STUDY OF LEACHING CHARACTERISTICS OF STAINLESS STEEL PICKLING SLUDGE & ITS UTILIZATION WITH CONCRETE USING TAGUCHI METHODOLOGY

Thesis submitted in partial fulfillment of the requirements for the degree of

Master of Technology

in Environmental Engineering

> by Sakshi Garg Roll No: (2K12/ENE/11)

<u>Guide</u> Dr. S.K. Singh <u>Co-Guide</u> Dr. H.V.C. Chary Guntupalli

DEPARTMENT OF ENVIRONMENTAL ENGINEERING DELHI TECHNOLOGICAL UNIVERSITY (FORMERLY DELHI COLLEGE OF ENGINEERING DELHI – 110042 July, 2014

DELHI TECHNOLOGICAL UNIVERSITY (formerly DELHI COLLEGE OF ENGINEERING) MAIN BAWANA ROAD, NEW DELHI-110042

DEPARTMENT OF ENVIRONMENTAL ENGINEERING

CERTIFICATE

This is to certify that **Sakshi Garg (2K12/ENE/11)** has submitted the thesis titled "**Study of leaching characteristics of stainless steel pickling sludge & its utilization with concrete using Taguchi methodology**" to the Department of Environmental Engineering, Delhi Technological University, is a bonafide research carried out by her under our guidance and supervision. The matter contained in the thesis has not been submitted to any other University or Institution for the award of degree or diploma.

(Sakshi Garg)

Dr. S.K. Singh

Dr. H.V.C. Chary Guntupalli

(**Supervisor**) Professor & H.O.D. Department of Environmental Engineering Delhi Technological University New Delhi **Co-Supervisor** Scientist C Central Pollution Control Board New Delhi

Dr. S.K. Singh Head, Environmental Engineering Department

Date: Place:

Acknowledgements

Acknowledgement is a word that undermines my respect and feelings towards those connected with the successful completion of my work. I hereby express my sincere gratitude from the depth of my heart to those without whom this work might not have taken shape.

First and foremost, I would like to than**my beloved parents and my brother** who are my ultimate pillar of strength, for giving me the confidence to face a task of this magnitude and for always being there with immense belief in me.

I take this opportunity to express my profound gratitude and deep regards to my supervisors **Dr. S.K. Singh**, Professor and H.O.D. of Department of Environmental Engineering, Delhi Technological University, Delhi and **Dr. H.V.C. Chary Guntupalli**, PhD. IIT Delhi, Scientist C, Central Pollution Control Board, New Delhi for their exemplary guidance, for keeping me in right direction and for constant encouragement throughout the course of my work.

I also express my sincere thanks to **Dr. Anil Kumar Haritash**, Assistant Professor, Dept. of Environmental Engineering, DTU for his continuous guidance, motivation and support. Also, I would like to thank **Sh. H.V. Gurudutt** (Scientist D), Central Pollution Control Board, **Mr. Amit Kr. Shrivastava**, Assistant Prof. & **Mr. Alok Verma**, Associate Prof., Dept. of Civil Engineering, DTU for their valuable guidance.

I would like to extend my extreme gratitude towards **Mr. Sunil Tirki**, **Ms. Namita**, **Mr. Hukum chand & Mr. Sunil**, laboratory staff of the Environmental Engineering Laboratory and **Mr. Manoj Hodda**, **Mr. Miraj**, **Mr. Keval Singh & Mr. Mahesh**, staff members of the Concrete Technology Laboratory, DTU, for the valuable cooperation and help they have provided during my study, which greatly helped me at every step of my project.

I would also like to thank Dept. of Applied Physics (DTU), Dept. of Chemistry (IIT Delhi), Dept. of Chemical Engineering (IIT Delhi) for letting me use the laboratory facilities and I would also like to express my thanks to the Pickling Industry in Wazirpur Industrial Area, New Delhi for providing me with the process details and hazardous sludge generated on which my study is based.

I would also like to acknowledge the contribution of my friends **Preeti, Dushyant, Navneet**, **Deepika** and **Sanjan** for unceasing support.

