Different wake locks of Android PM.

 Wake Lock Type

 ACQUIRE_CAUSES_WAKE

 FULL_WAKE_LOCK

 ON_AFTER_RELEASE

 PARTIAL_WAKE_LOCK

 SCREEN_BRIGHT_WAKE_LOCK

 SCREEN_DIM_WAKE_LOCK

Currently Android only supports screen, keyboard, buttons backlight, and the brightness of

screen. Because of full usage of CPU capability, it does not support suspend and standby

mode. The following diagram shows how Android PM works. Through the framework, user

space applications can use “Power Manger” class to control the power state of the device. We

will introduce more details about how to implement them in applications later.

Department of Computer Engineering, DTU Page 24

 Figure 3.5 Android Power Management Architecture with wake locks.

 Figure 3.6 A finite state machine of Android PM.

Department of Computer Engineering, DTU Page 25

Figure 3.6 shows that the full state machine. There are three states: “SLEEP”,

“NOTIFICATION”, and “AWAKE”. The scenario is: While a user application acquire full

wake lock or touch screen/keyboard activity event, the machine will enter or keep in the

“AWAKE”. If timeout happen or power key pressing, the machine will enter

“NOTIFICATION”. While partial wake locks acquiring, it will keep in “NOTIFICATION”.

While all partial locks released, t he machine will go into “SLEEP”. In “SLEEP” mode, it

will transit if all re source awake. This state machine make power saving of Android more

feasible for mobile devices.

Finally, the main concept of Android PM is through wake locks and time out mechanism

to switch state of system power, so that system power consumption will decrease. The

Android PM Framework provides a software solution to accomplish power saving for mobile

devices. The following diagram (Figure 3.7) shows the overall architecture of Android PM.

Figure 3.7 overall architecture of Android PM

Department of Computer Engineering, DTU Page 26

3.4. Android PM Implementation

Android PM Framework provides a service for user space applications through the class

PowerManger to achieve power saving. Hence, the app must get an instance of PowerManger

in order to enforce its power requirements. The flow of exploring Wake locks are here:

Acquire handle to the PowerManager service by calling Context.getSystemService().

Create a wake lock and specify the power management flags for screen, timeout, etc.

Acquire wake lock.

Perform operation such as play MP3.

Release wake lock.

Here we provide an example code of PM. We will put the wake locks code on the function of

onCreate() which will initialize first while the program start. And then release locks on the

function of onDestroy() method. Then, we can control different type wake locks to accept

different timeout or power saving mechanisms after finishing the implement.

Department of Computer Engineering, DTU Page 27

CHAPTER 4

PROPOSED WORK

4.1. System Power Management States

Android operating system uses the Linux kernel and its power reduction model to achieve

a more aggressive power management solution.

4.1.1. Standby

Standby is a low-latency power state that is sometimes referred to as “power-on suspend”.

In this state, the system conserves power by placing the CPU in a halt state and the devices in

the state.

4.1.2. Suspend

Suspend is also commonly known as “suspend to-RAM”. In this state, all devices are

placed in sleep state except main memory, is expected to maintain power. Memory is placed

in self-refresh mode, so its contents are not lost

4.1.3. Hibernate

Hibernate conserves the most power by turning off the entire system, after saving state to a

persistent medium, usually a disk. All devices are powered off unconditionally. Hibernate is

the only low-power state that can be used in the absence of any platform support for power

management. Instead of entering a low-power state, the configured Power-Manager driver

may simply turn the system off. This mechanism provides perfect power savings (by not

consuming any), and can be used to work around broken power management firmware or

hardware.

Department of Computer Engineering, DTU Page 28

4.2. Proposed Technique- Enhancement of Power Management in Wi-Fi

Direct

4.2.1. Problem Statement

For mobile device and embedded system device, it’s much more important because the

battery power is very limited. Nowadays, android phone and iPhone are more and more

pervasive. There are more and more sensors and I/O in mobile device that can be used to

improve the effectiveness of PM.

