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ABSTRACT 

 

        Separation of sources consists of recovering a set of signals of which only linear 

instantaneous mixture is observed is of prime importance for audio quality enhancement 

and speech recognition. In this thesis, analysis of various time-domain BSS (Blind 

Signal Separation) algorithms are performed and their performance compared. AMUSE 

(Algorithm for Multiple Unknown Source Extraction) algorithm based online BSS is 

implemented and its performance studied. The permutation problem of online BSS is 

tackled with a novel approach. The proposed method‟s performance parameters has 

been optimized with the help of GA (Genetic Algorithm) performed on polynomial 

regression, neural network and ANFIS (Adaptive Neuro Fuzzy Inference System) 

model for the algorithm. The scope of the thesis is limited to instantaneous mixtures for 

over determined case (the number of sensors recording signals greater than or equal to 

the number of source signals) with no noise.  
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CHAPTER 1  

INTRODUCTION 

1.1 BLIND SIGNAL SEPARATION 

It is common to have microphone recordings as shown in Equation (1.1) in audio signal 

processing. 

         (1.1) 

The situation occurs when there is more than one speaker in an anechoic room with 

more than one microphone recording the signal. The mixing matrix A is the attenuation 

introduced by the channel. Matrix A may be instantaneous when the channel introduces 

no delay (or same delay) from the source to the microphone array. If the channel delay 

is not same from the source to the microphone array, mixing matrix takes the form of 

time delayed convolutive matrix.  

If no priori information on the mixing matrix A is available to the separating algorithm, 

then the recovery of sources is termed as “blind”. If some information on the mixing 

matrix (or the sources) is available to the algorithm, then the process of recovering 

signals is termed as „semi-blind‟.  

BSS (Blind Signal Separation) is the process of estimating A and/or retrieving the 

source signals  without any priori information about the mixing matrix A. This is 

achieved by exploiting the statistical properties of the signal recordings, of course with 

some basic assumptions on the source signals (and/or the recordings). In most practical 
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cases, these assumptions do not limit the functionality of the algorithm and hence, BSS 

algorithms hold valid for a wide range of signals. 

BSS is not a simple problem owing to the fact that it is neither easy nor practical to 

estimate the channel parameters A. Also, it is nearly impossible to practically record the 

unattenuated signals at every source without possibility of interference from other 

source. BSS for convoluted mixture is more complex owing to the fact additional steps 

in the form of FIR filters are required to deconvolute the mixture before BSS algorithms 

can be applied.  

When BSS is performed online, more complications arise due to the permutation 

problem inherent with BSS algorithms. This problem is solved in this thesis with the 

help of a novel method: method of overlapping samples. The scope of the thesis is 

limited to instantaneous mixtures for overdetermined case. No noise model is assumed 

here, as estimating noise using BSS is not a complex issue as discussed in the 

algorithms in Chapter 2. Moreover, noise can be further reduced by additional post 

processing steps.  

1.1.1 Literature review 

The problem of ICA (Independent Component Analysis) was actually first proposed by 

Herault and Jutten around 1986, and it was named so because of its similarities with 

PCA (Principal Component Analysis) [10]. Even though Herault‟s algorithm has huge 

limitations, it is commendable that they were able to provide an algorithmic solution to 

the BSS problem when there was no theoretical explanation available.  

BSS algorithms using higher order statistics have been studied for separating signals 

[14]. Inouye proposed a method for the separation of two sources [19]. At the same 
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time, Comon proposed another method for more than two sources [20]. These three 

solutions were among the first direct (within polynomial time) solutions to the ICA 

problem [15].  

Tong derived the AMUSE algorithm and assessed its performance with other known 

algorithms [11]. Tong formulated the mathematical structure for blind identification 

from which the identifiability conditions were derived [8].  

Linsker was the first to develop learning algorithm for maximization of mutual 

information between two layers of neural network [24]. Linsker used a Hebbian 

learning rule to maximize the mutual information when the network receives both noise 

and signal and an anti-Hebbian rule to maximize information when the network receives 

only noise [16].  

Roth and Baram proposed an estimation method of probability density function of a 

random vector by maximising the entropy of a feed-forward network of sigmoidal units 

and applied it in classification, estimation and forecasting [22]. Bell and Sejnowski 

were first to develop information maximization approach to ICA problem with the help 

of self-organizing learning algorithm which maximizes the information transferred in 

network of non-linear units [16].  

ICA can be expressed in terms of entropy [16], mutual information [17], contrast 

function [15] or other methods of statistical independence of signals. 

Pearlmutter and Parra developed the contextual ICA (cICA) which derives from the 

maximum likelihood density estimation. cICA can separate in a number of situations 

where standard ICA cannot like sources with low kurtosis, colored Gaussian sources 

and sources with Gaussian histograms [21].  
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Girolami and Fyfe introduced a generalized ICA method with the help of negentropy as 

the distance measure and introduced a simple adaptive non-linearity which was formed 

by on-line estimation of latent variable kurtosis and removes the stand ICA constraint of 

latent variable pdf modality uniformity [23].  

Cardosa exploited the second-order statistics of the received signals by joint 

diagonalization of a set of covariance matrices [7].  

Although much overlooked in the literature, the performance measures for evaluating 

the performance of BSS algorithms is not a completely trivial topic. Many robust 

performance estimates are discussed in Gribonval et al, 2003; Vincent et al, 2006. [11] 

[12]. 

1.1.2 Applications 

The classical application of BSS is the cocktail party problem. Although the first works 

on Cocktail party problem traces back to Colin Cherry [28], much of the early work was 

focussed on human listener‟s recognition of audio signals. The term „cocktail party 

problem‟ can be expressed as the ability to focus one‟s listening attention on a single 

talker among a cacophony of conversations and background noise [29]. Humans are 

adept at this task although much of the brain‟s computational model to recognise and 

focus on one audio signal of interest is not fully understood. Nevertheless, there are 

algorithms which can perform this task of source separation. These algorithms are 

collectively referred to as BSS which utilizes the statistical properties of the signals to 

separate the sources.  

Another important application of BSS is to enhance the signal for speech recognition 

and authentication. Many times in automatic speech recognition, it is necessary to 
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remove the ambient noise, includes other speakers in the room, for better recognition 

rates. Ethers has successfully implemented BSS techniques to automatic speech 

recognition and achieved an error rate of 12% against the earlier 52% error rate without 

the use of BSS techniques [30].  

Other applications of BSS include airport surveillance [31], brain tumour analysis [32], 

natural image processing [33], rotation machine vibration analysis [34], seismic signals 

analysis [35] and the list goes on.  

1.2 BLIND IDENTIFIABILITY 

       Tong proved that the channel attenuation matrix A can be estimated only up to 

scaling and permutation ambiguity if and only if source signals have distinct 

autocorrelation functions, or equivalently, signal spectrums [8].  

Tong showed that A can be best identified up to post-multiplication of diagonal 

matrices and permutation matrices. This indeterminacy stems from the very nature of 

„blind‟ identification that all the three quantities in Equation (1.1): A, s(t) and n(t) are 

unknown.  

Let Ʌ be any non-singular diagonal matrix and P be a permutation matrix. Let us omit 

noise  in Equation (1.1) without loss of any generality. We can rewrite Equation 

(1.1) as  

       (1.2) 

The second term in Equation (1.2) is scaled and reordered signal . This shows that  

1) The recovered signal cannot be ordered by BSS algorithm. 
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2) The signal can only be estimated to a scalar multiple.  

3) The signal may be inverted in phase.  

This shows that there is no unique solution to the BSS problem without forgoing the 

„blind‟ assumption.  

In batch processing, these indeterminacies are acceptable since they do not affect the 

information content of the signal. But in online processing, this may cause huge 

complications in the form of permutation problem as discussed in Chapter. 5.2.  

1.3  ASSUMPTIONS 

Almost all BSS algorithms require some common assumptions on the signals that they 

can separate. Some of the basic assumptions are enumerated below: 

A. 1 Source signals must be mutually independent.  

A. 2 The mixing matrix should be a full column rank matrix: if , 

then . 

A. 3 Source signals should not have Gaussian distribution (only for ICA algorithms). 

A. 4  

A. 1: ensures that the signals do not depend on each other. It is not sufficient for the 

source signals to be uncorrelated as uncorrelated signals do not necessarily mean they 

are independent [3].  