Sakshi Garg

Abstract

Steel finishing operations such as pickling, galvanizing, plating, etc., involve a process of removing scale, rust and dust from the surface of stainless steel. In this, sheets of steel are immersed in hot acidic solution resulting in waste liquor which contains heavy metals like Fe, Cr, Ni, etc. When treated with lime, these heavy metals get settled as metal hydroxides in form of sludge. As per the Act of Hazardous Waste (Management and Handling) Rules, 1989, the disposal of lime treated spent pickling sludge should be done with consideration and is not easy. In normal practice, this sludge is being stored in leak proof bags and no proper disposal technique is being employed by small and medium industries.

An attempt has therefore been made to utilize the lime treated pickling sludge in cement concrete mix in the presence of fly-ash as a binder agent. The main objective is to immobilize heavy metals in the concrete matrix and studying its leaching characteristics and compressive strength. Sludge is characterized for the heavy metal content using AAS, EDX and XRD. Other physical and chemical properties are also analysed. Test cubes of nominal mix M20 were prepared and these were tested for its 7 and 28 days compressive strength. Toxicity characteristics leaching procedure (TCLP) test as per USEPA was carried out on these cubes to study the extent of immobilization and stabilization of heavy metals in the concrete matrix.

For this, Four factors were varied on three levels i.e. Percentage of cement replaced by sludge (5%, 7.5% & 10%) and Percentage of fly-ash (0%, 15% & 20%), type of cement used and particle size grading of sludge, to assess the effect of these factors on compressive strength and heavy metal concentrations in leachate. Taguchi methodology (L9 orthogonal array) was used for optimizing the design of experiments and for further analysis.

Experimental results show that the lime treated pickling sludge can be utilized with cement/concrete with some binding materials like fly-ash. By Analysis of Mean (ANOM) method, it was found that 7.5% addition of sludge and 20% fly-ash as partial replacement of cement with 43 grade OPC and sludge particle size ranging between 0.3 to 2.36mm produced the optimal performance for compressive strength and heavy metal immobilization values of the cement-sludge-flyash concrete cubes. By Analysis of Variance (ANOVA) method, it was found that particle size grading of sludge and percent of sludge added as cement replacement contributed 46% and 41% respectively to the optimal performance. Formation of C_2H , C_3H and gypsum (C-S-H gel) may be contributing in the better performance of concrete.

TABLE OF CONTENTS

Page No.

			-
CERTIFICA	ТЕ		Ι
ACKNOWLI	EDGEN	MENT	Iii
ABSTRACT			Iv
CONTENTS			v
LIST OF FIG	URES	5	vii viii
LIST OF TA	BLES		
LIST OF AC	RONY	MS	ix
Chapter 1		INTRODUCTION	1-3
	11	Industrial Wasta Sludge: Hazardous Wasta	2
	1.1 1.2	Industrial Waste Sludge: Hazardous Waste	
	1.2	Problems associated with Lime treated Pickling sludge Solidification/ Stabilization with Cementitious binders	2 3
	1.3 1.4		3
Chapter 2		LITERATURE REVIEW	4-19
	2.1	State of Delhi at a Glance	5
	2.2	Hazardous waste generation in Delhi	5
		Pickling industry- Process	7
		2.3.1 Waste water from the pickling process	7
		2.3.2 Lime treated pickling sludge	8
	2.4	Disposal Techniques of Heavy Metals Containing Sludge	10
		2.4.1 Strategies to be adopted for safe disposal	10
		2.4.2 Illegal dumpsites in Delhi	11
	2.5	Environmental Effects	11
		2.5.1 Chromium	12
		2.5.2 Nickel	12
	2.6	Solidification and stabilization of hazardous sludge containing heavy metal with cement/concrete	13
	2.7	Toxicity Characteristic leaching procedure (TCLP) Test:	14
		USEPA Method 1311	
		2.7.1 Scope & applications	14
		2.7.2 Method & apparatus/Materials required	14
		2.7.3 Leaching test by TCLP of waste stabilized with cement/concrete	16
	2.8	Grades of cement	17
Chapter 3		MATERIALS AND METHODS	20-30
	3.1	Materials	21

