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ABSTRACT 
 

This dissertation is concerned with the tracking of an object of interest in the 

video and analysis of different parameters with reference to the record of trajectories 

over the frames apart from the rigorous treatment of Particle filter theory.   

In this dissertation, rigorous mathematical aspects and various algorithms of 

Particle filters have been discussed with MATLAB simulation results. Comparisons of 

Sequential Importance Resampling (SIR) Particle filter, Auxiliary Particle filter (APF) and 

Gaussian Particle filter (GPF) in terms of Mean Square Error (MSE) have also been 

simulated using MATLAB along with their states and estimate states for univariate non-

stationary growth. Conditional linearity in the dynamic nonlinear system under the Rao-

Blackwell Particle filter has also been simulated using MATLAB for tracking a 

maneuvering target along with its comparison with particle filter.  

Under visual object tracking part, an SIR Particle filter based tracking of an object 

of interest in the video has been simulated using two methods such as, intensity 

histogram and color histogram. The shape of the object is modeled as an ellipse, along 

which an intensity gradient is estimated, while the interior appearance is modeled using 

a color histogram. MATLAB simulation shows the Belief states over the frames with 

handling of visual clutter along with the visual object trajectory, HSV cdf, and 3D 

histogram of target distribution. Other simulation shows the prediction of object position, 

bounding ellipse particles, posterior distribution of the moving object over the frames 

and SIR resampling of the tracked object.  

The results show that Color histogram based particle filter tracking is robust to 

partial occlusion, rotation, scaling, and changes in illumination and pose. Performance 

of the Particle filtering tracking can also be improved by using more particles. Results 

also show that the tracking method is able to keep track for a fairly long time, despite 

the presence of clutter. 
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CHAPTER 1 
INTRODUCTION 

 
1.1 MOTIVATION 

Visual object tracking is a classical computer vision problem with many 

important applications in the areas such as robotics, video surveillance and driver 

assistance. It is the task of estimating over time the position of objects of interest in 

image sequences. Humans perform accurate visual tracking with little effort, while it 

remains a difficult computer vision problem. It imposes major challenges, such as 

appearance changes, occlusions and background clutter.  

Visual object tracking algorithms can roughly be divided into two categories: 

deterministic methods and stochastic methods.  Deterministic methods typically track 

the object by performing an iterative search for a similarity between the template 

image and the current one.  This methods includes the examples of Background 

subtraction, inter-frame difference, optical flow, skin color extraction, etc. On the 

other hand, stochastic methods use the state space to model the underlying 

dynamics of the tracking system such as Kalman filter and Particle filter. Kalman 

filter is a common approach for dealing with target tracking in the probabilistic 

framework but it cannot resolve the tracking problem when the model is nonlinear 

and non-Gaussian.  

To overcome these problems, Particle filter, also known as Sequential Monte 

Carlo (SMC), is the most popular approach which recursively constructs the posterior 

pdf of the state space using Monte Carlo Integration. It approximates a posterior 

probability density of the state such as the object position by using samples or 

particles. The probability distribution of the state of the tracked object is 

approximated by a set of particles, of which each state is denoted as the hypothetical 

state of the tracked object, and its weight. 

Many problems in adaptive filtering are nonlinear and non-Gaussian. Of the 

many methods proposed in the literature for solving such problems, particle filtering 

has become one of the most popular. Some of the most important problems in the 

signal processing require the sequential processing of data. The data describe a 

system that is mathematically represented by equations that model its evolution with 

time, where the evolution contains a random component. The system is defined by 
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its state variable of which some are dynamic and some are constant. A typical 

assumption about the state of the system is that it is Markovian, which means that 

given the state at a previous time instant, the distribution of the state at the current 

time instant does not depend on any other older state. The state is not directly 

observable. Instead, we acquire measurements which are functions of the current 

state of the system. The measurements are degraded by noise or some other 

random perturbation, and they are obtained sequentially in time. The main objective 

of sequential signal processing is the recursive estimation of the state of the system 

based on the available measurements. The methods that are developed for 

estimation of the state are usually called filters. We may also be interested in 

estimates of the state in the past or would like to predict its values at future time 

instants. 

Particle filter can be applied to any state space model where the likelihood 

and the prior are computable up to proportionality constants. The accuracy of the 

method depends on how well we generate the particles and how many particles we 

use to represent the random measure.  

Particle filtering has been used in many different disciplines. They include 

surveillance guidance, and obstacle avoidance systems, robotics, communications, 

speech processing, seismic signal processing, system engineering, computer vision, 

and econometrics. Some of the applications are the following: 

• Multiple target tracking using a combination of video and acoustic 

sensors. 

• Direction of arrival tracking of multiple moving targets using passive 

sensor array. 

• Simultaneous detection and tracking of multiple targets. 

• Tracking of moving acoustic source in a moderately reverberant room. 

• Joint tracking of location and speaking activity of several speakers in a 

meeting room with a microphone array and multiple cameras. 

• Speech signal processing 

• Tracking of multi-aspect targets using image sequences with 

background clutter. 

• Mobility tracking in wireless communication networks based on 

received signal strength. 

ECE DEPTT, DTU Page 2 
 



• Joint detection and estimation of multipath effects on GPS 

measurements. 

• Maritime surface and underwater map-aided navigation. 

• Car collision avoidance system. 

 

1.2 CONTRIBUTIONS 
Particle filters perform three basic operations: generation of new particles 

(sampling from the space of unobserved states), computation of particle weights 

(probability masses associated with the particles) and resampling (a process of 

removing particles with small weights and replacing them with particles with large 

weights). These three steps make the basis of the most commonly used type of 

particle filters called Sample-Importance-Resampling Particle Filters (SIR PF). 

Particle generation and weight computation are computationally the most intensive 

steps. 

Rigorous mathematics involved in the theory of Particle filters always required 

some kind of experimental results for proper understanding. In this dissertation, 

MATLAB simulations have been done to understand different aspects of Particle 

filter algorithms. This dissertation presents the integration of color distributions into 

Particle filtering for visual object tracking, which has typically been used in 

combination with edge-based image features. MATLAB simulations have also been 

done to understand the mathematical aspects of tracking patterns of an object of 

interest in the video in the presence of clutter. 

 

1.3 ORGANIZATION OF DISSERTATION 
The reset of this dissertation is organized as follows. 

Chapter 2 describes the Mathematical foundation of particle filtering, 

Recursions for obtaining the filtering PDF, The Basic idea with examples, Recursive 

computation of the random measure, The sequential importance sampling algorithm 

with examples, The choice of proposal distribution and resampling. MATLAB 

simulation results for the Particles and their weights with sampling and resampling 

have been discussed.   

Chapter 3 describes the derivation of some Particle filtering methods such as, 

Sequential Importance Resampling (SIR) Particle filering,  Auxiliary Particle filtering 
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(APF), Gaussian Particle filtering (GPF) along with their algorithms. MATLAB  

simulation results have also been presented to understand mathematical aspects of 

different parameters. Apart from the above, derivation of kernel and density assisted 

Auxiliary Particle filters have also been presented to  understand the handling of 

constant parameters. 

Chapter 4 describes the Rao-Blackwellized Particle filter (RBPF) with its 

complete derivation and algorithm. MATLAB simulation results have been presented 

to understand the comparison between the RBPF and PF in terms of Mean Square 

Error (MSE). MATLAB simulation results have also been presented for the tracking 

of maneuvering objects having piecewise linear dynamics. 

Chapter 5 describes the Particle filter algorithms for Visual object tracking 

based on color and intensity histograms. MATLAB simulation have been presented 

to understand the Belief states over the frames with handling of visual clutter along 

with the visual object trajectory, HSV cdf, and 3D histogram of target distribution. 

Other simulation shows the prediction of object position, bounding ellipse particles, 

posterior distribution of the moving object over the frames and SIR resampling of the 

tracked object.  

Chapter 6 concludes the dissertation with a summary of our contributions and 

enlists future directions arising from this research effort. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ECE DEPTT, DTU Page 4 
 



CHAPTER 2 
THEORY OF PARTICLE FILTERING 

 
2.1 MATHEMATICAL FOUNDATION OF PARTICLE FILTERING 

In a typical setup, the observed data are modelled by 

𝑦𝑦(𝑛𝑛) =  𝑔𝑔2�𝑥𝑥(𝑛𝑛), 𝑣𝑣2(𝑛𝑛)�                                              (2.1)  

Where n=….,2,…..is a time index, y(n) is a vector of observations, x(n) is the 

state (or signal) that needs to be estimated, 𝑣𝑣2(𝑛𝑛) is an observation noise vector, 

and 𝑔𝑔2(. ) is a known function, which in general may change with time. We assume 

that all of the vectors in the above equation conform properly in their dimensions. 