A. 2: ensures that mixing matrix A makes the observations mutually independent on 

each other. If not, then the signals cannot be separated even if the sources are mutually 

independent.  
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A. 3: Gaussian variables‟ joint probability density is completely symmetric. Therefore it 

does not have information on the direction of the columns of the mixing matrix A 

making it impossible to estimate A by ICA methods. This assumption is only required 

by ICA algorithms.  

A. 4: This assumption means that the number of sensor observations must be more than 

the number of source signals. It is referred to as over-determined case. If then 

more assumptions are needed to estimate the source signals. It is referred to as under-

determined ICA. The algorithms discussed in this thesis cannot process under-

determined case without additional modifications.  
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CHAPTER 2  

BLIND SIGNAL SEPARATION ALGORITHMS 

 

2. 1 INTRODUCTION 

           Although there are algorithms for BSS which use the geometric properties of the 

signal, they are very limited and not applicable to wide range of signals. Most of the 

ICA algorithms use the statistical properties of the signal to separate them. In this thesis, 

the scope is limited only to statistical approaches. These algorithms can be classified 

into the following three types: Second Order Statistics (SOS), Higher Order Statistics 

(HOS) and Probability Density Functions (PDF) based algorithms. Algorithms like 

JADE, fpICA, EFOBI fall under the HOS category. AMUSE, SOBI, SOBI-RO use the 

SOS properties to separate source signals. Algorithms based on the PDF of the signal 

are arcane and not widely used for BSS problems anymore. 

2. 2 ALGORITHMS 

2.2.1 Algorithm for Multiple Unknown Source Extraction 

Even though some authors refer to SOS algorithms as ICA algorithms, these algorithms 

do not exploit implicitly or explicitly statistical independence. Also, they can separate 

Gaussian signals unlike ICA algorithms. Although, AMUSE algorithm have some 

similarity with standard PCA, they differ from PCA in that AMUSE employs PCA two 

times in two separate steps: in the first step, standard PCA can be applied for whitening 
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(Sphering) data and in the second step, SVD/PCA is applied for time delayed 

covariance matrix of the pre-whitened data [11]. The flowchart of the AMUSE 

algorithm is shown in Figure 2.1. 

 

Figure 2.1 AMUSE algorithm 
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The AMUSE algorithm is explained as follows [8]:  

1. Calculate output covariance 

        (2.1) 

2. Calculate the SVD of Rx: 

      (2.2) 

3. Use the number of significant singular values to estimate the number of sources m, 

the noise variance σ
2
 can be estimated from the insignificant singular values. 

4. Perform Orthogonalization transformation: 

 

 

 

              (2.3) 

5. Choose τ:  such that it has distinct eigenvalues, 

where . 

6. Perform Eigen-decomposition of  to the eigenmatrix V. 

7. Channel estimation: 

         (2.4) 

where, 
#
 denotes pseudo-inverse. 

8. Signal estimation: 

        (2.5) 
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The main advantage of AMUSE algorithm is that it is possible to automatically order 

components based on their singular values of the time-delayed covariance matrix. All 

components estimated by AMUSE are uniquely defined and consistently ranked: the 

probability that two real-world signals having same singular value is very minimal.  

The one disadvantage of AMUSE algorithm is that is relatively sensitive to additive 

noise since the algorithm exploits only one time delayed covariance matrix. This can be 

alleviated up to an extent by pre-processing and post-processing to remove the additive 

noise.  

2.2.2 Second Order Blind Identification 

SOBI technique separates source signals based on joint diagonalization of a set of 

covariance matrices which in comparison with HOS algorithms can separate Gaussian 

signals. The flowchart outlining the algorithm of SOBI is shown in Figure 2. 

The algorithm for SOBI is explained as follows [7]: 

1) From the data samples, calculate covariance . Perform EVD: let λ1,…,λn be the 

Eigen-values and h1,…,hn be the corresponding Eigen-vectors.  

2) Estimate noise variance from insignificant eigenvalues. The whitening matrix is 

given by Equation (2.6). 

    (2.6) 

Then, the whitened signal is  

        (2.7) 
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Figure 2.2 SOBI algorithm 

3) Calculate time delayed covariance matrices  of  for a fixed set of time 

lags .  

4) Jointly diagonalize the set  to get U.  

5) Source estimates: 

        (2.8) 
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And, channel estimates: 

         (2.9) 

The use of several covariance matrices makes the algorithm more robust [7].  

2.2.3 Second Order Blind Identification with Robust 

Orthogonalization 

In original SOBI algorithm, to make the correlation matrix positive definite, Cardosa 

used a lag close to zero. The problems associated with having correlation matrix at zero 

lag is that it becomes sensitive to noise and choosing such a lag requires very high 

sampling rate. SOBI-RO was proposed by Belouchrani and Cichocki to solve these 

problems. SOBI-RO estimates the whitening matrix from EVD of a positive definite 

matrix formed by linear combination of correlation matrices at non-zero lags [6].  

The flowchart for SOBI-RO is outlined in Figure 2.3. 

The main advantage of SOBI-RO algorithm compared to SOBI is its robustness to 

noise.  The downside to calculating whitening matrix from time-delayed correlation 

matrix is that it increases the processing time, which is not advisable in real time 

applications. 
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Figure 2.3 SOBI-RO algorithm 
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The algorithm for SOBI-RO is explained as follows: 

1) Estimate the time-delayed correlation matrices and perform SVD of the matrix set 

: 

         (2.10) 

where  and  and Σ is a diagonal matrix.  

2) For  compute: 

        (2.11) 

3) Choose initial . 

4) Compute: 

        

 (2.12) 

5) Test Schur decomposition of : if F is positive definite go to step (6). If 

not, chose an eigen-vector u corresponding to the smallest eigen-value of F and 

update α with α+d, where  

       (2.13) 

and go to step (4). 

6) Compute: 

        (2.14) 

7) Perform EVD of C: 

      (2.15) 

Then the whitening matrix is  
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      (2.16) 

8) Form whitened correlation matrices: 

      (2.17) 

9) Jointly diagonalize the set  to get a unitary matrix U. 

10) Source estimation: 

        (2.18) 

And, the channel estimation: 

         (2.19) 

For proof of finite step based global convergence algorithm, refer to Tong, 1991 and, 

Tong, 1992 [5] [4].  

2.2.4 Fixed Point Independent Component Analysis 

Fixed point ICA algorithm is a modification of neural network learning rule into fixed 

point iteration. This algorithm finds independent components, irrespective of the 

probability distribution. Fixed point algorithm is based on minimization (or 

maximization) of Kurtosis [3].  

The flowchart of the fixed point ICA algorithm is shown in Figure 2.4. 

The basic form of the fixed point ICA algorithm is as follows: 

1) Apply whitening transformation: 

        (2.20) 

E and D are obtained from EVD of covariance matrix: 

        (2.21) 
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2) Choose any random . Let k=1. 

3) Compute new weights  by 

     (2.22) 

4) Use one of the below mentioned decorrelation scheme: 

a. Apply deflation scheme based on Gram-Schmidt like decorrelation: 

    (2.23) 

b. Apply symmetric decorrelation: 

       (2.24) 

where  is obtained from EVD of and 

 

c. Use iterative algorithm [1]: 

i.       (2.25) 

ii. Repeat until convergence:  

     (2.26) 

5) Perform:  

6) Check for convergence: If , go to step 7; otherwise let 

 and then go back to step 3. 

7) The source signals are estimated as  

        (2.27) 
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Figure 2.4 Fixed Point ICA algorithm 

For proof for the convergence of the fixed point algorithm, refer to Hyvärinen & Oja, 

1997 [2]. The fixed point algorithm has convergence that is cubic and has no step size 

parameter to choose like gradient based algorithm: fpICA algorithm does not have 

convergence problems. Fixed point ICA algorithm shares the advantages of neural 
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networks: parallel, distributed, computationally simple, and requires very less memory 

[3].  

2.2.5 Joint Approximate Diagonalization of Eigen-Matrices 

JADE algorithm is derived from the principle that optimizing cumulant approximations 

of the data performs the estimation of distribution of independent components. JADE 

algorithm uses fourth order cumulants to estimate the channel (and signal).  

The flowchart depicting the steps of JADE algorithm is shown in Figure 2.5. 

The JADE algorithm can be described as follows [13]: 

1) Form the sample covariance  and compute Whitening matrix . Under white 

noise assumption, noise variance  is equal to the smallest  eigenvalues of . 

