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Chapter 1 

__________________________________________________________________ 

Problem Definition 

    
1.1 Introduction  

 

Images of outdoor scenes often contain haze, fog, smoke or other types of atmospheric   

degradation caused by particles which are present in the air in form of pollutants, aerosols. 

These particles in the atmospheric medium absorbing and scattering light as it travels from 

the source to the observer and result in two fundamental phenomena called ‘direct 

attenuation’ and ‘airlight ’. ‘Direct attenuation’ reduces the contrast and ‘airlight’ add the 

whiteness in the scene. As a result, images recieved by camera or our eyes, seems hazy and 

they lose their contrast, visual vividness and color fidelity(see Fig. 1.1a). Therefore, 

removing haze from images is an important and widely demamded for outdoor-vision 

application used for object recognition, tracking, navigation and satelite imaging. The main 

challenge lies in the ambiguity of the problem. Haze attenuates the light reflected from the 

scenes, and further blends it with some additive light in the atmosphere. The target of haze 

removal is to recover the reflected light (i.e., the scene colors) from the blended light. This 

problem is mathematically ambiguous: there are an infinite number of solutions given the 

blended light. How can we know which solution is true? We need to answer this question in 

haze removal. 

 

1.2 Problem Identified 
 
In terms of mathematics, ambiguity is because the number of equations is smaller than the 

number of unknowns. The methods in computer vision to solve the ambiguity can roughly 

categorized into two strategies. The first one is to acquire more known variables, e.g., some 

fog removal algorithms capture multiple images of the same scene under different settings 

(like polarizers). But it is not easy to obtain extra images in practice. The second strategy is 
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to impose extra constraints using some knowledge or assumptions known beforehand, 

namely, some “priors”. This way is more practical since it requires as few as only one image. 

To this end, we focus on single image fog removal in this thesis. The key is to find a suitable 

prior. 

 

1.3 Proposed technique 
 
In the thesis work a new technique is proposed to remove fog from single color images 

keeping following aspects in mind:  

 To provide high perceptual quality of dehazed image. .  

 To provide less color blurriness in dehazd images.  

 To preserve edges significantly.  

 Method should be fast, simple and effective.  

 

1.4 Tool used  
 
MATLAB is used as simulator to implement the techniques. MATLAB provides highly 

computing environment and advanced in-built function for image processing.  

 

Why matlab...?  

Matlab is an integrated technical computing environment that combines numeric 

computation, advanced graphics and visualization. It is a high level programming language 

that can communicate with its cousins, e.g. FORTRAN and C. MATLAB allows matrix 

manipulation, plotting of functions and data, implementation of algorithms, creation of user 

interfaces, and interfacing with programs in other languages.The language, tools and built-in 

math functions enables to explore multiple approaches and reach a solution faster than 

other programming languages. Besides these Matlab is used for:- 

 Communications Systems  

 Computational Finance  

 Control Systems  

 Digital Signal Processing  
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(a) Input hazy image 

 

 
(b) Haze removal result of our proposed approach 

 
Figure 1.1: Haze removal from a single image by using proposed approach. 
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1.5 Achievements  

The following achievements or we can say objectives were achieved in this work:  

 Almost all the techniques other than  Dark channel prior followed by soft mating  are 

not able to provide sufficient results for image dehazing.  

 Soft matting  performs well in transmission map refinement but small changes of 

parameters from optimized value make the image worse.  

 we develop a simple but effective prior called the median dark channel prior 

followed by guided filtering , to remove fog from a single image.  

 Experiments demonstrate that our method is very successful in severe fog condition 

(e.g., Fig. 1.1 b) and outperforms many previous approaches. 

 
 

1.6 Organization of Thesis 

 
The remaining part of the thesis is organized into following chapters:  

Chapter 2: Introduce the “atmospheric dichromatic model” to describe formation of fog 

images and Literature survey on exixting fog removal techniques.  

Chapter 3: Proposed technique is described to remove fog from a single image.  

Chapter 4: Provide a review of two technique for further refining the transmission map 

obtained by DCP and MDCP. 

Chapter 5: we described Post processing opertor and performance evaluation matrices. 

Chapter 6: Simulation result and comparison with existing fog removal techniques. 

Chapter 7: we conclude this thesis with a summary of findings, open question, and potential 

topic for future research. 
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Chapter 2 

__________________________________________________________________ 

   Background  
 
This chapter introduces the ‘Atmospheric Dichromatic model’ that has been widely used to 

describe the formation of fog ,Haze. We also investigate an overview of previous work on 

visibilty restoration by using both multiple-image and single image cases,with their 

advantages and limitations. 

 

2.1 Atmospheric dichromatic model 

                      In computer vision, ‘Atmospheric dichromatic model’ [1] or ‘Fog imaging model’ 

has been widely used to describe the formation of  haze images. Pictorial description of the 

model is shown in fig. 2.1.  

 

Formation of fog is characterized by following equation:- 

                                                                                           (2.1) 

 

RGB, fog image    at pixel position (   ) is: 

                                                                                                                                   (2.2) 

RGB, image   without fog at pixel position (   ) is: 

                                                                                                                               (2.3) 

 

      Where, (   ) is the location of the pixel,    is the observed fog/haze image ,   is the 

actaul  image aims to be recovered,     is the global atmospheric light which is asumed to be 

constant, and     is the medium transmission coefficient. 

In equation (2.1), the first term               is called ‘direct attenuation’ which produce a 

multiplicative distortion of scene radiance and it reduce the contrast, and the later term  
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             is called the ‘local atmospheric light’ which produce additive effect and it add 

the whiteness in the scene. Intuitively, the image received by the observer is the 

combination of the attenuated version of underlying scene with an additive atmospheric 

light, which represents the color of fog. The ultimate goal of fog removal is to find        

which also require knowledge of three unknown parameter , t and    . From this model, it 

is apparent thet fog removal is an under-constrained problem. In a grayscale image, for each 

pixel there is only 1 constraint but 3 unknowns;for an RGB color image, there are 3 

constraint but 7 unknown (assuming t is the same for each color channel).  

 

 

 

Fig.2.1 Atmospheric Dichromatic Model 

 

In order to make the problem easier, the atmosphere is assumed to be homogenous. This 

has two simplifying consequence: atmospheric light is constant throughout the image: 

meaning it has to be estimated only once and transmission         follow the Beer-Lambert 

law:- 

                                                                                                                                                          (2.4) 

Where  is the atmospheric attenuation coefficient due to scattering and        represent 

the distance from the observer to the scene at pixel (    . when we assume the atmosphere 
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is homgenous, it restricts  to be invariant. The medium transmission coefficient has a 

scalar value within 0          1 for each pixel which attenuates the target color. 

On putting value of         in eq. (2.1) 

                                                                                                                  (2.5) 

         Equation (2.5) indicates that the scene radiance is attenuated exponentially with the 

distance  ). If we recover the transmission, we can also recover the scene depth up to an 

unknown scale. 