 It is assumed that the state 𝑥𝑥(𝑛𝑛) varies according to 

𝑥𝑥(𝑛𝑛) =  𝑔𝑔1�𝑥𝑥(𝑛𝑛 − 1), 𝑣𝑣1(𝑛𝑛)�                                        (2.2) 

Where 𝑣𝑣1(𝑛𝑛) is a state noise vector, and 𝑔𝑔1(. ) is a known function (which also 

might vary with time). The expression (2.1) is known as observation equation and 

(2.2) as a state equation, and two are refereed as the state-space model. The 

objective is to estimate the unobserved signal 𝑥𝑥(𝑛𝑛) from the observations 𝑦𝑦(𝑛𝑛). 

An alternative characterization of the state-space system can be given in 

terms of Probability density functions (PDFs) 

                 𝑓𝑓(𝑥𝑥(𝑛𝑛)|𝑥𝑥(𝑛𝑛 − 1))                                                (2.3) 

                                 𝑓𝑓(𝑦𝑦(𝑛𝑛)|𝑥𝑥(𝑛𝑛)                                                    (2.4) 

Where obviously (2.3) is derived from (2.2), and (2.4) is obtained from (2.1). 

The forms of the PDFs in (2.3) and (2.4) depend on the functions 𝑔𝑔1(∙) and 𝑔𝑔2(∙) as 

well as on the PDFs of 𝑣𝑣1(𝑛𝑛) and 𝑣𝑣2(𝑛𝑛). 

Three main problems, namely, filtering, prediction and smoothing arise when 

we consider the problem of estimation. In filtering, the goal is to obtain the a 

posterior PDF of 𝑥𝑥(𝑛𝑛) given all of the measurements from time instant one to 𝑛𝑛, 

which we express by 𝑦𝑦(1:𝑛𝑛). This density is accordingly called filtering density and is 

denoted by 𝑓𝑓�𝑥𝑥(𝑛𝑛)�𝑦𝑦(1:𝑛𝑛)�,𝑛𝑛 ≥ 1 . All the information about 𝑥𝑥(𝑛𝑛)  is in 

𝑓𝑓�𝑥𝑥(𝑛𝑛)�𝑦𝑦(1:𝑛𝑛)�, and for example, if one wants to find point estimate of 𝑥𝑥(𝑛𝑛), such as 

the minimum mean square error (MMSE) estimate or the maximum a posterior 

(MAP) estimate, one can obtain them from the filtering density. 
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In prediction, the goal is to find the predictive PDF  𝑓𝑓�𝑥𝑥(𝑛𝑛 + 𝑘𝑘)�𝑦𝑦(1:𝑛𝑛)�, where 

𝑘𝑘 > 0,𝑛𝑛 > 0. Again, all the information about a future value of the state given the 

measurements 𝑦𝑦(1:𝑛𝑛) is in the predictive PDF and various point estimates can be 

obtained from it. 

Finally, the problem of smoothing amounts to obtaining 𝑓𝑓�𝑥𝑥(𝑛𝑛)�𝑦𝑦(1:𝑁𝑁)� , 

where 0 ≤ 𝑛𝑛 < 𝑁𝑁, and where the density is called the smoothing PDF. In general, 

smoothing gives more accurate estimates of 𝑥𝑥(𝑛𝑛) providing delay in processing of 

the data. For example, we first acquire 𝑁𝑁  measurements and then obtain the 

smoothing densities. 

The objective of sequential signal processing consists of tracking the PDFs of 

interest by exploiting recursive relationships, that is, 

• 𝑓𝑓�𝑥𝑥(𝑛𝑛)�𝑦𝑦(1:𝑛𝑛)�  from 𝑓𝑓�𝑥𝑥(𝑛𝑛 − 1)�𝑦𝑦(1:𝑛𝑛 − 1)�  for the filtering problem, 

where 𝑛𝑛 ≥ 1; 

• 𝑓𝑓�𝑥𝑥(𝑛𝑛 + 𝑘𝑘)�𝑦𝑦(1:𝑛𝑛)�  from 𝑓𝑓�𝑥𝑥(𝑛𝑛 + 𝑘𝑘 − 1)�𝑦𝑦(1:𝑛𝑛)�  for the prediction 

problem, where 𝑘𝑘 > 0,𝑛𝑛 ≥ 0; and 

• 𝑓𝑓�𝑥𝑥(𝑛𝑛)�𝑦𝑦(1:𝑁𝑁)�  from 𝑓𝑓�𝑥𝑥(𝑛𝑛 + 1)�𝑦𝑦(1:𝑁𝑁)�  for the smoothing problem, 

where 0 ≤ 𝑛𝑛 < 𝑁𝑁. 

The complete information about the unknown values is in the respective 

densities of the unknowns. Many sequential methods provide only point estimates of 

these unknowns accompanied possibly with another metric that shows how variable 

the estimates are. 

 By contrast, particle filtering has a much more ambitious aim than yielding 

point estimates. Its objective is to track in time the approximations of all the desired 

densities of the unknowns in the system. It is well known that when these densities 

are not Gaussian, there are not many available methods that can reach this goal. 

Thus, the motivation for using particle filtering is in its ability to estimate sequentially 

the densities of unknowns of non-Gaussian and/ or nonlinear systems. 

 

2.2 RECURSIONS FOR OBTAINING THE FILTERING PDF 
 Suppose that at time (𝑛𝑛 − 1), we know the observations 𝑦𝑦(1:𝑛𝑛 − 1) and the a 

posterior PDF 𝑓𝑓�𝑥𝑥(𝑛𝑛 − 1)�𝑦𝑦(1:𝑛𝑛 − 1)�. Once 𝑦𝑦(𝑛𝑛) becomes available, we would like 
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to update 𝑓𝑓�𝑥𝑥(𝑛𝑛 − 1)�𝑦𝑦(1:𝑛𝑛 − 1)� and modify it to 𝑓𝑓�𝑥𝑥(𝑛𝑛)�𝑦𝑦(1:𝑛𝑛)�. To achieve this, 

we formally write  

  𝑓𝑓�𝑥𝑥(𝑛𝑛)�𝑦𝑦(1:𝑛𝑛)� ∝ 𝑓𝑓�𝑦𝑦(𝑛𝑛)�𝑥𝑥(𝑛𝑛)�𝑓𝑓�𝑥𝑥(𝑛𝑛)�𝑦𝑦(1:𝑛𝑛 − 1)�                                (2.5) 

Where ∝  signifies proportionality. The first factor in the right of the 

proportionality sign is the likelihood function of the unknown state, and the second 

factor is the predictive density of the state. 

 For the predictive density, we have 

𝑓𝑓�𝑥𝑥(𝑛𝑛)�𝑦𝑦(1:𝑛𝑛 − 1)�

=  �𝑓𝑓�𝑥𝑥(𝑛𝑛)�𝑥𝑥(𝑛𝑛 − 1)�𝑓𝑓�𝑥𝑥(𝑛𝑛 − 1)�𝑦𝑦(1:𝑛𝑛 − 1)�𝑑𝑑𝑑𝑑(𝑛𝑛 − 1)                 (2.6) 

In writing (2.6), we used the property of the state that given 𝑥𝑥(𝑛𝑛 − 1), 𝑥𝑥(𝑛𝑛) 

does not depend on 𝑦𝑦(1:𝑛𝑛 − 1). Now, the required recursive equation for the update 

of the filtering density is obtained readily by combining (2.5) and (2.6), that is, we 

formally have 

𝑓𝑓�𝑥𝑥(𝑛𝑛)�𝑦𝑦(1:𝑛𝑛)�

∝ 𝑓𝑓�𝑦𝑦(𝑛𝑛)�𝑥𝑥(𝑛𝑛)�

×  �𝑓𝑓�𝑥𝑥(𝑛𝑛)�𝑥𝑥(𝑛𝑛 − 1)�𝑓𝑓�𝑥𝑥(𝑛𝑛 − 1)�𝑦𝑦(1:𝑛𝑛 − 1)�𝑑𝑑𝑑𝑑(𝑛𝑛 − 1)                     (2.7) 

Thus on the left of the proportionality sign, we have the filtering PDF at time 

instant 𝑛𝑛, and on the right under the integral, we see the filtering PDF at time instant 

(𝑛𝑛 − 1). 

There are at least two problems in carrying out the above recursion, and they 

may make the recursive estimation of the filtering density very challenging. The first 

one is solving of the integral in (2.6) and obtaining the predictive density 

𝑓𝑓�𝑥𝑥(𝑛𝑛)�𝑦𝑦(1:𝑛𝑛 − 1)�. The second problem is the combining of the likelihood and the 

predictive density in order to get the updated density. 