Let  be n largest eigenvalues and  be the corresponding 

eigenvectors of . The whitening matrix is then defined as  

  (2.28) 

2) Form the sample forth-order cumulants  of the whitened process  

and compute the n most significant Eigen-pairs . 

3) Jointly diagonalize the set  by a unitary matrix . For n=2, 

a unique Givens rotation achieves joint diagonalization and for n>2, use Jacobi 

iteration method to diagonalize matrix.  
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Figure 2.5 JADE algorithm 

4) An estimate of  is .   is the pseudo-inverse of  calculated as: 

   (2.29) 

The advantage of JADE algorithm is that it does not have convergence problem owing 

to the fact that it does not require gradient descent [25]. A drawback that JADE 

algorithm shares with AMUSE algorithm is that both don‟t have any parameters for 

performance tuning.   
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2.2.6 Extended Fourth Order Blind Identification 

EFOBI is an Eigen structure based method for blind separation of multiple source 

signals in spatially correlated noise. The main assumption required for this algorithm to 

separate signals apart from mutual independence is that their fourth order moments 

should be different. Also, this algorithm does not work for underdetermined mixed 

signals.  

The flowchart depicting the EFOBI algorithm is shown in Figure 2.6. 

The EFOBI algorithm is as follows [18]: 

1) Estimate the covariance matrix 

        (2.30) 

2) Computer SVD: 

     (2.31) 

3) Apply transformation: 

       (2.32) 

4) Estimate the weighted covariance matrix: 

       (2.33) 

5) Compute: , where 

      (2.34) 

 Where, , s are elements of  
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Figure 2.6 EFOBI algorithm 

6) Compute eigenvectors of  denoted by  

7) Estimate source signals: 

        (2.35) 

8) Estimate mixing matrix: 

       (2.36) 
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CHAPTER 3  

PERFORMANCE MEASURES 

 

3.1  INTRODUCTION 

Before proceeding to compare various BSS algorithms, it is prudent to study few 

performance measures. Because of the permutation and scaling (and sign) ambiguity, 

traditional comparative tools like least mean square error, Euclidean distance cannot be 

applied. Correlation will not measure the interference from the other sources and hence 

would not be a robust performance measure. Also, there would be no way to measure 

algorithmic „artifacts‟ by all these methods. Hence, more robust performance measures 

needs to be applied for performance analysis of these algorithms.  

3.2  PERFORMANCE MEASURES 

Since BSS can only estimate sources up to permutation ambiguity and sign ambiguity as 

discussed in Chapter 1.2, the direct definition of relative distortion given by Equation 

(3.1) cannot be applied.  

        (3.1) 

Here,  is the original source signal and the estimated signal. The gain 

indeterminacy can be handled by comparing  normalized versions of sources with 

their relative square distance as given by Equation (3.2) [12].  
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       (3.2) 

The disadvantage of this method is when there is no contribution of true source to an 

estimate; we get an estimate  instead of the expected . To solve this 

problem, total relative distortion given by Equation (3.3) is used. 

        (3.3) 

When the estimated source is orthogonal to the true source, we get ; which 

makes  a more appropriate measure than . 

The definition of  contains two terms in the decomposition: 

        (3.4) 

The error term  includes contribution of interferences from other sources, noise 

and artifacts of the separating algorithm. Thus, the estimated source has an orthogonal 

decomposition: 

     (3.5) 

where  is the error term due to interference due to other 

sources,  is the error term due to the additive noise and 

 is the error term due to the artifacts of the 

separating algorithm [11].  
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The relative distortion due to interferences is defined as 

         (3.6) 

The relative distortion due to additive noise: 

        (3.7) 

The relative distortion due to algorithmic artifacts: 

       (3.8) 

Now, the Source to Distortion Ratio (SDR) is defined as: 

        (3.9) 

Source to Interference Ratio (SIR) is defined as: 

        (3.10) 

Source to Noise Ratio (SNR) is defined as 

        (3.11) 

and, Source to Artifacts Ratio (SAR) is defined as: 

        (3.12) 

In this thesis, evaluation of the aforementioned performance indices is done with the 

help of BSS EVAL toolbox [41]. 
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3.3 COMPARISON OF BSS ALGORITHMS 

To select an algorithm for implementation in online BSS, we analyse the performance 

of these algorithms. The testing of these algorithms is carried out with the help of 

ICALAB toolbox [26] [27].  

3.3.1 Time 

Time of execution of the algorithm should be less for online implementation. The table 

showing the time required for the execution of algorithm of various algorithms for four 

different signal mixtures is shown in Table 3.. Bar charts showing the execution time of 

various algorithms for these signals are shown in Figure 3.1.  

Table 3.1 Comparison of processing time of various algorithms 

Time (s) 

Signal AMUSE SOBI SOBI-RO fpICA JADE EFOBI 

ACsin4D 0.01 0.01 0.03 0.03 0.01 0.27 

Speech4D 0.02 0.02 0.05 0.03 0.01 0.01 

Speech_Music2D 1.04 0.97 9.95 2.83 0.55 0.78 

Speech2D 0.82 0.8 9.77 2.67 0.49 0.60 
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Figure 3.1 Bar chart comparing time taken for processing of various algorithms 

3.3.2 Signal to Interference Ratio 

A high SIR is desirable for any BSS algorithm. High SIR means the signal strength of 

the desired source is higher than the interference from other sources: exactly what is 

expected out of any BSS algorithm. SIRs of these algorithms on different signal 

mixtures is shown in Table 3.. Bar chart showing SIR for various algorithms are shown 

in Figure 3.2.  

Table 3.2 Comparison of SIR of various algorithms 

SIR (dB) 

Signal AMUSE SOBI SOBI-RO fpICA JADE EFOBI 

ACsin4D 277.50 54.68 289.78 10.07 9.74 4.38 

Speech4D 21.85 29.61 32.91 29.62 24.84 13.99 

Speech_Music2D 6.01 6.01 6.01 6.01 12.27 6.09 

Speech2D 6.04 6.04 6.03 6.03 12.60 5.92 
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Figure 3.2 Bar chart comparing SIRs of various algorithms 

3.3.3 Signal to Artifacts Ratio 

In many speech signal processing applications, artifacts introduced by the algorithm 

may be more undesirable than the interference by other sources. So, a high SAR is 

desirable of any BSS algorithm. Table showing SARs of these algorithms on four 

different signal mixtures is shown in Table 3.. Figure 3.3 shows the bar chart of SAR of 

various algorithms for the signal mixtures.  

Table 3.3 Comparison of SAR of various algorithms 

SAR (dB) 

Signal AMUSE SOBI SOBI-RO fpICA JADE EFOBI 

ACsin4D 302.44 300.95 298.96 311.77 299.44 313.56 

Speech4D 276.53 285.22 282.71 286.06 282.06 285.99 

Speech_Music2D 255.92 262.33 262.99 268.75 257.71 259.08 

Speech2D 253.17 253.52 259.56 257.11 256.77 253.75 
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Figure 3.3 Bar chart comparing SARs of various algorithms 

3.4 SELECTION OF ALGORITHM FOR ONLINE 

IMPLEMENTATION 

It can be observed from Figure 3.1 that all algorithms except SOBI-RO and fpICA take 

very less time for execution even for large signals. SOBI-RO would not be a good fit for 

the online implementation because the time taken for execution is almost 10sec for 1 

minute audio.  

As it can be observed in Figure 3.2, the SIR of AMUSE and SOBI-RO are high 

compared to other algorithms in ACsin4D. For the other mixtures, performance of all 

the algorithms are relatively the same although JADE algorithm‟s SIR is higher in 

mixtures – Speech_Music2D and Speech2D. It can be seen from Figure 3.3 that SAR is 

relatively constant for all the algorithms.  

Out of the algorithms that fared well in separation of signals, the ones that have high 

SIR consistently: AMUSE and SOBI-RO; SOBI-RO takes very high time to separate 
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the signals as compared to the other algorithms. So, AMUSE algorithm will be a very 

good selection for online implementation.  

The advantages of AMUSE algorithm bolster the selection criteria: the automatic 

ordering of signals based on their singular values. Although this does not completely 

solve the permutation problem, it ensures that the separated signals are not identical. 