Once t and     are known, the image        can be found by using equation (2.1) as :- 

 

                                                           
                      

      
                                            (2.6) 

 
 

2.2 Related work 
 
Many dehazing algorithms have been developed by different workers that were very active 

in this field of study in recent years. In this section, we review the previous haze removal 

methods. We do not discuss the technical details of these methods. Instead, we are 

interested in how they introduce extra constraints. All the methods are reformulated in a 

same framework, though they may be expressed in different forms in the original works. We 

believe that this is helpful to better compare these methods. 

 
2.2.1 Overview of Dehazing methods 

To achieve the goal of fog removal and visibility improvement several methods have been 

proposed from past few decades. The methods can basically be divided into two groups, 

non-model based methods try to enhance the contrast of a hazy image using simpler 

computer vision techniques such as gamma correction, unsharp masking or histogram 

equalization. However, these methods do not always maintain color fidelity. These 

algorithms are designed for images whose properties are roughly constant across the image. 

Model-based methods are those that need either multiple or single image for dehazing. The 

question of what method gives the best visibility improvement should best be answered by 
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the human, as he will be the ultimate judge using the dehazed image in applications such as 

surveillance scenarios. A comparison of a variety of methods can be seen in figure-2.2.  

 

   
  (a) Input Image                        (b) Plarisation-Based [Schechner, et. al., 2001] 

 

 
 (c) Gamma Correction   (d) Histogram Equalisation   (e) Unsharp Masking 
 

  
      (f) [Fattal, 2008]    

 
Figure 2.2: Comparison of  different dehazing techniques. Source: [Fattal, 2008] 
 
 

Figure 2.2(a) shows the input image, right next to it in 2.2(b) is the result of a polarization 

based defogging. The next row 2.2(c)-(e) contains images, whose visibility have been 

improved by simpler image processing methods such as gamma correction, histogram 

equalisation and unsharp masking, respectively. The last row contains the results of Fattal. 

Fattal’s results are the best for the single image dehazing in this comparison. Recently, He et 

al. proposed a new method that produces comparable results to those of Fattal and it is one 

of the best quality avialable today. 

 

2.3 Non model based Dehazing 
 
The Non-model based dehazing methods try to eliminate fog by enhancing the contrast of an 

image, by using simpler computer vision techniques such as gamma correction, unsharp 

masking or histogram equalization. The middle row in fig. 2.2 shows the results of the non-
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model based dehazing. The striking similarity is the blue hue that the three have in common. 

This can only be eliminated with model based techniques. Infect non-model based methods 

can improve visibility for the human eye, but these were not developed to dehaze images. So 

we can use these methods, to further improve an already dehazed image. Thus for this 

purpose, they shouldn’t be used exclusively, but in combination with a dehazer. For the sake 

of completeness however, the three introduced concepts will now be described very briefly. 

 

2.3.1 Unsharp Masking 
 
The idea behind unsharp masking is to emphasize edges. An unsharp masking algorithm can 

detect edges and alter the levels of brightness on both sides of the edge in a way that the 

darker side gets even darker towards the edge and the lighter parts get even lighter towards 

the edge. This produces an overshoot and undershoot, respectively of the brightness curve 

of the pixels at the edge. This is illustrated in fig. 2.3.  

 

 

 

Figure 2.3.: principle of unsharp masking. Source: [cambridgeincolour.com,) 
 
In fig.2.3, left plot shows the overshoot and undershoot resulting from the masking versus 

the actual brightness curve, right plot shows the ideal rectangular curve versus the actual 

curve of the input image.  
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2.3.2 Gamma Correction 
 

Gamma correction refers to a nonlinear operation that amplifies or reduces the luminance 

intensity of an image. This operation is performed on each pixel in the same way, no matter 

its original value. By lowering  in the power-law expression for the gamma correction: 

 

        
 

             (2.7) 

  

the contrast levels may be raised in dark images with low contrasts.  

 

 

Figure 2.4.: Principle of gamma correction, Source: [wikipedia.org] 

 

Here,      and      respectively denote the brightness levels before and after the gamma 

correction. The principle of gamma correction can be seen in the plot of fig. 2.4, the input 

brightness curve is here as an example the input of a CRT display with  = 2.2, with a gamma 

correction curve of  = 1/2.2 the actual linear curve of interest can be restored. The ordinate 

shows the input value(brightness) and the abscissa shows the output value(brightness). 

 

2.3.3. Histogram Equalisation 

The histogram equalisation is a method using the image’s histogram in order to improve 

contrast. Since only so much of brightness values can be displayed, all gradations of 

brightnesses and therefore contrasts must be within the brightness bandwidth. Thus the  
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best results can be obtained, when spreading out the most frequent intensity values over 

the entire histogram. A disadvantage of this method is that it may increase the noise by 

discriminating it from the actual usable signal. However, this method is one of the more 

advanced methods to improve image contrast, and is of the three mentioned in this thesis 

the most resource intensive, but usually also the one with the best results.  

 

 

Figure 2.5.: Principle of histogram equalisation . Source: [wikipedia.org] 

 
Fig. 2.5 illustrates the basic idea behind histogram equalisation. The left plot shows the 

input, where not all possible brightness values are used and the right plot after the 

transmission. This method generally improves the global contrast, locally however spots in 

the image with close brightness values may not be improved in some cases. 

 

2.4 Model based dehazing 

These methods use ‘Atmospheric dichromatic model’ to estimate the fog contribution in 

images and then recover the scene contrast. These methods require extra information about 

the imaging environment and provide better results in comparison with non-model based 

methods. This extra information can be in terms of estimation of transmission-map, or some 

heuristic assumption. Earlier dehazing techniques were based on multiple images or 

supplemental equipment. Some popular model-based dehazing techniques are described 

below: 

 

2.4.1 Polarization Based Visibility Improvements 

Polarization-based dehazing techniques proposed by Schener et. al [3] are part of the multi-

image group, they usually use two input images taken with two differently polarised filters, 

one after another, to produce one dehazed image. Using a polarizer attached in the camera 
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lens, these methods take two images of the same scene under two polarization state, see 

figure 2.6. 

 

 
 

Figure 2.6.: Model for polarization-based dehazing. Source: [Namer and Schechner] 

 
Assume the direct attenuation is completely unpolarized, the haze imaging equations of the 

two images are: 

  
                          

    
                

 

                                                                                  
  

                                 (2.8) 

Here     and   denote two states.  

The equations (2.8) provide 6N constraints, together with 3N unknown  , N unknown   , 3 

unknown   

    and 3 unknown   
  : in total 4N+6 unknown variables. The problem becomes 

over-constrained and can be solved.  An example of polarisation-based dehazing  results, is 

given in fig. 2.7. 

 

 Limiataions of polarization based methods:  

A main drawback of the polarization-based methods is the camera settings, capturing two 

strictly aligned polarized images is troublesome in practice. Another disadvantage, is that it 

require dedicated hardware for rotating the polarizer and it cannot be applied to single 

image. 
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Figure 2.7: Haze removal based on Polarization method. On the left are two images taken in two 
polarizer states. On the right are the estimated scene radiance and depth. 
 