To improve power management on wifi direct my purposed idea is to implement hibernate

concept for a process (wifi direct) for power Management. In hibernate mode the current state

of the Process is saved to the non volatile memory and the process will power down. Once in

Hibernation mode, system can come out of hibernation mode due to activity on selected

peripherals (like LCD On, User interaction). Hibernate mode is similar to sleep mode,

however in sleep mode the power cannot be shut off.

http://www.webopedia.com/TERM/S/sleep_mode.html

Department of Computer Engineering, DTU Page 29

4.2.2. Proposed Solution-Hibernate Mode in Wi-Fi Direct

4.2.2.1. High Level Design

 Figure 4.1 Hibernation

1) Devices entered to “Power off L1 state” on the request of user (Sysfs hibernation

command)

2) Resumes its operation upon getting external event from Power Management Unit.

Transition to Hibernate mode can be invoked using sysfs command. A user application

monitoring the system can invoke this sysfs command to enter into hibernation in case of no

activity for certain period of time (Implementation Dependent).

As soon as the command is invoked, PM frameworks call all the device suspends functions

registered by individual device drivers to take respective application in Power Off state.

Once in Hibernation mode, system can come out of hibernation mode due to activity on

selected peripherals (like LCD On, User interaction). This is achieved by Power Management

Unit, which generates interrupt to wake up the application.

Department of Computer Engineering, DTU Page 30

4.2.2.2. Detailed Design (Software Implementation Detail)

4.2.2.2.1. Sysfs Interface

Sysfs Interface The interface exists in /sys/power/ directory

/sys/power/state: This controls the system power state

Reading from this file returns what states are supported:

Standby: Power-on Suspend

Mem: Suspend-to-RAM

 Disk: Suspend-to-Disk

Writing to this file one of these strings causes the system to transition into that state

Sysfs Interface /sys/power/disk:

This controls the operating mode of the Suspend-to-Disk mechanism Operating modes:

Platform: put the system to sleep using platform driver (ACPI)

Shutdown: power off the process

Testproc: will cause the kernel to disable nonboot CPUs and freeze tasks, wait for 5 sec

unfreeze tasks and enable nonboot CPUs

Test: will cause the kernel to disable nonboot CPUs and freeze tasks, shrink memory,

suspend devices, wait for 5 seconds, resume devices, unfreeze tasks and enable nonboot

CPUs

Department of Computer Engineering, DTU Page 31

Sysfs Interface /sys/power/image_size

This controls the size of the image created by the Suspend-to-Disk mechanism

 It can be written a string representing a non-negative integer that will be used as an upper

limit of the image size, in bytes. The suspend-to-disk mechanism will do its best to ensure the

image size will not exceed that number. However, if this turns out to be impossible, it will try

to suspend anyway using the smallest image possible. In particular, if "0" is written to this

file, the suspend image will be as small as possible

Reading from this file will display the current image size limit, which is set to 500 MB by

default

/sys/power/resume

Reading from this file will display the major: minor numbers of the swap partition to be

used for Suspend-to-Disk Writing major: minor numbers to this file will cause the system to

resume from the mentioned partition

4.2.2.2.2 Power Management

Tasks: Freeze, Thaw

 The freezing of tasks is a mechanism by which user space processes and some kernel

threads are controlled during hibernation or system-wide suspend. The tasks are frozen before

the hibernation image is created and are thawed after the system memory state has been

restored from a hibernation image and devices have been reinitialized .