This makes AMUSE algorithm an ideal algorithm for online implementation.  
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CHAPTER 4  

SOFT COMPUTING TECHNIQUES 

 

4.1 INTRODUCTION 

Soft computing is the field of computer science which deals with formulating inexact 

solutions to problems where conventional techniques cannot be applied easily. Soft 

computing techniques also yield low cost solutions to problems which can be quite 

intractable. Soft computing originated with machine learning techniques like neural 

networks. Recent trends tend to involve evolutionary and biological inspired techniques 

into soft computing techniques. Some of the soft computing techniques used 

exhaustively in engineering are: neural networks, support vector machines, fuzzy logic, 

and evolutionary algorithms.  

4.2 GENETIC ALGORITHM 

GA is an evolutionary algorithm which uses method of natural selection to solve the 

optimization problem. Unlike the traditional optimization algorithms which evaluate the 

fitness value at every point per iteration, GA evaluates the fitness value for a population 

per iteration.  

These population of individuals constituting an iteration is called „parents‟ and every 

iteration is called a „generation‟. Based on the fitness values, few parents are selected 

which will reproduce to create the next generation. The process of reproduction to 

create next generation is called „crossover‟. „Mutation‟ is the process of applying some 

random changes to a parent to form a child. Crossover preserves the traits of the 

individuals who were the best in the current generation. The process of crossover will 

not explore the search space effectively. Mutation introduces changes to the individual 
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such that new points are explored, assisting the search for global optimum. The three 

processes: random selection of a population of parents, mutation and crossover makes 

GA a powerful tool in global optimization. Even though, there is no guarantee that GA 

will provide global optimum, smoothening of the optimization landscape helps 

convergence to global optimum.  

4.3 MODELLING OF A SYSTEM 

The model of the algorithm is important in three aspects:  

1) The model can be approximated to fit the general tendency of the BSS algorithm 

rather than optimizing the data for a specific data set. 

2) The model results in less time consuming optimization. 

3) The model can be tuned to avoid „overfitting‟ so that optimization landscape 

will be a smooth terrain instead of a jagged one.  

In this thesis, modelling of BSS algorithm is done with the help of three techniques: 

Polynomial regression, neural networks and ANFIS.  

4.3.1 Polynomial Regression 

Polynomial regression is the statistical technique which models the statistical 

relationship between the input and the output as n
th

 order polynomial. Polynomial 

regression is essentially linear regression even though it fits a non-linear surface for the 

data. Consider an independent variable „x‟ and a dependent variable . Then the 

polynomial regression model is 

       (4.1) 
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The polynomial fit is then computed by estimating the unknown parameters: 

so that the MSE between the estimate  and the target  is reduced i.e. the 

objective function here is  

         (4.2) 

With increase in the order of the polynomial, we face the problem of „Overfitting‟: the 

regression model models the high frequency noise, measurement and random errors 

instead of modelling the underlying relationship between the input and output. The 

result is that the model will add random variations to the subsequent predictions [37]. 

Overfitting can be reduced to an extent by limiting the order of the polynomial terms.  

Scaling of the input data is an essential pre-processing step in polynomial regression to 

ensure convergence. One way is to use scale the input so that they fall in the specified 

range, usually . The minimum and maximum of the data needs to be stored so 

that they can be applied to the testing and validation data in subsequent stages. Another 

way is to normalize the data based on the mean and the standard deviation. Here, the 

mean and the standard deviation need to be stored so that they can be applied for the 

testing and validation data. 
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4.3.2 Artificial Neural Networks 

Artificial Neural Networks (ANN) is an extension of statistical regression techniques. 

ANN models the relationship between input and output automatically without the need 

of the user to compute the polynomial terms, pre-process them and feed them into the 

linear regression model. ANN achieves complex fit of data with the help of hidden 

layers. Hidden layers are units that are lie between the input and the output layer. Every 

unit in ANN, other than the input layer, receives its input by weighted linear addition of 

the activation signals of the previous layers. Once the input is received, the neuron is 

activated and it transmits an output signal to the next layer.  

The weights of the interconnection between layers need to be trained so that the neural 

network will follow the target for the specific input pattern. The weights are trained so 

that MSE between the target and the output is reduced. There are several training 

algorithms like gradient descent, conjugate gradient methods, Gauss-Newton methods, 

Levenberg-Marquardt (LM) method, and resilient backpropagation method and so on. 

The convergence and MSE are the most important qualifiers in selecting the algorithm 

for neural network training.  

Also, neural networks may overfit the data when there are many hidden layers and 

hidden neurons. „Overfitting‟, although will reduce the MSE, will result in random 

variations in the subsequent predictions which are undesirable. „Overfitting‟ can be 

avoided by careful selection of hidden layers and hidden units; and choosing a proper 

„Regularization parameter‟.  
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4.3.3 Adaptive Neuro Fuzzy Inference System 

ANFIS is a soft computing technique that is based on Sugeno fuzzy inference system. 

Since ANFIS combines both neural networks and fuzzy logic, it extracts the benefits of 

both them. Fuzzy model cannot be applied since fuzzy necessitates rule structure which 

is formulated by the user‟s understanding of the system. Also, changing the rules of the 

system can generate local/global optima thus rendering the search unreliable.  

On contrary, ANFIS can be used for data modelling which can be further applied for 

optimization. ANFIS system generates fuzzy IF-THEN rules and then tunes the 

parameters of the membership function parameters with the help of a neural network 

trained by the input-output training data. ANFIS network can be tuned by changing the 

parameters: Number and shape of membership function of input. ANFIS architecture is 

functionally equivalent to Radial Basis Function Network [39].  

ANFIS can model non-linear data successfully yielding successful results. Since its 

inception, ANFIS has been widely utilized in control systems and signal processing. We 

analyse the possibility of utilizing ANFIS model in optimizing online BSS. 
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CHAPTER 5  

ONLINE BLIND SIGNAL SEPARATION 

 

5.1. INTRODUCTION 

    Most of the literature on BSS concentrates on batch processing of audio signals. In 

online time-domain BSS, the incoming signal is processed in small batches. This will 

introduce a time delay equal to the batch size plus the processing time of the algorithm 

to separate the signal. Larger the batch size, better the performance of the algorithm will 

be (all algorithms exploit the statistical properties of the signal) but it increases the 

delay. Online BSS with small batch size can separate sources that are non-stationary but 

the quality of the separated signal may not be good. Careful selection of the batch size is 

necessary.  

In this thesis, after analysing various algorithms, AMUSE algorithm is selected to 

implement online BSS as discussed in Chapter.3.4.  

5.2. PERMUTATION PROBLEM 

    As discussed in Chapter 1.1.11.1.2, BSS algorithms can only estimate signals leaving 

sign and permutation ambiguity. The sign ambiguity is not a serious problem in audio 

signal processing. In online BSS, permutation problem may cause signals from different 

sources to be joined erroneously in the recovered signal causing serious degradation. 
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The main limitation of time domain BSS techniques that will adversely impact the 

performance of online implementation is the permutation problem.  

None of the BSS techniques can order the source signals in specific order, unless “semi-

blind” processing is done exploiting some properties of source signals. Since the source 

signals are absolutely random, no techniques based on their statistical properties can be 

employed to solve the permutation problem. Techniques like linear prediction fail 

miserably as they do not predict speech signals effectively. The permutation problem at 

hand necessitates a very robust technique.  

5.3. ALGORITHM 

In this thesis, we propose a novel method to deal with the permutation problem for 

online BSS without jeopardising the „blind‟ assumption. This technique does effectively 

solve the problem at hand without increasing the processing time significantly. The 

newly recovered signal is matched with the previously processed samples‟ overlapping 

region. The permutation ambiguity is then solved by joining the newly recovered signal 

samples with the signal stream that has the highest SIR in the overlapping region. The 

comparison cannot be  because these techniques do not provide a robust 

estimate of the signal with its source. SIR proves to be a robust measure in matching the 

signal as it is not affected by sign or scaling ambiguity.  

The detailed algorithm implementation of the technique of overlapping batches with 

AMUSE algorithm for BSS is explained below: 

1) Choose an appropriate Window size = „n‟ and percentage overlap = „p‟. Let i=0. 
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2) Choose , where 

 and . 