 

 
 

Figure 2.8: Haze removal based on varying atmospheric conditions. On the left are two images taken 
in two hazy conditions. On the right are the estimated image and depth (the sky is ignored).  
 

 
 

Fig. 2.9.: Haze removal based on Given Depth. From left to right: fog image, given 3D structure, defog 
image 
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2.4.2 Methods Based on Varying Atmospheric Conditions 

 
The method proposed by Narsimhan & Nayar in [1-2] takes at least two images of the same 

scene, under different atmospheric conditions (Fig. 2.8 left). The two images are strictly 

aligned. Thus the two images shares the same depth d(   ) and the same reflectance 

ρc     ). It further assumes that the atmospheric light    
  is the only light source of the 

scene. Then the reflection X satisfies: 

 

                                                                  
                                    (2.9)  

 

Under the constant β assumption, the haze imaging equations of the two images are: 

 

                    
             

                 

                                               
             

                                                      (2.10) 

 

 Limaitations of  above method: 

 

Main limitation of this method is that above analysis is valid only when                . 

To ensure this condition, the two images must be taken under very different atmospheric 

conditions, e.g., one in denser haze and the other in thinner haze. This is not an easy task: 

the weather may remain unchanged in several minutes or even hours.  

 

 
2.4.3 Method based on Deep Photo System  
 
A rather different approach was proposed by Kopf et al. in 2008 called the Deep Photo 

System[3]. Kopf developped a data-driven defogging procedure by employing a registration 

process to align the photograph within an existing 3D model. The 3D-model came from 

satellite image data obtained from google earth and bingmaps, NASA radar images. This way 

the method does not need to estimate the distances in the scene, but will get the exact 

distances right away, assuming that such kind of georeferenced digital terrain and urban 

models are available. 
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Under the constant-β assumption, the haze imaging equation becomes 

 

                                                         
                                                          (2.11) 

 

We have 3N equations in (2.11), together with 3N unknown   , 3 unknown    
 , and one 

unknown β: in total 3N + 4 unknowns. The problem is almost well-posed.The extra 

unknown variables (   
  and β) can be estimated by 3D model. See Fig. 2.9 and fig. 2.10(c) 

for an example. After acquiring the depth information, the method of Kopf et al. estimates 

the airlight and the attenuation coefficient similarly to the other haze removal methods and 

then basically solves haze imaging equation(2.1) . 

 

 Limitations of kopf implementation: 
 

Since it heavily relies on 3D model, if no 3D model of the scene is available, no dehazing can 

be performed. Another limitation is that when the alignment between the photograph and 

the model may not be completely accurate due to unprecise 3D-models, it gives poor result. 

 

2.4.4 Summary  of  Multiple-image fog removal methods 
 
The multiple-image fog removal methods share some common advantages and limitations, 

some of them are listed as:- 

 

Advantages:  
 
 These methods  posses fast running time.  

 The computation is often pixel-wise and no complex optimization is needed.  

 Another benefit is that they may handle some special situations. For example, the 

dichromatic methods can handle night images, and the polarization-based or depth-

based methods allow it to vary across color channels. 

 

Limitation:- 
 
 The common limitation of these methods is that the extra images are not easily 

available.  
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 They all require special settings with carefully calibration. 

 They require dedicated hardware for rotating the polarizer . 

 This is not practical in most cases, such as for hand-held cameras and outdoor 

surveillance systems. 

 Though these methods , increases the number of known variables, at the same time it  

brings in more unknowns. So the setting must under certain constraints to avoid too 

many unknowns being introduced.  

 when only a single degraded image is available as an input, these methods  fails. 

 

The limitations of these methods motivate the development of single image fog removal 

methods. 

 

2.5 Single image fog removal 
 
                Single image fog removal methods have to rely on some priors. The priors can be 

statistical/physical properties, heuristic assumptions, and application-based rules. In recent 

years a significant progress has been made [4–8] that  remove fog from a single image 

without using any other extra source of information. Some of them are: 

 

2.5.1 Fattal’s Method 
 
Fattal[4] introduced a new technique in 2008 for single image dehazing that produces 

qualitatively great results on hazy images. Fattal’s method is based on Independent 

Component Analysis (ICA). ICA is a statistical method to separate two additive components 

from a signal. Fattal adapts this method to remove fog from images. 

 

Denote the luminance by l(x). Then        is Rl(u,v), and the haze imaging equation 

becomes: 

 

                                      (2.12) 

  

The two scalar components l(u,v) and t(u,v) are to be separated. The luminance l(u,v) 

depends on the illumination, object reflectance, and the scene geometry, whereas the 
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transmission t(u,v) depends on the depth and the property of the haze. Fattal’s assumption 

is that: these two components are due to unrelated sources and therefore statistically 

independent. Under this assumption the method can recover the reflectance of the pixels 

and provides extra constraints. We omit the technical details. Unlike Tan’s method, this 

method is physically valid. The results often looks more natural and visually pleasing (see  

Fig. 2.2(f) and Fig. 2.10(d)). 

 

 Limitations of Fattal work:- 
 
The main limitation of this method results from the locally based statistics. To ensure the 

statistics is reliable, the method requires the two components l(u,v) and t(u,v) to vary 

significantly in a local patch. This condition is not always satisfied. For example, a local 

patch of a distant scene usually exhibit negligible variance in t(u,v). To handle this problem, 

the method only apply the ICA to some reliable patches. "Moreover, as the statistics is based 

on color information, it is invalid for grayscale images and difficult to handle dense haze 

where the different component are difficult to resolve."  

 

2.5.2 Tan’s Method 
 
Haze reduces visibility. Removing the haze will enhance the visibility of the image. In [5] 

Tan proposes a method to maximize the visibility. Tan’s method is based on the optical 

model given by: 

  

                         
              (2.13) 

 

The first term in this equation is ‘direction attenuation’ and the second term corresponds to 

the ‘airlight’. In this formula there are more unknowns than known. Nevertheless, there are 

some clues or observations that Tan makes use of in his algorithm: the transmission t is 

treated to be constant inside a patch, so                   . The total visibility inside the 

patch is defined as the sum of the gradient magnitude: 

 

                
 

 
                       (2.14)  
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The visibility of the recovered image                     will keep increasing when the 

transmission  t is decreasing. Tan supposes the atmospheric light is the light source of the 

scene, so                   
   with 0 <=         <= 1. This leads to the following 

constraint: 

 

               
      (2.15) 

 

In Tan’s method, the value         outside this range is truncated. This operation prevents 

the visibility of                 from increasing because the truncated values provides zero 

gradients. The optimal t is the value that maximizes the visibility. This computation is 

performed in each patch, providing a constraint for each pixel. Tan’s method has the 

advantages of enhancing the visibility. But it has some limitations. The drawbacks of the 

implementation are the speed of the algorithm and the restored images often look over-

saturated and unnatural as in fig.2.10(b).  

