
 

Probing the Intrinsic Resistome of Mycobacterium tuberculosis 

Mapping of Chemical Space: Modeling and Simulation of 

Metabolism and Predictive Models of Influx as Filters for Drug-like 

Molecules 

 

A Major Project dissertation submitted 

in partial fulfilment of the requirement for the degree of 

 

Master of Technology 

In 

Bioinformatics 

 

Submitted by 

JAYA UNIYAL 

(2K12/BIO/09) 

Delhi Technological University, Delhi, India 

Under the supervision of 

Dr. V. K. Singh 

 

Department of Biotechnology 

Delhi Technological University 

(Formerly Delhi College of Engineering) 

Shahbad Daulatpur, Main Bawana Road,  



Delhi-110042, INDIA 

  

 
 

CERTIFICATE 

 
This is to certify that the M. Tech. dissertation entitled “Probing the Intrinsic 

Resistome of Mycobacterium tuberculosis. Mapping of Chemical Space: Modeling 

and Simulation of Metabolism and Predictive Models of Influx as Filters for Drug-like 

Molecules”, submitted by JAYA UNIYAL (2K12/BIO/09) in partial fulfilment of 

the requirement for the award of the degree of Master of Technology, Delhi 

Technological University (Formerly Delhi College of Engineering, University of 

Delhi), is an authentic record of the candidate’s own work carried out by her under 

my guidance.  

The information and data enclosed in this dissertation is original and has not been 

submitted elsewhere for honouring of any other degree. 

Date: 

 

 

 

 

Dr. V.K.Singh 

Department of Bio-Technology  

Delhi Technological University  

(Formerly Delhi College of Engineering, University of Delhi) 

  



 

 

 

DECLARATION 

 

I, Jaya Uniyal hereby declare that the report entitled “Probing the Intrinsic Resistome of 

Mycobacterium tuberculosis. Mapping of chemical space: Mapping of Chemical Space: 

Modeling and Simulation of Metabolism and Predictive Models of Influx as Filters for 

Drug-like Molecules” submitted in partial fulfilment of the requirement for the award of the 

degree of Master of Technology, Delhi Technological University (Formerly Delhi College of 

Engineering, University of Delhi),  is a record of original and independent research work done 

by me under the supervision and guidance of Dr. Andrew M Lynn, Associate Professor, School 

of Computational & Integrative Sciences(SCIS),Jawaharlal Nehru University(JNU),New Delhi 

and the thesis has not formed the basis of the award of any 

Degree/Diploma/Associateship/Fellowship or other similar title to any candidate of any 

university/institution. 

 

 

 

 

 

 

Date:          Signature of candidate  



 

ACKNOWLEDGEMENT 

 
 

He who thanks but with the lips 
Thanks but in part; 

The full, the true Thanksgiving 
Comes from the heart. 

 

I am grateful to the Almighty for having given me the strength and perseverance to accomplish 

my objectives. With him by my side the whole process was easier. My belief in him kept me 

moving towards the completion of this project.  

Next I would like to acknowledge my beloved family who stood by me and gave me all the more 

patience and strength. A big thank you to my dad, who despite his busy schedules, took out time 

to hear my issues and complaints and constantly encouraged and supported  me. The blessings of 

my grandparents were all the way with me. I am indebted to the love of my family and friends 

throughout my journey. 

I express my sincere gratitude and admiration to my advisor, Dr. V.K.Singh, for his guidance, 

support, and mentorship that has helped me to successfully complete the project. 

I profusely thank Dr. Andrew M. Lynn, Associate Professor, Jawaharlal Nehru University, New 

Delhi, India for his unparalleled support and inspiration. I consider myself fortunate and highly 

indebted to him for his precious guidance, various innovative ideas and invaluable suggestions. I 

am thankful to him for his exceedingly helpful nature. It would not have been possible for me to 

finish this work without his constant support and motivations. He showed immense patience in 

dealing with me and rectified all the mistakes, committed by me.  

I thank my fellow labmates in Lynn Group: School of computing and integrative Sciences for 

the stimulating discussions, for the sleepless nights we were working together before deadlines, 

and for all the fun we have had in the last one year. The role of Anmol Sir, Deepak Sir, Pankaj 

Sir, Shawez Sir, and Swati Mam was critical and of utmost importance throughout. They 

helped me understand the basics as well as the advanced fundas and were available day in and 

day out.  

A special mention to the people without whose constant support this journey and this work 

would have been incomplete. Firstly I would like to thank my constant support and strength, 



Manu Kandpal, who was there at every step and progress of this work. My buddies, Rishi 

Srivastava, Basharat Bhat and Kashif Nawaz who were my point of advice and I could always 

depend on them. Most of our coffee  breaks turned out to be scientific discussions that provided 

insights to my work. 

To my friends Yashna Paul , Neha Nagpal, Dhwani Dholakia and Mayank Guptai, thank you 

for your thoughtful consideration, unconditional love and support that made my work easy and 

pleasant. 

Last but not the least, I owe a sincere thanks to Bioinformatics staff of Delhi Technological 

University for providing a secure and healthy environment for growth in education and life. 

Once again I thank all the people who helped me with their advice, support and encouragement.  
 

 

Jaya Uniyal 

                  2K12/BIO/09

    

 

 

  



CONTENTS 
 
 

TOPIC          PAGE NO 
 

LIST OF FIGURES          i 

 

LIST OF TABLES         ii  

 

LIST OF ABBREVIATIONS        iii 

 

1. ABSTRACT           1  

       

2. INTRODUCTION         2-3 

 

3. REVIEW OF LITERATURE        4-23 

3.1Metabolism         4 

 3.1.1 Metabolic Networks       4-5 

 3.1.2 Metabolic Reconstruction      5-6 

3.2 Flux Balance Analysis        6-8 

3.3 Data Mining         8-23 

  3.3.1 Supervised Learning       12- 23 

 3.3.1.1 Linear regression      13-14 

 3.3.1.2 Support Vector Machines     14-17 

 3.3.1.3 K Nearest Neighbour      17-18 

 3.3.1.4 Decision Trees      18-20 

 3.3.1.5 Random Forest      20-21 

  

 

 

4. MATERIALS AND METHODS       22-32 

4.1 Data         22 

4.2 FBA         22 

4.2.1 FBA Methodology      22-24 

4.3. Data Mining        24-32 

 4.3.1 Preprocessing the Data      25-26 

 4.3.2 Model Building and Resampling    26-28 

 4.3.3 Model Evaluation      28-30 

4.3.4 Data Mining Methodology     30-32 

 

 

 



5. RESULTS AND DISCUSSION       33-43 

5.1 FBA         33-41 

5.2 Data Mining        41- 

5.2.1 Dataset Extraction      41 

5.2.2 Calculation of Molecular Descriptors    41 

5.2.3 Data Preprocessing and Splitting    42 

5.2.4 Model Building       42-44 

5.3 Graph Results        44-48 

 

6. CONCLUSION         49 

 

7. FUTURE PERSPECTIVE         50 

 

8. REFERENCES          51-53 

 

9. APPENDIX           53-71 

  

  



 

LIST OF FIGURES  
 

Figure 1. System based approach: system enclosed within system’s boundary. FBA does not              

      include the regulation of the pathway. 

Figure2. Data Mining Algorithm. 

Figure3. Support vector principle. 

Figure 4.  SVM uses Structural Risk Minimization to compare various separation models  and  to  

     eventually  choose  the  model  with  the  largest  margin  of  separation. 

Figure 5. General  Architecture  of  a  Decision  Tree  showing  decision  blocks  in rectangle and 

    terminating blocks in oval. 

Figure 6.  A general architecture of Random Forest. 

Figure 7. Multitask Neural Network for target t and challenge set T 

Figure 8. The figure depicts the methodology used in building Quantitative Structure Activity    

     Relationships models. 

Figure 9. ROC curve on test set for PLS. 

 

 

 

 

 

 

 

 

 

 

 

 

 

i 



LIST OF TABLES 

 

Table 1. The table list a summary of classification models with examples available in for      

   Predictive modeling. 

Table 2. List of essential reactions from singleReactions deletion function: 

Table 3. List of molecules identified as essential from single reaction deletion function: 

Table 4. Table shows the performance score of the Preditive Models 

Table 5. Prediction results for the essential metabolite dataset 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

ii 



 

LIST OF ABBREVIATIONS 
 

MTB    Mycobacterium tuberculosis 

MDR Multi Drug Resistant 

XDR Extensively Drug Resistant 

INH Isoniazid 

RMP Rifampicin 

DEM  Dead End Metabolite 

RNP  Root Non Produced 

RNC  Root non Consumed 

FBA  Flux Balance Analysis 

HTS High Throughput Screening 

QSAR Quantitative Structure Activity Relationship 

SVM Support Vector Machine 

KNN k-Nearest Neighbour 

PLS  Partial Least Square 

GBM Generalized Boosted Method 

GLM Generalized Linear Model 

RF Random Forest 

CARET  Classification and Regression tool 

COBRA  Constraint Based Reconstruction and Analysis 

SE  Sensitivity 

SP  Specificity 

 

iii 



1 | P a g e  

 

Probing the Intrinsic Resistome of Mycobacterium tuberculosis 

Mapping of chemical space: Modeling and simulation of metabolism and predictive models of 

influx as filters for drug-like molecules. 

 

Jaya Uniyal 

Delhi Technological University, Delhi, India 

 

1. ABSTRACT 

Tuberculosis (TB) is one of the most serious infectious diseases worldwide. Approximately one-third 

of the people are infected with Mycobacterium tuberculosis (Mtb), making tuberculosis (TB) one of 

the most prevalent infectious diseases in the world. Anti-tuberculosis (TB) drug resistance is a major 

public health problem that threatens progress made in TB care and control worldwide. Intrinsic 

resistance to antibiotics is posing severe threats to the treatments currently available for TB rendering 

them ineffective and incomplete. 

To deal with this scenario, efforts have to be directed towards mechanisms that are underexplored in 

the organism for the purpose of developing an effective and adequate treatment regime. Herein, we 

propose metabolic pathways of the mycobacterium as the choice of target for identifying and 

developing novel drug molecules that may act as potential inhibitors of the organism. In this study, we 

propose to explore the chemical space within Mtb to identify essential metabolites, and use this 

information to develop influx models for the organism. 

Mtb presents a plethora of molecular targets that hold a great potential for therapeutic intervention in 

the post genomic era. These opportunities present the Mtb genome as a highly druggable genome. 

Studies have identified proteins critical for the survival for M.tuberculosis that are likely to have high 

rates of success as drug candidates. Many of the druggable proteins are enzymes that control several 

metabolic processes within the cells by catalyzing the reactions converting nutrients into energy and 

new molecules which are in a way crucial for the survival of the microbe. 

Because metabolism is fundamental in sustaining microbial life, drugs that target pathogen-specific 

metabolites, enzymes and pathways can be very effective. In particular, the metabolic challenges faced 

by intracellular pathogens, such as Mycobacterium tuberculosis, residing in the infected host provide 

novel opportunities for therapeutic intervention (Fang et al, 2009). 

 

Keywords: TB,druggable genome, metabolic pathways. 

 



2 | P a g e  

 

2. INTRODUCTION 

Tuberculosis (TB) is one of the most serious infectious diseases worldwide. The World Health 

Organization predicts that between 2002 and 2020, 36 million people will have died from TB. 

Approximately one-third of the people are infected with Mycobacterium tuberculosis (Mtb), making 

tuberculosis (TB) one of the most prevalent infectious diseases in the world. Anti-tuberculosis (TB) 

drug resistance is a major public health problem that threatens progress made in TB care and control 

worldwide. 

Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), is among the world’s most 

devastating pathogens, responsible for 2–3 million deaths annually. MTB has two peculiar features that 

make it particularly difficult to combat. First, its thick, waxy cell wall, rich in unusual lipids, makes it 

impermeable to many drugs. Second, its latency, which prolongs to as much as many years until it is 

reactivated. When engulfed by macrophages, it can switch its metabolism and remain in a latent or 

persistent state inside granulomas in the lung. Current estimates are that one-third of the world’s 

population is infected, and that the incidence of active TB is rising, in particular as a result of synergy 

with the HIV/AIDS pandemic. Although effective anti-TB drugs exist, treatment regime require a 

mixture of two to three drugs administered for at least 6 months (Card et al., 2005). 

Drug-resistant TB is the man-made result of interrupted, inadequate and inappropriate TB treatment, 

and its spread is undermining the efforts being made to control the epidemic. Multi-drug-resistant 

tuberculosis (MDR-TB) is defined as tuberculosis that is resistant to at least isoniazid (INH) and 

rifampicin (RMP), the two most powerful first-line treatment anti-TB drugs. M. tuberculosis develops 

drug resistance exclusively through chromosomal mutations, in particular single-nucleotide 

polymorphisms (McGrath et al., 2014). 

Genes that encode disease related proteins that can be modulated by drug-like molecules represent the 

druggable genome (Keller et al, 2006). M.Tb presents a plethora of molecular targets that hold a great 

potential for therapeutic intervention in the post genomic era. These opportunities present the Mtb 

genome as a highly druggable genome. Studies have identified proteins critical for the survival for 

M.tuberculosis that are likely to have high rates of success as drug candidates (Raman et al., 2008). 

Many of the druggable proteins are enzymes that control several metabolic processes within the cells 

by catalyzing the reactions converting nutrients into energy and new molecules which are in a way 

crucial for the survival of the microbe. The enzyme–reaction relationships can be used for the 

reconstruction of a network of reactions, which leads to a metabolic model of metabolism (Baart et al., 

2012). Modulating these enzyme reaction relationships can provide us with druggable protein targets. 

Despite its high druggability, the Mtb genome also shows intrinsic resistance to antibiotics. Clinical 

definition of antibiotic resistance is mainly based on the bacterial response to treatment (Olivares et al, 

2013). The term “Intrinsic resistome” has been used in context to resistance that the bacterium 

provides against the antibiotics. The causes of such resistance may be due to loss of a target, and 



3 | P a g e  

 

reduced uptake or increased efflux of the drug. Effectors for these causes maybe the acquisition of 

resistance genes(Horizontal gene transfer) or mutations in genes that make bacteria more resistant to 

antibiotics and mechanisms that selectively restrict uptake such as impermeability of the cell wall, and 

efflux proteins. 

Importantly, using the sequenced genome of M. tuberculosis (Cole et al, 1998) together with literature 

data on known metabolic reactions, extensive metabolic network reconstructions have been carried out 

for this organism (Jamshidi et al, 2007; Beste et al, 2007). Analyses of these networks based on FBA 

reveal that they contain sufficient information to predict growth rates and identify genes that are 

essential for the growth of M. tuberculosis in select media (Jamshidi et al, 2007; Beste et al, 2007; 

McGrath et al, 2014). 

Herein, we present a list of drug-like molecules based on the predictive model for molecules that are 

being influxed by the bacterium. The molecules being predicted as potent drug molecules are based on 

the intrinsic requirement of the bacterium and thus expected to be more active within the cell. Thus we 

predict that these molecules have higher uptake/influx potential within the bacterium and thus a good 

choice for being tested for inhibitory effect on mycobaterial growth. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4 | P a g e  

 

3. REVIEW OF LITERATURE 

3.1 Metabolism 

Metabolism is regarded as one of the most complex kind of cellular processes and many attempts have 

been made to reconstruct the metabolic network in many organisms.  The first whole-cell metabolic 

model was developed for the human red blood cell (RBC) (Price et al, 2003) as the culmination of two 

decades of work. 

A metabolic pathway is defined as a set of enzyme catalyzed biochemical reactions required by a 

living organism that transform an initial (source/reactant) compound into a final (target/product) 

compound. A metabolic pathway involves the step-by-step modification of an initial molecule to form 

another product. Each metabolic pathway consists of a series of such biochemical reactions that are 

connected by their intermediates: the products of one reaction are the substrates for subsequent 

reactions, and so on. Metabolic pathways are often considered to flow in one direction. 

These biochemical reactions are connected to each other via their reactant and product metabolites to 

create complex metabolic interconnections. These networks may then be analyzed using the complex 

calculations of network/graph theory, stoichiometric analysis and other relevant information on protein 

function and their enzymatic conversions (Hatzimanikatis et al, 2004). These interconnected networks 

ultimately allow the cell to function and grow. 

Recently, metabolic pathway analysis has gained much prominence from a system’s biology 

perspective (Klamt et al, 2003). Each cell is a complete system in itself well defined by a system 

boundary. This boundary identifies a system from the environment. Each system or a cell in biological 

terms comprises of a complex world of cellular metabolism commonly organized into metabolic 

pathways (Planes et al, 2009). 

The metabolic network is used to self-consistently calculate the overall biomass growth rate μ, 

substrate uptake rates vC, and the fluxes of all metabolic reactions (Fang et al.2009). These metabolic 

frameworks take into consideration different aspects of enzyme chemistry, enzyme structure and 

metabolite structure, and demonstrate the impact of metabolic biochemistry on the systemic properties 

of metabolism (Hatzimanikatis et al, 2004). 

 

3.1.1. Metabolic networks 

Owing to the complexity of cellular processes, metabolic networks have gained prominent importance 

recently. Metabolic networks comprise of a repertoire of chemical and enzymatic reactions that aid in 

supporting life. These innumerate reactions help transport and convert thousands of organic 

compounds into molecules that carry forward the life sustaining reactions (Schilling et al., 2000). The 

collection of reactions and hence pathways that a metabolic network possesses determines the 

architecture and topology of the network. 



5 | P a g e  

 

Metabolic networks incorporate diverse data sets including genome annotations, biochemical 

characterizations and cell physiology experiments (Papin et al., 2003). 

Most of the contribution in today’s well elucidated metabolic networks has been due to the large-scale 

sequencing projects and genome annotation efforts. Once functional annotation of enzyme coding 

genes is done based on sequence similarity and positional correlation of genes, organism-specific 

pathways can be constructed computationally by correlating genes in the genome with gene products 

(enzymes) in the reference pathways (Kanehisa and Goto, 2000). With this level of description, 

mathematically defined pathways enable the analysis of a complete metabolic system. 

The detailed analysis of these reconstructed networks involves the mathematical description of cellular 

properties that are measured in terms of reaction fluxes and biomass conversion or total cellular 

growth. These methods take into account properties of the enzyme chemistry by accounting for mass 

balance and thermodynamic constraints. 

 

3.1.2. Metabolic Reconstruction 

Computationally intensive reconstruction of metabolic pathway aims at representing the complete 

network of metabolites by interconnecting and correlating reactions and their catalysts by activities 

assigned to one or more genes. Reconstructed models do sometime contain inconsistencies that appear 

as blocked reactions that contain dead end metabolites or gap metabolites (Ponce-de-León et al, 2013). 

These inconsistencies usually appear in the network due to incomplete information about the 

reactions/pathway or due to no known functional annotations for certain reactions. 

Due to these inconsistencies, there are sometimes losses of connections in the network that account for 

truncated networks. These truncated or broken networks accumulate gaps that create dead end 

metabolites in the network. 

A dead-end metabolite (DEM) is defined as a metabolite that is produced by the known metabolic 

reactions of an organism and has no reactions consuming it, or that is consumed by the metabolic 

reactions of an organism and has no known reactions producing it, and in both cases has no identified 

transporter (Mackie et al,2013). DEMs are thus isolated compounds within a metabolic network. 

These DEMs may be classified as Root not produced (RNP) and root not consumed (RNC). 

A 'dead end' exists in a metabolic network if a metabolite is either only produced or only consumed in 

the network. If a metabolic network contains a gap, it is missing the biochemical reactions that can 

produce or consume the dead end metabolites (Reed et al, 2003). These DEMs as stated above are the 

outcome of loss of connection within the network. Any reaction that contains a DEM is found to 

contain no flux in any simulation condition. Network reactions that cannot carry any flux in any 

simulation condition are called blocked reactions. Generally, these blocked reactions are caused by 

missing links in the network. 