These problems may mean that it is impossible to express the filtering PDF in 

a recursive form. We can state that in many problems the recursive evaluation of the 

densities of the state-space model cannot be done analytically, and consequently we 

have to resort to numerical methods. An important class of systems which allows for 

exact analytical recursions is the one represented by linear state-space models with 

Gaussian noises. These recursions are known as Kalman filtering. When analytical 
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solutions cannot be obtained, particle filtering can be employed with elegance and 

with performance characterized by high accuracy. 

 

2.3 THE BASIC IDEA  
Consider the state of the system at time instant 𝑛𝑛, that is, 𝑥𝑥(𝑛𝑛). Under the 

particle filtering framework, the a posterior PDF of 𝑥𝑥(𝑛𝑛),𝑓𝑓�𝑥𝑥(𝑛𝑛)�𝑦𝑦(1:𝑛𝑛)�,  is 

approximated by a discrete random measure composed of 𝑀𝑀 particles and weights 

  χ(n) = �𝑥𝑥(𝑚𝑚)(𝑛𝑛), 𝑤𝑤(𝑚𝑚)(𝑛𝑛) �
𝑚𝑚=1
𝑀𝑀

                                                                      (2.8) 

 where 𝑥𝑥(𝑚𝑚)(𝑛𝑛)  and 𝑤𝑤(𝑚𝑚)(𝑛𝑛)  represent the 𝑚𝑚 − 𝑡𝑡ℎ  particle and weight, 

respectively. The particles are Monte Carlo samples of the system state, and the 

weights are nonnegative values that sum up to one and can be interpreted as 

probabilities of the particles. The previous measures allows for approximations of  

𝑓𝑓�𝑥𝑥(𝑛𝑛)�𝑦𝑦(1:𝑛𝑛)� by 

 𝑓𝑓�𝑥𝑥(𝑛𝑛)�𝑦𝑦(1:𝑛𝑛)� ≈ ∑ 𝑤𝑤𝑚𝑚(𝑛𝑛)𝛿𝛿�𝑥𝑥(𝑛𝑛) − 𝑥𝑥𝑚𝑚 (𝑛𝑛)�                                                (2.9)𝑀𝑀
𝑚𝑚=1  

Where 𝛿𝛿(. )  denotes the Dirac delta function. With these approximations, 

computations of expectations of functions of the random process 𝑋𝑋(𝑛𝑛) simplify to 

summation, that is, 

𝐸𝐸(ℎ�𝑋𝑋(𝑛𝑛)�) =  �ℎ�𝑥𝑥(𝑛𝑛)�𝑓𝑓�𝑥𝑥(𝑛𝑛)�𝑦𝑦(1:𝑛𝑛)�𝑑𝑑𝑑𝑑(𝑛𝑛)                                                        (2.10) 

 

    ⇩ 

𝐸𝐸(ℎ�𝑋𝑋(𝑛𝑛)�) =  �𝑤𝑤𝑚𝑚 (𝑛𝑛)ℎ�𝑥𝑥𝑚𝑚 (𝑛𝑛)�                                                                             (2.11)
𝑀𝑀

𝑚𝑚=1

 

Where 𝐸𝐸(∙) denotes expectations, and ℎ(∙) is an arbitrary function of 𝑋𝑋(𝑛𝑛). 

Example 1: 

Assume that independent particles, 𝑥𝑥𝑚𝑚 (𝑛𝑛), can be drawn from 𝑓𝑓�𝑥𝑥(𝑛𝑛)�𝑦𝑦(1:𝑛𝑛)�. In 

that case, all the particles have the same weights, 𝑤𝑤𝑚𝑚(𝑛𝑛) = 1/𝑀𝑀, and  

𝐸𝐸(ℎ�𝑋𝑋(𝑛𝑛)�) =  �ℎ�𝑥𝑥(𝑛𝑛)�𝑓𝑓�𝑥𝑥(𝑛𝑛)�𝑦𝑦(1:𝑛𝑛)�𝑑𝑑𝑑𝑑(𝑛𝑛)                                                  

⇩ 

𝐸𝐸�(ℎ�𝑋𝑋(𝑛𝑛)�) =  
1
𝑀𝑀
� ℎ�𝑥𝑥𝑚𝑚 (𝑛𝑛)�                                                                      (2.12)
𝑀𝑀

𝑚𝑚=1
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Where 𝐸𝐸�(∙) is an unbiased estimator of the conditional expectation 𝐸𝐸(∙). Note 

that in this case we intrinsically approximate 𝑓𝑓�𝑥𝑥(𝑛𝑛)�𝑦𝑦(1:𝑛𝑛)� by the random measure 

    χ(n) = �𝑥𝑥(𝑚𝑚)(𝑛𝑛), 𝑤𝑤(𝑚𝑚)(𝑛𝑛) = 1/𝑀𝑀 �
𝑚𝑚=1
𝑀𝑀

                                                                           

If the variance 𝜎𝜎ℎ2 < ∞, then the variance of 𝐸𝐸�(∙) is given by 

                                                   𝜎𝜎𝐸𝐸�(ℎ(∙))
2 =  

𝜎𝜎ℎ2

𝑀𝑀
                                                                                (2.13) 

As 𝑀𝑀 →  ∞, from the strong law of large numbers, we get that 𝐸𝐸�(ℎ�𝑋𝑋(𝑛𝑛)�) 

converges to 𝐸𝐸(ℎ�𝑋𝑋(𝑛𝑛)�) almost surely, that is 

𝐸𝐸� �ℎ�𝑋𝑋(𝑛𝑛)��
𝑎𝑎 .𝑠𝑠.
��  𝐸𝐸 �ℎ�𝑋𝑋(𝑛𝑛)��                                                                                       (2.14)  

And from the central limit theorem, we obtain that 𝐸𝐸�(ℎ�𝑋𝑋(𝑛𝑛)�) converges in 

distribution to a Gaussian distribution 

𝐸𝐸� �ℎ�𝑋𝑋(𝑛𝑛)��
𝑑𝑑
→  𝑁𝑁(𝐸𝐸 �ℎ�𝑋𝑋(𝑛𝑛)�,

𝜎𝜎ℎ2

𝑀𝑀
�                                                                                    (2.15) 

The example shows that if we sample from 𝑓𝑓�𝑥𝑥(𝑛𝑛)�𝑦𝑦(1:𝑛𝑛)� a large number of 

particles 𝑀𝑀 ,we will be able to estimate 𝐸𝐸(ℎ�𝑋𝑋(𝑛𝑛)�)  with arbitrary accuracy. In 

practice, however, the problem is that we often cannot draw samples directly from 

the a posteriori PDF 𝑓𝑓�𝑥𝑥(𝑛𝑛)�𝑦𝑦(1:𝑛𝑛)�.  

An attractive alternative is to use the concept of importance sampling. The 

idea behind it is based on the use of another function for drawing particles. This 

function is called importance sampling function or proposal distribution, and we 

denote it by 𝜋𝜋(𝑥𝑥(𝑛𝑛)). 

When the particles are drawn from 𝜋𝜋(𝑥𝑥(𝑛𝑛)), the estimate of 𝐸𝐸(ℎ�𝑋𝑋(𝑛𝑛)�) in 

(2.12) can be obtained either by 

𝐸𝐸(ℎ�𝑋𝑋(𝑛𝑛)�) ≈
1
𝑀𝑀

 � 𝑤𝑤∗𝑚𝑚 (𝑛𝑛)ℎ�𝑥𝑥𝑚𝑚 (𝑛𝑛)�                                                                        (2.16)
𝑀𝑀

𝑚𝑚=1

 

Or by 

𝐸𝐸(ℎ�𝑋𝑋(𝑛𝑛)�) ≈
1
𝑀𝑀

 � 𝑤𝑤𝑚𝑚 (𝑛𝑛)ℎ�𝑥𝑥𝑚𝑚 (𝑛𝑛)�                                                                              (2.17)
𝑀𝑀

𝑚𝑚=1

 

Where 
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𝑤𝑤∗(𝑚𝑚)(𝑛𝑛) =
𝑓𝑓 �𝑥𝑥(𝑚𝑚)(𝑛𝑛)�𝑦𝑦(1:𝑛𝑛)�

𝜋𝜋(𝑥𝑥(𝑚𝑚)(𝑛𝑛))
                                                                                             (2.18) 

And 

𝑤𝑤(𝑚𝑚)(𝑛𝑛) =
𝑤𝑤� (𝑚𝑚)(𝑛𝑛)

∑ 𝑤𝑤� (𝑖𝑖)(𝑛𝑛)𝑀𝑀
𝑖𝑖=1

                                                                                                            (2.19) 

Where 𝑤𝑤� (𝑚𝑚)(𝑛𝑛) =  𝑐𝑐𝑤𝑤�∗(𝑚𝑚)(𝑛𝑛)  with 𝑐𝑐  being some unknown constant. The 

symbols 𝑤𝑤∗(𝑚𝑚)(𝑛𝑛)  and 𝑤𝑤(𝑚𝑚)(𝑛𝑛)  are known as true and normalized importance 

weights of the particles 𝑥𝑥𝑚𝑚 (𝑛𝑛), respectively. They are introduced to correct for the 

bias that arises due to sampling from a different function than the one that is being 

approximated, 𝑓𝑓�𝑥𝑥(𝑛𝑛)�𝑦𝑦(1:𝑛𝑛)�. The estimate in (2.16) is unbiased whereas the one 

from (2.17) is with small bias but often with a smaller mean-squared error than the 

one in (2.16). An advantage in using (2.17) over (2.16) is that we only need to know 

the ratio 𝑓𝑓�𝑥𝑥(𝑛𝑛)�𝑦𝑦(1:𝑛𝑛)�/𝜋𝜋(𝑥𝑥(𝑛𝑛)) up to a multiplicative constant and not the exact 

ratio in order to compute the estimate of the expectation of ℎ(𝑋𝑋(𝑛𝑛)). 