 

2.5.3 Tarel’s et al. method 

One of the disadvantages of the algorithm discussed in the previous section is its speed. 

Tarel et al.[7] proposed an algorithm which is faster and claims to have similar or in some 

cases better results. Tarel et al. model is based on the same model as Tan uses 

 

                                                                             
    

   
                                            (2.16) 

 
 

                                                                    
             

      
                                                                 (2.17) 

 
As it is not possible to separate the depth and extinction coefficient the atmospheric veil is 

introduced          
           . The rewritten fog model is shown in Equation (2.16), 

         is the input image and        is the restored output image. Due to whitebalance in 

the pre-processing stage     
 = [1; 1; 1]T , allowing the equation to be rewritten to Equation 

(2.17) which isolates       . When the airlight is pure white the atmospheric veil adds 

whiteness to the image, the amount of whiteness added depends on the depth of the object.  
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Because the whiteness gives information about the depth and the depth is proportional to 

the atmospheric veil it is possible to base the atmospheric veil on the whiteness of the 

image. The mentioned constraints can be formulated as Equation(2.18)  

 
                                                                               (2.18) 
 
                                                                                                                                          (2.19) 
 
                                                                                                                         (2.20) 
 
                                                                                                                              (2.21) 
 
Besides the constraints as stated in Equation (2.18), the atmospheric veil is smooth except 

along depth discontinuities. Using a median filter, W(x) can be smoothened while keeping 

edges. The smoothened version of W(x) is stored in matrix A(x). Equation (2.19) shows this 

first step. The next step is preventing contrasted texture to be affected too much, this is 

done by subtracting the local standard deviation of A(x) from W(x). This operation is stored 

in matrix B(x) as shown in Equation (2.20). Finally V (x) is inferred using Equation (2.21). In 

this equation p is used to control the strength of the restoration.  Main drawback of tarel 

implementation is that ir require too many parameter for adjustment. 

 

2.5.4 Tripathi et.al implementation  

In 2013, Tripathi et al. [12] proposed a fog removal algorithm that uses single image. 

Tripathi observed that fog has no effect on hue of the scene. Other two component 

saturation and intensity are affected by fog. This modification reduces calculation 

significantly, as processing is needed only over the saturation and intensity plane. 

Anisotropic diffusion is used for the refinement of transmission-map. Owing to the use of 

anisotropic diffusion,this technique is computationally intensive and require a number of 

parameter for optimal result. Fast implementation of anisotropic diffusion is a challenging 

task. 
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(a) Input Image     (b) [Tan, 2008] 

 

  
  (c) [Kopf et al., 2008]     (d) [Fattal, 2008] 
 

Figure 2.10: Comparison of  different  model based single image dehazing techniques. Source: [He et al.] 
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(a) [He et al, 2011] 

 

 
      (b) [Proposed method] 

 
Figure 2.11.: Comparison of  dehazing result using the algorithm of [He et al], using 2.10.(a) as input 
image. Figure (b) shows the dehazing result by using the proposed algorithm. 
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2.5.3 He et al. implementation 

 

 A very promising single image dehazing technique, that has been used as the basis of our 

thesis developed by He, Sun and Tang [8] in 2010 called the Dark Channel Prior . 

 

Although every assumption limits the algorithm to specific case, the main assumption here 

seems to work for most outdoor scenes, except for those where "the scene object is 

inherently similar to the airlight over a large location and no shadow is cast on the object". 

The main prior in this method is, as the name lets assume, the dark channel prior, which is a 

statistical based assumption of fog-free outdoor images. The prior says, that in most of the 

local patches that aren’t sky, will contain one or more pixel whose intensity is very low and 

may be even close to zero in atleast one of the color channels (RGB). Low value of intensity 

is caused by lacking of color in a channel which may be due to shadows, dark 

objects,colorful object.  

 In the hazy image then, these dark pixels can be used to determine the airlight. The dark 

channel of an image X is defined as:- 

 

                  
              

           

   
         (2.16) 

Where    is a color channel of X ,    is a local patch centered at(u,v) .    
   is atmospheric 

light of the corresponding channel . 

 

This    can be used to create a coarse estimate of  transmission given by: 

 

                         
   

          
           

   
          (2.17) 

The scaling parameter, w, takes a value from 0 to 1, corresponding to the amount of fog left 

in the image. A typical value of   to preserve depth is 0.95.  Before we move on to the 

smoothing step that they usesd to refine the transmission estimate, let us take a closer look 

at the meaning of (2.17). To simplify our exploration, suppose we only have one color 

channel such that image    becomes 
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                            (2.18) 

 

If we assume that, within patch       , the radiance of the target is smooth          , 

then we have 

                  
     

 

   
             

 

                                                                    
 

   
               

                                            (2.19) 

 

In (2.19), the DCP value     is a function of transmission      ) in a patch with smooth 

radiance (no texture). Next, if we assume that the transmission is smooth           , 

which means smooth depth within patch        , then we have 

 

                  
     

      

   
      

 

                                                                       
 

   
            

                                               (2.20) 

 
In (2.20), with smooth depth but high texture in patch        , the DCP is strictly a function 

of the minimum value from        but yet attenuated by    . This also means that the DCP 

of a texture at a close distance           will be greater than the DCP of the same texture at 

a far distance            , i.e., 

 
                                                                                                                                          (2.21) 
 

Based on our simplifications, (2.19) and (2.20) show that there is a loose relationship 

between the DCP value    and transmission  . The relationship breaks down when the 

depth variation is not smooth and when the texture is high (occlusion boundaries Fig. 3.1). 

To account for the DCP  breaking down in textured and varying depth region, He used a 

spectral matting method to smooth or refine the transmission estmate. The refinement 

method used by HE  works well but require several seconds to process because of the  
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generation of the laplacian matrix that initialize the spectral matting method see fig 2.11(a).  

A detailed explanation of methods  used for refinement of estimated transmission-map is 

described in chapter-4. 

 

Drawback of He et al. implementation 

 Processing time is slow and cannot be used in real-time systems. 

 It is quite possible that some areas of the image do not fulfill the dark channel prior. 

As a result, these methods may suffer from one or more of the following problems:- 

 First, It usually result in color over saturation, becaues it cannot satisfy the limit 

requirement that the obtained dark channel should be no brighter than the 

minimum color channel.  

 Secondly, it usually introduce artefact into the smooth areas, where the dark 

channel prior is unreliable. 

 Restored image usually looks dark after haze removal see Fig. 2.11. 
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Chapter 3 

__________________________________________________________________ 

Proposed method 
 

There are several methods for estimating the fog contribution in a single image. One of the 

most successful of these methods is known as the dark channel prior, which is used as the 

basis for fog estimation in this thesis. 

 

3.1 Median Dark channel Prior  

We propose a visibility restoration algorithm based on the utilization of median filtering 

operation. Our proposed method is an improvement to the Dark Channel Prior [8] by 

replacing the second minimum operator in equation (2.16) with a median operator. The 

median operator performs a non-linear filtering operation which can effectively suppress 

impulsive noise components while preserve edge information in detail areas and permitting 

dehazing in smooth areas. In the case of noise this works because the median is unaffected 

by the outlying values from the noise as long as there is not too much noise. 