6 | P a g e  

 

A blocked reaction may also be defined as a reaction whose Flux is always zero i.e. its min and max 

value is zero. These reactions contain gap metabolites or dead end metabolite. 

 

3.2 Flux Balance Analysis 

The chemical reactions that occur within a cell that are a necessary as life sustaining reactions are 

known as metabolic reactions. Metabolites are the intermediates and the products of metabolic 

pathways. Flux balance analysis is a mathematical approach for analyzing the flow of these 

metabolites through a metabolic network (Orth et al, 2010).   

FBA, as the term implies is the mathematical analysis of the flow pattern i.e. influx and efflux patterns 

of the metabolites within a system i.e. a living cell simulation. FBA requires knowledge about the 

system and its metabolic network. Thus FBA has a prerequisite for a complete system definition 

including the definition of reactions, and metabolites. Another prerequisite of FBA is the reconstructed 

metabolic pathway. FBA calculates the flow of metabolites through this metabolic network, thereby 

making it possible to predict the growth rate of an organism or the rate of production of a 

biotechnologically important metabolite (Schilling et al, 1999). 

The methodology for FBA consists of complex mathematical calculations that simulate in silico, the 

actual cellular environment. Detailed methodology for FBA has been described in many publications. 

Flux Balance Analysis can be best studied by classifying it in the following four steps (Kauffman et al, 

2003). 

1. Defining the system boundaries: A well-defined system containing the complete information 

about the reactions taking place in the system and the metabolites is required for FBA. This 

system should encompass all the reaction known so far. 

For any FBA experiments, a prior knowledge of its metabolic pathways is required. This 

information may either be retrieved through literature survey for the organisms where it has 

been done or should be collected by reconstructing the metabolic pathway from the annotated 

genome. 

Reconstruction process involves the protein to gene approach. All known proteins in the 

organism are searched for their corresponding genes. These then are subsequently identified for 

metabolic enzymes and the reactions that they might be catalyzing. 

 

 



7 | P a g e  

 

 

 

Figure 1. System based approach: system enclosed within system’s boundary. FBA does not include 

the regulation of the pathway. 

 

2. To start any FBA, the biological data should be put in a format that could be calculated upon easily. 

This is done with the help of matrices and vectors. The interconnection between metabolites is 

represented in the form of reactions that are further written as equations with reactants on the left hand 

side and products on the right. Eventually, reactions and the metabolites are translated to a 

stoichiometric matrix where a list of reactants is scored against the list of reactions. This scoring 

assigns a negative(-) sign for metabolites that are consumed in the reaction and a positive(+) sign for 

the metabolites being produced in the reaction. The numeric value gives the number of molecules 

consumed or produced in the process. The important feature of this representation is tabulation, a 

matrix of the stoichiometric coefficients of each reaction. 

The main aim of FBA is to identify the metabolic fluxes in a steady state metabolic network. Since the 

number of reactions is far more than number of metabolites, the fluxes are said to be underdetermined. 

Thus, additional constraints are applied to determine the steady state fluxes within a system. 

3. Defining measurable fluxes: 

With no constraints, the flux distribution of a biological network may lie at any point in a solution 

space. When mass balance constraints imposed by the stoichiometric matrix are applied to a network, 

it ensures mass balance between the total amount of any compound being produced and the total 

amount being consumed at steady state. Every reaction can also be given upper and lower bounds, 

which define the maximum and minimum allowable fluxes of the reactions. 



8 | P a g e  

 

Both these constraints define an allowable solution space. The network may acquire any flux 

distribution within this space, but points outside this space are denied by the constraints. 

Throughobject$obsLevels optimization of an objective function, FBA can identify a single optimal 

flux distribution that lies on the edge of the allowable solution space (Orth et al, 2010 ). 

 4. Optimization of flux: 

Optimization is the next step that is employed for calculating the fluxes. Metabolic networks tend to 

have more fluxes than there are metabolites. Thus it needs to be optimized to a level with respect to a 

certain objective function which here corresponds to biomass production. 

 

3.3 Data Mining 

The next aim of this work is to determine meaningful information based upon the metabolic network 

of Mycobacterium tuberculosis. 

The current treatment to MTB infection involves the combination of available drugs. Also, no new 

drug for the disease has been found in the recent past and the currently used medications were last 

found in the 1960s putting tremendous pressure on the clinical and pharmacological industry. The 

recommended combination therapy for TB is lengthy and cumbersome since it can involve up to four 

drugs and requires daily medication for 6 to 12 months. Limited health care system resources often 

lead to treatment interruption or failure, exacerbating drug resistance problems. 

Drug-resistant TB is the man-made result of interrupted, inadequate and inappropriate TB treatment, 

and its spread is undermining the efforts being made to control the epidemic. Multi-drug-resistant 

tuberculosis (MDR-TB) is defined as tuberculosis that is resistant to at least isoniazid (INH) and 

rifampicin (RMP), the two most powerful first-line treatment anti-TB drugs. M. tuberculosis develops 

drug resistance exclusively through chromosomal mutations, in particular single-nucleotide 

polymorphisms (McGrath et al., 2014). 

The need for novel, more effective drugs to improve TB control is evident. Treatment of active disease 

needs to be shortened, simplified, and should not interfere with the administration of antiretroviral 

agents. It is especially desirable to identify new types of TB drugs acting on novel drug targets with no 

cross-resistance to existing drugs. Modern high throughput screening (HTS) systems provide an 

immensely powerful strategy to identify new lead compounds in a relatively short amount of time. 

In recent years, chemical structures of small bio-molecules and structure derived properties have been 

made available and can be accessed easily. With the explosion of this data, there is a need to 

understand the underlying structure-activity relationships. Cheminformatics which combines use of 

chemical structure and computational tools helps to identify and develop novel drugs by lead 

identification and optimization. 

QSAR focuses on finding a model that correlates the structure of a molecule with the activity. The 



9 | P a g e  

 

cheminformatics methods used in building QSAR models is divided into three groups (a) extracting 

descriptors from molecular structure, (b) choosing the descriptor for analyzed activity, and (c) using 

the values of the descriptors as independent variable to define a mapping that correlates them with the 

activity. 

Molecular descriptors are calculated using software DRAGON6. Dragon provides almost 5,000 

molecular descriptors that are divided into 29 logical blocks, each in turn divided into a number of 

sub-blocks to allow easy retrieval of the molecular descriptors of interest. Dagon permits to merge 

calculated molecular descriptors and user-defined properties for a set of molecules, providing a 

complete output file that can be easily loaded by any correlation analysis application. These 

descriptors can be used to evaluate molecular structure-activity relationships (QSAR/QSPR), similarity 

analysis and screening of molecular database. 

The caret package in R contains functions to streamline the model training process for complex 

regression and classification problems. The package is used for data splitting and pre-processing, as 

well as unsupervised feature selection routines and methods to tune models using resampling that 

helps diagnose over-fitting. The methods available in train are used to build the models for 

classification and the arguments can be used for tuning the parameters for specific models. 

 

Data Mining and Machine Learning: 

Machine Learning is the branch of Artificial Intelligence, which is devoted to enabling the computers 

to learn. It is an amalgamation of the branches of computer science, engineering, and statistics and is 

often used in other disciplines. It has its application in many fields ranging from politics to geo-

sciences and can be used to solve many problems. Any field requiring interpretation of data can benefit 

from machine learning techniques. 

Data mining has been defined as “the non-trivial extraction of implicit, previously unknown, and 

potentially useful information from data”. It is the process of discovering patterns in the data, the 

process being either automatic or semiautomatic. Data mining is the center- piece of advanced 

methodologies to help the industry deal with this information overload, since the methods are both 

time and cost efficient. 

 

Data Mining Algorithms 

The general first step in any machine learning algorithm is to have two separate datasets: “training set” 

and “test set”. The algorithm to be used is first decided. The algorithm is then trained by allowing it to 

learn. The machine learning occurs when the program is fed with quality data called “training set” that 

consists of various examples. Each example in a training set has a number of features and target 

variables. The target variable is the one that we are aiming to predict with our machine learning 



10 | P a g e  

 

algorithms. These are known in case of training set and not known in case of test set. These have a 

nominal value in case of classification while in regression, the values can also be continuous. 

The machine learns by establishing some relationship between the features and the target variable. 

Features or attributes are the individual measurements that make up a training/test example and are 

represented as columns. Next, the test set is fed to the program without the target variable to let the 

program decide the class. The predicted values are then compared with the observed values to deter-

mine the accuracy of the algorithm. The two types of learning are Supervised and Unsupervised learn-

ing. 

 
 

 

Figue2. Data Mining Algorithm. 

 

Application to Biological Data 

 

In biology, the data generated is often either too complex and/or too voluminous to be processed and 

analyzed by traditional methods. Data Mining can improve decision making by discovering trends in 

large amount of complex data.  Data-mining techniques can be expanded in building machine learning 



11 | P a g e  

 

classifiers to predict the function of well characterized proteins based on the features of their amino 

acid sequence without using homology information. Data-mining techniques and classifiers can pro-

vide intelligent predictive models based on classifiers trained and tested on known and complete data 

sets. 

 

Apart from the derivation of structure–function relationships, the contributions of machine learning 

has its applicability in the protein folding process, resulting in soft wares that are better adapted carry 

on the task Text mining is another application where data mining methodologies are also increasingly 

applied for information retrieval from the scientific literature. Automation is more a necessity for de-

veloping new ways of searching and summarizing the literature. 

 

Recently, the field of research in drug discovery is focused on applying data mining approaches to de-

sign and discover effective molecules to affect various disease targets with the aim at success in ad-

vanced stages to have better chance in clinical trial stages. In this regard, data mining novel approach 

in combining cheminformatics, intensive data handling were used together with correlation of biologic 

data to search for the desired biologic activity in the domain of natural products that were not explored 

before . It would be obvious that the insilico drug discovery based on data mining approaches play 

great roles in treatment of diseases and are gaining increased applications in drug discovery and devel-

opment by saving several folds of cost and time parallel to increasing success rate. 

 

Cheminformatics and QSAR 

QSAR (Quantitative Structure Activity Relationship) is based on hypothesis that experimental proper-

ties are a consequence of the 3D structure of a molecule, so it focuses on finding a model that corre-

lates the structure of a molecule with the activity. The chemical structures of small bio-molecules and 

their derived properties which is publicly available in the form of open database are easily accessible. 

With inundation of the data, screening the useful structure-activity relationships, is the need of the hour 

and cheminformatics provides us a suitable platform for screening. 

 

Cheminformatics methodology 

Cheminformatics combines the use of chemical structure and computational tools to help in identifying 

and developing novel drugs by lead identification and optimization. The cheminformatics methods 

used in building QSAR models is divided into three groups : 

 

1. Extracting descriptors from molecular structure  

The structure of small molecules are defined in terms of number of atoms and covalent bonds between 

the atoms. We cannot use the structure directly for mapping it to the activity as the structure does not 

explicitly contain the information and it needs to be extracted. The properties ranging from the physio-

chemical, quantum-chemical to geometrical and topological, are the ones that directly correlate with 



12 | P a g e  

 

the activity and are needed to be described in form of the molecular descriptors. To predict the activity 

an input numerical vector of features of uniform length is required. We need to convert the structure in 

form of well-defined set of numerical values, for effective input for various algorithms. 

 

2. Choosing the descriptors for analyzed activity 

In order to avoid inaccuracies,. The most informative descriptors that show high correlation, are used 

to generate the model. We tend to avoid the ones that are inter correlated, which impacts the QSAR 

analysis negatively. 

 

3. Define a mapping that correlates them with the activity 

A particular function needs to be defined that gives the value of the activity that quantifies successfully 

with the values of the descriptors. The most accurate mapping function from some wide family of 

functions, is usually fitted based on the information available in the training set. Mapping function 

used can range from linear to non-linear ones, and many other methods for carrying out the training to 

obtain the optimal function can be employed. 

 

Machine learning (ML) techniques and specifically supervised learning methods have been recently 

adopted for virtual screening to assign nominal/numerical classifications in terms of activities. A major 

focus of ML methods is to automatically learn to recognize complex patterns which classify sets from 

input data and to make intelligent decisions based on independent datasets. Bioactivity data available 

from the many high throughput screens provide useful means to train machine learning classifiers as it 

contains binary i.e. active/inactive as well as numerical (for example IC50) values for classification of 

compounds. Previous studies have pointed to the usability of bioassay data available in public domain 

to build efficient classifiers. The recent availability of a large amount of data on biological activities of 

molecules, especially derived from high throughput screens now enables us to create predictive com-

putational models. Though ML methods have proved to be a valuable tool in rapid virtual screening of 

large molecular libraries, they have been seldomly applied in TB drug discovery programs. Our pre-

sent study aims at developing a comprehensive and systematic approach with the aid of ML techniques 

to build binary classification models from high throughput whole-cell screens of anti-tubercular 

agents. These predictive models when applied to virtual screening of large compound libraries can 

identify new active scaffolds that can accelerate the Mtb drug discovery process. 

 

3.3.1 Supervised Learning 

In Supervised learning, the machine learns from the supplied data having a specific target variable. 

The machine's task is reduced as now the machine has to find a pattern in the input data to get the val-

ues of the target variable. Here, we are telling the algorithm what to predict while giving it access to a 

training set containing the pre-classified data. Classification and regression are examples of supervised 

learning. 



13 | P a g e  

 

Classification: Classification is the process of categorizing the data Classification process requires 

building a classifier which is a mathematical function that is able to assign class (active/inactive) labels 

to instances which can be defined by a set of attributes (descriptors). In classification, we predict the 

class of an instance of the data. Most classification models can be built using either the numeric or 

nominal values. Classification algorithms can be of various types for example Bayesian bases, Genetic 

algorithm based or association based. Regression: Regression is the prediction of a numeric value. Re-

gression analysis helps in understanding the relationship between variables. It analyzes the effect of 

change in the value of the dependent variable when one of the independent variable is changed, while 

the other independent variables are held fixed. Regression methods can be of various types including 

linear regression, nonlinear regression, multiple linear regression and step wise linear regression. 

 

3.3.1.1 Linear regression 

 

It assumes that the regression function is linear in the inputs X1 , . . . ,Xx. Linear models are simple 

and often provide an adequate and interpretative description of how the inputs affect the output. These 

algorithms are useful in prediction when there are small numbers of training cases, low signal-to-noise 

ratio or sparse data. 

Our goal while using regression is to predict a numeric target value. Regression is represented by the 

following simple equation: 

Y= αX1 +βX2 +........δXₓ 

Here the values X1 , βX2 ,......Xx are called the independent variables and Y is the dependent variable. 

α, β are known as regression weights and the process of finding these regression weights is called re-

gression. Multiple Linear Regression (MLR) models the activity to be predicted as a linear function of 

all descriptors. Based on the examples from the training set, the coefficients of the independent varia-

bles are estimated. These regression weights are chosen to minimize the squares of the errors between 

the predicted and the actual activity. The main restriction of MLR analysis is the case of large de-

scriptors-to-compounds ratio or multi-collinear descriptors in general. This makes the problem ill-

conditioned and makes the results unstable. 

Generalized linear models (GLM's) are a framework for modeling a response/dependent variable Y 

that can be either bounded or discrete. GLM are generally useful while modeling positive quantities 

that has variation over a large scale and can be described using a skewed distribution. Other uses in-

cludes modeling a categorical data such as a binomial or a multinomial distribution where there are 

fixed number of choices that cannot be arranged in a meaningful way. Also used for modeling ordinal 

data such as ratings where its possible to have different outcomes and the quantity itself doesn't have 

any absolute meaning. 

Generalized linear models allow for an arbitrary link function, g , that relates the mean of the response 

variable to the predictors, i.e. E(y) =g(β′x). The link function is often related to the distribution of the 



14 | P a g e  

 

response, and in particular it typically has the effect of transforming between the range of the linear 

predictor and the range of the response variable. 

 

Algorithm for Linear Regression 

1. Collect the data. The weights are calculated from the training data. 

2. Using the following equation, each class is represented as a linear combination of the 

attributes, with predetermined weights. 

 

Y = a0 + a1X1 + a2X2 +........ + an Xn . 

 

where X1, X2, ........ , Xn are the attributes values and a0, a1, a2 , ........ , an are the weights. 

3. The predicted value(not the actual value) for the first instance can be written as 

 

 
4. The method of linear regression is to choose the coefficients a – there are x+1 of them- to minimize 

the sum of squares of these differences over all the training instances. Suppose there are x training in-

stances, denote the ith one with a superscript (i). Then the sum of differences is   

   

  
where the expression inside the parentheses is the difference between the ith instances; actual class and 

its predicted class. This is the sum of square we are aiming to minimize by choosing the coefficients 

properly. 

 

3.3.1.2 Support Vector Machines 

 

It creates a decision hyperplane, a margin, that maximizes the distance from the hyperplane to the 

nearest examples from each of the classes. The line used to separate the data set is called a separating 

hyperplane. In 2D plots, it’s just a line but when we have a data set with three dimensions, we need a 

plane to separate the data, known as a hyperplane which is our decision boundary. Everything on one 

side belongs to one class, and everything on the other side belongs to a different class. The classifier is 

made in such a way that the farther a data point is from the decision boundary, the more accurate is the 

prediction. The points which are closest to the separating hyperplane are known as support vectors. We 

have to maximize the distance from the separating line to the support vectors. This allows for formu-

lating the classifier training as a constrained optimization problem. The objective function is uni-

modal, and can be optimized effectively to global optimum. 



15 | P a g e  

 

 

 

 
 

Figure3. Support vector principle. 

 
Figure 4.  SVM uses Structural Risk Minimization to compare various separation models  and  to  

eventually  choose  the  model  with  the  largest  margin  of  separation. 



16 | P a g e  

 

 Compounds from different classes can be separated by linear hyperplane; such hyperplane is defined 

solely by its nearest compounds from the training set, the support vectors. When no linear variables are 

present, slack variables are introduced which are associated with the misclassified compounds and, in 

conjunction with the margin, are subject to optimization. The erroneous classification cannot be avoid-

ed, but it is penalized. 

 

The SVM can be easily transformed into a non-linear classifier by employing the kernel function. The 

kernel function introduces an implicit mapping from the original descriptor space to a high or infinite-

dimensional space. The linear hyperplane in the kernel space may be highly non-linear in the original 

space. The SVM method has been shown to exhibit low over training and thus allows for good gener-

alization to the previously unseen compounds. It is also relatively robust when only a small number of 

examples of each class is available. 

 

The SVM methods have been extended into Support Vector Regression (SVR) to handle the regression 

problems which can be used for accurate nonlinear mapping between the activity and the descriptors 

can be found. However, contrary to typical regression methods, the predicted values are penalized only 

if their absolute error exceeds certain user-specified threshold, and thus the regression model is not 

optimal in terms of the least-square error. 

 

In SVM classification, weights are a biasing mechanism for specifying the relative importance of tar-

get values (classes). SVM models are automatically initialized to achieve the best average prediction 

across all classes. However, if the training data does not represent a realistic distribution, you can bias 

the model to compensate for class values that are under-represented. If you increase the weight for a 

class, the percent of correct predictions for that class should increase. Priors are associated with proba-

bilistic models to correct for biased sampling procedures. SVM uses priors as a weight vector that bi-

ases optimization and favors one class over another. 

 

Algorithm for Support vector machines  

1. Classification is achieved by realizing a linear or non-linear separation surface in the input space. In 

Support Vector classification, the separating function can be expressed as a linear combination of ker-

nels associated with the Support Vectors as 

 

 
Where xi denotes the training patterns, yi denotes the corresponding class labels and S de-

notes the set of Support Vectors. 

2. The dual formulation yields 



17 | P a g e  

 

 
 

where ai are the corresponding coefficients, b is the offset, Qij = yi yj K ( xi, xj ) is a symmetric posi-

tive definite kernel matrix and C is the parameter used to penalize error points in the inseparable case. 

 

3. The Karush-Kuhn-Tucker (KKT) conditions for the dual can be expressed as   

 
And 

 
 

This partitions the training set into S the support vector set ( 0 < ai < C , gi <0 , E  the error se ai = C , 

gi < 0 t and R the well-classified set ai =0 , gi> 0. 