How is (2.19) obtained? Suppose that the true weight cannot be found and 

instead we can only compute it up to a proportionality constant, that is 

𝑤𝑤� (𝑚𝑚)(𝑛𝑛) = 𝑐𝑐
𝑓𝑓 �𝑥𝑥(𝑚𝑚)(𝑛𝑛)�𝑦𝑦(1:𝑛𝑛)�

𝜋𝜋(𝑥𝑥(𝑚𝑚)(𝑛𝑛))
                                                                              

               = 𝑐𝑐 𝑤𝑤∗(𝑚𝑚)(𝑛𝑛)                                                                                             (2.20) 

Where the constant 𝑐𝑐 is unknown. Since we must have 

1 = �𝑐𝑐
𝑓𝑓�𝑥𝑥(𝑛𝑛)�𝑦𝑦(1:𝑛𝑛)�

𝜋𝜋�𝑥𝑥(𝑛𝑛)�
𝜋𝜋�𝑥𝑥(𝑛𝑛)�𝑑𝑑𝑑𝑑(𝑛𝑛) 

≃
1
𝑐𝑐𝑐𝑐

� 𝑤𝑤� (𝑚𝑚)(𝑛𝑛)
𝑀𝑀

𝑚𝑚=1

 

From where we can estimate 𝑐𝑐 by 

 𝑐𝑐 ≃
1
𝑀𝑀
� 𝑤𝑤� (𝑚𝑚)(𝑛𝑛)                                                                   (2.21)
𝑀𝑀

𝑚𝑚=1

 

Now by using (2.20), we can express (2.16) in terms of 𝑤𝑤� (𝑚𝑚)(𝑛𝑛). We have 

𝐸𝐸(ℎ�𝑋𝑋(𝑛𝑛)�) ≈
1
𝑀𝑀

 �𝑤𝑤∗𝑚𝑚(𝑛𝑛)ℎ�𝑥𝑥𝑚𝑚 (𝑛𝑛)�    
𝑀𝑀

𝑚𝑚=1

 

=
1
𝑐𝑐𝑐𝑐

� 𝑤𝑤� (𝑚𝑚)(𝑛𝑛)
𝑀𝑀

𝑚𝑚=1

ℎ�𝑥𝑥𝑚𝑚 (𝑛𝑛)� 
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≈ �
𝑤𝑤� (𝑚𝑚)(𝑛𝑛)

∑ 𝑤𝑤� (𝑖𝑖)(𝑛𝑛)𝑀𝑀
𝑖𝑖=1

𝑀𝑀

𝑚𝑚=1

ℎ�𝑥𝑥𝑚𝑚 (𝑛𝑛)� 

=
1
𝑐𝑐𝑐𝑐

� 𝑤𝑤(𝑚𝑚)(𝑛𝑛)
𝑀𝑀

𝑚𝑚=1

ℎ�𝑥𝑥𝑚𝑚 (𝑛𝑛)� 

Where 𝑤𝑤(𝑚𝑚)(𝑛𝑛) is the normalized weight from (2.19). 

  In summary, when we use a random measure to approximate a PDF, such as 

𝑓𝑓�𝑥𝑥(𝑛𝑛)�𝑦𝑦(1:𝑛𝑛)�, we can do it by 

• Drawing samples from a proposal distribution 𝜋𝜋(𝑥𝑥(𝑚𝑚)(𝑛𝑛)), which needs 

to be known only up to a multiplicative constant, that is 

𝑥𝑥𝑚𝑚 (𝑛𝑛) ∼ 𝜋𝜋�𝑥𝑥(𝑛𝑛)�,     𝑚𝑚 = 1,2, … ,𝑀𝑀 

• Computing the weights of the particles 𝑤𝑤(𝑚𝑚)(𝑛𝑛) by (2.18) and 2.(19). 

 The resulting random measure is of the form given by (2.10). As 

proposal distributions we choose ones that are easy to sample from and whose 

shape is close to the product of ℎ(𝑥𝑥(𝑛𝑛)) and 𝑓𝑓�𝑥𝑥(𝑛𝑛)�𝑦𝑦(1:𝑛𝑛)�. A rule of thumb is that 

we would like to generate particles from regions of the support of 𝑥𝑥(𝑛𝑛) where that 

product has large values. 

 

2.4. RECURSIVE COMPUTATION OF THE RANDOM MEASURE Χ(N)  

 The random measures χ(n) and χ(n-1) approximate 𝑓𝑓�𝑥𝑥(𝑛𝑛)�𝑦𝑦(1:𝑛𝑛)�  and 

𝑓𝑓�𝑥𝑥(𝑛𝑛 − 1)�𝑦𝑦(1:𝑛𝑛 − 1)�, respectively. We write (9) as 

𝑓𝑓�𝑥𝑥(𝑛𝑛 − 1)�𝑦𝑦(1:𝑛𝑛 − 1)�

≈ � 𝑤𝑤𝑚𝑚(𝑛𝑛 − 1)𝛿𝛿�𝑥𝑥(𝑛𝑛 − 1) − 𝑥𝑥𝑚𝑚 (𝑛𝑛 − 1)�                                          
𝑀𝑀

𝑚𝑚=1

 

 For the filtering PDF 𝑓𝑓�𝑥𝑥(𝑛𝑛)�𝑦𝑦(1:𝑛𝑛)�, we have 

 𝑓𝑓�𝑥𝑥(𝑛𝑛)�𝑦𝑦(1:𝑛𝑛)�

∝ 𝑓𝑓�𝑦𝑦(𝑛𝑛)�𝑥𝑥(𝑛𝑛)�  

×  �𝑓𝑓�𝑥𝑥(𝑛𝑛)�𝑥𝑥(𝑛𝑛 − 1)�𝑓𝑓�𝑥𝑥(𝑛𝑛 − 1)�𝑦𝑦(1:𝑛𝑛 − 1)�𝑑𝑑𝑑𝑑(𝑛𝑛 − 1)                        

  ≃ 𝑓𝑓�𝑦𝑦(𝑛𝑛)�𝑥𝑥(𝑛𝑛)� � 𝑤𝑤𝑚𝑚(𝑛𝑛 − 1)𝑓𝑓�𝑥𝑥(𝑛𝑛)�𝑥𝑥(𝑚𝑚)(𝑛𝑛 − 1)�                 
𝑀𝑀

𝑚𝑚=1
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We want to represent the new filtering density with χ(n), and to that end we 

need to generate particles 𝑥𝑥(𝑛𝑛) and compute their weights. If for particle generation 

we use the proposal distribution 𝜋𝜋 �𝑥𝑥(𝑛𝑛)�𝑥𝑥(𝑚𝑚)(𝑛𝑛 − 1),𝑦𝑦(1:𝑛𝑛)�, the newly generated 

particles 𝑥𝑥(𝑚𝑚)(𝑛𝑛) is appended to the particle stream 𝑥𝑥(𝑚𝑚)(1:𝑛𝑛 − 1), and we compute 

the value of its weight according to  

𝑤𝑤� (𝑚𝑚)(𝑛𝑛) = 𝑤𝑤(𝑚𝑚)(𝑛𝑛 − 1)
𝑓𝑓 �𝑦𝑦(𝑛𝑛)�𝑥𝑥(𝑚𝑚)(𝑛𝑛)� 𝑓𝑓 �𝑥𝑥(𝑚𝑚)(𝑛𝑛)�𝑥𝑥(𝑚𝑚)(𝑛𝑛 − 1)�

𝜋𝜋�𝑥𝑥(𝑚𝑚)(𝑛𝑛)�𝑥𝑥(𝑚𝑚)(𝑛𝑛 − 1),𝑦𝑦(1:𝑛𝑛)�
                            (2.22)  

Where 𝑤𝑤� (𝑚𝑚)(𝑛𝑛) is a non-normalized weight of 𝑥𝑥(𝑚𝑚)(𝑛𝑛). We see that the weight 

of the 𝑚𝑚 − 𝑡𝑡ℎ stream is obtained by updating its value at time instant (𝑛𝑛 − 1) with the 

factor 

                         
𝑓𝑓�𝑦𝑦(𝑛𝑛)�𝑥𝑥(𝑚𝑚 )(𝑛𝑛)�𝑓𝑓�𝑥𝑥(𝑚𝑚 )(𝑛𝑛)�𝑥𝑥(𝑚𝑚 )(𝑛𝑛−1)�

𝜋𝜋�𝑥𝑥 (𝑚𝑚 )(𝑛𝑛)�𝑥𝑥 (𝑚𝑚 )(𝑛𝑛−1),𝑦𝑦(1:𝑛𝑛)�
                                     

The so obtained weights are then normalized so that they sum up to one. 