Relevant flags

include/linux/shed.h:

 PF_NOFREEZE: this thread should not be frozen

 PF_FROZEN: frozen for system suspend

PF_FREEZER_SKIP: Freezer should not count it as freezable

Department of Computer Engineering, DTU Page 32

arch/arm/include/asm/thread_info.h

TIF_FREEZE

 The tasks that have PF_NOFREEZE unset (all user space processes and some kernel

threads) are regarded as freezable and treated in a special way before the Process enters a

suspend state as well as before a hibernation image is created

Tasks: Freeze, Thaw

 kernel/power/process.c, include/linux/freeze.h

Freeze:

freeze_processes():

It executes try_to_freeze_tasks() that sets TIF_FREEZE for all the freezable tasks and either

wakes them up, if they are kernel threads, or sends fake signals to them if they are user space

processes

 A task that has TIF_FREEZE set should react to it by calling the function refrigerator(),

which sets the tasks PF_FROZEN flag, changes its state to TASK_UNINTERRUPTIBLE

and makes it loop until PF_FROZEN is cleared for it. Then, we say that the task is frozen

 For user space processes try_to_freeze() is called automatically from the signal-handling

code, but the freezable kernel threads need to call it explicitly in suitable places or use the

wait_event_freezable() or wait_event_freezable_timeout()

Tasks: Freeze, Thaw

Thaw:

thaw_processes ():

It clears the PF_FROZEN flag for each frozen task. Then the tasks that have been frozen

leave the refrigerator () and continue running

Department of Computer Engineering, DTU Page 33

Tasks: Freeze, Thaw

Why is freezing of tasks required:

 To prevent file systems from being damaged after hibernation. The hibernation image

contains some file system-related information that must be consistent with the state of the on-

disk data and metadata after the system memory state has been restored from the image

(otherwise the file systems will be damaged in a nasty way). This is accomplished by freezing

the tasks that might cause the on-disk file systems data to be modified after the hibernation

image has been created and before the process is finally powered off. The majority of these

are user space processes, but if any of the kernel threads may cause something like this to

happen, they have to be freezable

 To create the hibernation image a sufficient amount of memory (approximately 50% of

available RAM) needs to be freed before the devices are deactivated. Then, after the memory

for the image has been freed, we don’t want tasks to allocate additional memory and that is

prevented by freezing them earlier

To prevent user space processes and some kernel threads from interfering with the

suspending and resuming of devices

Device Power Management

System Sleep Model:

Drivers can enter low power states as part of entering system-wide low-power states like

Suspend-to-Ram, Suspend-to-Disk (hibernation) This is something that device, bus, and class

drivers collaborate on by implementing various role-specific suspend and resume methods to

cleanly power down hardware and software subsystems, then reactivate them without loss of

data

Department of Computer Engineering, DTU Page 34

include/linux/device.h

Bus Driver Methods: The core methods to suspend and resume devices reside in struct

bus_type. Bus drivers implement those methods as appropriate for the hardware and the

drivers using it

struct bus_type { ...

int (*suspend)(struct device *dev, pm_message_t state);

 int (*suspend_late)(struct device *dev, pm_message_t state);

int (*resume_early)(struct device *dev);

 int (*resume)(struct device *dev);

struct dev_pm_ops *pm;

};

Upper layers of driver stacks:

Device drivers generally have at least two interfaces, and the but_type methods are the

ones which apply to the lower level (bus hardware). The network and block layers are

examples of upper level interfaces, as is a character device talking to userspace.

Power management requests normally need to flow through those upper levels, which

often use domain-oriented requests. In some cases those upper levels will have power

management intelligence that relates to end-user activity, or other devices that work in

cooperation. For the upper level interfaces that are structured using class interfaces, there is a

standard way to have the upper layer stop issuing requests to a given class device (and restart

later)

struct class { ... int (*suspend)(struct device *dev, pm_message_t state);

 int (*resume)(struct device *dev);

 struct dev_pm_ops *pm; };

Department of Computer Engineering, DTU Page 35

 Device:

 struct device { ... struct device_type *type;

struct bus_type *bus;

 struct class *class; ...