 

4. If the points in error are penalized quadratically with the penalty factor C' then it has been shown 

that the problem reduces to that of a separable case with C =∞ . The kernel function is modified as 

 

 
Where 

deltaij =1 if i= j ∧ deltaij =0 otherwise 

 

Here the SVM problem reduces to a linear separation case. The training of the SV algorithm involves 

solving a quadratic optimization problem which requires the use of optimization routines from numeri-

cal libraries. This step is computationally intensive, can be subject to stability problems and is non-

trivial to implement. 

 

 

3.3.1.3 K Nearest Neighbour 

It is a supervised learning algorithm where the result of new instance query is classified based on ma-

jority of k – nearest neighbor category. The purpose of this algorithm is to classify a new object based 

attributes and training samples. The classifiers do not use any model to fit and only based on memory. 

Given a query point we find k no. of objects or closest to the query point. 



18 | P a g e  

 

The classification uses majority vote among the classification of k objects. Any ties can be broken at 

random. It works based on minimum distance from the query instance to the training samples to de-

termine the k nearest neighbours. After we gather k nearest neighbours, we take simple majority of 

these k nearest neighbours to be the prediction of the query instance. 

It requires no training and with increase in training data it converges to the optimal prediction error. 

For a given compound in the descriptor space, the method analyzes its k nearest neighboring com-

pounds from the training set and predicts the activity class that is most highly represented among these 

neighbors. It is sensitive to the choice of metric, number of neighbors and to the number of training 

compounds available. 

 

Algorithm for K-nearest neighbour 

Let the input vector to be classified be called in X. Other inputs used are our full matrix of training ex-

amples called dataSet, a vector of labels called labels, and, finally, k, the number of nearest neighbors 

to use in the voting. The labels vector should have as many elements in it as there are rows in the da-

taSet matrix. 

 

1. For every point in our dataset, calculate the distance between inX and the current point. 

2. The distance calculation is given by simple Euclidean distance, where the distance between two vec-

tors, xA and xB, with two elements, is given by 

 
 

3. Sort the distances in increasing order. 

 

4. Take k items with lowest distances to in X, these are used to vote on the class of in X. The input k 

should be a positive integer. 

5. Find the majority class among these items 

6. Return the label of the majority class (the most frequently occurring label) as our prediction for the 

class of in X. 

 

3.3.1.4 Decision Trees 

It is logic-based, expert systems and each classification tree can be translated into a set of predictive 

rules in Boolean logic. The model consists of a tree-like structure consisting of nodes and links. Nodes 

are linked hierarchically, with several child nodes branching from a common parent node and a node 

with no children nodes is called a leaf. In each node, a test using a single descriptor is made and based 

on the result of the test, the algorithm is directed to one of the child nodes branching from the parent. 

 



19 | P a g e  

 

The decision tree is one of the most commonly used classification techniques. It has decision blocks 

(rectangles) and terminating blocks (ovals) where some conclusion has been reached. The right and 

left arrows coming out of the decision blocks are known as branches, and they can lead to other deci-

sion blocks or to a terminating block. 

 

For building a decision tree, first a decision on the data set is made to decide the feature to be used for 

splitting the data. Every feature and measure is tried and the split that gives the best results is then used 

to split the data set into subsets. The subsets will then traverse down the branches of the first decision  

node. If the data on the branches belongs to the same class, then it doesn't need further splitting 

othewise the splitting process is repeated until all the data is classified. 

 

 

 
 

Figure 5. General  Architecture  of  a  Decision  Tree  showing  decision  blocks  in rectangle and ter-

minating blocks in oval. 

 

Further in the child node, another test is performed and the traversal of the tree towards the leafs is car-

ried out. The final decision is based on the activity class associated with the leaf. Thus, the whole deci-

sion process is based on the series of simple tests, with results guiding the path from the root of the 

tree to a leaf. 

The training of the model consists of incremental addition of nodes. The process starts with choosing 

the test for the root node. A test which optimally separates the compounds into the appropriate activity 

classes is chosen. The main advantage of this method is that it is fast and can handle large input varia-

bles without over-fitting. 



20 | P a g e  

 

On building a decision tree many of the branches reflect anomalies in training data because of the out-

liers. Tree pruning methods can be used to correct the problem of over fitting of the data. The least re-

liable branches are pruned and it results in faster classification and improved accuracy. 

 

Algorithm for Decision Trees: 

1. If all the values of target-attributes = (True) 

2. Return a leaf node and label it TRUE 

3. If all the values of a target-attribute = FALSE 

4. Return a leaf node and label it False 

5. If the attribute list id empty then 

6. Return leaf node with most common class (True/False) 

7. Select the best attribute with highest information gain which acts as the best feature to split the data.  

8. Split the dataset. 

9. Create a branch node for each split. 

10. For each value in the attribute list, let S be the number if samples, if S is not empty, attach the node 

returned by decision tree. 

 

3.3.1.5 Random Forest 

Random forest is a collection of un-pruned decision trees. These are often used when we have large 

number of datasets and a very large number of input variables. A random forest is typically made up of 

tens and hundreds of decision trees. The general observation is that the random forest model builder is 

very competitive with nonlinear classifiers such as artificial neural networks and support vector ma-

chines. However performance is often dataset dependent and so it remains useful to try a suite of ap-

proaches. 

Each decision tree is built from a random subset of the training dataset, using what is called replace-

ment in performing this sampling. That is some entities will be included more than once in the sample, 

and others won’t appear at all. Generally about two-third of the entities will be included in the subset 

of the training dataset and one-third will be left out. In building each decision tree model based on a 

different random subset of the training dataset random subset of the available variables is used to 

choose how best to partition the dataset at each node. Each decision tree is built to its maximum size 

with no pruning performed. The resulting decision tree models of the forest represent the final ensem-

ble model where each decision tree votes for the result and the majority wins. 

 



21 | P a g e  

 

 
Figure 6.  A general architecture of Random Forest. 

 

Algorithm for Random Forest: 

 

1. Random Forest is an ensemble of B trees [T1 ( X ) , ....... , TB( X ) ] , where X = 

X1,....... , Xp is a p-dimensional vector of molecular descriptors or properties associated with a mole-

cule. The ensemble produces B outputs  Y1=  T1( X ) , ....... , YB, TB( X ) ] , wherê Yb =1 B is the 

prediction for a molecule by the bth time. 

 

2. Outputs of all trees are aggregated to produce one final prediction,  Y . For classification prob-

lems,  Y is the class predicted by the majority of trees. In regression it is the average of the individual 

tree predictions. 

 

3. Given data on a set of n molecules for training, 

D =   ( X1, Y1,…..,(Xn,Yn ) ) ] , where Xi, i = 1,……,n. is a vector of descriptors and Yi is either the 

corresponding class label (e.g., active/inactive) or activity of interest. From the training data of n mol-

ecules, draw a bootstrap sample (i.e., randomly sample, with replacement, n molecules). 

 

4. For each bootstrap sample, grow a tree with the following modification: at each node, choose the 

best split among a randomly selected subset of m try (rather than all) descriptors. Here m ( try ) is es-

sentially the only tuning parameter in the algorithm. The tree is grown to the maximum size (i.e., until 

no further splits are possible) and not pruned back. 

 

5. Repeat the above steps until (a sufficiently large number) B such trees are grown. 

 

 



22 | P a g e  

 

4. MATERIALS AND METHODS 

 

4.1 DATA 

The data required for FBA analysis should be a reconstructed metabolic network. The same had 

previously been described by Neema Jamshidi and Bernhard Ø Palsson in their work. Therefore, the 

same metabolic network was retrieved in a systems biology markup language format and used for FBA 

analysis. 

 

4.2 FBA 

FBA is a mathematical approach for studying the growth patterns and metabolism within an organism. 

To perform FBA, a MATLAB package for implementing COBRA methods. COBRA stands for 

COnstraint Based Reconstruction and Analysis. The manner in which microorganisms utilize their 

metabolic processes can be predicted using constraint-based analysis of genome-scale metabolic 

networks  (Becker, S. et al,2007). 

 

4.2.1 FBA Methodology 

1. Setting up MATLAB environment: 

MATLAB is a high-level language and interactive environment for numerical computation, 

visualization, and programming. Using MATLAB, you can analyze data, develop algorithms, and 

create models and applications. 

The matlab installation, activation and licensing can be obtained from  

 (http://www.mathworks.in/products/matlab/ ). The root privileges of the system should be priorly 

obtained before starting the installation process. Once the installer is started, it is a self-guided process 

made for easy installation. 

 

2. Tool Box Installation 

There are two options for installing the COBRA Toolbox à la carte’ or bundled. The à la carte version 

only contains the COBRA Toolbox. The bundled version includes the COBRA Toolbox, libSBML, the 

SBMLToolbox, GLPK, and glpkmex. The bundled version has been tested on Mac OS X 10.6 Snow 

Leopard (64-bit) Ubuntu GNU/Linux Lucid (64-bit), Windows XP (32-bit), and Windows 7 (64-bit). 

Separate installation instructions are provided in Equipment Setup. The bundled version was used for 

the installation. 

After successful installation, initialization of the toolbox is done by running the function 

initCobraToolbox(). After this, the desired paths are saved for further work. The installation is 

considered successful when the test suite is run. The sample data is run to check the correct 

functioning of the tool. 

 

http://www.mathworks.in/products/matlab/


23 | P a g e  

 

3.Running the FBA 

Once the toolbox is ready, the COBRA-compliant SBML models are read into MATLAB. The models 

are loaded and saved. 

 

>> model = readCbModel(['iNJ.xml']); 

>> writeCbModel(model, 'sbml'); 

Further modifications in the model can be done using various functions, if desired. We used the 

reconstructed model from Palsson lab. 

 

Simulating the optimal growth using flux-balance analysis (FBA) 

FBA is a method that calculates the flow of metabolites through a metabolic network. Growth is 

simulated by optimizing the model for flux through the model’s biomass function. 

In addition to specifying an objective, it is also necessary to define the in silico growth medium; this is 

accomplished by modifying the bounds of exchange reactions. Exchange reactions for metabolites 

comprising the in silico growth medium should have a lower bound less than 0; all other exchange 

reactions should have a lower bound of 0. All exchange reactions should have an upper bound greater 

than 0 to prevent metabolite build up. The solution returned will have units based on the units used in 

the model (typically mmol·gDW-1· h-1). FBA can be performed either in (A) standard (B) geometric 

mode: 

Standard FBA is performed with: 

 

>> a=optimizeCbModel(model) 

optimizeCbModel will return a solution structure containing: the objective value ‘f’, the primal 

solution ‘x’, the dual solution ‘y’, the reduced cost ‘w’, a universal status flag ‘stat’, a solver specific 

status flag ‘origStat’, and the time to compute the solution ‘time’. The primal solution, ‘x’ represents 

the flux carried by each reaction within the model. The dual solution, ‘y’ represents the shadow prices 

for each metabolite and indicates how much the addition of the corresponding metabolite will increase 

or decrease the objective value28, 60. The reduced cost, ‘w’, indicates how much each reaction affects 

the objective. A solver status of 1 indicates that an optimal solution was found. 

 

Reaction deletion studies 

To detect which reactions were of critical importance, deletion studies were stimulated and observed 

for variances from the normal standard FBA results. 

Deletion studies can be easily simulated with in silico models. Reaction deletion methods within the 

Toolbox are dependent on the proper setup of the gene-reaction matrix as well as the rules defining the 

Boolean relationship between genes and reactions. Reactions that when deleted, affect the overall flux 

balance, have their upper and lower flux bounds set to zero and are therefore not functional. 

The possible results from deletion studies are: 1) unchanged maximal growth, 2) reduced maximal 



24 | P a g e  

 

growth, or 3) no growth (lethal). Deletion studies can be used to predict reaction essentiality. 

>> singleRxnDeletion(model) 

 

4.3. DATA MINING 

CARET Package 

The CARET package (Classification and Regression Training) is a set of functions that attempt to 

streamline the process for creating predictive models (Kuhn M, 2008). The package contains tools for 

data splitting, preprocessing, model tuning using resampling and variable importance estimation using 

the rich set of models available in R. The package is available at the comprehensive R Archive 

Network at http://CRAN.Rproject.org/package=caret. 

 

Predictive modeling methods in R : 

We used the CARET function in R as data mining toolkit for analysis of the data and classification 

experiments. CARET incorporates comprehensive collection of machine learning algorithms for data 

mining tasks. It also incorporates tools for data pre-processing, classification, regression, clustering, 

association and visualization. The toolkit is also well-suited for developing new machine learning 

schemes. 

 

Classification Algorithms 

Classification refers to an algorithmic procedure that attempts to assign each input value, a given set of 

classes. The classification process requires building a classifier (model) which is a mathematical 

function that assigns class (ex. active/inactive) labels to instances defined by a set of attributes (ex. 

descriptors). A predictive model is one whose primary function is prediction. 

 

Parametric regression models: Ordinary/generalized/robust regression models; neural networks; 

partial least squares; projection pursuit regression; multivariate adaptive regression splines; principal 

component regression. 

Sparse/penalized models: Ridge regression; the lasso; the elastic net; generalized linear models; 

partial least squares; nearest shrunken centroids; logistic regression. 

Kernel methods: Support vector machines, relevance vector machines; least squares support vector 

machine; Gaussian processes. 

Ensembles: Random Forest; boosting (trees, linear models, generalized additive models, generalized 

linear models); bagging(trees, multivariate adaptive regression splines). 

Prototype methods: k nearest neighbors; learned vector quantization. 

Others: Naive Bayes; Bayesian multinomial probit models. 

 

 

http://cran.rproject.org/package=caret
http://cran.rproject.org/package=caret


25 | P a g e  

 

Functions in CARET 

R provides us with a variety of functions that can be used for building predictive models. The caret 

package has in built functions that are used for data splitting, preprocessing, feature selection, model 

tuning using resampling and variable importance estimation. The package provides wrapper functions 

for a large number of model building methods, with the facility for automating tuning. 

 

4.3.1 Preprocessing the Data 

The strength of correlation between descriptors variables can influence the relative performance of 

prediction methods. Preprocessing the data sets includes discarding the near-zero values and 

identifying the outliers. It also requires identifying the correlated predictors so as to reduce the size of 

the data set by excluding the predictor variables that are linearly dependent. 

 

 



26 | P a g e  

 

Principal component analysis (PCA) is a multivariate technique, analyzes a data set with several inter-

correlated quantitative dependent variables. This data set is used to extract information, represent the 

variables as a set of new orthogonal variables known as the principal components. It displays 

similarity patterns as points in maps. The quality of the PCA model can be evaluated using cross-

validation techniques such as the bootstrap and the jackknife. 

 

 
 

4.3.2 Model Building and Resampling 

The caret package has a variety of functions that are used to streamline the model building and 

evaluation process. The train function can be used to evaluate, using resampling, the effect of model 

tuning parameters on performance, choose the optimal model across these parameters and use a 

training set to estimate model performance. These methods are summarized in Table1. 



27 | P a g e  

 

 
 

Table1. The table list a summary of classification models with examples available in R for Predictive modeling.  

 

The Resampling is done by incorporating boot632 cross validation rule. Bootstrapping is used to get 

bias-corrected (over fitting corrected) The bootstrap has other important advantages besides providing 

more accurate point estimates for prediction error. The bootstrap replications also provide a direct 

assessment of variability for estimated parameters in the prediction rule. The idea behind bootstrapping 

is to sample the data with replacement. A dataset of n instances is sampled n times, with replacements 

which gives another dataset of n instances. The chance of an instance being picked up each time is 1/n, 

so the probability of it not being picked up is 1- 1/n. Multiplying these probabilities to obtain a 

sufficient number of picking opportunities, n, and the result as follows 

 

 



28 | P a g e  

 

 where e is the base of natural logarithms, 2.7183. This gives the chance of a particular instance not 

being picked at all. Thus if we have a large dataset, the test set will contain about 36.8% of such 

instances and training set will contain about 63.2% instances. That is why it is known as the 632 

bootstrap rule. 

 

4.2.3 Model Evaluation 

Parameters used for estimating performance of a model: Sensitivity & specificity are statistical 

measures of the performance of a binary classification test. The extractPredict() and confusionMatrix() 

are the functions used to calculate specificity and sensitivity. The overall effectiveness of a general 

classifier can be concluded by accuracy of the model. 

I. Confusion matrix: 

It is a matrix that gives a clear idea of the true positives, true negatives, false positives, and false 

negatives as the observed and predicted values in a given sample. 

 

 
  

Where 

TN-> number of correct predictions that an instance is negative. 

FP-> number of incorrect predictions that an instance is positive. 

FN-> number of incorrect predictions that an instance is negative. 

TP-> number of correct prediction that an instance is positive. 

 

 
  

II. Sensitivity, SE or Recall: 

It is the probability of classifying/predicting an active drug target as against actual active drugs. 

Classifiers with a large recall don’t have many positive examples classified incorrectly. 

 



29 | P a g e  

 

 
 III. Specificity, SP: 

It is the probability of classifying/predicting an inactive drug target against those as actual inactive 

drugs. 

 

 
 

 IV. ROC (Receiver operating curve): 

It is created by plotting the fraction of true positives out of the positives (sensitivity) vs. the fraction of 

false positives out of the negatives(1-specificity)indices along the Y and X axes respectively. It is also 

known as Relative Operating Characteristic curve because it is a comparison of two operating 

characteristics i.e. true positive rate and false positive rate as the criterion changes. ROC analysis 

provides tools to select possibly optimal models and to discard suboptimal ones independently from 

the cost context or the class distribution. 

 

 
  

V. Area Under the Curve, AUC: 

The area under the curve value reported by a ROC is equal to the probability that a classifier will rank 

randomly chosen positive instance higher than a randomly chosen negative instance. The ROC curve 

identifies the discrimination ability of the classification system. The performance of a diagnostic 

variable can be quantified by calculating the area under the ROC curve (AUROC). In an ideal case 

scenarios, the test would have an AUC of 1, whereas any random guess would have an AUROC of 0.5.  

 

 VI. Kappa Statistic: 

The Kappa statistic is a measure of concordance for categorical data that measures agreement relative 



30 | P a g e  

 

to what would be expected by chance. Values of 1 indicate perfect agreement, while a value of zero 

would indicate a lack of agreement. Negative Kappa values can also occur, but are less common since 

it would indicate a negative association between the observed and predicted data. Kappa is an 

excellent performance measure when the classes are highly unbalanced. 

 

4.3.4 Data Mining Methodology 

 
 

Figure 8. The figure depicts the methodology used in building Quantitative Structure Activity 

Relationships models. 

 

1. PubChem Bioassay 

PubChem is a public repository of chemical information including structures of small molecules and 

various molecules properties. It is administered as a part of the NIH Molecular Libraries Initiative 

(MLI). Its database , the BioAssay Database contains experimental results for some of the compounds 

in PubChem that have been tested in MLI screening centers of elsewhere for activity against particular 

biological targets. All the molecular structures for generating Classification models were retrieved 

from PubChem BioAssay (Wang et al., 2009) data corresponding to the BioAssay ID ‘AID-1332’. The 

BioAssay reports 166 active and 927 inactive compounds based on QFRET –for differential inhibitors 

of the Mycobacterium tuberculosis H37Rv. 

 

2. Descriptor Calculation 

Since molecular descriptors can be used to evaluate molecular structure activity relationships as well 

as for similarity analysis and High Throughput Screening of molecule databases, these were calculated 

for the set of both active and inactive SDF files using DRAGON-6. The script 



31 | P a g e  

 

condor_dragon_descriptor.pl was used for descriptor calculation. 

Dragon is a software for the calculation of molecular descriptors developed by the Milano Chemo-

metrics and QSAR Research group. Molecular descriptors are the numeric representation of the 

Physio-chemical features extracted from various structural representation of a molecular structure. 