In summary, the PF implements two steps. One is the generation of particles 

for the next time instant and the other is the computation of the weights of these 

particles. The table 2.1 summarizes the mathematical expressions needed for 

carrying out the recursive update from χ(n-1) to χ(n). 

Table 2.1: The sequential importance sampling algorithm  

Particle generation 

Basis 

𝜋𝜋� 𝑥𝑥(0:𝑛𝑛) ∣∣ 𝑦𝑦(1:𝑛𝑛) � =  𝜋𝜋( 𝑥𝑥(𝑛𝑛) ∣∣ 𝑥𝑥(0:𝑛𝑛 − 1),𝑦𝑦(1:𝑛𝑛) )𝜋𝜋� 𝑥𝑥(0:𝑛𝑛 − 1) ∣∣ 𝑦𝑦(1:𝑛𝑛 − 1) � 

𝑥𝑥(𝑚𝑚)(0:𝑛𝑛 − 1) ∼  𝜋𝜋� 𝑥𝑥(0:𝑛𝑛 − 1) ∣∣ 𝑦𝑦(1:𝑛𝑛 − 1) � 

𝑤𝑤(𝑚𝑚)(𝑛𝑛 − 1) ∝
𝑓𝑓 �𝑥𝑥(𝑚𝑚)(0:𝑛𝑛 − 1)�𝑦𝑦(𝑛𝑛 − 1)�

𝜋𝜋�𝑥𝑥(𝑚𝑚)(0:𝑛𝑛 − 1)�𝑦𝑦(1:𝑛𝑛 − 1)�
                                     

Augmentation of the trajectory 𝑥𝑥(𝑚𝑚)(0:𝑛𝑛 − 1) to 𝑥𝑥(𝑚𝑚)(𝑛𝑛) 

𝑥𝑥(𝑚𝑚)(𝑛𝑛) ∼  𝜋𝜋 � 𝑥𝑥(𝑛𝑛) ∣∣ 𝑥𝑥
(𝑚𝑚)(0:𝑛𝑛 − 1),𝑦𝑦(1:𝑛𝑛) � ,𝑚𝑚 = 1, … ,𝑀𝑀 

Weight update 

𝑤𝑤(𝑚𝑚)(𝑛𝑛) ∝ 𝑤𝑤(𝑚𝑚)(𝑛𝑛 − 1)
𝑓𝑓 �𝑦𝑦(𝑛𝑛)�𝑥𝑥(𝑚𝑚)(𝑛𝑛)� 𝑓𝑓 �𝑥𝑥(𝑚𝑚)(𝑛𝑛)�𝑥𝑥(𝑚𝑚)(𝑛𝑛 − 1)�

𝜋𝜋�𝑥𝑥(𝑚𝑚)(𝑛𝑛)�𝑥𝑥(𝑚𝑚)(0:𝑛𝑛 − 1),𝑦𝑦(1:𝑛𝑛)�
,

𝑚𝑚 = 1, … ,𝑀𝑀                     
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Example 2: Consider the state-space model given by 

𝑥𝑥(𝑛𝑛) =  𝑥𝑥(𝑛𝑛 − 1) + 𝑣𝑣1(𝑛𝑛) 

𝑦𝑦(𝑛𝑛) =  𝑥𝑥(𝑛𝑛) + 𝑣𝑣2(𝑛𝑛) 

Where 𝑣𝑣1(𝑛𝑛)  and 𝑣𝑣2(𝑛𝑛)  are independent standard Gaussian random variables. 

Realize the system along with the values of the first four time instants. 

Solution: In this example, we choose to use the proposal distribution 

𝜋𝜋�𝑥𝑥(𝑛𝑛)� = 𝑓𝑓�𝑥𝑥(𝑛𝑛)�𝑥𝑥(𝑛𝑛 − 1)�. In other words, we generate the particles according to 

𝑥𝑥(𝑚𝑚)(𝑛𝑛) ∼  𝑓𝑓 � 𝑥𝑥(𝑛𝑛) ∣∣ 𝑥𝑥
(𝑚𝑚)(𝑛𝑛 − 1) � , 𝑚𝑚 = 1, … ,𝑀𝑀 

That is, each particle stream has a separate proposal distribution. Since the 

proposal function is identical to the transition function 𝑓𝑓 � 𝑥𝑥(𝑛𝑛) ∣∣ 𝑥𝑥
(𝑚𝑚)(𝑛𝑛 − 1) �, from 

(2.22) we deduce that the update of the weights is according to  

𝑤𝑤(𝑚𝑚)(𝑛𝑛) ∼  𝑓𝑓 � 𝑦𝑦(𝑛𝑛) ∣∣ 𝑥𝑥
(𝑚𝑚)(𝑛𝑛) �𝑤𝑤(𝑚𝑚)(𝑛𝑛 − 1) 

The step by step execution of the sequential importance sampling algorithm 

for the three time instants proceeds as follows. 

Initialization 𝑛𝑛 = 1 

𝑥𝑥(𝑚𝑚)(0) ∼ 𝑁𝑁(0,1),𝑚𝑚 = 1,2, …𝑀𝑀 

Note that all the weights are equal as shown in Fig. 1 of Figure 2.1. 

 
Figure 2.1: Particle and weights for Sequential Importance Sampling  
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Time instant 𝑛𝑛 = 2, Generation of particles using the proposal distribution 

𝑥𝑥(𝑚𝑚)(2) ∼  𝑓𝑓 � 𝑥𝑥(2) ∣∣ 𝑥𝑥
(𝑚𝑚)(1) � 

=
1

√2𝜋𝜋
exp⁡�−

�𝑥𝑥(2) − 𝑥𝑥(𝑚𝑚)(1)�
2

2
� 

Weight update 

𝑤𝑤(𝑚𝑚)(2) ∝ 𝑤𝑤(𝑚𝑚)(1)exp⁡�−
�𝑦𝑦(2) − 𝑥𝑥(𝑚𝑚)(2)�

2

2
� 

The particles and their weights are shown in Fig. 2 of Figure 2.1. 

Time instant 𝑛𝑛 = 4, Generation of particles using the proposal distribution 

𝑥𝑥(𝑚𝑚)(4) ∼  𝑓𝑓 � 𝑥𝑥(4) ∣∣ 𝑥𝑥
(𝑚𝑚)(3) � 

=
1

√2𝜋𝜋
exp⁡�−

�𝑥𝑥(4) − 𝑥𝑥(𝑚𝑚)(3)�
2

2
� 

Weight update 

𝑤𝑤(𝑚𝑚)(4) ∝ 𝑤𝑤(𝑚𝑚)(3)exp⁡�−
�𝑦𝑦(4) − 𝑥𝑥(𝑚𝑚)(4)�

2

2
� 

The particles and their weights are shown in Fig. 3 of Figure 2.1. 

Time instant 𝑛𝑛 = 7, Generation of particles using the proposal distribution 

𝑥𝑥(𝑚𝑚)(7) ∼  𝑓𝑓 � 𝑥𝑥(7) ∣∣ 𝑥𝑥
(𝑚𝑚)(6) � 

=
1

√2𝜋𝜋
exp⁡�−

�𝑥𝑥(7) − 𝑥𝑥(𝑚𝑚)(6)�
2

2
� 

Weight update 

𝑤𝑤(𝑚𝑚)(7) ∝ 𝑤𝑤(𝑚𝑚)(6)exp⁡�−
�𝑦𝑦(7) − 𝑥𝑥(𝑚𝑚)(7)�

2

2
� 

The particles and their weights are shown in Fig. 4 of Figure 2.1. 