};

 struct device_type { ... int (*suspend)(struct device *dev, pm_message_t state);

 int (*resume)(struct device *dev);

 struct dev_pm_ops *pm;

 };

 include/linux/sysdev.h

Sysdev

struct sysdev_class {

 …

struct list_head drivers;

int (*shutdown)(struct sys_device *);

 int (*suspend)(struct sys_device *, pm_message_t state);

 int (*resume)(struct sys_device *);

 };

 struct sysdev_driver {

 ...

 int (*shutdown)(struct sys_device *);

 int (*suspend)(struct sys_device *, pm_message_t state);

 int (*resume)(struct sys_device *);

 };

 struct sys_device { ...

 struct sysdev_class *cls;

 };

Department of Computer Engineering, DTU Page 36

 include/linux/pm.h

struct dev_pm_ops {

int (*prepare)(struct device *dev);

void (*complete)(struct device *dev);

 int (*suspend)(struct device *dev);

 int (*resume)(struct device *dev);

 int (*freeze)(struct device *dev);

int (*thaw)(struct device *dev);

 int (*poweroff)(struct device *dev);

int (*restore)(struct device *dev);

 int (*suspend_noirq)(struct device *dev);

int (*resume_noirq)(struct device *dev);

int (*freeze_noirq)(struct device *dev);

int (*thaw_noirq)(struct device *dev);

int (*poweroff_noirq)(struct device *dev);

 int (*restore_noirq)(struct device *dev); };

 prepare(): Prepare the device for the upcoming transition, but do NOT change its

hardware state. Prevent new children of the device from being registered after prepare()

returns (the drivers subsystem and generally the rest of the kernel is supposed to prevent new

calls to the probe method from being made too once prepare() has succeeded)

 freeze(): Hibernation-specific, executed before creating a hibernation image. Quiesce

operations so that a consistent image can be created, but do NOT otherwise put the device

into a low power device state and do NOT emit system wakeup events. Save in main memory

the device settings to be used by restore() during the subsequent resume from hibernation or

by the subsequent thaw(), if the creation of the image or the restoration of main memory

contents from it fails

thaw(): Hibernation-specific, executed after creating a hibernation image OR if the

creation of the image fails. Also executed after a failing attempt to restore the contents of

Department of Computer Engineering, DTU Page 37

main memory from such an image. Undo the changes made by the preceding freeze(), so the

device can be operated in the same way as immediately before the call to freeze()

poweroff(): Hibernation-specific, executed after saving a hibernation image. Quiesce the

device, put it into a low power state appropriate for the upcoming system state, and enable

wakeup events as appropriate

 restore(): Hibernation-specific, executed after restoring the contents of main memory

from a hibernation image. Driver starts working again, responding to hardware events and

software requests

complete(): Undo the changes made by prepare(). This method is executed for all kinds of

resume transitions, following one of the resume callbacks: resume(), thaw(), restore(). Also

called if the state transition fails before the drivers suspend callback (suspend(), freeze(),

poweroff()) can be executed. The PM core executes complete() after it has executed the

appropriate resume callback for all devices

freeze_noirq(), thaw_noirq(), poweroff_noirq(), restore_noirq(): Complete the operations

of the corresponding function (freeze(), thaw(), poweroff(), restore()) by carrying out any

actions required for freezing the device that need interrupts to be disabled

Notifiers :

There are some operations that device drivers may want to carry out in their

suspend()/prepare() routines, but shouldnt, because they can cause the hibernation or suspend

to fail. For example, a driver may want to allocate a substantial amount of memory (like 50

MB) in suspend()/prepare(), but that shouldnt be done after the swsusps memory shrinker has

run. Also, there may be some operations, that subsystems want to carry out before a

hibernation/suspend or after a restore/resume, requiring the system to be fully functional

A Hibernation notifier may be used for this purpose. The subsystems that have such needs

can register suspend notifiers that will be called upon the following events by the suspend

core:

Department of Computer Engineering, DTU Page 38

 PM_HIBERNATION_PREPARE: The system is going to hibernate or suspend, tasks will

be frozen immediately

 PM_POST_HIBERNATION: The system memory state has been restored from a

hibernation image or an error occurred during the hibernation. Device drivers

resume()/restore() callbacks have been executed and tasks have been thawed

 PM_RESTORE_PREPARE: The system is going to restore a hibernation image. If all

goes well the restored kernel will issue a PM_POST_HIBERNATION notification

PM_POST_RESTORE: An error occurred during the hibernation restore. Device drivers

resume() callbacks have been executed and tasks have been thawed

PM_SUSPEND_PREPARE: The system is preparing for a suspend

 PM_POST_SUSPEND: The system has just resumed or an error occurred during the

suspend. Device drivers resume () callbacks have been executed and tasks have been thawed

4.2.2.2.3 Memory Power Management

Memory Snapshot:

The hibernation core snapshots system memory by indexing and copying every active

page in the system. Once a snapshot is complete, the saved image and index is stored

persistently

The snapshot sequence is a three-step process. First, all of the active pages are indexed,

enough new pages are allocated to clone these pages, then each page is copied into its clone

The snapshot process has one critical requirement: that at least half of the memory be free.

For this the memory needs to be freed before the snapshot is taken. This is done using the

memory shrinker

Department of Computer Engineering, DTU Page 39

4.2.2.2.4. Hibernate Algorithm

 Figure 4.2 Hibernation Algorithm

1)The power management notifiers registered for the event PM_HIBERNATION_PREPARE

are executed

2) All the file systems are synced (Flush file system buffers, force changed blocks to disk,

update the superblock)

3) Tasks are frozen

4) The platform driver is informed that hibernation is being started

5) The requisite memory to save the snapshot is freed using the memory shrinker

Department of Computer Engineering, DTU Page 40

 6) The process are suspended for the event P_EVENT_FREEZE. For each dev in dpm_list

the following are executed (in sequence): (dev->bus->pm, dev->type->pm, dev->class->pm)-

>prepare(), dev- >class->pm->freeze() or dev->class->suspend(), dev->type->pm->freeze()

or dev->type- >suspend(), dev->bus->pm->freeze() or dev->bus->suspend()

7) Process is prepared for hibernation using the platform driver

8) Interrupts are disabled for the process

9) Late suspend of the process (that require interrupts to be disabled) is carried out for the

event PM_EVENT_FREEZE. For each dev in dpm_list the following is executed: dev->bus-

>pm- >freeze_noirq() or dev->bus->suspend_late()

10) Process are suspended for the event PM_EVENT_FREEZE. For each cls in system_kset-

>list following is executed (in sequence): (For each drv in cls->drivers) ->suspend(), cls-

>suspend()

11) Co-processor and the processor state is saved

12) Atomic copy of the system memory (hibernation image) is created

13) The co-processor state is restored

14) Process is switched to normal mode of operation using platform driver

15) The devices are resumed for the event P_EVENT_THAW. For each dev in dpm_list the

following is executed (in sequence): dev->bus->pm->thaw() or dev->bus->resume(), dev-

>type->pm->thaw() or dev->type->resume(), dev->class->pm->thaw() or dev->class-

>resume(), (dev->class->pm, dev->type->pm, dev->bus->pm)->complete()

16) The platform driver is informed that the system has entered the working state

17) Hibernation image is saved in the allocated swap partition

18) Process is shutdown

Department of Computer Engineering, DTU Page 41

4.2.2.2.5. Resume Algorithm

 Figure 4.3 Resume Algorithm

Department of Computer Engineering, DTU Page 42

1) The power management notifiers registered for the event PM_RESTORE_PREPARE are

executed

2) Tasks are frozen

 3) Hibernation image is loaded into RAM

4) The devices are suspended for the event P_EVENT_QUIESCE. For each dev in dpm_list

the following is executed (in sequence): (dev->bus->pm, dev->type->pm, dev->class->pm)-

>prepare(), dev- >class->pm->freeze() or dev->class->suspend(), dev->type->pm->freeze()

or dev->type- >suspend(), dev->bus->pm->freeze() or dev->bus->suspend()