Such a quantitative representation is obtained as the result of a logical and mathematical procedure that 

transforms chemical information encoded with a symbolic representation of a molecule into a useful 

number (Gramatica et al., 2007). DRAGON calculates 4885 molecular descriptors that are divided into 

logical blocks. 

The user can calculate not only the simplest atom type, functional group and fragment counts, but also 

several topological and geometrical descriptors. DRAGON was designed in order to deliver a user-

friendly software where the descriptor calculation are performed with a simple logical sequence of 

loading of molecular files, selection of descriptors and saving of calculated descriptors. 

 

3. Data preprocessing 

In this chunk, the database is preprocessed in order to discard off the near zero values, highly 

correlated values, outliers, unbalanced distribution and Zero Variance Predictors. Near Zero Variance 

predictors are the predictors with single unique value which generally cause model failure. So they 

were removed using nzv function. Models can have poor performance in multicollinearity situations 

( ie high correlations between predictors). For removing highly correlated values, the cutoff threshold 

limit was given for finding out correlated values and the values sharing the highest correlation were 

removed using the findcorrelation function. The predictors which had a correlation above 0.75 were 

removed. 

 

4. Data transformation 

Once the final set of predictors was determined, the values required transformations before being used 

in the model. Some models, such as Partial least Squares, Neural Networks, Support Vector Machines 

need the predictor variables to be centered or scaled. The preprocessing function was used to 

determine values for predictor transformations using the training set. One of its arguments PCA 

(Principal Component Analysis) reduces the dimension of the dataset and presents it in the plot such a 

way which makes the task of interpreting the class of compounds easier. 

 

5. Data splitting 

The data was split into training set which is used for selecting model parameters, its values and model 

building and test set which is used to get an independent assessment of model efficacy by using the 

command “createDataPartition” and according to the already defined variable “pctTrain” where the 

percentage of the split was mentioned. 

 



32 | P a g e  

 

6. Model building and fitting 

The train control function was used to select values of model tuning parameters and for the estimating 

model performance using resampling. For example, a radial basis function Support Vector machine 

had two tuning parameters, scale function and cost value. A set of modified datasets were created from 

the training samples using Boot(632 rule) (Efron et al,. 1983). Each dataset had a corresponding set of 

holdout samples. For each candidate tuning parameter combination , a model was fit to each resampled 

dataset and was used to predict the corresponding hold out samples. The performance estimates were 

used to evaluate which combinations of tuning parameters are appropriate. Once the final tuning 

values were assigned, the final model was refit using the entire training set. 

This phase was executed by running the “Classification.Rnw” script using the Sweave command. The 

different models were built by altering the model name in the script itself. The model were saved as 

“modelFit.RData” for further use. 

 

7. Prediction on the test set 

The model was used to generate predictions for the test data which was initially split using the extract 

prediction function. The sensitivity and specificity used for characterizing the performance of the 

model were calculated using confusion matrix function and ROC curves was built to depict the model 

performance. These results were written into tex format, which were then converted into pdf files 

using ‘texi2pdf’. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



33 | P a g e  

 

5. RESULTS AND DISCUSSION 

5.1 FBA 

1.Results for running standard  FBA: 

>> a=optimizeCbModel(model) 

It gives the overall flux of the system in terms of the objective function. optimizeCbModel returns a 

solution structure containing: the objective value ‘f’, the primal solution ‘x’, the dual solution ‘y’, the 

reduced cost ‘w’, a universal status flag ‘stat’, a solver specific status flag ‘origStat’, and the time to 

compute the solution ‘time’. The primal solution, ‘x’ represents the flux carried by each reaction within 

the model. The dual solution, ‘y’ represents the shadow prices for each metabolite and indicates how 

much the addition of the corresponding metabolite will increase or decrease the objective value28, 60. 

The reduced cost, ‘w’, indicates how much each reaction affects the objective. A solver status of 1 in-

dicates that an optimal solution was found. 

a = 

           x: [1028x1 double] 

           f: 0.0522 

           y: [826x1 double] 

           w: [1028x1 double] 

    stat: 1 

    origStat: 5 

    solver: 'glpk' 

    time: 0.0510 

 

>> singleRxnDeletion(model) 

This function gives out each reaction knockout flux of the system. It means that the effect of deleting a 

single reaction is observed as the variation in the objective when compared to the wild type case. 

Based on the results obtained, reactions that had a lethal effect upon their deletion were screened. The 

reactions that had zero reaction flux upon deletion were selected as essential reactions and were 

populated as listed below: 

 

 

 



34 | P a g e  

 

 
ReactionName Reaction Description Flux 

Value  
AACPS10 ACP[c] + atp[c] + mocdca[c]  -> amp[c] + mstrACP[c] + ppi[c]  0 

AACPS3 ACP[c] + atp[c] + hdca[c]  -> amp[c] + palmACP[c] + ppi[c]  0 

ACACT1r 2 accoa[c]  <=> aacoa[c] + coa[c]  0 

ACCC co2[c] + hexccoa[c]  -> chexccoa[c] + h2o[c]  0 

ACCOACr accoa[c] + atp[c] + hco3[c]  <=> adp[c] + h[c] + malcoa[c] + pi[c]  0 

ACChex coa[c] + h[c] + hexc[c]  -> h2o[c] + hexccoa[c]  0 

ACGAMT  uacgam[c] + udcpp[c]  -> ump[c] + unaga[c]  0 

ACHBS 2obut[c] + h[c] + pyr[c]  -> 2ahbut[c] + co2[c]  0 

AFE agalfragund[c] + arabinan[c]  -> arabinanagalfragund[c] + h2o[c]  0 

AFTA decda-tb[c] + galfragund[c]  -> agalfragund[c] + decd-tb[c]  0 

AGPAT160 1hdecg3p[c] + palmACP[c]  -> ACP[c] + pa160[c]  0 

AGPAT160190 1hdecg3p[c] + mstrACP[c]  -> ACP[c] + pa160190[c]  0 

AGPAT190 1msg3p[c] + mstrACP[c]  -> ACP[c] + pa190190[c]  0 

AHC ahcys[c] + h2o[c]  <=> adn[c] + hcys-L[c]  0 

ALAALAr 2 ala-D[c] + atp[c]  <=> adp[c] + alaala[c] + h[c] + pi[c]  0 

ARABF 12 arab-D[c] + 8 mharab-D[c] + 12 tarab-D[c]  -> arabinan[c] + 32 h2o[c]  0 

ARABI arab-D[c]  <=> rbl-D[c]  0 

ASNS1 asp-L[c] + atp[c] + gln-L[c] + h2o[c]  -> amp[c] + asn-L[c] + glu-L[c] + h[c] + ppi[c]  0 

ATPPRT atp[c] + prpp[c]  -> ppi[c] + prbatp[c]  0 

BDH bhb[c] + nad[c]  <=> acac[c] + h[c] + nadh[c]  0 

CDPPT160190 cdpc16c19g[c] + inost[c]  -> cmp[c] + h[c] + ptd1ino160190[c]  0 

CHORM chor[c]  -> pphn[c]  0 

CHORS 3psme[c]  -> chor[c] + pi[c]  0 

CLPNS160190 2 pg160190[c]  <=> clpn160190[c] + glyc[c]  0 

CMCBTFL cmcbtt[c] + fe3[e]  -> fcmcbtt[c]  0 

DAPDC 26dap-M[c] + h[c]  -> co2[c] + lys-L[c]  0 

DAPE 26dap-LL[c]  <=> 26dap-M[c]  0 

DASYN160 ctp[c] + h[c] + pa160[c]  -> cdpdhdecg[c] + ppi[c]  0 

DASYN160190 ctp[c] + h[c] + pa160190[c]  -> cdpc16c19g[c] + ppi[c]  0 

DASYN190190 ctp[c] + h[c] + pa190190[c]  -> cdpc19c19g[c] + ppi[c]  0 

DDPA e4p[c] + h2o[c] + pep[c]  -> 2dda7p[c] + pi[c]  0 

DGK1 atp[c] + dgmp[c]  <=> adp[c] + dgdp[c]  0 

DHAD2 23dhmp[c]  -> 3mop[c] + h2o[c]  0 

DHDPRy 23dhdp[c] + h[c] + nadph[c]  -> nadp[c] + thdp[c]  0 

DHDPS aspsa[c] + pyr[c]  -> 23dhdp[c] + 2 h2o[c] + h[c]  0 

DHFR dhf[c] + h[c] + nadph[c]  <=> nadp[c] + thf[c]  0 

DHQD 3dhq[c]  <=> 3dhsk[c] + h2o[c]  0 



35 | P a g e  

 

DHQS 2dda7p[c]  -> 3dhq[c] + pi[c]  0 

DMATT dmpp[c] + ipdp[c]  -> grdp[c] + ppi[c]  0 

EX_fe3(e) fe3[e]  <=>  0 

FACOAL160 atp[c] + coa[c] + hdca[c]  <=> amp[c] + pmtcoa[c] + ppi[c]  0 

FACOAL80 atp[c] + coa[c] + octa[c]  <=> amp[c] + occoa[c] + ppi[c]  0 

FACOALPHDCA atp[c] + coa[c] + phdca[c]  <=> amp[c] + phdcacoa[c] + ppi[c]  0 

FAMPL1 amp[c] + h[c] + meroacidcyc2ACP[c]  -> ACP[c] + meroacidcyc2AMP[c]  0 

FAMPL2 amp[c] + h[c] + mmeroacidcyc2ACP[c]  -> ACP[c] + mmeroacidcyc2AMP[c]  0 

FAMPL3 amp[c] + h[c] + kmeroacidcyc2ACP[c]  -> ACP[c] + kmeroacidcyc2AMP[c]  0 

FAMPL4 amp[c] + h[c] + mmmeroacidcyc1ACP[c]  -> ACP[c] + mmmeroacidcyc1AMP[c]  0 

FAMPL5 amp[c] + h[c] + mkmeroacidcyc1ACP[c]  -> ACP[c] + mkmeroacidcyc1AMP[c]  0 

FAS100 3 h[c] + malcoa[c] + 2 nadph[c] + octa[c]  -> co2[c] + coa[c] + dca[c] + h2o[c] + 2 nadp[c]  0 

FAS120 dca[c] + 3 h[c] + malcoa[c] + 2 nadph[c]  -> co2[c] + coa[c] + ddca[c] + h2o[c] + 2 nadp[c]  0 

FAS140 ddca[c] + 3 h[c] + malcoa[c] + 2 nadph[c]  -> co2[c] + coa[c] + h2o[c] + 2 nadp[c] + ttdca[c]  0 

FAS160 3 h[c] + malcoa[c] + 2 nadph[c] + ttdca[c]  -> co2[c] + coa[c] + h2o[c] + hdca[c] + 2 nadp[c]  0 

FAS240_L 9 h[c] + 3 malcoa[c] + 6 nadph[c] + ocdca[c]  -> 3 co2[c] + 3 coa[c] + 3 h2o[c] + 6 nadp[c] + ttc[c]  0 

FAS260 3 h[c] + malcoa[c] + 2 nadph[c] + ttc[c]  -> co2[c] + coa[c] + h2o[c] + hexc[c] + 2 nadp[c]  0 

FAS80_L accoa[c] + 8 h[c] + 3 malcoa[c] + 6 nadph[c]  -> 3 co2[c] + 4 coa[c] + 2 h2o[c] + 6 nadp[c] + octa[c]  0 

FASm1601 3 h[c] + hdca[c] + mmcoa-S[c] + 2 nadph[c]  -> co2[c] + coa[c] + h2o[c] + m1ocdca[c] + 2 nadp[c]  0 

FASm180 15 h[c] + 4 malcoa[c] + mmcoa-S[c] + 10 nadph[c] + octa[c]  -> 5 co2[c] + 5 coa[c] + 5 h2o[c] + mocdca[c] + 
10 nadp[c]  

0 

FASm1801 3 h[c] + m1ocdca[c] + mmcoa-S[c] + 2 nadph[c]  -> co2[c] + coa[c] + dmarach[c] + h2o[c] + 2 nadp[c]  0 

FASm2001 dmarach[c] + 3 h[c] + mmcoa-S[c] + 2 nadph[c]  -> co2[c] + coa[c] + h2o[c] + 2 nadp[c] + tmbhn[c]  0 

FASm2002 3 h[c] + mmcoa-S[c] + 2 nadph[c] + ocdca[c]  -> co2[c] + coa[c] + h2o[c] + marach[c] + 2 nadp[c]  0 

FASm220 arach[c] + 3 h[c] + mmcoa-S[c] + 2 nadph[c]  -> co2[c] + coa[c] + h2o[c] + mbhn[c] + 2 nadp[c]  0 

FASm2201 3 h[c] + mmcoa-S[c] + 2 nadph[c] + tmbhn[c]  -> co2[c] + coa[c] + h2o[c] + 2 nadp[c] + tamlgnc[c]  0 

FASm2202 3 h[c] + marach[c] + mmcoa-S[c] + 2 nadph[c]  -> co2[c] + coa[c] + dmbhn[c] + h2o[c] + 2 nadp[c]  0 

FASm240 3 h[c] + mbhn[c] + mmcoa-S[c] + 2 nadph[c]  -> co2[c] + coa[c] + dmlgnc[c] + h2o[c] + 2 nadp[c]  0 

FASm2401 3 h[c] + mmcoa-S[c] + 2 nadph[c] + tamlgnc[c]  -> co2[c] + coa[c] + h2o[c] + 2 nadp[c] + pmhexc[c]  0 

FASm2402 dmbhn[c] + 3 h[c] + mmcoa-S[c] + 2 nadph[c]  -> co2[c] + coa[c] + h2o[c] + 2 nadp[c] + tmlgnc[c]  0 

FASm260 dmlgnc[c] + 3 h[c] + mmcoa-S[c] + 2 nadph[c]  -> co2[c] + coa[c] + h2o[c] + 2 nadp[c] + tmhexc[c]  0 

FASm2601 3 h[c] + mmcoa-S[c] + 2 nadph[c] + pmhexc[c]  -> co2[c] + coa[c] + h2o[c] + hmocta[c] + 2 nadp[c]  0 

FASm2602 3 h[c] + mmcoa-S[c] + 2 nadph[c] + tmlgnc[c]  -> co2[c] + coa[c] + h2o[c] + 2 nadp[c] + tamhexc[c]  0 

FASm280 3 h[c] + mmcoa-S[c] + 2 nadph[c] + tmhexc[c]  -> co2[c] + coa[c] + h2o[c] + 2 nadp[c] + tamocta[c]  0 

FASm2801 3 h[c] + hmocta[c] + mmcoa-S[c] + 2 nadph[c]  -> co2[c] + coa[c] + h2o[c] + hpmtria[c] + 2 nadp[c]  0 

FASm2802 3 h[c] + mmcoa-S[c] + 2 nadph[c] + tamhexc[c]  -> co2[c] + coa[c] + h2o[c] + 2 nadp[c] + pmocta[c]  0 

FASm300 3 h[c] + mmcoa-S[c] + 2 nadph[c] + pmocta[c]  -> co2[c] + coa[c] + h2o[c] + hmtria[c] + 2 nadp[c]  0 

FASm320 3 h[c] + hmtria[c] + mmcoa-S[c] + 2 nadph[c]  -> co2[c] + coa[c] + h2o[c] + hpmdtria[c] + 2 nadp[c]  0 

FASm340 3 h[c] + hpmdtria[c] + mmcoa-S[c] + 2 nadph[c]  -> co2[c] + coa[c] + h2o[c] + 2 nadp[c] + omtta[c]  0 

FRRPPDIMAS gdpfuc[c] + rrppdima[c]  -> frrppdima[c] + gdp[c] + h[c]  0 



36 | P a g e  

 

G16MTM1 gdpmann[c] + ptd1ino160190[c]  -> PIM1[c] + gdp[c] + h[c]  0 

G16MTM10 PIM5[c] + gdpmann[c]  -> PIM6[c] + gdp[c] + h[c]  0 

G16MTM4 Ac1PIM2[c] + decdman1p-tb[c]  -> Ac1PIM3[c] + decd-tb[c] + h[c]  0 

G16MTM5 Ac1PIM3[c] + decdman1p-tb[c]  -> Ac1PIM4[c] + decd-tb[c] + h[c]  0 

G16MTM6 PIM1[c] + gdpmann[c]  -> PIM2[c] + gdp[c] + h[c]  0 

G16MTM7 PIM2[c] + gdpmann[c]  -> PIM3[c] + gdp[c] + h[c]  0 

G16MTM8 PIM3[c] + gdpmann[c]  -> PIM4[c] + gdp[c] + h[c]  0 

G16MTM9 PIM4[c] + gdpmann[c]  -> PIM5[c] + gdp[c] + h[c]  0 

G1PACT accoa[c] + gam1p[c]  -> acgam1p[c] + coa[c] + h[c]  0 

G1PTT dttp[c] + g1p[c] + h[c]  -> dtdpglu[c] + ppi[c]  0 

G3PAT160 glyc3p[c] + palmACP[c]  -> 1hdecg3p[c] + ACP[c]  0 

G3PAT190 glyc3p[c] + mstrACP[c]  -> 1msg3p[c] + ACP[c]  0 

GALFT h2o[c] + ragund[c] + 30 udpgalfur[c]  -> galfragund[c] + 30 h[c] + 30 udp[c]  0 

GALKr atp[c] + gal[c]  <=> adp[c] + gal1p[c] + h[c]  0 

GALT gal1p[c] + h[c] + utp[c]  <=> ppi[c] + udpgal[c]  0 

GF6PTAr f6p[c] + gln-L[c]  <=> gam6p[c] + glu-L[c]  0 

GFUCS gdpddman[c] + h[c] + nadph[c]  -> gdpfuc[c] + nadp[c]  0 

GLNS atp[c] + glu-L[c] + nh4[c]  -> adp[c] + gln-L[c] + h[c] + pi[c]  0 

GLUR glu-D[c]  <=> glu-L[c]  0 

GMAND gdpmann[c]  -> gdpddman[c] + h2o[c]  0 

GMT1 decd-tb[c] + gdpmann[c]  -> decdman1p-tb[c] + gdp[c]  0 

GMT2 3 gdpmann[c] + harab-D[c]  -> 3 gdp[c] + 3 h[c] + mharab-D[c]  0 

GRTT grdp[c] + ipdp[c]  -> frdp[c] + ppi[c]  0 

HAS arab-D[c] + 5 decda-tb[c]  -> 5 decd-tb[c] + harab-D[c]  0 

HISTD h2o[c] + histd[c] + 2 nad[c]  -> 3 h[c] + his-L[c] + 2 nadh[c]  0 

HISTP h2o[c] + hisp[c]  -> histd[c] + pi[c]  0 

HSTPT glu-L[c] + imacp[c]  -> akg[c] + hisp[c]  0 

IG3PS gln-L[c] + prlp[c]  -> aicar[c] + eig3p[c] + glu-L[c] + h[c]  0 

IGPDH eig3p[c]  -> h2o[c] + imacp[c]  0 

ILETA akg[c] + ile-L[c]  <=> 3mop[c] + glu-L[c]  0 

INSH h2o[c] + ins[c]  -> hxan[c] + rib-D[c]  0 

IPMD 3c2hmp[c] + nad[c]  -> 3c4mop[c] + h[c] + nadh[c]  0 

IPPMIa 3c2hmp[c]  <=> 2ippm[c] + h2o[c]  0 

IPPMIb 2ippm[c] + h2o[c]  <=> 3c3hmp[c]  0 

IPPS 3mob[c] + accoa[c] + h2o[c]  -> 3c3hmp[c] + coa[c] + h[c]  0 

KARA2i 2ahbut[c] + h[c] + nadph[c]  -> 23dhmp[c] + nadp[c]  0 

LEUTA akg[c] + leu-L[c]  <=> 4mop[c] + glu-L[c]  0 

MAN6PI man6p[c]  <=> f6p[c]  0 

MANAT1 PIM1[c] + pmtcoa[c]  -> Ac1PIM1[c] + coa[c]  0 



37 | P a g e  

 