 

The proposed MDCP for an image X is given as: 

                  
              

                   (3.1) 

Where,       ) represents the ”median dark channel" of an image at pixel location      .  

            

3.2 Atmospheric light estimation 
 

The Median dark channel prior effectively identifies the relative amount of fog in an image, 

and thus can aid in estimating the atmospheric light,    . In the haziest regions of the image, 

transmission tends toward zero, and the atmospheric light contribution dominates the 

scene radiance. This is apparent from examining Eq. (2.1): 

   
        

              
        

                  
        

              

                                             

                                                        (3.2) 
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Thus the brightest regions of        contain mostly atmospheric light. The approach 

adopted in this thesis, following [7], is estimating      as the brightest intensities in each 

color channel chosen from the 0.1% brightest pixels in       , which correspond to the 

top 0.1% brightest pixels in the dark channel.  

 

After estimation of airlight  normalize the MDCP : 

 

                                                             
    

        

   
                      (3.3) 

 

 3.3 Transmission-map Estimation 

 
Assuming now that       has been estimated, an estimate of the transmission map is 

obtained by normalizing the fog imaging equation (2.1) by       . 

 

         

   
          

       

   
                  (3.4)  

 

Note that we normalize each color channel c independently. Then we compute the dark 

channel on both sides of this equation, i.e., we insert the minimum operators: 

 

  
          

   
          

   
          

               
       

   
                         

   
          

    (3.5) 

 

    
          

   
          

   
          

        (                (3.6) 

  

                                                  
          

   
          

   
          

       (3.7) 

 

                                                                 (3.8) 
   
Where,           represent normalized median dark channel of fog image. Superscript c 

signifies a specific color channel, i.e. the red, green, or blue. Note that     is a vector quantity 

containing a separate value for each color channel, and so    
   is a scalar quantity referring 

to one individual value. Since           is constant it is taken out of the min operation. 

Furthermore, since ( ) and    
   are both positive, the dark channel prior implies that 
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   . Thus, an estimate for the transmission map is 

obtained by simply subtracting the dark channel of the normalized image from 1. As 

humans require some presence of fog to perceive depth, a scaling parameter can be 

introduced into Eq. (3.8). Removing the fog completely can lead to unnatural, flat looking 

images. 

                                                                
              (3.9) 

 
Similar to the previous consideration for equation (2.18), equation (3.3) is simplified by 

assuming that there is only one color channel, i.e., 

  

                                                            
    

       

   
  

 

                                                                      
    

            

   
                 (3.10)          

 

We will get the same conclusions in (3.10) with assuming smooth radiance and smooth 

depth, as shown in (2.19) and (2.20), respectively, by replacing      operator with    .   

 
However, let us take a look at how the MDCP method compares with the DCP method at 

occlusion boundaries. First, let vector       contain the sorted arrangement of pixels 

           such that the lowest value is at         and the highest value is at        

      
      for window of size       , i.e., 

 

                                                           

                      

 
                      

                                            (3.11) 

 

 
We now have the nonsmoothed DCP and MDCP as: 
 

             
        

   
      (3.12)  

                                                                           
     

    

 
    

   
      (3.13) 

for N odd. 
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Suppose, at an occlusion boundary, there are two different types of pixels    in patch        

that are either foreground pixels     or background pixels     in the sorted vector ,      i.e., 

 

                                                

 
 
 
 
 
 
 
                      

 
                      

                      

 
                       

 
 
 
 
 
 

      (3.14) 

 
 
With   set to 0.95 for our experiments. The recovered dehazed  image  using the non- 

smoothed MDCP is: 

 

                                                             
            

             
           (3.15) 

 

fog removal using , direct result from the dark channel prior leads to halo-artifacts or 

occulusion in the final image see fig 3.1. As shown in Fig. 3.2(a), the closer pixels  are 

darker than hazier background pixels that are farther away. Notice that, comparing (3.12) 

with (3.13), even if there was one foreground pixel at the extreme edge of neighborhood 

      , the DCP will choose the foreground pixel value     at        , whereas the MDCP 

method will choose the background pixel     . If no refinement is used, then this will cause 

halo artifacts at occlusion boundaries for the case of using the DCP. In  fig. 3.2 we also 

compare the halo effects when using the DCP, Tarel’s method and MDCP. Notice the 

reduction of the halo effect with the MDCP method.  

 

 

 

 

 

 

 

 



 
 

Chapter 3 Page 29 
 

  

(a) Input fog image                                      (b) Estimated transmission map 

 

                                                                       (c) Recovered image 

Figure 3.1: Recovering the scene radiance using the transmission map obtained directly from the Dark 

channel prior results in undesirable artifacts.  

 

(a)  Hazy image    (b)        (c)        

 

(d)     

Figure 3.2 : Examples of occlusion boundaries. (a) Original image. (b) Dehazed using unrefined DCP method 

(c) Dehazed using our proposed MDCP method (d) Dehazed using method from Tarel. Notice in (b) and (d) 

that there are halo artifacts around the leaf edges. The halo artifacts are not as dominant in (c). 
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3.4 Flowchart of proposed method 

 

 

  

  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 
 
 
Fig 3.3 Process flowchart of proposed dehazing method. The patchsize in this example is set 
to 15 x 15.  
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Chapter 4 

__________________________________________________________________ 

Transmission Map Refinement 
   

once the transmission map,    , and atmospheric light,     , are known, the scene radiance can 

be solved for directly using Eq. (2.6), which is repeated here for convenience: 

 

                                                           
                      

      
     

 

                                                                    
            

      
                                                                       (4.1)    

                                                                            

where (   ) is a pixel location,    is the input image,   is the recovered image,     is the 

atmospheric light, and t is the transmission. When using Eq. (4.1), t is typically lower 

bounded to a small number, such as 0.1, to avoid instability. Chapter 3 provided a simple 

method for estimating the transmission and atmospheric light. However, if the image 

       is recovered directly from this transmission estimate, the result contains block 

artifacts and halos around depth discontinuities, due to the nature of the estimation method 

(see Fig. 3.1 and Fig.3.2). 

 

               In order to remove these artifacts, it is necessary to further refine the transmission 

map. This chapter first provides a review of two existing methods that are used to refine the 

transmission map. The first is a result from Levin et al. [10] originally intended for image 

matting that was adopted by He et al.[8] for refinement of transmission-map. The second is 

a much faster method called the “Guided Image Filter" [9]. Although in [9], the Guided Filter 

was briefly mentioned as applicable to transmission map refinement, here it is examined 

more closely for this application, with a direct comparison to the results using the first 

approach.  
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4.1 Matting Laplacian 

        Interactive image matting is a problem in which one must separate a foreground object 

from a given image based on limited user input. For example, one may wish to separate a 

person from the surrounding scenery. User input generally involves the creation of a coarse 

image mask, called a trimap [10], where white pixels definitely belong to the foreground 

object, black pixels definitely belong to the background object, and gray pixels can belong to 

either. The job of an image matting algorithm is then to refine this coarse image mask, 

resolving whether the gray pixels belong to the foreground or background. Formally, the 

image matting problem can be described by the following equation: 

 

                                                                                                               (4.2) 

 

        where       is a pixel location,    is the input image, F is the foreground image, B is the 

background image, and α is called the alpha matte, describing the opacity of the fore ground. 