3) Apply AMUSE algorithm: 

i. Estimate the output covariance by Equation (2.1).  

ii. Compute the SVD of Rx by Equation (2.2). 

iii. Estimate the number of sources m from the number of significant singular 

values. 

iv. Perform Orthogonalization transformation as explained in Equation (2.3).  

v. Select a τ such that  has distinct eigenvalues, 

where . 

vi. Let V be the Eigen matrix obtained from the Eigen-decomposition of 

. 

vii. Channel estimation is given in Equation (2.4) and Signal estimation by Equation 

(2.5). 

4) If , estimate the SIR of the overlap part of the  estimates and  

estimates. SIR of matched signal will be higher than the other signals.  

5) Order the signals based on their SIRs and append signal excluding the overlap 

part.  

6) If end of the signal is not reached,  and go to step (2). 
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5.4. FLOWCHART 

The flowchart of the technique discussed in previous section is explained in Figure 5.1.  

 

Figure 5.1 Online BSS with overlapping samples 
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CHAPTER 6  

OPTIMIZATION 

 

6.1 INTRODUCTION 

By optimization, we mean the process of selection of the best set of input variables 

among all the possible sets of inputs to achieve the lowest possible objective function 

value. The objective function is the mathematical model that best depicts the parameter 

to be optimized in terms of the input parameters.  Let us assume there are „n‟ input 

variables in the optimization process. The domain of the input parameters, the 

optimization process searches to find the optimum, is called the „search space‟. In an 

unconstrained optimization, the search space is the whole Euclidean space . In a 

constrained optimization, the search space is limited by equalities and inequalities every 

search element has to satisfy.  

The first step in any optimization process is the formulation of the objective function 

which the optimization process has to minimize (or maximize). If the optimization 

function is convex, the global minima can be found out by any convex optimization 

techniques. The convexity property ensures that there is only one global optimum 

making it easier to find it by one of the conventional procedures: Gradient descent, 

Newton‟s method, Interior Points methods and so on [36]. 

For most of the practical systems, mathematical model takes a highly non-linear form 

resulting in an objective function having many local optima. Some of the techniques 

used to model an unknown process are discussed in Chapter 4.3. The aforementioned 
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conventional procedures for these systems will converge into one of these local optima 

which need not be the global optimum. The optimization landscape for BSS processes 

are highly non-linear as can be observed from Figure  and Figure . This necessitates the 

use of global optimization techniques that may possibly find out the global optima. In 

this thesis, GA based optimization technique is used for finding the global optimum.  

With the technique discussed in 0 5, we have two parameters of the system: Segment 

length and Percentage overlap which needs careful selection. Segment length parameter 

if chosen large, can introduce huge delays. On contrary, the algorithm‟s performance 

can be hampered if chosen small. Similarly, choice of large Percentage overlap will 

cause additional delays but will solve the permutation problem more efficiently. 

Percentage Overlap if chosen too small may not help in solving the permutation 

problem. These two parameters require additional optimization to effectively solve the 

permutation problem keeping in check the time delay introduced. It is therefore 

necessary to optimize these parameters; with the optimization objective to increase the 

SAR and SIR at the same time reducing the time delay. The objective function takes the 

form of Equation (6.1). 

      (6.1) 

Time delay for processing is a very important consideration in real time. Since BSS 

techniques exploit the statistical properties of signal, time delay is inevitable. Let us 

denote the time delay introduced by the algorithm in separating the signals as and the 

time delay encountered in collection of samples as . 
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Figure 6.1 Comparison of T and t for a typical BSS run 

Figure 6.1 is a typical BSS run comparing T with t: it can be observed that . It is 

observed that even though t is relatively constant for the selected algorithm; T increases 

with increase in Segment Length, increasing time delay for data availability in real-

time. The total time delay is given by Equation (6.2). 

          (6.2) 

Based on the sample parameter inputs to the algorithm and their performance indices, 

the algorithm if first modelled before proceeding for optimization. The model of the 

algorithm is outlined in Figure 6.2 with the constraints given by Equation (6.3) 
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Figure 6.2 Optimization model for online BSS process 

  

       (6.3) 

6.2 FITNESS FUNCTION 

The fundamental problem of optimization is constructing an appropriate fitness function 

for optimization. This fitness function is a measure of the performance of the process. 

The optimization objective would be to minimize (or maximize) the fitness value. Here, 

the optimization objective is to increase SAR and SIR at the same time reducing Td. The 

fitness function formulated for this optimization objective is as follows: 

  (6.4) 

K1, K2 and K3 are scaling factors which determine the relative weightage of the 

components of SAR, SIR and Time respectively.  

        (6.5) 
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Since, quantities SAR and SIR have to be increased, the scaled negative quantities are 

taken so that the respective term can be minimized. SAR and SIR are deducted from 

constants 5 and 100 respectively in Equation (6.4) because the maximum observed 

values of SAR and SIR are nearly 101db and 7db respectively and the average values 

are nearly 2db and 70db respectively. If SAR = 2db, SIR = 70db and Td = 1 sec; then 

each of these terms will add a value of one to the fitness function‟s value as per 

Equation (6.4). So, the optimization will be zero if SAR = 5db, SIR = 100db and Td = 0 

sec. Any values close to these values will give the ideal results. As per Equation (6.5), 

the relative weightage of SAR, SIR and Td is 10:1:60. The values of Equation (6.5) are 

chosen based on trial and error to give Td the highest weightage and SAR the next.  

6.3 POLYNOMIAL REGRESSION 

6.3.1 Regression Model 

Let us denote the input parameters: Segment Length and Percentage overlap by  

and  respectively. Even though a higher order polynomial fit would give the least 

MSE, they tend to overfit the data. Also, when value of one of x1 or x2 is high, higher 

order terms tends to yield very high value as output. To avoid these issues, we limit the 

order of the polynomial to two. The Polynomial regression model with second order 

polynomial is given in Equation (6.6). 

     (6.6) 

Now, the problem descends to estimating the unknown parameters  so that the 

MSE between  and  is minimized with the constraints given by Equation (6.7). 
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      (6.7) 

The training set used here is formed by executing the online BSS algorithm for 372 

different input pairs recording the Segment Length, Percentage Overlap, SAR, SIR and 

Td. Pre-processing of input and output data are performed to ensure convergence and 

the settings are saved so that these settings can be applied to subsequent validation, 

testing and optimization runs. Figure 6.3 shows that the Regression model converges 

with MSE ~ 0.5.  

 

Figure 6.3 Convergence plot of Polynomial regression model 

6.3.2 Optimization of polynomial regression based model 

The optimization landscape for the polynomial regression model is given in Figure 6.4. 

The optimization is performed with different parameter settings in GA algorithm as 

shown in Table 6.1. These fitness values are compared with the optimized values of 

other parameter settings in GA and the best value is chosen. 

The best optimized parameters from the Table 6.1 are: 
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       (6.8) 

Table 6.1 GA based optimization of Polynomial Regression based model for various parameters of the 

algorithm 

Segmen

t 

Length 

% 

overl

ap 

Theoretical Simulation 

SAR 

(db) 

SIR (db) Time 

(secs) 

Fitness 

value 

SAR (db) SIR 

(db) 

Time 

(secs) 