		3.1.1 L	ime treated Pickling sludge	21
		3.1.2	Cement	21
		3.1.3 F	Fly ash	21
		3.1.4	Coarse and fine aggregates	21
	3.2		n Methodology	22
	3.3	Methods		23
			Sludge Characterization	23
		3.3.2	Design of M20 concrete with sludge & flyash	27
		3.3.3	Toxicity Characteristic leaching procedure (TCLP) Test	30
Chapter 4		TAGUCHI METHODOLOGY FOR DESIGN OF31EXPERIMENTS		
	4.1	Introduc	tion	32
	4.2	Taguchi	Method	33
		4.2.1	Basic Concept	33
		4.2.2	Orthogonal arrays	33
		4.2.3	Properties of orthogonal arrays	33
		4.2.4	Determining parameter design orthogonal array	33
		4.2.5	Generic procedure adopted under each exp. Investigation	34
		4.4.6	Analyzing experimental data	35
		4.2.7	Advantages and disadvantages of Taguchi method	37
	4.3		of optimum utilizations of solid wastes with Concrete using Taguchi Methodology	38
	4.4		Study: L9 orthogonal array	40
Chapter 5		RESULTS AND DISCUSSIONS		42-60
	5.1	SLUDG	E CHARACTERIZATION	43
		5.1.1	Physical & chemical properties of sludge	43
		5.1.2	Sieve analysis of sludge	43
			XRD of Sludge	45
			EDX of sludge	46
		5.1.5	SEM of sludge	48
	5.2	•	Characteristics	49
			XRD analysis of Flyash	50
		5.2.2	SEM of Flyash	50
	5.3		regates sieve analysis	51
	5.4		ggregates sieve analysis	52
	5.5	Leaching	g and compressive strength of concrete after addition	53

		of sludge		
		5.5.1	COMPRESSIVE STRENGTH of concrete cubes- 7	53
			& 28 days	
		5.5.2	Toxicity Characteristic leaching procedure (TCLP)	55
			Test	
	5.6	ANALY	SIS BY TAGUCHI METHODOLOGY	57
		5.6.1	Overall concentrations and results	57
		5.6.2	Data Analysis of Sound/Noise Ratios	58
		5.6.3	Analysis of Mean (ANOM) Results	59
		5.6.4	Analysis of variance (ANOVA) results	60
Chapter 6		CONCI	LUSIONS & RECOMMENDATIONS	61-63
_	6.1	CONCL	USIONS	62
	6.2	RECOM	IMENDATIONS	63
	6.3	FUTUR	E SCOPE OF WORK	63
		REFER	ENCES	I - V

LIST OF FIGURES

FIGURE NO	CAPTION	PAGE NO
Figure 2.1	Wastewater and sludges generated in the pickling process	8
Figure 2.2	News article regarding pollution from pickling units	11
Figure 3.1	Industrial Visit to the Stainless Steel Pickling Industry in Wazirpur	22
(a) to (f)	Industrial Area. (a) Industry premises, (b) Stainless steel sheet before and after pickling, (c) Pickling Line, (d) Pickling bath, (e) Filter press of ETP and (f) Field analysis of pH of sludge using filter paper.	
Figure 3.2	Dried Lime treated pickling sludge	23
Figure 3.3	Sieve analysis of sludge	24
Figure 3.4	AAS (NOVAA 350)	25
Figure 3.5	Extracted sample after acid digestion kept in reagent bottles	25
Figure 3.6	Analysis on AAS	26
Figure 3.7	Colorimetric analysis for Iron	27
Figure 3.8	Preparation of concrete cubes and their testing	28
(a) to (f)		
Figure 3.9	Concrete cubes with different sludge and flyash contents as per L9	29
E* 2 10	Orthogonal Array	20
Figure 3.10	Filtering of TCLP extract after 18 hours of shaking	30
Figure 4.1	Array selector	34
Figure 5.1	Grain size distribution of sludge	44
Figure 5.2 Figure 5.3	Standards sieves for analysis of sludge XRD of pickling sludge	45 45
0	EDX analysis graph of lime treated pickling sludge	45 47
Figure 5.4 Figure 5.5	SEM micrographs of the pickling sludge at different magnifications	
Figure 5.5 Figure 5.6	XRD of Fly ash	48 50
Figure 5.0 Figure 5.7	SEM micrographs of the flyash at different magnifications	50 50
Figure 5.7 Figure 5.8	Grain size distribution curve for fine aggregates	50 51
Figure 5.9	Sieve analysis of course aggregates	51 52
Figure 5.10	Standard Sieves for particle size analysis for coarse aggregates	52 52
Figure 5.11	Compressive strength of concrete cubes after 7 days of curing	52 54
Figure 5.12	Bar graph representing variation in compressive strength after 28 days	54
Figure 5.12	of curing	54
Figure 5.13	Concentration of Chromium in TCLP leachate	56
Figure 5.14	Concentration of Nickel in TCLP leachate	56
Figure 5.15	Concentration of Iron in TCLP leachate	56
Figure 5.16	Multi response S/N ratios for 4 control factors and their respective 3 levels	60