MANAT3 Ac1PIM2[c] + pmtcoa[c]  -> Ac2PIM2[c] + coa[c]  0 

MCBTS atp[c] + bhb[c] + h[c] + 2 lys-L[c] + 2 o2[c] + odecoa[c] + salc[c] + thr-L[c]  -> adp[c] + co2[c] + coa[c] + 5 
h2o[c] + mcbts[c] + pi[c]  

0 

MCBTS3 atp[c] + bhb[c] + 2 lys-L[c] + 2 nadp[c] + 3.5 o2[c] + occoa[c] + salc[c] + ser-L[c]  -> adp[c] + cmcbtt[c] + 
co2[c] + coa[c] + 5 h2o[c] + 2 h[c] + 2 nadph[c] + pi[c]  

0 

MCOATA ACP[c] + malcoa[c]  <=> coa[c] + malACP[c]  0 

METAT atp[c] + h2o[c] + met-L[c]  -> amet[c] + pi[c] + ppi[c]  0 

MI1PP h2o[c] + mi1p-D[c]  -> inost[c] + pi[c]  0 

MI1PS g6p[c]  -> mi1p-D[c]  0 

MN6PP h2o[c] + man6p[c]  -> man[c] + pi[c]  0 

MYC1CYC1 amet[c] + meroacidACP[c]  -> ahcys[c] + h[c] + meroacidcyc1ACP[c]  0 

MYC1CYC2 amet[c] + mmeroacidACP[c]  -> ahcys[c] + h[c] + mmeroacidcyc1ACP[c]  0 

MYC1CYC3 amet[c] + kmeroacidACP[c]  -> ahcys[c] + h[c] + kmeroacidcyc1ACP[c]  0 

MYC1CYC4 amet[c] + mmmeroacidACP[c]  -> ahcys[c] + h[c] + mmmeroacidcyc1ACP[c]  0 

MYC1CYC5 amet[c] + mkmeroacidACP[c]  -> ahcys[c] + h[c] + mkmeroacidcyc1ACP[c]  0 

MYC1M1 amet[c] + h2o[c] + mmeroacidACP[c]  -> ahcys[c] + h[c] + mmmeroacidACP[c]  0 

MYC1M2 amet[c] + h2o[c] + kmeroacidACP[c]  -> ahcys[c] + h[c] + mkmeroacidACP[c]  0 

MYC2CYC1 amet[c] + meroacidcyc1ACP[c]  -> ahcys[c] + h[c] + meroacidcyc2ACP[c]  0 

MYC2CYC2 amet[c] + mmeroacidcyc1ACP[c]  -> ahcys[c] + h[c] + mmeroacidcyc2ACP[c]  0 

MYC2CYC3 amet[c] + kmeroacidcyc1ACP[c]  -> ahcys[c] + h[c] + kmeroacidcyc2ACP[c]  0 

MYCON1 chexccoa[c] + 2 h2o[c] + meroacidcyc2AMP[c]  -> amp[c] + co2[c] + coa[c] + 2 h[c] + mycolate[c]  0 

MYCON2 chexccoa[c] + 2 h2o[c] + mmeroacidcyc2AMP[c]  -> amp[c] + co2[c] + coa[c] + 2 h[c] + mmycolate[c]  0 

MYCON3 chexccoa[c] + 2 h2o[c] + kmeroacidcyc2AMP[c]  -> amp[c] + co2[c] + coa[c] + 2 h[c] + kmycolate[c]  0 

MYCON4 chexccoa[c] + 2 h2o[c] + mmmeroacidcyc1AMP[c]  -> amp[c] + co2[c] + coa[c] + 2 h[c] + mmmycolate[c]  0 

MYCON5 chexccoa[c] + 2 h2o[c] + mkmeroacidcyc1AMP[c]  -> amp[c] + co2[c] + coa[c] + 2 h[c] + mkmycolate[c]  0 

MYCSacp50 33 h[c] + hexc[c] + 12 malACP[c] + 24 nadph[c]  -> 11 ACP[c] + 12 co2[c] + 13 h2o[c] + meroacidACP[c] + 

24 nadp[c]  

0 

MYCSacp56 42 h[c] + hexc[c] + 15 malACP[c] + 30 nadph[c]  -> 14 ACP[c] + 15 co2[c] + 16 h2o[c] + mmeroacidACP[c] + 
30 nadp[c]  

0 

MYCSacp58 47 h[c] + hexc[c] + 16 malACP[c] + 30 nadph[c]  -> 15 ACP[c] + 16 co2[c] + 17 h2o[c] + kmeroacidACP[c] + 
30 nadp[c]  

0 

NDPK4 atp[c] + dtdp[c]  <=> adp[c] + dttp[c]  0 

O16RHAT dtdprmn[c] + unaga[c]  -> dtdp[c] + h[c] + ragund[c]  0 

OMCDC 3c4mop[c] + h[c]  -> 4mop[c] + co2[c]  0 

PAPPT1 uAgla[c] + udcpp[c]  -> uaAgla[c] + ump[c]  0 

PAPPT2 uGgla[c] + udcpp[c]  -> uaGgla[c] + ump[c]  0 

PAPPT3 udcpp[c] + ugmda[c]  -> uagmda[c] + ump[c]  0 

PATS 5 h[c] + ocdca[c] + 4 tmlgnc[c] + tre[c]  -> 5 h2o[c] + pat[c]  0 

PDIMAS 2 h[c] + phthiocerol[c] + 2 tamocta[c]  -> 2 h2o[c] + pdima[c]  0 

PGAMT gam1p[c]  <=> gam6p[c]  0 

PGLS 4 amet[c] + frrppdima[c]  -> 4 ahcys[c] + 4 h[c] + mfrrppdima[c]  0 

PGMT g1p[c]  <=> g6p[c]  0 

PGPP160 h2o[c] + pgp160[c]  -> pg160[c] + pi[c]  0 



38 | P a g e  

 

PGPP160190 h2o[c] + pgp160190[c]  -> pg160190[c] + pi[c]  0 

PGPP190 h2o[c] + pgp190[c]  -> pg190[c] + pi[c]  0 

PGPPT3 udcpp[c] + uggmda[c]  -> ugggmda[c] + ump[c]  0 

PGSA160 cdpdhdecg[c] + glyc3p[c]  -> cmp[c] + h[c] + pgp160[c]  0 

PGSA160190 cdpc16c19g[c] + glyc3p[c]  -> cmp[c] + h[c] + pgp160190[c]  0 

PGSA190 cdpc19c19g[c] + glyc3p[c]  -> cmp[c] + h[c] + pgp190[c]  0 

PHDCATA ACP[c] + phdcacoa[c]  <=> coa[c] + phdcaACP[c]  0 

PHETA1 akg[c] + phe-L[c]  <=> glu-L[c] + phpyr[c]  0 

PHTHDLS h[c] + prephth[c]  -> co2[c] + phthdl[c]  0 

PHTHDLS2 h[c] + prepphth[c]  -> co2[c] + pphthdl[c]  0 

PHTHS amet[c] + nadph[c] + phthdl[c]  -> ahcys[c] + nadp[c] + phthiocerol[c]  0 

PHTHS2 amet[c] + nadph[c] + pphthdl[c]  -> ahcys[c] + nadp[c] + pphthiocerol[c]  0 

PMANM man1p[c]  <=> man6p[c]  0 

PPDIMAS 2 h[c] + pphthiocerol[c] + 2 tamocta[c]  -> 2 h2o[c] + ppdima[c]  0 

PPND nad[c] + pphn[c]  -> 34hpp[c] + co2[c] + nadh[c]  0 

PPNDH h[c] + pphn[c]  -> co2[c] + h2o[c] + phpyr[c]  0 

PPTGS_TB1 uaaAgla[c]  -> h[c] + peptido-TB1[c] + udcpdp[c]  0 

PPTGS_TB2 uaaGgla[c]  -> h[c] + peptido-TB2[c] + udcpdp[c]  0 

PRAMPC h2o[c] + prbamp[c]  -> prfp[c]  0 

PRATPP h2o[c] + prbatp[c]  -> h[c] + ppi[c] + prbamp[c]  0 

PREPPACPH h2o[c] + prepphthACP[c]  -> ACP[c] + h[c] + prepphth[c]  0 

PREPTHS2 14 h[c] + 2 malcoa[c] + 2 mmcoa-S[c] + 10 nadph[c] + phdcaACP[c]  -> 2 co2[c] + 4 coa[c] + 5 h2o[c] + 10 
nadp[c] + prepphthACP[c]  

0 

PRMICIi prfp[c]  -> prlp[c]  0 

PSCVT pep[c] + skm5p[c]  <=> 3psme[c] + pi[c]  0 

RBK_Dr atp[c] + rbl-D[c]  <=> adp[c] + h[c] + ru5p-D[c]  0 

RPPDIMAS dtdprmn[c] + ppdima[c]  -> dtdp[c] + h[c] + rppdima[c]  0 

RRPPDIMAS dtdprmn[c] + rppdima[c]  -> dtdp[c] + h[c] + rrppdima[c]  0 

SALCS chor[c]  -> pyr[c] + salc[c]  0 

SDPDS h2o[c] + sl26da[c]  -> 26dap-LL[c] + succ[c]  0 

SDPTA akg[c] + sl26da[c]  <=> glu-L[c] + sl2a6o[c]  0 

SHK3Dr 3dhsk[c] + h[c] + nadph[c]  <=> nadp[c] + skm[c]  0 

SHKK atp[c] + skm[c]  -> adp[c] + h[c] + skm5p[c]  0 

TAS arab-D[c] + 3 decda-tb[c]  -> 3 decd-tb[c] + tarab-D[c]  0 

TATS 4 h[c] + hdca[c] + hpmtria[c] + 2 omtta[c] + tre[c]  -> 4 h2o[c] + tat[c]  0 

TATSO 4 h[c] + hdca[c] + hpmtria[c] + 2 omtta[c] + tres[c]  -> 4 h2o[c] + sl1[c]  0 

TDMS1 2 h[c] + mmycolate[c] + mycolate[c] + tre[c]  -> 2 h2o[c] + tdm1[c]  0 

TDMS2 2 h[c] + mmmycolate[c] + mycolate[c] + tre[c]  -> 2 h2o[c] + tdm2[c]  0 

TDMS3 2 h[c] + mkmycolate[c] + mycolate[c] + tre[c]  -> 2 h2o[c] + tdm3[c]  0 

TDMS4 2 h[c] + kmycolate[c] + mycolate[c] + tre[c]  -> 2 h2o[c] + tdm4[c]  0 



39 | P a g e  

 

TDPDRE dtdp4d6dg[c]  -> dtdp4d6dm[c]  0 

TDPDRR dtdp4d6dm[c] + h[c] + nadph[c]  -> dtdprmn[c] + nadp[c]  0 

TDPGDH dtdpglu[c]  -> dtdp4d6dg[c] + h2o[c]  0 

THDPS h2o[c] + succoa[c] + thdp[c]  -> coa[c] + sl2a6o[c]  0 

TMDS dump[c] + mlthf[c]  -> dhf[c] + dtmp[c]  0 

TMHAS1 tdm1[c] + tdm2[c] + tre[c]  -> 2 h2o[c] + tmha1[c]  0 

TMHAS2 tdm1[c] + tdm3[c] + tre[c]  -> 2 h2o[c] + tmha2[c]  0 

TMHAS3 tdm1[c] + tdm4[c] + tre[c]  -> 2 h2o[c] + tmha3[c]  0 

TMHAS4 tdm2[c] + tdm3[c] + tre[c]  -> 2 h2o[c] + tmha4[c]  0 

TRE6PS g6p[c] + udpg[c]  -> h[c] + tre6p[c] + udp[c]  0 

TRESULT  paps[c] + tre[c]  -> h[c] + pap[c] + tres[c]  0 

TYRTA akg[c] + tyr-L[c]  <=> 34hpp[c] + glu-L[c]  0 

UAAGDS 26dap-M[c] + atp[c] + uamag[c]  -> adp[c] + h[c] + pi[c] + ugmd[c]  0 

UAAGLS1 atp[c] + lys-L[c] + uamag[c]  -> adp[c] + h[c] + pi[c] + uAgl[c]  0 

UAAGLS2 atp[c] + lys-L[c] + uamag[c]  -> adp[c] + h[c] + pi[c] + uGgl[c]  0 

UAGCVT pep[c] + uacgam[c]  -> pi[c] + uaccg[c]  0 

UAGDP acgam1p[c] + h[c] + utp[c]  -> ppi[c] + uacgam[c]  0 

UAGPT1 uaAgla[c] + uacgam[c]  -> h[c] + uaaAgla[c] + udp[c]  0 

UAGPT2 uaGgla[c] + uacgam[c]  -> h[c] + uaaGgla[c] + udp[c]  0 

UAGPT3 uacgam[c] + uagmda[c]  -> h[c] + uaagmda[c] + udp[c]  0 

UAMAGS atp[c] + glu-D[c] + uama[c]  -> adp[c] + h[c] + pi[c] + uamag[c]  0 

UAMAS ala-L[c] + atp[c] + uamr[c]  -> adp[c] + h[c] + pi[c] + uama[c]  0 

UAMRH h[c] + nadph[c] + o2[c] + uamr[c]  -> h2o[c] + nadp[c] + ugmr[c]  0 

UAPGR h[c] + nadph[c] + uaccg[c]  -> nadp[c] + uamr[c]  0 

UDCPDP h2o[c] + udcpdp[c]  -> h[c] + pi[c] + udcpp[c]  0 

UDPGALM udpgal[c]  -> udpgalfur[c]  0 

UGAGDS 26dap-M[c] + atp[c] + ugmag[c]  -> adp[c] + h[c] + pi[c] + uggmd[c]  0 

UGGPT3 uacgam[c] + ugggmda[c]  -> h[c] + udp[c] + ugagmda[c]  0 

UGLDDS1 alaala[c] + atp[c] + uAgl[c]  -> adp[c] + pi[c] + uAgla[c]  0 

UGLDDS2 alaala[c] + atp[c] + uGgl[c]  -> adp[c] + pi[c] + uGgla[c]  0 

UGMAGS atp[c] + glu-D[c] + ugma[c]  -> adp[c] + h[c] + pi[c] + ugmag[c]  0 

UGMAS ala-L[c] + atp[c] + ugmr[c]  -> adp[c] + h[c] + pi[c] + ugma[c]  0 

UGMDDS alaala[c] + atp[c] + ugmd[c]  -> adp[c] + h[c] + pi[c] + ugmda[c]  0 

UGMDDS2 alaala[c] + atp[c] + uggmd[c]  -> adp[c] + h[c] + pi[c] + uggmda[c]  0 

VALTA akg[c] + val-L[c]  <=> 3mob[c] + glu-L[c]  0 

biomass_Mtb_9_60atp 0 

 

 

Table 2. List of essential reactions from singleReactions deletion function: 

 



40 | P a g e  

 

These reactions were sought as essential not just on the basis of the flux values but also by cross 

validating the biological pathways in which they occur. For E.g. the amino acid pathways: these 

reactions are eventually incorporated into functional proteins 

Finally, from these reactions, the metabolites were screened and selected as essential metabolites. 

Since the metabolites were repeating in multiple reactions, only one occurrence was recorded and the 

final list of 44 metabolites was made. 

 
 
 

No. ID NAME 

1 3593277 alpha-ketobutyric acid 

2 23672314 alpha-ketoglutaric acid 

3 979 4-hydroxyphenylpyruvic acid 

4 7339 Phosphoribosyl Pyrophosphate 

5 6971017 acetoacetic acid 

6 5490374 acyl carrier protein (65-74) 

7 23615194 adenosine 3'-phosphate-5'-phosphate 

8 60961 Adenosine 

9 6022 Adenosine Diphosphate 

10 6083 Adenosine Monophosphate 

11 5957 Adenosine Triphosphate 

12 6131 Cytidine Monophosphate 

13 317 Coenzyme A 

14 66308 Arabinose 

15 45479346 trans,octacis-decaprenylphospho-beta-D-arabinofuranose 

16 6036 Galactose 

17 6994968 2'-deoxyguanosine 5'-phosphate 

18 151261 ribulose 

19 65063 2'-deoxyuridylic acid 

20 18396 Guanosine Diphosphate Mannose 

21 504166 hexadecanoate 

22 6021 Inosine 

23 5950 Alanine 

24 33032 Glutamic Acid 

25 439398 l-histidinol phosphate 

26 165271 Histidinol 

27 5962 Lysine 

28 6140 Phenylalanine 

29 6057 Tyrosine 

30 15983949 NADP 

31 42609791 NADP 

32 5893 NAD 

33 3033836 Octadecanoate 

34 997 phenylpyruvic acid 



41 | P a g e  

 

35 52941750 Phosphatidylglycerol(16:0/18:1) 

36 46873832 phosphatidylglycerophosphate 

37 45480609 phosphatidylinositol mannoside 

38 3541112 3-Hydroxybutyric Acid 

39 34756 S-Adenosylmethionine 

40 123909 methylmalonyl-coenzyme A 

41 439161 succinyl-coenzyme A 

42 25243858 UDP-N-acetylmuramoyl-L-alanyl-D-glutamate 

43 46173748 UDP-N-acetylmuramoyl-L-alanyl-D-glutamyl-L-lysine 

44 46931082 UDP-N-acetylmuramoyl-L-alanyl-gamma-D-glutamyl-L-lysine 

 
Table 3. List of molecules identified as essential from single reaction deletion function: 

 

 

5.2 DATA MINING 

5.2.1 Dataset Extraction 

In this study, the data downloaded consists of all the available 3D structures of the targets that are 

known to be active or inactive against Mycobacterium tuberculosis from the bioassay screen: AID: 

1332.  The data had two classes “Active” and “Inactive” containing a total of 166 and 927 

molecules respectively. The bio activity values are appended in the data as class attribute labeled as 

Level. The dataset is then used as the input for calculating the Molecular Descriptors. 

 

5.2.2 Calculation of Molecular Descriptors 

The software used to calculate the Molecular descriptors is DRAGON6. Dragon6 provides 4,885 

molecular descriptors divided into 29 logical blocks, each in turn is divided into a number of sub 

blocks making it easier to retrieve the molecular descriptors of interest. The  Dragon  software  can  

also  be  used  to  merge  the calculated molecular descriptors and the user-defined properties for a 

set of molecules, which enables us to extract a complete output file which can be easily loaded by 

any correlation analysis application. These descriptors can be used for various purposes – for 

example: to evaluate molecular structure-activity relationships (QSAR/QSPR), similarity analysis 

and screening of molecule database. 

 

The software was licensed for academic use, and installed on three computers available in lab. The 

computers all had variants of the linux operating system, running CentOS or Fedora.  Although  the  

software  can  use  files  containing  an  unlimited  number  of molecules as input, in practice the 

presence of an error in the molecular SDF format can cause the application to exit with a 

segmentation fault, losing the calculated results. For this reason, the input files are split smaller 

files, each containing 150 molecules, and the results merged.  The molecules showing errors in the 

sdf format were pruned out. Descriptors were calculated for all actives (166) and inactive (927) 

molecules separately using this method. Dragon software requires a  XML template file with input 



42 | P a g e  

 

details of descriptors  and generates an output file using the following command: 

 

 
 

5.2.3 Data Preprocessing and Splitting 

Data in the form of a comma-delimited file is read into R, after loading the caret package. The 

preprocessing of the data is done in order to discard the near-zero values, highly correlated values, 

missing values, outliers, unbalanced distribution and zero variance predictors. Columns containing 

missing values cause errors during model-building and are removed using standard R functions 

while reading in the data. The removal of near zero values and highly-correlated columns from the 

data is useful in the case of large datasets as they provide redundant information for discrimination, 

and increase the time for building the models. 

In case of removal of highly correlated values, the cutoff threshold limit is given for finding out 

correlated values and the values sharing the highest correlation are removed. In the R script used 

the following modules are implemented: loading of the original data sets, preprocessing the data, 

principal components analysis of resultant data and finally data-splitting  into  training  (for  

selecting  model  parameters,  its  values  and  model building) and test set (used to get an 

independent assessment of model efficacy). 