The process continues in the same way as new observations become 

available. Note that the variance of the weights increases with time, which is an 

unwanted effect. Even at time instant 𝑛𝑛 = 7, a few particle have large weights and 

the rest have negligible weights. 
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2.5 THE CHOICE OF PROPOSAL DISTRIBUTION AND RESAMPLING 
In this section two important issues that affect the performance and 

implementation of particle filtering algorithms are discussed. One is the choice of 

proposal distributions and the other the concept of resampling, which turns out to be 

indispensable in the implementation of PFs. 

 

2.5.1 The Choice of Proposal Distribution 
The proposal distribution (importance function) plays a crucial role in the 

performance of particle filtering. From a practical and intuitive point of view, it is 

desirable to use easy-to-sample proposal distributions that produce particles with a 

large enough variance in order to avoid exploration of the state space in too narrow 

regions and thereby contributing to losing the tracks of the state, but not too large to 

alleviate generation of too dispersed particles. The support of of the proposal 

distributions has to be the same as that of the targeted distribution. 

As already pointed out, the approximation of the posterior distribution with the 

random measure obtained by the proposal distribution will improve if the proposal 

becomes very similar to the posterior. In fact, the optimal choice for the importance 

function is the posterior distribution, that is 

𝜋𝜋� 𝑥𝑥(𝑛𝑛) ∣∣ 𝑥𝑥(𝑚𝑚)(0:𝑛𝑛 − 1),𝑦𝑦(1:𝑛𝑛) � = 𝑓𝑓� 𝑥𝑥(𝑛𝑛) ∣∣ 𝑥𝑥(𝑚𝑚)(𝑛𝑛 − 1),𝑦𝑦(𝑛𝑛) �                   (23) 

Which corresponds to the following weight calculation 

𝑤𝑤(𝑚𝑚)(𝑛𝑛) ∝ 𝑤𝑤(𝑚𝑚)(𝑛𝑛 − 1) 𝑓𝑓 �𝑦𝑦(𝑛𝑛) ∣∣ 𝑥𝑥
(𝑚𝑚)(𝑛𝑛 − 1) � 

This importance function minimizes the variance of the weights, 𝑤𝑤(𝑚𝑚)(𝑛𝑛) , 

conditional on 𝑥𝑥(𝑚𝑚)(0:𝑛𝑛 − 1) and 𝑦𝑦(1:𝑛𝑛). However, the computation of the weights 

requires the integration of 𝑥𝑥(𝑛𝑛), that is, solving 

𝑓𝑓 �𝑦𝑦(𝑛𝑛)�𝑥𝑥(𝑚𝑚)(𝑛𝑛 − 1)� = �𝑓𝑓�𝑦𝑦(𝑛𝑛)�𝑥𝑥(𝑛𝑛)�𝑓𝑓 �𝑥𝑥(𝑛𝑛)�𝑥𝑥(𝑚𝑚)(𝑛𝑛 − 1)�𝑑𝑑𝑑𝑑(𝑛𝑛)                                   

Thus, the implementation of the optimal importance function may be difficult 

for two reasons: First, direct sampling from the posterior (2.23) may not be easy, and 

second, the contribution of the weights may require integration. 

Example 3: Consider the following decomposition of the posterior in (2.23) 

𝑓𝑓� 𝑥𝑥(𝑛𝑛) ∣∣ 𝑥𝑥(𝑚𝑚)(𝑛𝑛 − 1),𝑦𝑦(𝑛𝑛) � ∝ 𝑓𝑓� 𝑦𝑦(𝑛𝑛) ∣∣ 𝑥𝑥(𝑛𝑛) �𝑓𝑓 �𝑥𝑥(𝑛𝑛)�𝑥𝑥(𝑚𝑚)(𝑛𝑛 − 1)�                    

If the distributions on the right-hand side of the previous expressions are 

Gaussins, their product will also be Gaussian. Thus, the proposal is a Guassian and 

ECE DEPTT, DTU Page 15 
 



sampling from it can readily be performed. It is worth pointing out that if the noises in 

the system are additive and Gaussian and the observation is a linear function of the 

state, we can sample from the optimal proposal distribution even if the function in the 

state equation is nonlinear. 

 A popular choice for the importance function is the prior 

𝜋𝜋� 𝑥𝑥(𝑛𝑛) ∣∣ 𝑥𝑥(𝑚𝑚)(0:𝑛𝑛 − 1), 𝑦𝑦(1:𝑛𝑛) � = 𝑓𝑓 � 𝑥𝑥(𝑛𝑛) ∣∣ 𝑥𝑥
(𝑚𝑚)(𝑛𝑛 − 1) �                   

Which yields importance weight proportional to the likelihood 

𝑤𝑤(𝑚𝑚)(𝑛𝑛) ∝ 𝑤𝑤(𝑚𝑚)(𝑛𝑛 − 1) 𝑓𝑓 �𝑦𝑦(𝑛𝑛) ∣∣ 𝑥𝑥
(𝑚𝑚)(𝑛𝑛) � 

The main advantage of this choice is the ease in the computation of the 

weights, which amounts to obtaining the likelihood function. However, the generation 

of the particles is implemented without the use of observations, and therefore not all 

of the available information is used to explore the state space. This may lead in 

some practical cases to poor estimation results. Strategies to improve this 

performance consists of the inclusion of a prediction step like that of the auxiliary PF 

or the use of a hybrid importance function if part of the state is proposed from a prior 

and the remaining state from the optimal importance function. 

Example 4: Consider a state space whose parameters can be divided in two 

groups 𝑥𝑥(𝑛𝑛) = {𝑥𝑥1(𝑛𝑛)𝑥𝑥1(𝑛𝑛)}  and where sampling can be carried out from 

𝑓𝑓 � 𝑥𝑥2(𝑛𝑛) ∣∣ 𝑥𝑥1
(𝑚𝑚)(𝑛𝑛 − 1), 𝑥𝑥2

(𝑚𝑚)(𝑛𝑛 − 1) �  and 

𝑓𝑓� 𝑥𝑥1(𝑛𝑛) ∣∣ 𝑥𝑥2
(𝑚𝑚)(𝑛𝑛), 𝑥𝑥2

(𝑚𝑚)(𝑛𝑛 − 1), 𝑥𝑥1
(𝑚𝑚)(𝑛𝑛 − 1),𝑦𝑦(𝑛𝑛) �. A hybrid proposal that combines 

the prior and the posterior importance functions is given by 

𝜋𝜋� 𝑥𝑥(𝑛𝑛) ∣∣ 𝑥𝑥(𝑚𝑚)(𝑛𝑛 − 1),𝑦𝑦(𝑛𝑛) �

= 𝑓𝑓 � 𝑥𝑥2(𝑛𝑛) ∣∣ 𝑥𝑥1
(𝑚𝑚)(𝑛𝑛 − 1), 𝑥𝑥2

(𝑚𝑚)(𝑛𝑛 − 1) � 𝑓𝑓� 𝑥𝑥1(𝑛𝑛) ∣∣ 𝑥𝑥2
(𝑚𝑚)(𝑛𝑛), 𝑥𝑥2

(𝑚𝑚)(𝑛𝑛 − 1), 𝑥𝑥1
(𝑚𝑚)(𝑛𝑛 − 1),𝑦𝑦(𝑛𝑛) � 

Where 𝑥𝑥2
(𝑚𝑚)(𝑛𝑛) is a sample from 𝑓𝑓 � 𝑥𝑥2(𝑛𝑛) ∣∣ 𝑥𝑥1

(𝑚𝑚)(𝑛𝑛 − 1), 𝑥𝑥2
(𝑚𝑚)(𝑛𝑛 − 1) �. The 

update of the weight can readily be obtained from the general expression given by 

(2.22). 

 

2.6 RESAMPLING 
In particle filtering, the discrete random measure degenerates quickly and 

only few particles are assigned meaningful weights. This degradation leads to a 

deteriorated functioning of particle filtering.  Initially, all the particles have the same 
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weights, and at each time step the particles are propagated and assigned weights. 

As time evolves, all the particles except for very few are assigned negligible weights. 

In the last step, there is only one particle with significant weight. 