Looking closely, this is exactly the fog formation equation first presented in Chapter 1, 

repeated here for convenience: 

 

                                                                                                                          (4.3) 

 

where F corresponds to the underlying scene image, X, B corresponds to the atmospheric 

light,    , and α corresponds to the transmission, t . Furthermore, the coarse transmission 

map estimated in Chapter 2 can be interpreted as the user-input trimap in interactive image 

matting.  

 

               In [10], Levin et al. proposed a state-of-the-art, closed-form solution to this problem. 

Their solution is based on the assumption that within a small window, pixels belonging to a 

single object are a linear mixture of two colors. From this assumption, Levin et. al derive an 

affinity matrix, L, known as the “Matting Laplacian." 

  

The (i , j ) element of L is defined as: 

 

                  
 

    
           
        

 
 
 
    

 

    
   

  

     
 
                  (4.4) 
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   Where,     is the Kronecker delta,  
 

 and     are the mean and covariance of the colors in 

window (   )centered around k,      is the number of pixels in each window, and    is a 

3x3 identity matrix.   is a small regularization parameter. The summation is for all windows 

shared by pixels i and j in the image X . Note that for an image of size MxN, L is a symmetric 

matrix with size MN x MN, and that i and j refer both to a location in L and to the ith and jth 

pixels in the vectorized image, X . Since window sizes that are too large may violate the color 

line model, the typical size used, and the size used for all examples shown here, is 3x3. 

 

4.1.1 Transmission Map Refinement using Matting Laplacian 

 
Given the coarse transmission map estimate, the Matting Laplacian is used to find a refined 

transmission map by minimizing the following quadratic cost function: 

 

                                                                                                                                        (4.5) 

where t is the vector form of t ,     is the vector form of the coarse transmission estimate, and 

¸ is a regularization parameter. The solution minimizing Eq. (4.5) is found by solving for t 

from the following: 

                                                                                                                                            (4.6) 

 

where U is an identity matrix with the same size as L, and ¸   is a small value (10-3 to 10-4) so 

that t is softly constrained by    . Although L is dimensionally large (MNxMN), due to the 

window constraint on i and j , it is sparse.  This method seems very elegant and shows very 

good results, as one can see from Fig.4.2(c). In Fig. 4.1 we shows the results of applying the 

Matting Laplacian to the results from Fig. 3.1. 

 

Summary 

Since the computational cost in soft mating is quite high, we can’t used it for refinement of 

large image and it is suitable for small images only. 
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(a) Estimated transmission map from DCP 

 

 (b) Refined transmission map using Soft-mating 

 

 

(c) Recovered image from refined transmission map  

Figure 4.1.: Refining the DCP  transmission-map using the Matting Laplacian results in a 

much smoother recovered scene radiance. For this example,  =10-3 ¸ and Ɛ=10-4 
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4.2 Guided Filter 

The Matting Laplacian which was used for refinement of transmission map in [8] produces 

visually satisfying result, but the computational cost is very high as it involves solving a 

large linear system, by inverting a very large matrix. Therefore to speed up the defogging 

process, the transmission map obtained in chapter-2 is refined by using guided filter [9]. 

The guided filter is a fast, accurate, non-iterative, edge-preserving smoothing operator, 

which filter the input image under the guidance of another image. Denote the input image as 

  the guidance image as   and the filtering output as  . The local linear model of guided filter 

assumes that   is a linear transform of the guidance   in a window    centered at pixel k, so 

that mathematically we have:  

 

                                                                                                                                            (4.7)    

                   

Where,    are the filter output,        are some linear cofficients assumed to be constant in 

a window   . We also denote the radius of the window    as r, which is the pixel distance 

from the centre pixel to the outer pixel. Since square window are used ,the total window size 

is therefor(            . 

The guided filter seeks for coefficient        that minimize the difference between the 

output ( )  and input ( ), by using following cost function.  

                                                        
     

      
                                                   (4.8)   

Where,   is regularization parameter to prevent    from being too large. The solution of 

equation (4.8) is found to be 

                                          
 

   
         

          

  
   

                                                        (4.9) 

                                                                                                                                            (4.10) 

 

Here,    and   
  are the mean and variance of   in a window    ,and     is the no. of pixel in 

  .        is the mean of    in   .      the 3x3 covaiance matrix of   in    . So after computing 

all filter coefficients         , in the image, the final output is :- 
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                                            (4.11) 

Where      and   
  are obtained with average filter:   = 

 

   
       

  ,   
 = 

 

   
       

 . Since      

and   
  are outputs of an average filter, their gradients are quite small, so         . The 

Guided Filter is also extended to color guidance images by rewriting Eq. (4.11) as: 

 

                                                      
                                                                                    (4.12) 

 

The guided filter than become 

                                                       
 

   
         

                                            (4.13a) 

                                                           -   
                                                                                       (4.13b) 

 

                                                         
      

                                                                                      (4.13c)                               

 

4.2.1 Transmission-map refinement using Guided filter 

For guided filter, the guidance image I, the input p and the filtering output q play similar 

roles as the input image, the trimap and the alpha matte in the closed-form matting 

framework [9]. An illustration of guided filter is shown in  Fig.4.2. 

 

Fig. 4.2 Illustration of guided filter. After filtering the edges of the guide image are transferred to the 

filtering image 
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4.3 Algorithm:- Guided Filter 

Input: transmission map    ,guidance image   ,regularization parameter ԑ. 

Output: filtered transmission map  . 

Step 1.  
               

                    

                    

                       

Step 2.      

                        

                             

Step 3.      

                 

         –a.*       

 

Step 4.                            

 

The results of transmission refinement using guided filter is shown in Fig. 4.3. 

 

4.4 Summary 

 

 Guided filter reduce the problem of solving a large linear system of equation to a 

simple filtering process that can be computed in O(n) time. This property is 

important for single image dehazing because it provides a chance to improve the 

efficiency of transmission refinement in [8].  

 Guided filter  has the ability that it can transfer the structure of guidance image to the 

filtering output so that it has good behaviour near edges. 

 complexity of our method is quite low, and it is capable of processing the large image 

with short running time. 

 



 
 

Chapter 4 Page 38 
 

 

(a) Estimated transmiission map from MDCP 

 

(b) refined transmission map using Guided filter 

 

(c)Recovered image from refined transmission map 

Figure 4.3: Refining the MDCP  transmission-map using the Guided Filter(Ɛ=10-4, r=15) 
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Chapter 5 
__________________________________________________________________ 

Post processing & Performance Evaluation  
matrices 

 

5.1 Introduction 

It is found that image after removal of fog loose some contrast and appear dim. Hence there 

is a requirement of some contrast-enhancement technique which can enhance the visibility. 