The data is randomly split in about 80:20 ratio where 80 % of the data is used as training set and 

20% of the data is used as the test set. The data set used in this study for the training  set consisted 

of  870 samples variables  and  the  test  set  consisted  of  217 samples variables. Both had a total 

of 1823 predictor variables. The two files were labeled as trainClass.RData and testClass.RData, 

respectively. 

 

5.2.4 Model Building 

Model building was done using an R script in which various methods available can be used to 

build models, and the respective grid size can be easily defined. The run time of the methods differ 

owing to difference in algorithms used and grid size. The caret package in R, being a wrapper for a 

large number of methods, is ideal to implement our objective of comprehensively covering model 

building methods in cheminformatics. The methods, corresponding to those described in the theory 

section of this dissertation, are k nearest neighbor, svmRadial, random forest, Naive Bayes, 

boosting and  linear models such as generalized linear model, partial least-square, etc. The methods 

besides differing in their accuracy levels and overall prediction, also differ in their computational 

requirements. 

Initially the models were tuned on the training set that consisted of 870 sample and 1823 predictor 

variables. The breakdown of the outcome data classes were: “active” (n=133) and “inactive” 

(n=737).  The models were then build on a test set of 217 samples and 1823 predictors variable, 



43 | P a g e  

 

with unlabeled outcomes. 

 

Components for estimating performance of a model 

 

1. Confusion Matrix: It is a matrix that contains information about actual and predicted 

classifications done by a classification system. Performance of such systems is commonly evaluated 

using the data in the matrix. The following table shows the confusion matrix for a two classifiers. 

 
 

Where 

TN->  number of correct predictions that an instance is negative. 

FP->  number of incorrect predictions that an instance is positive. 

FN ->  number of incorrect predictions that an instance is negative. 

TP->  number of correct prediction that an instance is positive. 

 

2. Sensitivity: 

SE, which is the probability of classifying/predicting an active drug target as against actual active 

drugs 

SE = TP / ( TP + FN ) = TP / P. 

3. Specificity: 

SP, is the probability of classifying/predicting an inactive drug target against those as actual 

inactive drugs. 

SP = TN / ( FP + TN ) = TN / P. 

4. Kappa statistics: 

It is a measure of concordance for categorical data that measures agreement relative to what 

would be expected by chance. Value of 1 indicate perfect agreement, while a value of zero 

would indicate a lack of agreement. Negative Kappa value can be also occur, but are less 

common since it would indicate a negative association between the observed and predicted 

data. Kappa is an excellent performance measure when the classes are highly unbalanced. 



44 | P a g e  

 

5. ROC Graph: 

Receiver Operating Characteristic Curve is a graphical plot of the sensitivity or true positive 

rate versus false positive rate or ( 1- specificity ) for a binary classifier system as its 

discrimination threshold is varied. It is also known as Relative Operating Characteristic Curve 

because it is a comparison of two operating characteristics i.e. true positive rate and false 

positive rate as the criterion changes. ROC analysis provides tools to select possibly optimal 

models and to discard suboptimal ones independently from the cost context or the class 

distribution. 

 

5.3 GRAPH RESULTS 

 

 

1. Confusion matrix for the models : 

 

  Observed Values 

Active Inactive 

Random Forest Active 56 12 

Inactive 11 172 

Bagged Tree Active 20 12 

Inactive 13 172 

PLS Active 18 11 

Inactive 15 173 

svmRadial Active 

Inactive 

20 7  

13 177 

rPart Active 

Inactive 

10 9  

23 175 

GBM Active 

Inactive 

17 7  

16 177 

 

                                  

 

 



45 | P a g e  

 

One of the ROC curves for the test set consisting 217 molecules is depicted below. The model being 

shown is based on Partial Least Square test method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                       

 

 

 

 

 

 

 

 

 

 

Figure 9. ROC curve on test set for PLS. 

 

 

 

 

 

 

 

 



46 | P a g e  

 

MODEL NAME ACCURACY SENSTIVITY SPECIFICITY ROC 

Random forest 0.899 0.915 0.485 0.973 

Treebag 0.885 0.892 0.606 0.935 

svmRadial 0.908 0.902 0.606 0.962 

rPart 0.853 0.723 0.303 0.951 

PLS 0.88 0.904 0.545 0.94 

GBM 0.894 0.881 0.515 0.962 

GLM 0.5530 0.537 0.515 0.560 

 

Table 4. Table shows the performance score of the Preditive Models 

 

 

All the models built using CARET package gave high performance on test set. The highest 

performance was shown by Treebag and lowest by Glm. The models gave an average accuracy of  

0.8388 and AUC of  0.897. 

These results suggest that the Classification models built can be successfully applied to the unknown 

datasets to separate the data into set of positives and negatives. 

                          

The outcome of the prediction on the listed essential molecules is listed below.  

 

 ID NAME rPart  baggedTree 

1 3593277 alpha-ketobutyric acid inactive active 

2 23672314 alpha-ketoglutaric acid inactive active 

3 979 4-hydroxyphenylpyruvic acid inactive active 

4 7339 Phosphoribosyl Pyrophosphate active active 

5 6971017 acetoacetic acid inactive active 

6 5490374 acyl carrier protein (65-74) active active 

7 23615194 adenosine 3'-phosphate-5'-phosphate active active 

8 60961 Adenosine active active 

9 6022 Adenosine Diphosphate active active 

10 6083 Adenosine Monophosphate active active 

11 5957 Adenosine Triphosphate active active 

12 6131 Cytidine Monophosphate active active 



47 | P a g e  

 

13 317 Coenzyme A active active 

14 66308 Arabinose active active 

15 45479346 trans,octacis-decaprenylphospho-beta-D-arabinofuranose active active 

16 6036 Galactose active active 

17 6994968 2'-deoxyguanosine 5'-phosphate active active 

18 151261 ribulose active active 

19 65063 2'-deoxyuridylic acid active active 

20 18396 Guanosine Diphosphate Mannose active active 

21 504166 hexadecanoate inactive active 

22 6021 Inosine active active 

23 5950 Alanine inactive active 

24 33032 Glutamic Acid inactive active 

25 439398 l-histidinol phosphate active active 

26 165271 Histidinol active active 

27 5962 Lysine inactive active 

28 6140 Phenylalanine inactive active 

29 6057 Tyrosine inactive active 

30 15983949 NADP active active 

31 42609791 NADP active active 

32 5893 NAD active active 

33 3033836 Octadecanoate inactive active 

34 997 phenylpyruvic acid active active 

35 52941750 Phosphatidylglycerol(16:0/18:1) active active 

36 46873832 phosphatidylglycerophosphate active active 

37 45480609 phosphatidylinositol mannoside active active 

38 3541112 3-Hydroxybutyric Acid inactive active 

39 34756 S-Adenosylmethionine active active 

40 123909 methylmalonyl-coenzyme A active active 

41 439161 succinyl-coenzyme A active active 

42 25243858 UDP-N-acetylmuramoyl-L-alanyl-D-glutamate active active 

43 46173748 UDP-N-acetylmuramoyl-L-alanyl-D-glutamyl-L-lysine active active 

44 46931082 UDP-N-acetylmuramoyl-L-alanyl-gamma-D-glutamyl-L-lysine active active 

NC_1  Negative Control_1 inactive inactive 

NC_2  Negative Control_2 inactive inactive 

NC_3  Negative Control_3 inactive inactive 

NC_4  Negative Control_4 inactive inactive 

NC_5  Negative Control_5 inactive inactive 

NC_6  Negative Control_6 inactive inactive 

NC_7  Negative Control_7 inactive inactive 



48 | P a g e  

 

NC_8  Negative Control_8 inactive inactive 

NC_9  Negative Control_9 inactive inactive 

NC_10  Negative Control_10 inactive inactive 

NC_11  Negative Control_11 inactive inactive 

NC_12  Negative Control_12 inactive inactive 

NC_13  Negative Control_13 inactive inactive 

NC_14  Negative Control_14 inactive inactive 

NC_15  Negative Control_15 inactive inactive 

NC_16  Negative Control_16 inactive inactive 

NC_17  Negative Control_17 inactive inactive 

NC_18  Negative Control_18 inactive inactive 

NC_19  Negative Control_19 inactive inactive 

NC_20  Negative Control_20 inactive inactive 

NC_21  Negative Control_21 inactive inactive 

NC_22  Negative Control_22 inactive inactive 

NC_23  Negative Control_23 inactive inactive 

NC_24  Negative Control_24 inactive inactive 

NC_25  Negative Control_25 inactive inactive 

NC_26  Negative Control_26 inactive inactive 

NC_27  Negative Control_27 inactive inactive 

NC_28  Negative Control_28 inactive inactive 

NC_29  Negative Control_29 inactive inactive 

NC_30  Negative Control_30 inactive inactive 

 

Table 5. Prediction results for the essential metabolite dataset 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



49 | P a g e  

 

6. CONCLUSION 

 

We have explored two techniques to identify potential lead molecules for rational drug design. Flux 

Balance Analysis can be used to systematically knock-out proteins and identify essential reactions. We 

have also employed a systematic and comprehensive approach to build supervised classification based 

predictive models for anti-tubercular agents from publicly available bioassay datasets for in-vitro 

screens for Mtb inhibitors and then Analysis using them onto metabolites identified as potential targets 

from FBA. In contrast with the conventional target-based screening approaches, these models are 

target-agnostic as they are based on whole-cell screening experiments. We have used these 

classification models for anti-tubercular agent. 

The thesis defines a standard protocol for deploying data-mining methods in conjunction with 

metabolic flux analysis. Bioassay datasets, containing the screening results to identify active molecules 

were used for model-building.  Models were built using the methods including partial least square, 

generalized linear model, k-nearest neighbor, Boosting (glmboost), Bagging (treebag), random forest 

and support vector machines. The developed models performed well in identifying active molecules 

against M. tuberculosis and are easily extendable to other data sets. 

When used in screening, care is taken to minimize the number of false positives. The larger the number 

of false positives increases the cost of experimental validation as a downstream step in drug discovery.  

The prediction when extended to metabolites within the Mtb metabolic network provided insights 

about the druggability of those molecules along with its influx details. This determines which 

molecules have high influx rates and also show a promising drug potential. 

These flux based predictive models can now aid in the virtual screening of large molecular libraries to 

mine novel chemical scaffolds and thereby trigger an accelerated drug discovery for Mtb. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



50 | P a g e  

 

7. FUTURE PERSPECTIVES 

 

 

Mtb presents a plethora of molecular targets that hold a great potential for therapeutic intervention in 

the post genomic era. These opportunities present the Mtb genome as a highly druggable genome. 

Herein, we are proposing the potential models of influx for drug like molecules.  

Since metabolism is fundamental in sustaining microbial life, drugs that target pathogen-specific 

metabolites, enzymes and pathways can be. Studies have identified proteins critical for the survival for 

M.tuberculosis that are likely to have high rates of success as drug candidates. Many of the druggable 

proteins are enzymes that control several metabolic processes within the cells by catalyzing the 

reactions converting nutrients into energy and new molecules which are in a way crucial for the 

survival of the microbe. 

As a proof of concept, the molecules selected as essential through the FBA filter were datasets scored 

with models using Treebag(Bagged Tree method) and rPart(Recursive Partitioning), along with 

negative controls- which were plant metabolites not present in either the host or pathogen. Most 

molecules being predicted as actives were also influxed within the cell providing a new approach to 

design novel drug targets or scaffolds to treat the Mtb infection. 

Future extensions of this work can explore further filters, such as the removal of metabolites that are 

essential to the host and addition of known drug-like molecules or known drugs which can be re-

scored for their potential efficacy against M. tuberculosis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



51 | P a g e  

 

8. REFERENCES 

 

1. Fang,  X.; Wallqvist, A.;  Reifman, J. (2009). A systems biology framework for modeling met-

abolic enzyme inhibition of Mycobacterium tuberculosis. BMC systems biology, 3, 92. 

 

2. Jamshidi, N; Palsson, BO. (2007) Investigating the metabolic capabilities of Mycobacterium 

tuberculosis H37Rv using the in silico strain iNJ661 and proposing alternative drug targets. 

BMC Syst Biol , 1,26 

 

3. Beste, DJ; Hooper, T; Stewart, G; Bonde, B; Avignone-Rossa, C; Bushell, ME; Wheeler, P; 

Klamt, S; Kierzek, AM; McFadden, J. (2007) GSMN-TB:  a web-based genome-scale network 

model of Mycobacterium tuberculosis metabolism. Genome Biol, 8:R89. 

 

4. Cole,ST; Brosch, R; Parkhill, J; Garnier, T; Churcher, C; Harris, D; Gordon, SV; Eiglmeier, K; 

Gas, S; Barry, CE 3rd; et al. (1998).  Deciphering  the biology of Mycobacterium tuberculosis 

from the complete genome  sequence. Nature, 393,537-544. 

 

5. McGrath, M; van Pittius, NG; van Helden, PD; Warren; Warner, DF. (2014). Mutation rate and 

the emergence of drug resistance in Mycobacterium tuberculosis.  Journal of Antimicrobial 

Chemotherapy, 69(2), 292-302. 

 

6. Baart, GJ; Martens, DE. (2012). Genome-scale metabolic models: reconstruction and analysis. 

Methods Mol Biol.799,107-26. 

 

7. Olivares, J; Bernardini, A; Garcia-Leon, G, Corona, F; Sanchez MB; Martinez, JL. (2013). The 

intrinsic resistome of bacterial pathogens. Front Microbiol. 4,103. 

 

8. Raman, K; Yeturu, K; Chandra, N. (2008). targetTB: a target identification pipeline for Myco-

bacterium tuberculosis through an interactome, reactome and genome-scale structural analysis. 

BMC Syst Biol.2,109. 

 

9. Keller, TH; Pichota, A; Yin, Z. (2006). A practical view of 'druggability'. Curr  OpinChem 

Biol.10(4),357-61. 

 

10. Klamt, S;  Stelling, J. (2003). Two approaches for metabolic pathway analysis?. Trends in bio-

technology, 21(2), 64-69. 

 



52 | P a g e  

 

11. Planes, FJ; Beasley, JE. (2009). Path finding approaches and metabolic pathways. Discrete Ap-

plied Mathematics, 157(10), 2244-2256. 

 

12. Hatzimanikatis, V; Li, C; Ionita, JA;  Broadbelt, LJ. (2004). Metabolic networks: enzyme func-

tion and metabolite structure. Current Opinion in Structural Biology, 14(3), 300-306. 

 

13. Price,  ND; Papin, JA; Schilling, CH;  Palsson, BO. (2003). Genome-scale microbial in silico 

models: the constraints-based approach. Trends in biotechnology, 21(4), 162-169. 

 

14. Fang,  X; Wallqvist, A;  Reifman, J. (2009). A systems biology framework for modeling meta-

bolic enzyme inhibition of Mycobacterium  tuberculosis. BMC systems biology, 3(1), 92. 

 

15. Giannoulatou, E;  Hein, J. (2006). Evolution of metabolic networks. 

 

16. Ponce-de-León, M; Montero, F;  Peretó, J. (2013). Solving gap metabolites and blocked reac-

tions in genome-scale models: application to the metabolic network of Blattabacterium cue-

noti. BMC systems biology, 7(1), 114. 

 

17. Mackie, A; Keseler, IM; Nolan, L; Karp, PD;  Paulsen, IT. (2013). Dead End Metabolites-

Defining the Known Unknowns of the E. coli Metabolic Network. PloS one, 8(9), e75210. 

 

18. Reed,  JL; Vo, TD; Schilling, CH;  Palsson, BO. (2003). An expanded genome-scale model of 

Escherichia coli K-12 (iJR904 GSM/GPR). Genome Biol, 4(9), R54. 

 

19. Orth,  JD; Thiele, I; Palsson, BO. (2010). What is flux balance analysis?. Nature biotechnolo-

gy, 28(3), 245-248. 

 

20. Jamshidi, N;  Palsson, BO. (2007). Investigating the metabolic capabilities of Mycobacterium 

tuberculosis H37Rv using the in silico strain iNJ661 and proposing alternative drug targets. 

BMC systems biology, 1(1), 26. 

 

21. Schilling, CH; Schuster, S; Palsson, BO; Heinrich, R. (1999). Metabolic pathway analysis: 

basic concepts and scientific applications in the post‐genomic era. Biotechnology progress, 

15(3), 296-303. 

 

22. Kauffman, KJ. Prakash, P; Edwards, JS. (2003). Advances in flux balance analysis. Current 

opinion in biotechnology, 14(5), 491-496. 

 



53 | P a g e  

 

23. Krieger CJ; Zhang. P; Mueller LA; Wang A; Paley S; Arnaud M; Pick J; Rhee S; Karp PD. 

(2006) Metacyc: A multiorganism database of metabolic pathways and enzymes, Nucleic Ac-

ids Research, 32(1),D438 -4   

 

24. Green  ML; Karp PD. (2007). Using genome -context data to identify specific types of func-

tional associations in pathway/genome databases.  Bioinformatics Research Group, SRI Inter-

national, Menlo Park, CA 94025, USA, 23(13), 205-11. 

 

25. Green  ML; Karp PD. (2004). A bayesian method for identifying missing enzymes in predicted 

metabolic pathway databases, BMC Bioinformatics 5(1), 76. 

 

26. Ekins,  S; Shimada, J; Chang, C. (2006). Application of data mining approaches o drug deliv-

ery. Advanced drug delivery reviews, 58(12), 1409-1430. 

 

27. Becker, SA; Feist, AM; Mo, ML; Hannum, G; Palsson, BO; Herrgard, MJ. (2007). Quantitative 

prediction of cellular metabolism with constraint-based models: the COBRA Toolbox. Nature 

protocols, 2(3), 727-738. 

 

28. Gramatica, P. (2007). Principles of QSAR models validation: internal and external. QSAR & 

combinatorial science, 26(5), 694-701.  



53 | P a g e  
 

APPENDIX-A 

 

 

Summary of codes for FBA in MATLAB and their usage and references for their downloads  

 

FUNCTION APPLICATION REFERENCE 

writeCbModel writeCbModel Write 

out COBRA models 

in various formats 

http://opencobra.sourceforge.net/openCOBRA/opencobra_documentatio

n/cobra_toolbox_2/index.html 

readCbModel readCbModel Read 

in a constraint-based 

model 

http://opencobra.sourceforge.net/openCOBRA/opencobra_documentatio

n/cobra_toolbox_2/index.html 

optimizeCbMod

el 

optimizeCbModel 

Solve a flux balance 

analysis problem 

http://opencobra.sourceforge.net/openCOBRA/opencobra_documentatio

n/cobra_toolbox_2/index.html 

singleRxnDeleti

on 

singleRxnDeletion 

Performs single 

reaction deletion 

analysis using FBA 

http://opencobra.sourceforge.net/openCOBRA/opencobra_documentatio

n/cobra_toolbox_2/index.html 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



54 | P a g e  
 

APPENDIX-B 

 

Scripts used for Data Mining 

 

I. DRAGON Script : (condor_dragon_trainee.pl ) 

 
#!/usr/bin/perl -w 

## We assume that all files are in the format Conformers_*sdf as  

# downloaded from Pubchem. You can change this so that they pick all sdf 

files 

@allmegafiles=`ls -1 all.sdf`; 

#process these files one at a time 

while (@allmegafiles){ 

$megafile=shift(@allmegafiles); 

#split the larger files to contain only 150 molecules at a time.... 