5) The platform is prepared for restoration from a hibernation image

6) Interrupts are disabled on the main CPU

7) Late suspend of the devices (that require interrupts to be disabled) is carried out for the

event PM_EVENT_QUIESCE. For each dev in dpm_list the following is executed: dev-

>bus->pm- >freeze_noirq() or dev->bus->suspend_late()

8) System devices are suspended for the event PM_EVENT_QUIESCE. For each cls in

system_kset- >list the following is executed (in sequence): (For each drv in cls->drivers)-

>suspend(), cls- >suspend()

9) Machine is prepared for switching to normal mode of operation using the platform driver

System devices are resumed. For each cls in system_kset->list the following is executed (in

sequence): cls->resume(), (For each drv in cls->drivers)->resume()

10) Early resume of the devices is carried out for the event PM_EVENT_RESTORE. For

each dev in dpm_list the following is executed: dev->bus->pm->restore_noirq() or dev->bus-

>resume_early()

11) Interrupts are enabled on the the main CPU

Department of Computer Engineering, DTU Page 43

12) Process is switched to normal mode of operation using the platform driver

13) The devices are resumed for the event P_EVENT_RESTORE. For each dev in dpm_list

the following is executed (in sequence): dev->bus->pm->restore() or dev->bus->resume(),

dev->type->pm- >restore() or dev->type->resume(), dev->class->pm->restore() or dev-

>class->resume(), (dev- >class->pm, dev->type->pm, dev->bus->pm)->complete()

The platform driver is informed that the system has entered the working state

14) Tasks are thawed

15) Power management notifiers are executed for PM_POST_HIBERNATION

Department of Computer Engineering, DTU Page 44

CHAPTER 5

SIMULATION RESULTS & ANALYSIS

5.1. Simulation Setup: A Power Monitor for Android-Based Mobile Platforms

PowerTutor is an application for Google phones that displays the power consumed by

major system components such as CPU, network interface, display, and GPS receiver and

different applications. The application allows software developers to see the impact of design

changes on power efficiency. Application users can also use it to determine how their actions

are impacting battery life. PowerTutor uses a power consumption model built by direct

measurements during careful control of device power management states. This model

generally provides power consumption estimates within 5% of actual values.We can use

PowerTutor to monitor the power consumption of any application.

PowerTutor's power model was built on Samsung, HTC G1, HTC G2 and Nexus one. It will

run on other versions of the GPhone, but when used with phones other than the above phone

models, power consumption estimates will be rough.

PowerTutor was developed by University of Michigan Ph.D. students Mark Gordon, Lide

Zhangand Birjodh Tiwana under the direction of Robert Dick and Zhuoqing Morley Mao at

the University of Michigan and Lei Yang at Google. The work is supported primarily by

National Science Foundation grant CNS-1059372 under Program Manager

Professor Theodore Baker. It received prior support from Google and the National Science

Foundation under awards CCF-0964763 and CNS-0720691, and was done in collaboration

with the joint University of Michigan and North western University Empathic Systems

Project.

Experiment is done on below combination of setup:

Platform: Android

OS: Linux

Chipset: Qualcomm (8930)

Driver: Wi-Fi Prima

Simulation Tool : Power Tuitor

http://ziyang.eecs.umich.edu/~lzh228/
http://ziyang.eecs.umich.edu/~lzh228/
http://robertdick.org/
http://www.eecs.umich.edu/~zmao/
http://ziyang.eecs.umich.edu/~lei/
http://www.nsf.gov/staff/staff_bio.jsp?lan=tbaker&org=CNS&from_org=CNS
http://empathicsystems.org/
http://empathicsystems.org/

Department of Computer Engineering, DTU Page 45

5.2.2. Performance Evaluation- Hibernate Mode in Wi-Fi Direct

 Figure 5.1 List of running application

Department of Computer Engineering, DTU Page 46

5.2.1. Simulation Result (Normal Mode)

Figure 5.2 Wifi Direct power consumption Graph on Normal Mode

Department of Computer Engineering, DTU Page 47

Simulation Result (Hibernate Mode)

Figure 5.3 Wifi Direct power consumption Graph on Hibernate Mode

Department of Computer Engineering, DTU Page 48

5.2.2. Analysis

From the simulation performed the observations can be quantified in normal mode and

hibernation mode simulation result.