The most common method for visibility enhancement are histogram equalization and  

histogram stretching. Histogram equalization is  the most popular method and it is used to 

enhance the contrast of the image by gray-scale transformation but,its major disadvantage 

is that it over-enhances the image and shift its mean brightness and consequently it creates 

an unnatural look. While in histogram stretching we have to be careful of clipping otherwise 

it eliminate visual information in very bright and in very dark region. Therefor instead of 

using HE and histogtram stretching which affect the whole image CLAHE is used to enhance 

the contrast of low-contrast regions. 

 

5.2 Contrst Limited Adaptive Histogram Equalisation  

Contrast limited adaptive histogram equaization is a visibility enhancement algorithm 

which can provide optimal equalization and enhance the local contrast of the image. It can 

overcome the problem of standard histogram equalization technique. As proposed in [15] 

CLAHE algorithm divide the images into small blocks [8x8], and apply histrogram 

equalization to each block for contrast-enhancement and to combine the neighboring block 

in an image bilinear interpolation is used which eliminate the artificially induced 

boundaries.There are two parameter which are used in CLAHE to control image 

quality.These are block-size and clip-limit. Block-size specify the size of contextual-region 

and  clip-limit is a scaler parameter in range [0 1] specify the contrast enhancment limit and 

prevents over-saturation. A representation of CLAHE algorithm is shown in fig.(5.1) 
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The CLAHE method can be derived  into following steps : 

                                                     
       

     
                                                                                            (5.1) 

Where ,       = average no. of pixel. 

                        = No. of  pixel in x-direction of the contextual-region. 

                        = No. of  pixel in y-direction of the contextual-region. 

                     = No. of gray level in the contextual-region. 

 Based on equation (4.1)     can be calculated by: 

                                                                                                                                                   (5.2) 

Where,     is the actual clip-limit.       is the maximum multiple of average pixels in each 

gray level of the contextual-region.  

                            

(a) Original Histogram                                                                    (b) Clipped Histogram       

Fig. 5.1 Representation of CLAHE 

 

From Fig. 5.1, we can observed when number of pixels is greater than      , the pixels will 

be clipped. We could defines the total number of clipped pixels as       , then the number of 

pixels distributed averagely  into each gray level is given by:- 

                                                   
       

     
                                                                                                (5.3) 
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Rules for calcalating the CLAHE of the contextual region : 

 

 

 

 

 

After the distributed pixel are given by:  

                                                 
     

   
                                                                                                      (5.4) 

Where,     are the remaining number of clipped pixel after following the above distribution. 

 

5.3 Performance Evaluation Matrices 

Evaluation of images, after processing, is an important step for determining how well the 

images are being restored. Quality of image is usually assessed using image quality metrices. 

Many metrices has been proposed over the past few decades for measuring the visual 

quality of enhanced image. Each one has its advantage and disadvantage in terms of 

accuracy,speed and application considered. Infact there is no universal measure, which 

specify both the subjective and objective validity of enhancement for all type of images. In 

this paper  performance of our proposed method is measured in terms of Absolute mean 

brightness error(AMBE), visibility metric(VM), PSNR and run time (     ). 

 

5.3.1 Absolute mean brightness error (AMBE) 

A qualitative measure of visibility enhancement is checked in terms of AMBE. To examine 

how the apearance of image has changed after removal of fog, the deviation of the mean 

intensity of the enhanced image from the mean intensity of the reference image is 

computed. 

                                                          
 
  

 
                                                                                 (5.5) 

AMBE should be as small as possible for better similarity between two images. 

 

Rule 1.                                     

Rule 2.                                           

Rule 3.                                
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5.3.2 Visibility metric (VM) 

The visuality enhancement performance of proposed method are defined by visibilty metric. 

Visibility is a measure of image quality and used to tell how well an observer can view a 

texture and color of image.Visibility metric gives an objective measure of detail 

enhancement. It is useful for measuring the improvement in contrast as well as 

sharpness.The visibility metric calculate the contrast to noise ratio (CNR). CNR is similar to 

SNR but subtract off a term such as fog before taking a ratio.  

                                                         VM=         
     

  
                                                                  (5.6) 

Where, 

               
 

= 
 

     
           

   
   
                                                                                                          (5.7) 

              
 

= 
 

     
           

   
   
                                                                                                          (5.8) 

                                                                                                                                              (5.9)  

      
  

 

         
             

   
   
     

 
                                                                                        (5.10)  

Here,   and   denote the reffernece and enhanced image. The effectiveness  are described by 

high value of visibility metric. 

 

5.3.3 Peak signal to noise ratio 

There are many version of signal–to-noise ratio,but the PSNR is simple and widely used 

parameter for fidelity measurement. PSNR is calculated in decibals units, which measure the 

ratio of the peak signal and the mean-square-error of the two images. PSNR  is defined by:  

                                                              
      

   
 db                                                               (5.11) 

Where, 

                                                      
 

     
             

   
   
                                                    (5.12) 
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Where    and   denote the reffernece and enhanced image respectively .        represent 

the size of image and L is dymanic range of pixel value(256 for 8-bit grayscale image). A high 

value of PSNR yield good result. 

 

5.3.4 Run time      ) 

For a 600 x 400 color image by using guided filter run time is decreased by a factor of 10. 

For the run time comparison ,we have chosen three different algorithm from the literature. 

A comparison of run time      ) is summarized in table 1. 
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Chapter 6 

__________________________________________________________________ 
Result and Evaluation  

 

This section presents an assesment of the proposed method. The proposed method is 

implemented in MATLAB R2011b, 64-bit Intel Core-i3 processor,RAM-3GB. To compare the 

performance of our method, images used in our bechmarking are derived from several 

sources such as the ‘google database’ or private collection.  

 

6.1 Analyses and Parameter Settings 

 
An important parameter for computing the dark channel is patch size, we denote its radius 

as      . Since the computational cost in soft mating is quite high, we can’t used it for 

refinement of large image and it is suitable for small images only. So in [8] the patch size is 

fixed as 15x15, which is relatively small. However the complexity of our method is quite 

low, and it is capable of processing the large image with short running time. So it is not 

appropriate to use fixed patch size in our case. Therefor, we adapt a simple stratgey to 

adjust       according to area of image . When the no. of pixel in the image exceed 5x105  the 

radius is fixed as      = 30, preventing the patch size from growing too large; When the no. 

of pixel in the image is less than 2x105 , the patch radius is fixed as      =7, preventing the 

patch size become too small. For images with pixel numbers in between, we interpolate the 

patch radius linearly. Notice that there exist a tradeoff for the patch size. When it decreases, 

the blocky artifacts in the coarse transmission map reduce, making it easier for the guided 

filter to refine the transmission; however, a smaller patch size makes the dark channel 

prior less appropriate, the transmission t(x) is underestimated and the recovered image 

still have poor visibility. However, a large radius r implies that the filtering output is linear 

to the guidance image in a large range, which helps to reduce the block artifacts in the 

transmission map, so that the halo effect in the recovered image can be eliminated. 