# This step uses mayachemtools, and a perlscript that splits SDF files. 

#SplitSDFiles.pl should be on your path! 

chomp($megafile); 

$megafile=~s/\.sdf//; 

system "/nfs/condor/mayachemtools/bin/SplitSDFiles.pl -m Cmpds --numcmpds 150 

–r $megafile -o $megafile.sdf"; 

# read these files for descriptor calculations 

@allfiles=`ls -1 *Part*.sdf`; 

print @allfiles; 

## The following loop is a script that was written for  

## processing in lots of 8, now replaced with the condor submit script.... 

while(@allfiles){ 

for ($i=0; $i <= 7; $i++){ 

  $temp=shift(@allfiles); 

#check if no value 

unless($temp eq ''){push(@files,$temp)} 

} 

foreach $file (@files){ 

chomp($file); 

$file=~s/\.sdf//; 

print $file, "\n"; 

# copy file template 

system "cp template.drs $file.drs"; 

system "perl -i -p -e s/filename/$file/ $file.drs"; 

open(CMD,">$file.cmd"); 

print CMD 'universe = vanilla',"\n"; 

#print CMD 'requirements = (Arch=="X86_64" || Arch=="INTEL") && 

OpSys=="LINUX"',"\n"; 

##print CMD 'requirements = Arch=="X86_64" && OpSys=="LINUX"',"\n"; 

##print CMD 'requirements = Arch=="INTEL" && OpSys=="LINUX"',"\n"; 

#print CMD 'requirements = machine=="dolphin.osdd.jnu.ac.in"',"\n"; 

print CMD 'requirements = machine=="lynn.osdd.jnu.ac.in" || 

machine=="dolphin.osdd.jnu.ac.in"',"\n"; 

print CMD "executable    = /nfs/condor/dragon_new/dragon6shell\n"; 

print CMD "output          = $file.stdout\n"; 

print CMD "error           = $file.err\n"; 

print CMD "log             = $file.log\n"; 

print CMD "arguments       = -s $file.drs\n"; 

print CMD "queue\n"; 

close(CMD); 

 
 

 



55 | P a g e  
 

II. Model Building Script: 

 

%% Classification Modeling Script 

%% Max Kuhn (max.kuhn@pfizer.com, mxkuhn@gmail.com) 

%% Version: 1.00 

%% Created on: 2010/10/02 

%% 

%% This is an Sweave template for building and describing 

%% classification models. It mixes R and LaTeX code. The document can 

  %% be processing using R's Sweave function to produce a tex file.   

%% 

%% The inputs are: 

%% - the initial data set in a data frame called 'rawData'  

%% - a factor column in the data set called 'class'. this should be the 

%%    outcome variable  

%% - all other columns in rawData should be predictor variables 

%% - the type of model should be in a variable called 'modName'. 

%%  

%% The script attempts to make some intelligent choices based on the 

%% model being used. For example, if modName is "pls", the script will 

%% automatically center and scale the predictor data. There are 

%% situations where these choices can (and should be) changed.    

%% 

%% There are other options that may make sense to change. For example, 

%% the user may want to adjust the type of resampling. To find these 

%% parts of the script, search on the string 'OPTION'. These parts of 

%% the code will document the options.  

\documentclass[12pt]{report} 

\usepackage{amsmath} 

\usepackage[pdftex]{graphicx} 

\usepackage{color} 

\usepackage{ctable} 

\usepackage{xspace} 

\usepackage{fancyvrb} 

\usepackage{fancyhdr} 

\usepackage{lastpage} 

\usepackage{longtable}  

\usepackage{algorithm2e} 

\usepackage[ 

         colorlinks=true, 

         linkcolor=blue, 

         citecolor=blue, 

         urlcolor=blue] 

           {hyperref} 

\usepackage{lscape} 

\usepackage{Sweave} 

\SweaveOpts{keep.source = TRUE} 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

\definecolor{darkgreen}{rgb}{0,0.6,0} 

\definecolor{darkred}{rgb}{0.6,0.0,0} 

\definecolor{lightbrown}{rgb}{1,0.9,0.8} 

\definecolor{brown}{rgb}{0.6,0.3,0.3} 

\definecolor{darkblue}{rgb}{0,0,0.8} 

\definecolor{darkmagenta}{rgb}{0.5,0,0.5} 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

\newcommand{\bld}[1]{\mbox{\boldmath $#1$}} 

\newcommand{\shell}[1]{\mbox{$#1$}} 

\renewcommand{\vec}[1]{\mbox{\bf {#1}}} 



56 | P a g e  
 

\newcommand{\ReallySmallSpacing}{\renewcommand{\baselinestretch}{.6}\Large\no

rmalsize} 

\newcommand{\SmallSpacing}{\renewcommand{\baselinestretch}{1.1}\Large\normals

ize} 

\newcommand{\halfs}{\frac{1}{2}} 

\setlength{\oddsidemargin}{-.25 truein} 

\setlength{\evensidemargin}{0truein} 

\setlength{\topmargin}{-0.2truein} 

\setlength{\textwidth}{7 truein} 

\setlength{\textheight}{8.5 truein} 

\setlength{\parindent}{0.20truein} 

\setlength{\parskip}{0.10truein} 

\setcounter{LTchunksize}{50} 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

\pagestyle{fancy} 

\lhead{} 

%% OPTION Report header name 

\chead{Classification Model Script} 

\rhead{} 

\lfoot{} 

\cfoot{} 

\rfoot{\thepage\ of \pageref{LastPage}} 

\renewcommand{\headrulewidth}{1pt} 

\renewcommand{\footrulewidth}{1pt} 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% OPTION Report title and modeler name 

\title{Classification Model Script - Model building only using bag} 

\author{Rishi Srivastava} 

\begin{document} 

\maketitle 

\thispagestyle{empty} 

<<dummy, eval=TRUE, echo=FALSE, results=hide>>= 

# sets values for variables used later in the program to prevent the \Sexpr 

error on parsing with Sweave 

numSamples='' 

classDistString='' 

missingText='' 

numPredictors='' 

numPCAcomp='' 

pcaText='' 

nzvText='' 

corrText='' 

ppText='' 

varText='' 

splitText="Dummy Text" 

nirText="Dummy Text" 

# pctTrain is a variable that is initialised in Data splitting, and reused 

later in testPred 

pctTrain=0.8 

@  

<<startup, eval= TRUE, results = hide, echo = FALSE>>= 

library(Hmisc) 

library(caret) 

versionTest <- compareVersion(packageDescription("caret")$Version,  

                              "4.65") 

if(versionTest < 0) stop("caret version 4.65 or later is required") 

 

library(RColorBrewer) 



57 | P a g e  
 

listString <- function (x, period = FALSE, verbose = FALSE)  

{ 

  if (verbose)   cat("\n      entering listString\n") 

  flush.console() 

  if (!is.character(x))  

    x <- as.character(x) 

  numElements <- length(x) 

  out <- if (length(x) > 0) { 

    switch(min(numElements, 3), x, paste(x, collapse = " and "),  

           { 

             x <- paste(x, c(rep(",", numElements - 2), " and", ""), sep = 

"") 

             paste(x, collapse = " ") 

           }) 

  } 

  else "" 

  if (period)  out <- paste(out, ".", sep = "") 

  if (verbose)  cat("      leaving  listString\n\n") 

  flush.console() 

  out 

} 

resampleStats <- function(x, digits = 3) 

  { 

    bestPerf <- x$bestTune 

    colnames(bestPerf) <- gsub("^\\.", "", colnames(bestPerf)) 

    out <- merge(x$results, bestPerf) 

    out <- out[, colnames(out) %in% x$perfNames] 

    names(out) <- gsub("ROC", "area under the ROC curve", names(out), fixed = 

TRUE) 

    names(out) <- gsub("Sens", "sensitivity", names(out), fixed = TRUE) 

    names(out) <- gsub("Spec", "specificity", names(out), fixed = TRUE) 

    names(out) <- gsub("Accuracy", "overall accuracy", names(out), fixed = 

TRUE) 

    names(out) <- gsub("Kappa", "Kappa statistics", names(out), fixed = TRUE)    

    out <- format(out, digits = digits) 

    listString(paste(names(out), "was", out)) 

  } 

twoClassNoProbs <- function (data, lev = NULL, model = NULL)  

{ 

  out <- c(sensitivity(data[, "pred"], data[, "obs"], lev[1]),  

           specificity(data[, "pred"], data[, "obs"], lev[2]), 

           confusionMatrix(data[, "pred"], data[, "obs"])$overall["Kappa"]) 

  names(out) <- c("Sens", "Spec", "Kappa") 

  out 

} 

##OPTION: model name: see ?train for more values/models 

modName <- "PLS" 

## No longer dealing with raw data - this contains the preprocessed training 

dataset 

load("/nfs/condor/caret/rishi/data/trainClass.RData") 

load("/nfs/condor/caret/rishi/data/testClass.RData") 

rawData <- trainX 

rawData$outcome <- trainY 

@  

%% This is a test line - to find a way to comment text outside the code 

chunk, which has inserted values from R variables. We are using the method: 

\Sexpr{modName}. 

\section*{Data Sets}\label{S:data} 



58 | P a g e  
 

%% OPTION: provide some background on the problem, the experimental 

%% data, how the compounds were selected etc 

<<getDataInfo, echo = FALSE, results = hide>>= 

if(!any(names(rawData) == "outcome")) stop("a variable called outcome should 

be in the data set") 

if(!is.factor(rawData$outcome)) stop("the outcome should be a factor vector") 

## OPTION: when there are only two classes, the first level of the  

##         factor is used as the "positive" or "event" for calculating 

##         sensitivity and specificity. Adjust the outcome factor 

accordingly. 

numClasses <- length(levels(rawData$outcome)) 

numSamples <- nrow(rawData) 

numPredictors <- ncol(rawData) - 1 

predictorNames <- names(rawData)[names(rawData) != "outcome"] 

isNum <- apply(rawData[,predictorNames, drop = FALSE], 2, is.numeric) 

if(any(!isNum)) stop("all predictors in rawData should be numeric") 

classTextCheck <- all.equal(levels(rawData$outcome), 

make.names(levels(rawData$outcome))) 

if(!classTextCheck) warning("the class levels are not valid R variable names; 

this may cause errors") 

## Get the class distribution 

classDist <- table(rawData$outcome) 

classDistString <- paste("``", 

                         names(classDist), 

                         "'' ($n$=", 

                         classDist, 

                         ")", 

                         sep = "") 

classDistString <- listString(classDistString) 

@  

<<missingFilter, eval=FALSE, echo = FALSE, results = hide>>= 

colRate <- apply(rawData[, predictorNames, drop = FALSE], 

                 2, function(x) mean(is.na(x))) 

##OPTION thresholds can be changed 

colExclude <- colRate > .20 

missingText <- "" 

if(any(colExclude)) 

  { 

    missingText <- paste(missingText, 

                         ifelse(sum(colExclude) > 1, 

                                " There were ", 

                                " There was "), 

                         sum(colExclude), 

                         ifelse(sum(colExclude) > 1, 

                                " predictors ", 

                                " predictor "), 

                         "with an excessive number of ", 

                         "missing data. ", 

                         ifelse(sum(colExclude) > 1, 

                                " These were excluded. ", 

                                " This was excluded. ")) 

    predictorNames <- predictorNames[!colExclude] 

    rawData <- rawData[, names(rawData) %in% c("outcome", predictorNames), 

drop = FALSE] 

  } 

rowRate <- apply(rawData[, predictorNames, drop = FALSE], 

                 1, function(x) mean(is.na(x))) 

rowExclude <- rowRate > .20    



59 | P a g e  
 

if(any(rowExclude)) { 

    missingText <- paste(missingText, 

                         ifelse(sum(rowExclude) > 1, 

                                " There were ", 

                                " There was "), 

                         sum(colExclude), 

                         ifelse(sum(rowExclude) > 1, 

                                " samples ", 

                                " sample "), 

                         "with an excessive number of ", 

                         "missing data. ", 

                         ifelse(sum(rowExclude) > 1, 

                                " These were excluded. ", 

                                " This was excluded. "), 

                         "After filtering, ", 

                         sum(!rowExclude), 

                         " samples remained.") 

    rawData <- rawData[!rowExclude, ] 

    hasMissing <- apply(rawData[, predictorNames, drop = FALSE], 

                        1, function(x) mean(is.na(x))) 

  } else { 

        hasMissing <- apply(rawData[, predictorNames, drop = FALSE], 

                        1, function(x) any(is.na(x))) 

        missingText <- paste(missingText, 

                             ifelse(missingText == "", 

                                "There ", 

                                "Subsequently, there "), 

                             ifelse(sum(hasMissing) == 1, 

                                    "was ", 

                                    "were "), 

                             ifelse(sum(hasMissing) > 0,  

                                    sum(hasMissing),  

                                    "no"), 

                             ifelse(sum(hasMissing) == 1, 

                                    "sample ", 

                                    "samples "), 

                             "with missing values.")                             

  } 

@ 

The initial data set consisted of \Sexpr{numSamples} samples and 

\Sexpr{numPredictors} predictor variables. The breakdown of the 

outcome data classes were: \Sexpr{classDistString}.  

%% \Sexpr{missingText} 

<<pca, eval=FALSE, echo = FALSE, results = hide>>= 

predictors <- rawData[, predictorNames, drop = FALSE] 

## PCA will fail with predictors having less than 2 unique values 

isZeroVar <- apply(predictors, 2,  

                   function(x) length(unique(x)) < 2) 

if(any(isZeroVar)) predictors <- predictors[, !isZeroVar, drop = FALSE] 

## For whatever, only the formula interface to prcomp  

## handles missing values 

pcaForm <- as.formula( 

                      paste("~", 

                            paste(names(predictors), collapse = "+"))) 

pca <- prcomp(pcaForm,  

              data = predictors, 

              center = TRUE,  

              scale. = TRUE, 



60 | P a g e  
 

              na.action = na.omit) 

## OPTION: the number of components plotted/discussed can be set 

numPCAcomp <- 3 

pctVar <- pca$sdev^2/sum(pca$sdev^2)*100 

pcaText <- paste(round(pctVar[1:numPCAcomp], 1), 

                 "\\\\%",  

                 sep = "") 

pcaText <- listString(pcaText) 

@ 

%% To get an initial assessment of the separability of the classes, 

%% principal component analysis (PCA) was used to distill the 

%% \Sexpr{numPredictors} predictors down into \Sexpr{numPCAcomp} 

%% surrogate variables (i.e. the principal components) in a manner that 

%% attempts to maximize the amount of information preserved from the 

%% original predictor set. Figure \ref{F:inititalPCA} contains plots of 

%% the first \Sexpr{numPCAcomp} components, which accounted for 

%% \Sexpr{pcaText} percent of the variability in the original predictors 

%% (respectively).   

%% OPTION: remark on how well (or poorly) the data separated 

%% \setkeys{Gin}{width = 0.8\textwidth} 

%% \begin{figure}[p] 

%%  \begin{center} 

<<pcaPlot, eval = FALSE, echo = FALSE, results = hide, fig = TRUE, width = 8, 

height = 8>>= 

trellis.par.set(caretTheme(), warn = TRUE) 

if(numPCAcomp == 2) 

  { 

    axisRange <- extendrange(pca$x[, 1:2]) 

    print( 

          xyplot(PC1 ~ PC2,  

                 data = as.data.frame(pca$x), 

                 type = c("p", "g"), 

                 groups = rawData$outcome, 

                 auto.key = list(columns = 2), 

                 xlim = axisRange, 

                 ylim = axisRange)) 

  } else { 

    axisRange <- extendrange(pca$x[, 1:numPCAcomp]) 

    print( 

          splom(~as.data.frame(pca$x)[, 1:numPCAcomp], 

                type = c("p", "g"), 

                groups = rawData$outcome, 

                auto.key = list(columns = 2), 

                as.table = TRUE, 

                prepanel.limits = function(x) axisRange 

                ))       

      }  

@ 

%%    \caption[PCA Plot]{A plot of the first \Sexpr{numPCAcomp} 

%%      principal components for the original data set.} 

%%    \label{F:inititalPCA}          

%%  \end{center} 

%% \end{figure}   

<<initialDataSplit, eval = FALSE,  results = hide, echo = FALSE>>= 

  ## OPTION: in small samples sizes, you may not want to set aside a 

  ## training set and focus on the resampling results.    

  pctTrain <- 1 

if(pctTrain < 1) 



61 | P a g e  
 

  { 

    ## OPTION: seed number can be changed 

    set.seed(1) 

    inTrain <- createDataPartition(rawData$outcome, 

                                   p = pctTrain, 

                                   list = FALSE) 

    trainX <- rawData[ inTrain, predictorNames] 

    testX  <- rawData[-inTrain, predictorNames] 

    trainY <- rawData[ inTrain, "outcome"] 

    testY  <- rawData[-inTrain, "outcome"] 

    splitText <- paste("The original data were split into ", 

                       "a training set ($n$=", 

                       nrow(trainX), 

                       ") and a test set ($n$=", 

                       nrow(testX), 

                       ") in a manner that preserved the ", 

                       "distribution of the classes.", 

                       sep = "") 

    isZeroVar <- apply(trainX, 2,  

                       function(x) length(unique(x)) < 2) 

    if(any(isZeroVar)) 

      { 

        trainX <- trainX[, !isZeroVar, drop = FALSE]   

        testX <- testX[, !isZeroVar, drop = FALSE] 

      } 

  } else { 

    trainX <- rawData[, predictorNames] 

    testX  <- NULL 

    trainY <- rawData[, "outcome"] 

    testY  <- NULL  

    splitText <- "The entire data set was used as the training set." 

  } 

trainDist <- table(trainY) 

nir <- max(trainDist)/length(trainY)*100 

niClass <- names(trainDist)[which.max(trainDist)] 

nirText <- paste("The non--information rate is the accuracy that can be ", 

                 "achieved by predicting all samples using the most ", 

                 "dominant class. For these data, the rate is ", 

                 round(nir, 2), "\\\\% using the ``", 

                 niClass, 

                 "'' class.", 

                 sep = "") 

@  

%% \Sexpr{splitText}  

%% \Sexpr{nirText} 

<<nzv, eval=FALSE, results = hide, echo = FALSE>>= 

## OPTION: other pre-processing steps can be used 

ppSteps <- caret:::suggestions(modName) 

set.seed(2) 

if(ppSteps["nzv"]) 

  { 

    nzv <- nearZeroVar(trainX) 

    if(length(nzv) > 0)  

      { 

        nzvVars <- names(trainX)[nzv] 

        trainX <- trainX[, -nzv] 

        nzvText <- paste("There were ", 

                         length(nzv), 



62 | P a g e  
 

                         " predictors that were removed due to", 

                         " severely unbalanced distributions that", 

                         " could negatively affect the model fit", 

                         ifelse(length(nzv) > 10,  

                                ".", 

                                paste(": ", 

                                      listString(nzvVars), 

                                      ".", 

                                      sep = "")), 

                         sep = "")  

        if(pctTrain < 1) testX <- testX[, -nzv] 

      } else nzvText <- "" 

  } else nzvText <- "" 

@  

<<corrFilter, eval = FALSE, results = hide, echo = FALSE>>= 

if(ppSteps["corr"]) 

  { 

    ## OPTION:  

    corrThresh <- .75 

    highCorr <- findCorrelation(cor(trainX, use = "pairwise.complete.obs"),  

                                corrThresh) 

    if(length(highCorr) > 0)  

      { 

        corrVars <- names(trainX)[highCorr] 

        trainX <- trainX[, -highCorr] 

        corrText <- paste("There were ", 

                         length(highCorr), 

                         " predictors that were removed due to", 

                         " large between--predictor correlations that", 

                         " could negatively affect the model fit", 

                         ifelse(length(highCorr) > 10,  

                                ".", 

                                paste(": ", 

                                      listString(highCorr), 

                                      ".", 

                                      sep = "")), 

                          " Removing these predictors forced", 

                          " all pair--wise correlations to be", 

                          " less than ", 

                          corrThresh, 

                          ".", 

                          sep = "")  

        if(pctTrain < 1) testX <- testX[, -highCorr] 

      } else corrText <- "" 

  }else corrText <- "" 

@ 

<<preProc, eval = FALSE, echo = FALSE, results = hide>>= 

ppMethods <- NULL 

if(ppSteps["center"]) ppMethods <- c(ppMethods, "center") 

if(ppSteps["scale"]) ppMethods <- c(ppMethods, "scale") 

if(any(hasMissing) > 0) ppMethods <- c(ppMethods, "knnImpute") 

##OPTION other methods, such as spatial sign, can be added to this list 

if(length(ppMethods) > 0) 

  { 

    ppInfo <- preProcess(trainX, method = ppMethods) 

    trainX <- predict(ppInfo, trainX) 

    if(pctTrain < 1) testX <- predict(ppInfo, testX)    

    ppText <- paste("The following pre--processing methods were", 



63 | P a g e  
 

                    " applied to the training", 

                    ifelse(pctTrain < 1, " and test", ""), 

                    " data: ", 

                    listString(ppMethods), 

                    ".", 

                    sep = "") 

    ppText <- gsub("center", "mean centering", ppText) 

    ppText <- gsub("scale", "scaling to unit variance", ppText) 

    ppText <- gsub("knnImpute",  

                   paste(ppInfo$k, "--nearest neighbor imputation", sep = 

""),  

                   ppText) 

    ppText <- gsub("spatialSign", "the spatial sign transformation", ppText) 

    ppText <- gsub("pca", "principal component feature extraction", ppText) 

    ppText <- gsub("ica", "independent component feature extraction", ppText) 

    } else { 

      ppInfo <- NULL 

      ppText <- "" 

    } 

predictorNames <- names(trainX) 

if(nzvText != "" | corrText != "" | ppText != "") 

  { 

    varText <- paste("After pre--processing, ", 

                     ncol(trainX), 

                     "predictors remained for modeling.") 