We observe Power consumption is less in case of hibernation mode in compare with normal

model of execution in case when LCD is off and there is no packet transfer between devices

through wifi direct.

It is observe there is minimum power consumption in case of hibernation. (Note: Power Tutor

tool, power consumption estimates within 5% of actual values)

Hibernation concept is used in system to save more power and in experiment it is observed

that hibernation technique can be used for any process depending upon the requirement and

situation to save more power.

Department of Computer Engineering, DTU Page 49

CHAPTER 6

CONCLUSION AND FUTURE WORK

Power saving is an important issue for mobile devices, and there are many ways to

implement. How to design a PM for mobile device need is a good question. Android builds

up its user space level solution in order to maintain Linux fundamental support and increase

flexibilities.

The future of Wi-Fi Direct is very promising as it is becoming the next prominent P2P

communication technology for various mobile applications and services. Anticipating this

trend, we propose an enhancement of power saving in Wi-Fi Direct to improve its

performance. Performance evaluation through simulation shows that our proposed scheme

can tune improves power management, guaranteeing better energy efficiency and service

reliability. In the future, we plan to experiment with the Wi-Fi Direct implementation using

more devices and to explore the practical costs. In addition; we plan to add an easy-to-use

graphical user interface and to release an application that is useable by mobile user.

To sum up, PM is very important for mobile device but it still have room for improvements.

Department of Computer Engineering, DTU Page 50

References

[1] Wi-Fi Alliance, P2P Technical Group, Wi-Fi Peer-to-Peer (P2P) Technical

Specification v1.1, 2010.

[2] IEEE P802.11™-2012, Part 11: Wireless LAN medium access control (MAC) and

physical layer (PHY) specifications, IEEE, 2012.

[3] Google, Android 4.1 Compatibility Definition, Revision 2, Sept. 2012.

[4] Powet Tuitor

[5] Wi-Fi Alliance, http://www.wi-fi.org

[6] D. Camps-Mur, X. Perez-Costa, S. Sallent-Ribes, “Designing energy efficient hop

access points with Wi-Fi Direct,” Computer Networks, 55, pp.2838-2855, 2011.

[7] J. Choi, Y. Ko, J. Kim, "Enhanced Power Saving Scheme for IEEE 802.11 DCF based

Wireless Networks", 8th International Conference on Personal Wireless

Communications, pp. 835-840, Sep. 2003.

[8] E.Jung, N. Vaidya, “Improving IEEE 802.11 power saving mechanism,’ Wireless

Networks, 14, pp. 375-391, 2008

[9] X. Hu, Z. Chen, Z. Yang, “Energy-efficient Scheduling Strategies in IEEE 802.11

Wireless LANs,” International Conference on ComputerScience and Automation

Engineering, pp. 570-572, May, 2012.

[10] Robin Kravets, P. Krishnan , Application-driven power management for mobile

communication .

[11] Andreas Weissel, Frank Bellosa, Process cruise control: event-driven clock scaling

for dynamic power management.

[12] APM V1.2 spec.

[13] ACPI, http://www.lesswatts.org/projects/acpi/index.php

http://www.wi-fi.org/

Department of Computer Engineering, DTU Page 51

[14] Android project- power management

http://www.netmite.com/android/mydroid/development/pdk/docs/power_manage

ment.html

[15] Steve Guo, Android Power Management

[16] Matt Hsu, Jim Huang, Power Management from Linux Kernel to Android, 0xlab,

2009.