Fitness 

value 

80000 0.80 6.8383 70.3368 1.9563 4.2887 2.2398 49.3705 1.8936 6.3949 

80000 0.80 6.8383 70.3368 1.9563 4.2887 2.2398 49.3705 1.8915 6.3908 

80000 0.80 6.8383 70.3368 1.9563 4.2887 2.2398 49.3705 1.9020 6.4117 

80000 0.80 6.8383 70.3368 1.9563 4.2887 2.2398 49.3705 1.8920 6.3917 

80000 0.80 6.8383 70.3368 1.9563 4.2887 2.2398 49.3705 1.8914 6.3906 

80000 0.80 6.8383 70.3368 1.9563 4.2887 2.2398 49.3705 1.8989 6.4054 

80000 0.80 6.8383 70.3368 1.9563 4.2887 2.2398 49.3705 1.8912 6.3902 

80000 0.80 6.8383 70.3368 1.9563 4.2887 2.2398 49.3705 1.9031 6.4138 

80000 0.80 6.8383 70.3368 1.9563 4.2887 2.2398 49.3705 1.8935 6.3947 

80000 0.80 6.8383 70.3368 1.9563 4.2887 2.2398 49.3705 1.8968 6.4013 

80000 0.80 6.8383 70.3368 1.9563 4.2887 2.2398 49.3705 1.8916 6.3910 

80000 0.80 6.8383 70.3368 1.9563 4.2887 2.2398 49.3705 1.8912 6.3902 

80000 0.80 6.8383 70.3368 1.9563 4.2887 2.2398 49.3705 1.9008 6.4094 

80000 0.80 6.8382 70.3367 1.9563 4.2887 2.2398 49.3705 1.9074 6.4224 

80000 0.80 6.8382 70.3367 1.9563 4.2887 2.2398 49.3705 1.8908 6.3894 

80000 0.80 6.8382 70.3367 1.9563 4.2887 2.2398 49.3705 1.8939 6.3956 

80000 0.80 6.8382 70.3365 1.9563 4.2887 2.2398 49.3705 1.8915 6.3908 

79999 0.80 6.8381 70.3363 1.9563 4.2887 2.2398 49.3705 1.8911 6.3899 

79998 0.80 6.8380 70.3355 1.9563 4.2887 2.2398 49.3705 1.8933 6.3943 

79997 0.80 6.8377 70.3344 1.9562 4.2888 2.2398 49.3705 1.8923 6.3923 

79972 0.80 6.8337 70.3167 1.9557 4.2895 2.2398 49.3705 1.8903 6.3882 

79906 0.80 6.8231 70.2700 1.9541 4.2916 2.2451 50.0611 1.9028 6.3886 

79801 0.80 6.8062 70.1958 1.9517 4.2948 2.2585 48.7808 1.8939 6.4090 

79740 0.80 6.7964 70.1529 1.9503 4.2966 2.3363 54.9430 1.8846 6.1590 

79733 0.80 6.7953 70.1482 1.9501 4.2969 2.3363 54.9430 1.8967 6.1833 

79710 0.80 6.7916 70.1315 1.9496 4.2976 2.3363 54.9430 1.8910 6.1719 

79592 0.80 6.7727 70.0487 1.9469 4.3012 2.2788 53.2744 1.8825 6.2296 

79587 0.80 6.7719 70.0449 1.9467 4.3013 2.2788 53.2744 1.8825 6.2297 

79450 0.80 6.7499 69.9484 1.9436 4.3055 2.8204 62.5814 1.8794 5.7327 

79385 0.80 6.7394 69.9020 1.9420 4.3075 0.0260 16.1069 1.8778 8.2100 

79066 0.80 6.6882 69.6768 1.9346 4.3173 0.0783 44.3657 1.8714 7.2379 

78965 0.80 6.6719 69.6053 1.9323 4.3204 0.2730 55.9020 1.8664 6.7785 

78927 0.80 6.6659 69.5788 1.9314 4.3215 0.2496 61.3293 1.8643 6.6012 

77674 0.80 6.4652 68.6957 1.9023 4.3596 0.4025 58.0488 1.8373 6.6055 

77313 0.80 6.4076 68.4420 1.8939 4.3705 0.6075 40.9716 1.8281 7.0879 

76109 0.80 6.2155 67.5956 1.8659 4.4068 -0.5586 17.1745 1.7998 8.2134 

 

With these parameters, we get the performance indices shown in Table 6.4. These 

values are obtained with the GA parameters provided in Table A 2.1. 
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Figure 6.4 Optimization landscape of Polynomial regression based model 

6.3.3 Results 

The plot of the input signals, the mixed signals and the recovered signals for few 

samples of the Speech2D mixture is shown in Figure 6.5.  

These values are applied for two other mixtures of voice samples and it provides good 

results proving that the optimized values hold generally true. Their performance indices 

are provided in Table 6.4. The plots of the source, mixed and recovered signals for the 

signals Speech2D and Speech_Noisy2D are shown in Figure 6.6 and Figure 6.7 

respectively. 
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Figure 6.5 Polynomial regression based optimized parameters for Speech_Music2D 

 

Figure 6.6 Polynomial regression based optimized parameters for Speech2D 
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Figure 6.7 Polynomial regression based optimized parameters for Speech_Noisy2D 

 

6.4 NEURAL NETWORKS 

6.4.1 Neural networks model 

A neural network model for the algorithm is constructed before proceeding for the 

optimization of the parameters. The training set used here is the same training set used 

in Polynomial regression. Normalization of input and output data are performed to 

ensure convergence and the settings are saved so that these settings can be applied to 

subsequent validation, testing and optimization runs.   

The choice of the learning algorithm would be the next step. Since the neural network is 

not trained online, the time required to train the neural network is not a huge concern. 

The choice of the algorithm is influenced by the factors such as minimization of Mean 

Square Error (MSE), better convergence and avoidance of under-fitting and over-fitting. 

In this thesis, Levenberg-Marquardt (LM) algorithm is used to train a back-propagation 

neural network. LM algorithm is fast and has better convergence than gradient descent 

and other conjugate gradient methods. Also, it is robust than Gauss-Newton algorithm 
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but it tends to be slower than steepest descent algorithm. LM algorithm is an ideal 

learning algorithm for small and medium sized neural networks: when there are no more 

than few hundred weights [38]. Since, online BSS process is a small neural network; the 

computation of the Hessian matrix required for the LM algorithm is quite efficient [40].  

 

 

Figure 6.8 Convergence of Neural network trained with LM algorithm 
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6.4.2 Optimization of neural networks based model 

The optimization landscape showing the fitness value plotted against Segment Length 

and Percentage Overlap is shown in Figure 6.9. As it can be observed from Figure 6.9, 

the optimization landscape has lot of local minima. To avoid getting stuck in local 

optima, we need to use a global optimization technique. In this thesis, we use GA based 

optimization technique to optimize the parameters: Segment Length and Percentage 

Overlap.  

 

Figure 6.9 Optimization landscape for neural networks based model of online BSS 

The optimization is performed with different parameter settings in GA algorithm. For 

each setting, GA is performed 10 times and the best performance among all the runs is 

chosen. These values are then compared with the optimized values of other parameter 

settings in GA and the best value is chosen. The best optimization parameters from 

Table 6.2 are: 
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       (6.9) 

Table 6.2 GA based optimization of neural networks based model for various parameters of the algorithm 

Segmen

t 

Length 

% 

overl

ap 

Theoretical Simulation 

SAR 

(db) 

SIR (db) Time 

(secs) 

Fitness 

value 

SAR (db) SIR 

(db) 

Time 

(secs) 