LIST OF TABLES

TABLE NO	CAPTION	PAGE NO
2.1	Sector-Specific Break-up of Industries in Delhi	6
2.2	Quantity of generation in Delhi of some types of hazardous waste	6
2.3	Some important requirements to be met by various types of cement	18
2.4	Basic components of Cement	18
2.5	The extent of chemical compounds in cement	18
2.6	Role of compounds on properties of cement	19
2.7	Cements with their uses	19
3.1	Mix proportions of concrete used in present study	27
4.1	Studies of design of experiments of utilization of various types of wastes by Taguchi method.	39
4.2	Control factors and their levels	40
4.3	L9 orthogonal array	40
4.4	Experimental Design as per L9 orthogonal array	41
5.1	Characteristics of lime neutralized pickling sludge	43
5.2	Sieve analysis of sludge	44
5.3	Various 2O values for XRD analysis of pickling sludge and the identified compounds	46
5.4	Weight percent of elements identified in Pickling sludge by EDX analysis	47
5.5	AAS results of heavy metal content in sludge	49
5.6	Fly Ash characteristics	49
5.7	Sieve analysis of fine aggregates	51
5.8	Sieve analysis of course aggregates	52
5.9	Cement replacement by sludge and flyash	53
5.10	Results of compressive strength (in MPa) after 7 days of curing	53
5.11	Results of compressive strength of concrete cubes after 28 days of curing	54
5.12	Concentration of heavy metals in the leachate * after TCLP (18hrs) of cement-sludge-flyash concrete cubes at 28 days curing	55
5.13	Percentage concentrations within limits and meeting standards	57
5.14	L9 orthogonal array and experimental results	57
5.15	Tabulation of measured responses and computed values of S/N ratio	58
5.16	Response table mean multiple response	59
5.17	Optimal settings of the control factors	59
5.18	Summary of analysis of variance (ANOVA)	60

LIST OF ACRONYMS

AAS	Atomic Absorption Spectroscopy
ANOM	Analysis of Mean
ANOVA	Analysis of variance
APHA	American Public Health Association
BIS	Bureau of Indian Standards
СРСВ	Central Pollution Control Board
C2S	Di Calcium Silicates
C3S	Tri Calcium Silicates
DOE	Design of Experiments
DPCC	Delhi Pollution Control Committee
EDX	Energy Dispersive X-Ray spectroscopy
ETP	Effluent Treatment Plant
HW	Hazardous Waste
LOI	Loss on Ignition
MT	Million Ton
S/N	Sound/ Noise
S/S	Solidification/ Stabilization
SEM	Scanning Emission Microscope
SS	Stainless Steel
TCLP	Toxicity Characteristic Leaching Procedure
TPA	Tons per Annum
USEPA	United states Environment Protection agency
XRD:	X- Ray Diffractometer
μm	Micro meters