The mechanism of resampling as well as the use of good importance function 

can reduce this degeneracy. A measure of this degeneracy is the effective particle 

size defined by 

𝑀𝑀𝑒𝑒𝑒𝑒𝑒𝑒 =  
𝑀𝑀

1 + 𝑉𝑉𝑉𝑉𝑉𝑉(𝑤𝑤∗(𝑚𝑚)(𝑛𝑛))
 

Where 𝑤𝑤∗(𝑚𝑚)(𝑛𝑛) =  𝑓𝑓(𝑥𝑥(𝑛𝑛))
𝜋𝜋(𝑥𝑥(𝑛𝑛))

 is the true particle weight. This metric can be 

estimated as 

𝑀𝑀�𝑒𝑒𝑒𝑒𝑒𝑒 =  
1

∑ (𝑤𝑤(𝑚𝑚)(𝑛𝑛))2𝑀𝑀
𝑚𝑚=1

 

With 𝑤𝑤(𝑚𝑚)(𝑛𝑛)  being the normalized weight corresponding to the 𝑚𝑚− 𝑡𝑡ℎ 

particle at time instant 𝑛𝑛. If the effective particle size is below a predefined threshold, 

resampling is carried out. Clearly, when all the particles have the same weights, the 

variance of the weights is zero and the particle size is equal to the number of 

particles, 𝑀𝑀 . The other extreme occurs when all the particles except one have 

negligible weights, and the particle size is equal to one. 

Resampling eliminates particles with small weights and replicates particles 

with large weights. In general, if the random measure at time instant 𝑛𝑛 is χ(n), it 

proceeds as follows. 

• Draw 𝑀𝑀 particles, 𝑥𝑥(𝑘𝑘𝑚𝑚 )(𝑛𝑛), from the distribution given by χ(n), where 

the 𝑘𝑘𝑚𝑚𝑠𝑠 are the indexes of the drawn particles. 

• Let 𝑥𝑥(𝑚𝑚)(𝑛𝑛) = 𝑥𝑥(𝑘𝑘𝑚𝑚 )(𝑛𝑛), and assign equal weights 1
𝑀𝑀

 to the particles. 

At time instant 𝑛𝑛, a new set of particles is generated, and their weights are 

computed. Thereby the random measure χ(n) is generated and can be used for the 

estimation of the desired unknowns. Before the next step (𝑛𝑛 + 1) , the effective 

particle size is estimated and resampling is carried out if necessary. Some of the 

resampled particles at n=1, n=2, n=4, and n=7 are shown in Fig. 5, 6, 7, and 8, of 

Figure 2.2, respectively. 
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Figure 2.2: Particle and weights for Sequential Importance Resampling 
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CHAPTER 3 
BASIC PARTICLE FILTERING METHODS 

 
In this section, we present three different particle filtering methods. They are 

also known as sampling-importance-resampling (SIR), auxiliary particle filtering 

(APF), and Gaussian particle filtering (GPF). The common feature of each of these 

methods is that at time instant 𝑛𝑛 , they are represented by a discrete random 

measure given by χ(n) = �𝑥𝑥(𝑚𝑚)(𝑛𝑛), 𝑤𝑤(𝑚𝑚)(𝑛𝑛) �
𝑚𝑚=1
𝑀𝑀

, where, as before, 𝑥𝑥(𝑚𝑚)(𝑛𝑛)  is the 

𝑚𝑚 − 𝑡𝑡ℎ particle of the state vector at time instant 𝑛𝑛, 𝑤𝑤(𝑚𝑚)(𝑛𝑛) is the weight of that 

particle, and 𝑀𝑀 is the number of particles. For each of these filters, we show how this 

random measure is obtained from χ(n-1) by using the observation vector 𝑦𝑦(𝑛𝑛). 

 

3.1 SIR PARTICLE FILTERING 
The SIR method is the simplest of all of the particle filtering methods. It was 

proposed in [1] and was named bootstrap filter. Namely, the SIR method employs 

the prior density for drawing particles, which implies that the weights are only 

proportional to the likelihood of the drawn particles. We now explain in more detail. 

Recall that if the particles are generated from a density function 𝜋𝜋(𝑥𝑥(𝑛𝑛)), and 

the weights of the particles in the previous time step were 𝑤𝑤(𝑚𝑚)(𝑛𝑛 − 1), upon the 

reception of the measurement 𝑦𝑦(𝑛𝑛), the weights are updated by 

𝑤𝑤� (𝑚𝑚)(𝑛𝑛) = 𝑤𝑤(𝑚𝑚)(𝑛𝑛 − 1)
𝑓𝑓 �𝑦𝑦(𝑛𝑛)�𝑥𝑥(𝑚𝑚)(𝑛𝑛)� 𝑓𝑓 �𝑥𝑥(𝑚𝑚)(𝑛𝑛)�𝑥𝑥(𝑚𝑚)(𝑛𝑛 − 1)�

𝜋𝜋�𝑥𝑥(𝑚𝑚)(𝑛𝑛)�𝑥𝑥(𝑚𝑚)(𝑛𝑛 − 1),𝑦𝑦(1:𝑛𝑛)�
                                     

Where 𝑤𝑤� (𝑚𝑚)(𝑛𝑛) denotes a non-normalized weight of 𝑥𝑥(𝑚𝑚)(𝑛𝑛). If the proposal 

distribution is equal to the prior, that is 

𝜋𝜋� 𝑥𝑥(𝑛𝑛) ∣∣ 𝑥𝑥(𝑚𝑚)(𝑛𝑛 − 1),𝑦𝑦(1:𝑛𝑛) � = 𝑓𝑓 � 𝑥𝑥(𝑛𝑛) ∣∣ 𝑥𝑥
(𝑚𝑚)(𝑛𝑛 − 1) �                   

The computation of the weights simplifies to 

𝑤𝑤� (𝑚𝑚)(𝑛𝑛) = 𝑤𝑤(𝑚𝑚)(𝑛𝑛 − 1) 𝑓𝑓 � 𝑦𝑦(𝑛𝑛) ∣∣ 𝑥𝑥
(𝑚𝑚)(𝑛𝑛) � 

Furthermore, if the weights from the previous time step were all equal 

(because of resampling), the previous update equation becomes even simpler 

𝑤𝑤� (𝑚𝑚)(𝑛𝑛) =  𝑓𝑓 � 𝑦𝑦(𝑛𝑛) ∣∣ 𝑥𝑥
(𝑚𝑚)(𝑛𝑛) � 
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That is, the weight of the particle 𝑥𝑥(𝑚𝑚)(𝑛𝑛) is only proportional to the likelihood 

of that particle. 

Next, we explain in more detail the steps of the SIR method. In the first step 

we draw candidate particle 𝑥𝑥𝑐𝑐
(𝑚𝑚)(𝑛𝑛) according to 

𝑥𝑥𝑐𝑐
(𝑚𝑚)(𝑛𝑛) ∼ 𝑓𝑓 � 𝑥𝑥(𝑛𝑛) ∣∣ 𝑥𝑥

(𝑚𝑚)(𝑛𝑛 − 1) � ,            𝑚𝑚 = 1,2, … ,𝑀𝑀 

In the second step, we compute the non-normalized weights of these particles 

by 

𝑤𝑤� (𝑚𝑚)(𝑛𝑛) =  𝑓𝑓 � 𝑦𝑦(𝑛𝑛) ∣∣
∣ 𝑥𝑥𝑐𝑐

(𝑚𝑚)(𝑛𝑛) � ,          𝑚𝑚 = 1,2, … ,𝑀𝑀 

And then normalize them so that they sum up to one, that is, we use 

𝑤𝑤(𝑚𝑚)(𝑛𝑛) =
𝑤𝑤� (𝑚𝑚)(𝑛𝑛)

∑ 𝑤𝑤� (𝑗𝑗 )(𝑛𝑛)𝑀𝑀
𝑖𝑖=1

     

With the completion of this step, we have the random measure           

�𝑥𝑥𝑐𝑐
(𝑚𝑚)(𝑛𝑛), 𝑤𝑤(𝑚𝑚)(𝑛𝑛) �

𝑚𝑚=1

𝑀𝑀
, which should be used for computations of desired estimates. 

In the third and final step we perform resampling of the particles 𝑥𝑥𝑐𝑐
(𝑚𝑚)(𝑛𝑛) 

according to the multinomial probability mass function defined by the weights 

𝑤𝑤(𝑚𝑚)(𝑛𝑛) . Namely, we draw indices 𝑘𝑘𝑚𝑚 , for 𝑚𝑚 = 1,2, … ,𝑀𝑀 , where Pr(𝑘𝑘𝑚𝑚 = 𝑖𝑖) =

𝑤𝑤(𝑖𝑖)(𝑛𝑛). Once the indexes are drawn, we set 

𝑥𝑥(𝑚𝑚)(𝑛𝑛) =  𝑥𝑥𝑐𝑐
(𝑘𝑘𝑚𝑚 )(𝑛𝑛) 

The weights of the particles 𝑥𝑥(𝑚𝑚)(𝑛𝑛) are set to 𝑤𝑤(𝑚𝑚)(𝑛𝑛) = 1/𝑀𝑀. The whole SIR 

procedure is summarized in Table 3.1. 