  } else varText <- "" 

@  

%% \Sexpr{nzvText} \Sexpr{corrText} \Sexpr{ppText} \Sexpr{varText} 

\clearpage 

\section*{Model Building} 

<<setupWorkers, echo = FALSE, results = tex>>= 

numWorkers <- 1 

##OPTION: turn up numWorkers to use MPI 

if(numWorkers > 1) 

  { 

    mpiCalcs <- function(X, FUN, ...) 

      { 

        theDots <- list(...) 

        parLapply(theDots$cl, X, FUN) 

      } 

    library(snow) 

    cl <- makeCluster(numWorkers, "MPI") 

  } 

@  

<<setupResampling, echo = FALSE, results = hide>>= 

##OPTION: the resampling options can be changed. See 

##        ?trainControl for details 

resampName <- "boot632" 

resampNumber <- 10 

numRepeat <- 1 

resampP <- .75 

modelInfo <- modelLookup(modName) 

if(numClasses == 2) 

  { 

    foo <- if(any(modelInfo$probModel)) twoClassSummary else twoClassNoProbs 

  } else foo <- defaultSummary 

set.seed(3) 

ctlObj <- trainControl(method = resampName, 



64 | P a g e  
 

                       number = resampNumber, 

                       repeats = numRepeat, 

                       p = resampP, 

                       classProbs = any(modelInfo$probModel), 

                       summaryFunction = foo) 

##OPTION select other performance metrics as needed 

optMetric <- if(numClasses == 2 & any(modelInfo$probModel)) "ROC" else 

"Kappa" 

if(numWorkers > 1) 

  { 

    ctlObj$workers <- numWorkers 

    ctlObj$computeFunction <- mpiCalcs 

    ctlObj$computeArgs <- list(cl = cl) 

  } 

@  

<<setupGrid, results = hide, echo = FALSE>>= 

##OPTION expand or contract these grids as needed (or 

##       add more models 

gridSize <- 3 

if(modName %in% c("svmPoly", "svmRadial", "svmLinear", "lvq", "ctree2", 

"ctree")) gridSize <- 5 

if(modName %in% c("earth", "fda")) gridSize <- 7 

if(modName %in% c("knn", "rocc", "glmboost", "rf", "nodeHarvest")) gridSize 

<- 10 

if(modName %in% c("nb")) gridSize <- 2 

if(modName %in% c("pam", "rpart")) gridSize <- 15 

if(modName %in% c("pls")) gridSize <- min(20, ncol(trainX)) 

if(modName == "gbm") 

  { 

    tGrid <- expand.grid(.interaction.depth = -1 + (1:5)*2 , 

                         .n.trees = (1:10)*20, 

                         .shrinkage = .1) 

  } 

if(modName == "nnet") 

  { 

    tGrid <- expand.grid(.size = -1 + (1:5)*2 , 

                         .decay = c(0, .001, .01, .1)) 

  } 

@  

<<fitModel, results = hide, echo = FALSE, eval = TRUE>>= 

##OPTION alter as needed 

set.seed(4) 

modelFit <- switch(modName,                   

                   gbm =  

                   { 

                     mix <- sample(seq(along = trainY))   

                     train( 

                           trainX[mix,], trainY[mix], modName,  

                           verbose = FALSE, 

                           bag.fraction = .9,  

                           metric = optMetric, 

                           trControl = ctlObj,  

                           tuneGrid = tGrid) 

                   }, 

                   multinom = 

                   { 

                     train( 

                           trainX, trainY, modName,  



65 | P a g e  
 

                           trace = FALSE,  

                           metric = optMetric, 

                           maxiter = 1000,  

                           MaxNWts = 5000, 

                           trControl = ctlObj,  

                           tuneLength = gridSize)    

                   }, 

                   nnet = 

                   { 

                     train( 

                           trainX, trainY, modName,  

                           metric = optMetric, 

                           linout = FALSE, 

                           trace = FALSE,  

                           maxiter = 1000,  

                           MaxNWts = 5000, 

                           trControl = ctlObj,  

                           tuneGrid = tGrid)  

                   }, 

                   svmRadial =, svmPoly =, svmLinear =  

                   { 

                     train( 

                           trainX, trainY, modName, 

                           metric = optMetric, 

                           scaled = TRUE, 

                           trControl = ctlObj,  

                           tuneLength = gridSize)     

                   }, 

                   { 

                     train(trainX, trainY, modName,  

                           trControl = ctlObj,  

                           metric = optMetric, 

                           tuneLength = gridSize) 

                   }) 

@  

<<modelDescr, echo = FALSE, results = hide>>= 

summaryText <- "" 

resampleName <- switch(tolower(modelFit$control$method), 

                       boot = paste("the bootstrap (", 

length(modelFit$control$index), " reps)", sep = ""), 

                       boot632 = paste("the bootstrap 632 rule (", 

length(modelFit$control$index), " reps)", sep = ""), 

                       cv = paste("cross-validation (", 

modelFit$control$number, " fold)", sep = ""), 

                       repeatedcv = paste("cross-validation (", 

modelFit$control$number, " fold, repeated ", 

                         modelFit$control$repeats, " times)", sep = ""), 

                       lgocv = paste("repeated train/test splits (", 

length(modelFit$control$index), " reps, ", 

                         round(modelFit$control$p, 2), "$\\%$)", sep = "")) 

tuneVars <- latexTranslate(tolower(modelInfo$label)) 

tuneVars <- gsub("\\#", "the number of ", tuneVars, fixed = TRUE) 

if(ncol(modelFit$bestTune) == 1 && colnames(modelFit$bestTune) == 

".parameter") 

  { 

    summaryText <- paste(summaryText, 

                         "\n\n", 



66 | P a g e  
 

                         "There are no tuning parameters associated with this 

model.", 

                         "To characterize the model performance on the 

training set,", 

                         resampleName, 

                         "was used.", 

                         "Table \\\\ref{T:resamps} and Figure 

\\\\ref{F:profile}", 

                         "show summaries of the resampling results. ") 

  } else { 

    summaryText <- paste("There", 

                         ifelse(nrow(modelInfo) > 1, "are", "is"), 

                         nrow(modelInfo), 

                         ifelse(nrow(modelInfo) > 1, "tuning parameters", 

"tuning parameter"), 

                         "associated with this model:", 

                         listString(tuneVars, period = TRUE)) 

    paramNames <- gsub(".", "", names(modelFit$bestTune), fixed = TRUE) 

    for(i in seq(along = paramNames)) 

      { 

        check <- modelInfo$parameter %in% paramNames[i] 

        if(any(check)) 

          { 

            paramNames[i] <- modelInfo$label[which(check)]           

          } 

      } 

    paramNames <- gsub("#", "the number of ", paramNames, fixed = TRUE) 

    ## Check to see if there was only one combination fit 

    summaryText <- paste(summaryText, 

                         "To choose", 

                         ifelse(nrow(modelInfo) > 1, 

                                "appropriate values of the tuning 

parameters,", 

                                "an appropriate value of the tuning 

parameter,"), 

                         resampleName, 

                         "was used to generated a profile of performance 

across the", 

                         nrow(modelFit$results), 

                         ifelse(nrow(modelInfo) > 1, 

                                "combinations of the tuning parameters.", 

                                "candidate values."),                   

                         "Table \\\\ref{T:resamps} and Figure 

\\\\ref{F:profile} show", 

                         "summaries of the resampling profile. ",                                                                                         

"The final model fitted to the entire training set was:", 

                         

listString(paste(latexTranslate(tolower(paramNames)), "=", 

modelFit$bestTune[1,]), period = TRUE)) 

  } 

@  

\Sexpr{summaryText} 

<<resampTable, echo = FALSE, results = tex>>= 

tableData <- modelFit$results 

if(all(modelInfo$parameter == "parameter")) 

  { 

    tableData <- tableData[,-1, drop = FALSE] 



67 | P a g e  
 

    colNums <- c( length(modelFit$perfNames), length(modelFit$perfNames), 

length(modelFit$perfNames)) 

    colLabels <- c("Mean", "Standard Deviation","Apparant") 

    constString <- "" 

    isConst <- NULL 

  } else { 

    isConst <- apply(tableData[, modelInfo$parameter, drop = FALSE], 

                     2,  

                     function(x) length(unique(x)) == 1) 

    numParamInTable <- sum(!isConst) 

    if(any(isConst)) 

      { 

        constParam <- modelInfo$parameter[isConst] 

        constValues <- format(tableData[, constParam, drop = FALSE], digits = 

4)[1,,drop = FALSE] 

        tableData <- tableData[, !(names(tableData) %in% constParam), drop = 

FALSE] 

        constString <- paste("The tuning", 

                             ifelse(sum(isConst) > 1, 

                                    "parmeters", 

                                    "parameter"), 

                             listString(paste("``", names(constValues), "''", 

sep = "")), 

                             ifelse(sum(isConst) > 1, 

                                    "were", 

                                    "was"), 

                             "held constant at", 

                             ifelse(sum(isConst) > 1, 

                                    "a value of", 

                                    "values of"), 

                             listString(constValues[1,])) 

      } else constString <- "" 

    cn <- colnames(tableData) 

    for(i in seq(along = cn)) 

      { 

        check <- modelInfo$parameter %in% cn[i] 

        if(any(check)) 

          { 

            cn[i] <- modelInfo$label[which(check)]           

          } 

      } 

    colnames(tableData) <- cn 

    colNums <- c(numParamInTable,  

                 length(modelFit$perfNames), 

                 length(modelFit$perfNames), 

                 length(modelFit$perfNames)) 

    colLabels <- c("", "Mean", "Standard Deviation", "Apparant") 

  } 

colnames(tableData) <- gsub("SD$", "", colnames(tableData)) 

colnames(tableData) <- gsub("Apparent$", "", colnames(tableData)) 

colnames(tableData) <- latexTranslate(colnames(tableData)) 

rownames(tableData) <- latexTranslate(rownames(tableData)) 

latex(tableData, 

      rowname = NULL, 

      file = "", 

      cgroup = colLabels, 

      n.cgroup = colNums, 

      where = "h!", 



68 | P a g e  
 

      digits = 4, 

      longtable = nrow(tableData) > 30, 

      caption = paste(resampleName, "results from the model fit.", 

constString), 

      label = "T:resamps") 

@  

\setkeys{Gin}{ width = 0.9\textwidth} 

\begin{figure}[b] 

  \begin{center} 

<<profilePlot, echo = FALSE, fig = TRUE, width = 8, height = 6>>= 

  trellis.par.set(caretTheme(), warn = TRUE) 

if(all(modelInfo$parameter == "parameter") | all(isConst) | modName == "nb") 

  { 

    resultsPlot <- resampleHist(modelFit) 

    plotCaption <- paste("Distributions of model performance from the ", 

                         "training set estimated using ", 

                         resampleName) 

  } else { 

    if(modName %in% c("svmPoly", "svmRadial", "svmLinear")) 

      { 

        resultsPlot <- plot(modelFit,  

                            metric = optMetric,                           

                            xTrans = function(x) log10(x)) 

        resultsPlot <- update(resultsPlot, 

                              type = c("g", "p", "l"), 

                              ylab = paste(optMetric, " (", resampleName, 

")", sep = "")) 

      } else { 

        resultsPlot <- plot(modelFit,                          

                            metric = optMetric)  

        resultsPlot <- update(resultsPlot, 

                              type = c("g", "p", "l"), 

                              ylab = paste(optMetric, " (", resampleName, 

")", sep = ""))      

      }   

   plotCaption <- paste("A plot of the estimates of the", 

                        optMetric, 

                        "values calculated using", 

                        resampleName) 

  } 

print(resultsPlot) 

@  

   \caption[Performance Plot]{\Sexpr{plotCaption}.} 

    \label{F:profile}          

  \end{center} 

\end{figure}   

<<stopWorkers, echo = FALSE, results = hide>>= 

if(numWorkers > 1) stopCluster(cl) 

@  

<<testPred, results = tex, echo = FALSE>>= 

  if(pctTrain < 1)  

  { 

    cat("\\clearpage\n\\section*{Test Set Results}\n\n") 

    classPred <- predict(modelFit, testX) 

    cm <- confusionMatrix(classPred, testY) 

    values <- cm$overall[c("Accuracy", "Kappa", "AccuracyPValue", 

"McnemarPValue")] 

    values <- values[!is.na(values) & !is.nan(values)] 



69 | P a g e  
 

    values <- c(format(values[1:2], digits = 3), 

                format.pval(values[-(1:2)], digits = 5)) 

    nms <- c("the overall accuracy", "the Kappa statistic",  

                       "the $p$--value that accuracy is greater than the no--

information rate", 

                       "the $p$--value of concordance from McNemar's test") 

    nms <- nms[seq(along = values)] 

    names(values) <- nms 

    if(any(modelInfo$probModel)) 

      { 

        classProbs <- extractProb(list(fit = modelFit),  

                                  testX = testX, 

                                  testY = testY) 

        classProbs <- subset(classProbs, dataType == "Test")   

        if(numClasses == 2) 

          { 

            tmp <- twoClassSummary(classProbs, lev = levels(classProbs$obs)) 

            tmp <- c(format(tmp, digits = 3)) 

            names(tmp) <- c("the sensitivity", "the specificity", 

                            "the area under the ROC curve") 

            values <- c(values, tmp) 

          } 

        probPlot <- plotClassProbs(classProbs) 

      } 

    testString <- paste("Based on the test set of", 

                        nrow(testX), 

                        "samples,", 

                        listString(paste(names(values), "was", values), 

period = TRUE), 

                        "The confusion matrix for the test set is shown in 

Table", 

                        "\\\\ref{T:cm}.") 

    testString <- paste(testString, 

                        " Using ", resampleName, 

                        ", the training set estimates were ", 

                        resampleStats(modelFit), 

                        ".",  

                        sep = "") 

    if(any(modelInfo$probModel)) testString <- paste(testString, 

                                                     "Histograms of the class 

probabilities", 

                                                     "for the test set 

samples are shown in", 

                                                     "Figure 

\\\\ref{F:probs}", 

                                                     ifelse(numClasses == 2, 

                                                            " and the test 

set ROC curve is in Figure \\\\ref{F:roc}.", 

                                                            ".")) 

    latex(cm$table, 

          title = "", 

          file = "", 

          where = "h", 

          cgroup = "Observed Values", 

          n.cgroup = numClasses, 

          caption = "The confusion matrix for the test set", 

          label = "T:cm") 

  } else testString <- "" 



70 | P a g e  
 

@  

\Sexpr{testString} 

<<classProbsTex, results = tex, echo = FALSE>>= 

  if(any(modelInfo$probModel)) 

  { 

    cat( 

        paste("\\begin{figure}[p]\n", 

              "\\begin{center}\n", 

              "\\includegraphics{classProbs}", 

              "\\caption[PCA Plot]{Class probabilities", 

              "for the test set. Each panel contains ", 

            "separate classes}\n", 

              "\\label{F:probs}\n", 

              "\\end{center}\n", 

              "\\end{figure}")) 

  } 

  if(any(modelInfo$probModel) & numClasses == 2) 

  { 

    cat( 

        paste("\\begin{figure}[p]\n", 

              "\\begin{center}\n", 

              "\\includegraphics[clip, width = .8\\textwidth]{roc}", 

              "\\caption[ROC Plot]{ROC Curve", 

              "for the test set.}\n", 

              "\\label{F:roc}\n", 

              "\\end{center}\n", 

              "\\end{figure}")) 

  } 

@  

<<classProbsTex, results = hide, echo = FALSE>>= 

  if(any(modelInfo$probModel)) 

  { 

    pdf("classProbs.pdf", height = 7, width = 7) 

    trellis.par.set(caretTheme(), warn = FALSE) 

    print(probPlot) 

    dev.off() 

  } 

  if(any(modelInfo$probModel) & numClasses == 2) 

  { resPonse<-testY 

    preDictor<-classProbs[, levels(trainY)[1]] 

    pdf("roc.pdf", height = 8, width = 8) 

# from pROC example at http://web.expasy.org/pROC/screenshots.htm    

    plot.roc(resPonse, preDictor, # data 

         percent=TRUE, # show all values in percent 

         partial.auc=c(100, 90), partial.auc.correct=TRUE, # define a partial 

AUC (pAUC) 

         print.auc=TRUE, #display pAUC value on the plot with following 

options: 

         print.auc.pattern="Corrected pAUC (100-90%% SP):\n%.1f%%", 

print.auc.col="#1c61b6", 

         auc.polygon=TRUE, auc.polygon.col="#1c61b6", # show pAUC as a 

polygon 

         max.auc.polygon=TRUE,     max.auc.polygon.col="#1c61b622", # also 

show the 100% polygon 

         main="Partial AUC (pAUC)") 

    plot.roc(resPonse, preDictor, 

         percent=TRUE, add=TRUE, type="n", # add to plot, but don't re-add 

the ROC itself (useless) 



71 | P a g e  
 

         partial.auc=c(100, 90), partial.auc.correct=TRUE, 

         partial.auc.focus="se", # focus pAUC on the sensitivity 

         print.auc=TRUE, print.auc.pattern="Corrected pAUC (100-90%% 

SE):\n%.1f%%", print.auc.col="#008600", 

         print.auc.y=40, # do not print auc over the previous one 

         auc.polygon=TRUE, auc.polygon.col="#008600", 

         max.auc.polygon=TRUE, max.auc.polygon.col="#00860022") 

    dev.off() 

  } 

# commenting old roc commands 

#  { 

#    rocPoints <- as.data.frame( 

#                               roc(classProbs[, levels(trainY)[1]],  

#                                   testY,  

#                                   positive =  levels(trainY)[1])) 

#    pdf("roc.pdf", height = 8, width = 8) 

#    plot(1 - rocPoints$specificity, rocPoints$sensitivity, 

#         ylab = "Sensitivity", xlab = "1 - Specificity", 

#         type = "n", 

#         main = paste("AUC:", round(aucRoc(rocPoints), 3))) 

#    abline(0, 1, lty = 2, col = "darkgrey") 

#    points(1 - rocPoints$specificity, rocPoints$sensitivity, 

#         type = "S") 

#     

#    dev.off() 

#  } 

@  

\section*{Versions} 

<<versions, echo = FALSE, results = tex>>= 

toLatex(sessionInfo()) 

@  

<<save-data, echo = FALSE, results = hide>>= 

## change this to the name of modName.... 

plsFit<-modelFit 

save(plsFit,file="plsFit.RData") 

@ 

The model was built using Partial Least Squares and is saved as plsFit.RData 

for reuse. This contains the variable plsFit. 

\end{document} 

 

 

 

 

 

 

 

 

 

 