However, if r is too large, the transmission map will capture too much details from the 

guidance (the input hazy image), making the recovered image over-saturated. Therefore the 



 
 

Chapter 6 Page 45 
 

patch size should neither be too large nor too small. For the guided filter, our experiments 

find that the refined transmission map is not sensitive to the regularizer ϵ, and we fix it to be 

10-3. But for the filtering radius r, its behavior is quite different.  Fig. 6.1 shows an image 

(with size of 896×672) recovered with different radii r. In this example, the patch size to 

compute the dark channel is deliberately set as 15 × 15. As can be seen, r = 8 (corresponds 

to the window of 17×17, which is of similar scale as the patch size 15×15), in Fig.6.1(d);the 

halo effect is quite severe , when r = 800, the halos are suppressed Fig.6.1(f), but notice the 

leaves in the image become saturated; when r = 80, there’re still some halos (Fig. 6.1(e)), 

but it compromises between the two extremes. 

 

6.2 Qualitative analysis  

Qualitative analysis of our work are compared with recent state-of–the-art methods in Fig. 

6.2 and in Fig. 6.3. Experimental result show that proposed algorithm produces high quality 

fog free images without scarificing the fidility of the colors. Figure 6.4. Defog result of our 

work and comparison with He et al.’s work. 

 

6.3 Quantative Analysis 

Quantitative perforance of proposed method are measured in terms of Absolute mean 

brightness error (AMBE), visibility metric(VM), PSNR while run time (    ) is also used to 

compare the efficiency of our method. Compared to the work in [8], the main advantage of 

combining the median dark channel prior and guided filter to defog the images lies in its low 

computational cost.  Our Matlab implementation takes about 4 seconds to process a 1-mega 

pixel image, but in [8], it takes about 10-20 seconds to process the same image. By virtue of 

its exact O(N) time complexity, the running time of our algorithm becomes tolerable for 

many applications. To check the effetiveness of our proposed method, we done the visibility 

metric comparison with other state-of-art methods in Table-I. In Table-I, 2nd column 

represent the actual visibility of fog images, wheres the restored visibilty are depicted in last 

column of table II. We observed that actual visibility of image ‘mountain-01’ is 70.59 which 

is increased to 115.62 after fog removal. Similarly in Table II and in Table III we compar e 
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the Peak signal to noise ratio  and absolute mean brightness error with other state-of-art 

methods. 

 

 

(a)                                                                                                 (b) 

 

                                                    (c)                                                                                                  (d)                  

 

                                                   (e)                                                                                                 (f) 

Fig. 6.1. Scene radiance recovery using different filtering radii r (patch size of dark channel 

is 15x15, ϵ = 10-3). (a) Input hazy image. (b) Dark channel. (c) Coarse transmission map. 

(d)(e)(f) Scene radiance recovered with r equals to 8, 80, and 800, respectively. 
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               (a)                                        (b)                                            (c)                                          (d)

     

(e)                          (f)                                         (g)     

       

                       (a)                                        (b)                                          (c)                                      (d)   

   

                 (e)                                      (f)  

Fig.6.3  Defog result comparison with recent state-of-the-

art methods. Source[ He et al]  

 a) original foggy image ‘tower 02’.   

 b) Kopf et al.   

 c) Fattal’s    

 d) Tan et al.    

 e) He et al.    

 f) Tarel et al.  

 g) our work 

 
 

Fig.6.2 Defog result comparison with  

state-of-the-art methods. 

(a) image ‘mountain 01’. 

(b) Kopf et al. 

(c) Fattal’s 

(d) Tan et al. 

(e) He et al. 

(f) Tarel et al. 

(g) our work 
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(a) Input images                             (b) He’s Result                              (c) our Result 
 

Fig. 6.4 Defog result comparison for some popular fog images with He et al. work   
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Table-I 

Visibility metric comparison with various state-of–art method 

Image VM Kopf Fattal Tan He Our 

Mountain’01’ 70.59 80.14 78.18 76.62 87.95 115.62 

Tower ‘02’ 65.92 99.61 99.26 97.48 103.41 150.63 

Sweden 62.99 100.87 85.21 114.15 113.24 115.98 

 

Table II 

PSNR comparison with various state-of–art method 

Image Kopf Fattal Tan He Our 

Mountain’01’ 34.83 45.74 30.07 32.16 48.40 

Tower ‘02’ 31.47 36.82 28.62 33.87 42.83 

Sweden 22.67 22.71 22.50 24.60 28.74 

 

Table III 

AMBE comparison of various state-of–art method 

Image Kopf Fattal Tan He Our 

Mountain’01’ 22.61 17.86 47.97 48.27 10.92 

Tower ‘02’ 16.54 34.46 47.80 34.88 5.51 

Sweden 45.00 76.38 75.86 71.06 43.58 

 
Table IV 

run time (seconds) comparision with  He et al. work 
 

He Our 

56.32 15.71 
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Chapter 7 

__________________________________________________________________

Conclusion 

 
In this paper ,we presented a new fast algorithm to improve the visibility of fog degraded 

images. This new approach is  physically sound and restore the visibility upto maximum 

extent. The proposed algorithm uses a combination of Guided filter and CLAHE. Guided filter 

is a edge-preserving filter which is used for quickly refinement  of transmission map and 

CLAHE is used to improve the local contrast of image by partioning the image into small 

boxes. It is observed that in restored image, no oversaturated region exist due to which 

there is a negligible apearance of halo-artifact. The advantage of proposed method are 

multiple. 

1. It is simple in principle and hence easy to implement. 

2. It provide good result in most cases(homogenous fog), without introducing artifact. 

3. It is efficient for various type of fog images.  

Finally we have experimentally compared the result of proposed algorithm against 

competing techniqes, by showing that our method achieve state-of-the-art performance by 

producing   high quality fog free images and it is expected to be used in real-time outdoor 

vision system owing to its fast exucution speed. In  conclusion, with respect to above 

mentioned quality criteria , our method out-perform the all other esisting method by 

enhance the detail in fog degraded images. However, guided image filtering is actually an 

approximation of soft mating; this method fail when the input image contain abrupt depth 

changes. Failure of transmission refinement using guided filter is shown in Fig.7.1. Firstly, 

the dehazed result Fig. 7.1(b) contains noticeable halos, this happens because the depth 

change at the object edge is too abrupt, the guided filter needs a larger filtering radius r to 

suppress the halos. As a result, when the input hazy image contains discontinuities that are 

too abrupt, it is difficult to find an appropriate filtering radius that compromises between 

the halo effect and over-saturation.  
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(a) Input fog image 

 

(b) Dehazing result 

Figure 7.1 Failure of transmission refinement using guided filter.  

Therefore the low complexity of this dehazing algorithm comes with the price of some 

failures. To address the mentioned problem, future improvements may focus on it. 
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