Fitness 

value 

43789 0.34 1.3712 49.7588 1.1197 5.1236 -1.8309 42.4619 1.0250 6.2449 

43789 0.34 1.3712 49.7588 1.1197 5.1236 -1.8309 42.4619 1.0212 6.2373 

43789 0.34 1.3712 49.7588 1.1197 5.1236 -1.8309 42.4619 1.0213 6.2375 

43789 0.34 1.3712 49.7588 1.1197 5.1236 -1.8309 42.4619 1.0213 6.2374 

43789 0.34 1.3713 49.7589 1.1197 5.1236 -1.8309 42.4619 1.0259 6.2468 

43789 0.34 1.3712 49.7587 1.1197 5.1236 -1.8309 42.4619 1.0277 6.2502 

43789 0.34 1.3713 49.7588 1.1197 5.1236 -1.8309 42.4619 1.0249 6.2448 

43789 0.34 1.3711 49.7584 1.1196 5.1236 -1.8309 42.4619 1.0267 6.2483 

43788 0.34 1.3711 49.7584 1.1196 5.1236 -1.8309 42.4619 1.0254 6.2458 

43789 0.34 1.3712 49.7588 1.1197 5.1236 -1.8309 42.4619 1.0249 6.2447 

43785 0.34 1.3706 49.7565 1.1195 5.1236 -1.8309 42.4619 1.0249 6.2446 

43785 0.34 1.3706 49.7564 1.1195 5.1236 -1.8309 42.4619 1.0249 6.2447 

43783 0.34 1.3704 49.7556 1.1195 5.1236 -1.8309 42.4619 1.0250 6.2449 

43797 0.34 1.3722 49.7624 1.1199 5.1236 -1.8309 42.4619 1.0252 6.2453 

43805 0.34 1.3733 49.7663 1.1201 5.1236 -1.8309 42.4619 1.0254 6.2457 

43814 0.34 1.3746 49.7711 1.1204 5.1236 -1.8309 42.4619 1.0257 6.2463 

43763 0.34 1.3678 49.7459 1.1189 5.1236 -1.8309 42.4619 1.0289 6.2527 

43757 0.34 1.3669 49.7427 1.1187 5.1236 -1.8309 42.4619 1.0242 6.2433 

43755 0.34 1.3667 49.7416 1.1186 5.1236 -1.8309 42.4619 1.0289 6.2528 

43857 0.34 1.3802 49.7919 1.1217 5.1237 -1.2617 38.7569 1.0262 6.1811 

43865 0.34 1.3812 49.7951 1.1220 5.1237 -1.2617 38.7569 1.0280 6.1847 

43683 0.34 1.3569 49.7054 1.1164 5.1237 -1.3241 41.1397 1.0227 6.1155 

43639 0.34 1.3510 49.6826 1.1151 5.1238 -0.7708 37.1589 1.0189 6.0560 

43995 0.34 1.3981 49.8563 1.1259 5.1239 0.3533 42.1947 1.0297 5.5351 

43583 0.34 1.3432 49.6532 1.1134 5.1239 -0.7708 37.1589 1.0209 6.0602 

43582 0.34 1.3431 49.6517 1.1133 5.1239 -0.7708 37.1589 1.0218 6.0620 

44030 0.34 1.4025 49.8719 1.1270 5.1240 0.3533 42.1947 1.0290 5.5337 

43492 0.34 1.3304 49.6035 1.1106 5.1242 -0.4938 42.4804 1.0187 5.7859 

43482 0.34 1.3291 49.5977 1.1103 5.1243 -0.4938 42.4804 1.0272 5.8029 

44194 0.34 1.4230 49.9427 1.1319 5.1248 -0.1727 46.7454 1.0324 5.5642 

44232 0.34 1.4277 49.9585 1.1331 5.1250 -0.1727 46.7454 1.0354 5.5702 

44303 0.34 1.4363 49.9872 1.1352 5.1255 -1.3933 39.1557 1.0379 6.2351 

43115 0.34 1.2755 49.3817 1.0990 5.1268 1.3224 34.7637 1.0098 5.4201 

44540 0.34 1.4641 50.0759 1.1424 5.1275 -1.2819 38.4235 1.0420 6.2305 

44602 0.34 1.4711 50.0979 1.1443 5.1282 -1.3309 41.2120 1.0409 6.1518 

45039 0.34 1.5179 50.2298 1.1573 5.1344 -0.8032 35.8305 1.0502 6.1738 
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With these parameters, we get the performance indices shown in Table 6.4. These 

values are obtained with the GA parameters provided in Table A 2.2. 

6.4.3 Results 

Since the SAR and SIR are quite high with the time taken for processing approximately 

1 sec, the optimization has provided with excellent set of parameters. The plot of the 

input signals, the mixed signals and the recovered signals for few samples of the 

Speech2D mixture is shown in Figure 6.10.  

 

Figure 6.10 Neural networks based optimized parameters for Speech_Music2D 

These values are applied for the other two mixtures of voice samples and it provides 

good results proving that the optimized values hold generally true. Their performance 

indices are provided in Table 6.4. The plots of the source, mixed and recovered signals 

for the signals Speech2D and Speech_Noisy2D are shown in Figure  and Figure  

respectively. 
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Figure 6.11 Neural networks based optimized parameters for 

Speech2D

 

Figure 6.12 Neural networks based optimized parameters for Speech_Noisy2D 
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6.5 ADAPTIVE NEURO FUZZY INFERENCE SYSTEM  

6.5.1 ANFIS Model 

The ANFIS system is trained using the training data used in Polynomial regression. 

Figure 6.13 shows the SAR, SIR and Time of the actual system and the corresponding 

ANFIS trained model. It can be observed from the SAR and SIR plot of the ANFIS 

model that the ANFIS model extracts the general tendencies of the data and omits the 

local disturbances. It can also be observed that there is no „overfitting‟ of the data.  

The fitness function is then formed based on the formula defined in Chapter. 6.2. Figure  

shows the comparison of fitness function of the ANFIS model with the fitness function 

of the actual algorithm‟s data. It can be observed that ANFIS models the algorithm into 

a smooth fitness function so that the global minima can be found out easily.  

 

Figure 6.13 SAR, SIR and Time of the online BSS system and the corresponding ANFIS model 
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Figure 6.14 Comparison of fitness function of online BSS system and ANFIS model 

6.5.2 Optimization of ANFIS based model 

As it can be observed from Figure 6.14, the optimization landscape has lot of local 

minima. To avoid getting stuck in local optima, we need to use a global optimization 

technique.  

The optimization is performed with the help Genetic Algorithm with different parameter 

settings. For each setting, GA is performed 10 times best performance among all the 

runs is chosen. These values are then compared with the optimized values of other 

parameter settings in GA and the best value is chosen.  

The best optimized parameters obtained from Table 6.3 are: 

  

31.8 %       (6.10) 
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Table 6.3 GA based optimization of ANFIS based model for various parameters of the algorithm 

Segmen

t 

Length 

% 

over

lap 

Theoretical Simulation 

SAR 

(db) 

SIR (db) Time 

(secs) 

Fitness 

value 

SAR 

(db) 

SIR (db) Time 

(secs) 

Fitness 

value 

28168 0.32 0.1739 48.9348 0.7433 4.7975 -0.0205 39.1164 0.6640 5.0310 

28169 0.32 0.1740 48.9351 0.7433 4.7975 -0.0205 39.1164 0.6665 5.0360 

28168 0.32 0.1739 48.9348 0.7433 4.7975 -0.0205 39.1164 0.6666 5.0361 

28167 0.32 0.1738 48.9345 0.7433 4.7975 -0.0205 39.1164 0.6665 5.0360 

28171 0.32 0.1743 48.9359 0.7434 4.7975 -0.0205 39.1164 0.6628 5.0286 

28160 0.32 0.1731 48.9322 0.7431 4.7975 -0.0205 39.1164 0.6705 5.0439 

28159 0.32 0.1730 48.9320 0.7431 4.7975 -0.0205 39.1164 0.6627 5.0283 

28157 0.32 0.1728 48.9314 0.7431 4.7975 -0.0205 39.1164 0.6629 5.0287 

28156 0.32 0.1727 48.9310 0.7430 4.7975 -0.0205 39.1164 0.6630 5.0291 

28153 0.32 0.1724 48.9300 0.7430 4.7975 -0.0205 39.1164 0.6624 5.0278 

28151 0.32 0.1722 48.9293 0.7429 4.7975 -0.0205 39.1164 0.6627 5.0283 

28149 0.32 0.1719 48.9286 0.7429 4.7975 0.5939 32.9505 0.6626 5.0289 

28141 0.32 0.1710 48.9256 0.7427 4.7975 0.5939 32.9505 0.6624 5.0284 

28135 0.32 0.1704 48.9237 0.7425 4.7975 0.5939 32.9505 0.6731 5.0500 

28134 0.32 0.1703 48.9235 0.7425 4.7975 0.5939 32.9505 0.6667 5.0371 

28093 0.32 0.1657 48.9096 0.7415 4.7975 0.5939 32.9505 0.6620 5.0277 

28265 0.32 0.1843 48.9667 0.7456 4.7975 -0.2945 50.7214 0.6649 4.7373 

28307 0.32 0.1888 48.9802 0.7466 4.7976 -0.2945 50.7214 0.6697 4.7468 

28325 0.32 0.1906 48.9857 0.7470 4.7976 -0.2945 50.7214 0.6668 4.7411 

28388 0.32 0.1972 49.0048 0.7485 4.7978 -0.0313 30.8584 0.6682 5.3183 

28447 0.32 0.2033 49.0223 0.7499 4.7980 -0.0313 30.8584 0.6695 5.3208 

28467 0.32 0.2052 49.0289 0.7504 4.7980 0.3520 39.6462 0.6722 4.9056 

27838 0.32 0.1371 48.8143 0.7355 4.7981 -1.7650 26.8458 0.6608 6.0151 

28531 0.32 0.2118 49.0457 0.7519 4.7983 0.3520 39.6462 0.6743 4.9098 

28627 0.32 0.2214 49.0714 0.7542 4.7988 0.5165 41.2030 0.6765 4.8074 

27668 0.32 0.1173 48.7452 0.7315 4.7990 -0.7085 51.7164 0.6517 4.8157 

27516 0.32 0.0991 48.6788 0.7279 4.8002 -0.7982 42.4912 0.6511 5.1519 

28866 0.32 0.2443 49.1280 0.7598 4.8006 -0.5015 33.0301 0.6815 5.4291 

29103 0.32 0.2659 49.1746 0.7654 4.8030 -1.2523 39.1012 0.6843 5.4826 

27202 0.32 0.0598 48.5291 0.7205 4.8034 -0.6325 32.5413 0.6410 5.4082 

29195 0.32 0.2740 49.1901 0.7676 4.8042 -3.6723 14.8909 0.6986 7.1250 

29220 0.32 0.2761 49.1940 0.7682 4.8045 -3.6723 14.8909 0.6871 7.1019 

27054 0.32 0.0406 48.4530 0.7170 4.8053 -1.8607 32.7596 0.6414 5.8110 

29299 0.32 0.2828 49.2057 0.7700 4.8056 -0.4922 38.5433 0.6888 5.2569 

30243 0.32 0.3529 49.2647 0.7923 4.8249 -0.6095 45.1336 0.7102 5.1190 

24721 0.32 
-

0.3230 46.7500 0.6619 4.8731 -2.3877 31.6347 0.5872 5.9159 

 

With these parameters, we get the performance indices shown in Table 6.4. These 

values are obtained with the GA parameters provided in Table A 2.3. 
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6.5.3 Results 

We are able to achieve better performance at a time delay approximately 0.6 seconds as 

observed in Table 6.4. This performance is better than the optimization of the neural 

networks based online BSS model. The plot of the source signals, mixed signals and 

recovered signals is shown in Figure 6.15. 

The performance indices of Speech2D and Speech_Noisy2D signal mixtures are shown 

in Table 6.4. These indices indicate that the performance of ANFIS for the other two 

signals are not as robust as that of neural networks based model. Figure 6.16 and Figure 

6.17 show the sources, signal mixtures and the recovered signals of Speech2D and 

Speech_Noisy2D signal mixtures respectively. 

 

Figure 6.15 ANFIS based optimized parameters for Speech_Music2D 
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Figure 6.16 ANFIS based optimized parameters for Speech2D 

 

Figure 6.17 ANFIS based optimized parameters for Speech_Noisy2D 
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6.6  COMPARISON OF OPTIMIZATION OF ONLINE BSS 

Table 6.4 Comparison of optimization based on Polynomial Regression, ANN and ANFIS based model 

Parameter 

Polynomial Regression Neural Networks ANFIS 

Speec

h_Mu

sic2D 

Speec

h2D 

Speec

h_Noi

sy2D 

Speec

h_Mu

sic2D 

Speec

h2D 

Speec

h_Noi

sy2D 

Speec

h_Mu

sic2D 

Spee

ch2

D 

Spee

ch_N

oisy2

D 

Segment 

Length 80000 43800 28200 

Percentage 

Overlap 0.8 0.34 0.31 

SAR (db) 2.23 3.46 13.51 -1.83 2.85 -1.09 -0.02 -3.51 1.33 

SIR (db) 49.37 25.84 49.99 42.46 29.83 39.18 39.12 8.37 15.20 

Time (sec) 1.89 1.89 1.90 1.02 1.02 1.02 0.66 0.66 0.66 

Fitness 

value 6.39 6.77 2.63 6.24 5.10 6.10 5.03 7.22 5.38 

 

Table 6.4 shows the comparison of optimization based on Polynomial regression, neural 

networks and ANFIS based models‟ performance indices. Although Polynomial 

Regression provides a model with very high SAR and SIR, the Time parameter is quite 

high. In real-time, approximately 2 seconds delay for audio signal processing may not 

be acceptable. Although ANFIS based model provided the least Time, SAR is very low: 

the output signal would be highly distorted as can be observed in Figure 6.15, Figure 

6.16 and, Figure 6.17. Neural networks can give a model better than other models and 

provides an optimization result that is consistent with all the three performance 

parameters.  
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CHAPTER 7  

CONCLUSION AND SCOPE FOR FUTURE WORK 

 

The proposed scheme to order the signals based on their SIRs of the overlapping 

samples is found to be an effective technique in solving the permutation problem. The 

optimized parameters obtained by GA are tested with two other signal mixtures: one 

with less noisy speech with lot of pauses and the other with more noisy speech with 

fewer pauses between words. The performance indices for these signals are quite high 

for neural networks based model compared to the polynomial regression and ANFIS 

based model indicating the robustness of neural networks based model for optimization 

process.  

The technique discussed in this technique can be applied to real-time signal separation 

problems like ambient noise reduction in mobile phones, pre-processing for voice input 

systems, voice recognition and, authentication systems.  

Real-time testing of the method of overlapping samples for time-domain BSS can be 

carried out in a DSP or FPGA kit before implementing in real-time embedded systems.  
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APPENDIX I 

 

This section explains the signals used in testing of the BSS algorithms.  

1) ACsin4D 

This signal mixture is formed by linear addition of 4 sine waves as shown in Equation A 

1.1. The length of this signal is 1001 samples.  

      (A 1.1) 

The sources and the signal mixtures are shown in Figure  

 

Figure A 1.1 Sources and Signal mixture of signal ACsin4D 
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2) Speech4D 

Speech4D is a signal mixture with 4 speech and music sources
1
. The signal length is 

5000 samples sampled at 44100 samples per sec. The sources and signal mixtures are 

shown in Figure A 1.2. 

3) Speech_Music2D 

This signal is formed by mixture of a speech signal
2
 and a music signal. The length of 

each signal is 2200000 samples sampled at 44100 samples per sec. The source and 

signal waveforms are shown in Figure A 1.3. 

 

Figure A 1.2 Sources and Signal mixture of signal Speech4D 

                                                 
1
 Courtesy: http://www.bsp.brain.riken.go.jp/ICALAB/ICALABSignalProc/benchmarks 

2
 Courtesy: https://ia600402.us.archive.org/29/items/MLKDream/MLKDream_64kb_mp3.zip 

http://www.bsp.brain.riken.go.jp/ICALAB/ICALABSignalProc/benchmarks
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Figure A 1.3 Sources and Signal mixture of signal Speech_Music2D 

 

4) Speech2D 

This signal is formed by mixture of two speech signals
3
. The length of each signal is 

2200000 samples sampled at 44100 samples per sec. The source and signal waveforms 

are shown in Figure A 1.4. 

5) Speech_Noisy2D 

This signal mixture is formed by mixture of two speech signals, one of which is very 

noisy
4
. Like the previous signals, these signals are also 2200000 samples long and 

sampled at 44100 samples per sec. The source and the signal mixtures are shown in 

Figure A 1.5. 

 

                                                 
3
 Courtesy: https://ia600402.us.archive.org/9/items/MahatmaGandhiSpeech/GandhiSpeech.mp3 

4
 Courtesy: 

https://ia600200.us.archive.org/18/items/Greatest_Speeches_of_the_20th_Century/TheMoonLanding.mp

3 
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Figure A 1.4 Sources and Signal mixture of signal Speech2D 

 

 

Figure A 1.5 Sources and Signal mixture of signal Speech_Noisy2D 
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APPENDIX II 

Table A 2.1 Parameters of GA used to optimize Polynomial regression based Online BSS model 

Parameter Value 

SelectionFcn @selectionroulette (Roulette) 

Population Size 25 

EliteCount 4 

MutationFcn @mutationadaptfeasible (Adaptive feasible) 

CrossoverFcn @crossoverheuristic (Heuristic) 

Generations 100 

HybridFcn @fmincon 

CrossoverFraction 0.5 

 

Table A 2.2 Parameters of GA used to optimize neural networks based Online BSS model 

Parameter Value 

SelectionFcn @selectionstochunif (Stochastic Uniform) 

Population Size 25 

EliteCount 4 

MutationFcn @mutationadaptfeasible (Adaptive feasible) 

CrossoverFcn @crossoverheuristic (Heuristic) 

Generations 100 

HybridFcn @fmincon 

CrossoverFraction 0.5 
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Table A 2.3 Parameters of GA used to optimize ANFIS based Online BSS model 

Parameter Value 

SelectionFcn @selectionroulette (Roulette) 

Population Size 25 

EliteCount 4 

MutationFcn @mutationadaptfeasible (Adaptive feasible) 

CrossoverFcn @crossoverheuristic (Heuristic) 

Generations 100 

HybridFcn @fmincon 

CrossoverFraction 0.8 

 