If resampling was not implemented as a third step, we have 

𝑥𝑥(𝑚𝑚)(𝑛𝑛) =  𝑥𝑥𝑐𝑐
(𝑚𝑚)(𝑛𝑛) 

𝑤𝑤� (𝑚𝑚)(𝑛𝑛) =  𝑤𝑤(𝑚𝑚)(𝑛𝑛 − 1)𝑓𝑓 � 𝑦𝑦(𝑛𝑛) ∣∣
∣ 𝑥𝑥𝑐𝑐

(𝑚𝑚)(𝑛𝑛) � ,          𝑚𝑚 = 1,2, … ,𝑀𝑀 

And then we normalize the weights. After normalization, we would typically 

perform a test to decide if resampling is needed. If it was necessary, we would 

implement it as described; if not, we would proceed with the next time step. Recall 

that with resampling some particles are removed and the ones that are preserved 

may be replicated. We reiterate that, in general, resampling does not have to be 

implemented at every time step, but here we adopt to do so. If resampling is not 

performed at the end of the recursion, the generated particles in the first step 

represent the support of the random measure used for the next time instant. A 
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stochastic volatility model showing a realization of the observations, the state and its 

estimate is shown in Fig.9 of Figure 3.1 . In Fig.10 of Figure 3.2, comparison 

between state, resampled estimate state and unsampled estimate state is shown. 

Particle generation and its propagation without sampling (degeneracy effect) and 

with resampling is also shown in Fig.11 and 12 of Figure 3.3, respectively. 

 
Figure 3.1 : Stochastic Volatility model of SIR Particle filter 
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Fig.9: Stochastic volatility model of SIR Particle Filter
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Figure 3.2 : State, Resampled Estimated state and Unsampled Estimated state 

Figure 3.3 : Particle filtering with and without resampling 
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Fig.10:State, Resampled Esti. state and Unsampled Esti. state

 

 
State
Resampled Esti. State
Unsampled Esti. state

0 50 100 150 200 250 300 350 400 450 500
0

0.02

0.04

0.06
Fig.11:Particle filtering with resampling

Time, nP
ar

tic
le

 g
en

er
at

io
n 

an
d 

pr
op

ag
at

io
n

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1
Fig.12:Particle filtering without resampling

Time, nP
ar

tic
le

 g
en

er
at

io
n 

an
d 

pr
op

ag
at

io
n

ECE DEPTT, DTU Page 22 
 



A clear advantage of the SIR method is that it is very simple for 

implementation. Its disadvantage is that in drawing the particles 𝑥𝑥(𝑚𝑚)(𝑛𝑛) for exploring 

the state space, we do not use the observation 𝑦𝑦(𝑛𝑛) . In other words, once the 

particles are generated, the only thing we can do to steer the particles towards the 

region of the state space with large probability density is by resampling. If all of the 

generated particles are already far away from such regions, resampling will not help.  

Table 3.1: The SIR algorithm 

Initialization 
For 𝑚𝑚 = 1,2, … ,𝑀𝑀 

      sample 𝑥𝑥(𝑚𝑚)(0) ∼  𝑓𝑓(𝑥𝑥(0)) 

      𝑤𝑤(𝑚𝑚)(0) = 1
𝑀𝑀

 

Recursions 
For 𝑛𝑛 = 1,2, … ,𝑁𝑁 

  For 𝑚𝑚 = 1,2, … ,𝑀𝑀 

Proposal of candidate particles 

 Sample   𝑥𝑥𝑐𝑐
(𝑚𝑚)(𝑛𝑛) ∼ 𝑓𝑓 �𝑥𝑥(𝑛𝑛) ∣∣ 𝑥𝑥

(𝑚𝑚)(𝑛𝑛 − 1) � 

Computation of weights 

        Evaluate the weights, 𝑤𝑤� (𝑚𝑚)(𝑛𝑛) =  𝑓𝑓 � 𝑦𝑦(𝑛𝑛) ∣∣
∣ 𝑥𝑥𝑐𝑐

(𝑚𝑚)(𝑛𝑛) � 

        Normalize the weights, 𝑤𝑤(𝑚𝑚)(𝑛𝑛) = 𝑤𝑤� (𝑚𝑚 )(𝑛𝑛)
∑ 𝑤𝑤� (𝑗𝑗)(𝑛𝑛)𝑀𝑀
𝑗𝑗=1

     

  Resampling 

        sample 𝑘𝑘𝑚𝑚 , where Pr(𝑘𝑘𝑚𝑚 = 𝑖𝑖) = 𝑤𝑤(𝑖𝑖)(𝑛𝑛) 

        set  𝑥𝑥(𝑚𝑚)(𝑛𝑛) =  𝑥𝑥𝑐𝑐
(𝑚𝑚)(𝑛𝑛) and 

        𝑤𝑤(𝑚𝑚)(𝑛𝑛) = 1
𝑀𝑀

 

 

When SIR particle filter uses prior and posterior functions as proposal 

functions, then their performance can be compared in terms of mean square error 

(MSE) per sample. MSE comparison for prior and posterior proposal function is 

shown in Fig.13 of Figure 3.4. 
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Figure 3.4 : MSE Comparison for prior and posterior proposal functions 
 The SIR particle filter has also been analyzed with two possible resampling 

schemes, one that performs the resampling at each time step, and another one 

where the resampling is carried out depending on the effective particle size measure. 

Comaparison of performance of the SIR particle filter for 1000 particles and 

threshold of effective particle size (0.3*1000) is shown in the Fig.14 of Figure 3.5. 

 
Figure 3.5 : SIR Particle filtering with two resampling scheme 
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Fig.13:MSE comparison for prior and posterior proposal functions

 

 
Prior Proposal fn
Posterior Proposal fn

0 50 100 150 200 250 300 350 400 450 500
-20

-15

-10

-5

0

5

10

15

20

Time, n

St
at

e,
 re

sa
m

pl
ed

 e
st

i s
ta

te
 a

t n
 a

nd
 w

ith
 e

ff.
 p

ar
tic

le
 s

iz
e

Fig.14: SIR particle filter with two resampling scheme

 

 
State
Resamp. esti.state at n
Resamp. esti.state(Meff)

ECE DEPTT, DTU Page 24 
 



Example 5: Consider a model of for univariate nonstationary growth [10] 

𝑥𝑥(𝑛𝑛) = 𝛼𝛼𝛼𝛼(𝑛𝑛 − 1) + 𝛽𝛽
𝑥𝑥(𝑛𝑛 − 1)

1 + 𝑥𝑥2(𝑛𝑛 − 1)
+ 𝛾𝛾 𝑐𝑐𝑐𝑐𝑐𝑐�1.2(𝑛𝑛 − 1)� + 𝑣𝑣1(𝑛𝑛) 

𝑦𝑦(𝑛𝑛) =
𝑥𝑥2(𝑛𝑛)

20
+ 𝑣𝑣2(𝑛𝑛),𝑛𝑛 = 1, … ,𝑁𝑁 

             Where 

𝑥𝑥(0) = 0.1,𝛼𝛼 = 0.5,𝛽𝛽 = 25, 𝛾𝛾 = 8,𝑁𝑁 = 500, 𝑣𝑣1(𝑛𝑛) ∼ 𝑁𝑁(0,1) 𝑎𝑎𝑎𝑎𝑎𝑎 𝑣𝑣2(𝑛𝑛) ∼ 𝑁𝑁(0,1)  

Taking into account all the parameters, performance comparisons of SIR PF, 

APF, and GPF in terms of state and estimated state are shown in the Fig.15  

(Figure 3.6), 16(Figure 3.7), and 17(Figure 3.8), respectively. 

 
Figure 3.6 : State and estimated state of SIR Particle filter for univariate 
nonstationary growth  
 

3.2 AUXILIARY PARTICLE FILTERING 
The APF [10] attempts to improve the ability of the PF in exploring the state 

space by using the latest measurements. We know that with particle filtering, we 

approximate the filtering density 𝑓𝑓�𝑥𝑥(𝑛𝑛)�𝑦𝑦(1:𝑛𝑛)� by the mixture density 

 𝑓𝑓�𝑦𝑦(𝑛𝑛)�𝑥𝑥(𝑛𝑛)� � 𝑤𝑤𝑚𝑚 (𝑛𝑛 − 1)𝑓𝑓�𝑥𝑥(𝑛𝑛)�𝑥𝑥(𝑚𝑚)(𝑛𝑛 − 1)�        
𝑀𝑀

𝑚𝑚=1

                       (3.1)      
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Fig.15:State & esti. state of SIR for univar. nonstationary growth
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The underlying idea behind APF is to propose samples 𝑥𝑥(𝑚𝑚)(𝑛𝑛)  from this 

density. In order to do so, we introduce an auxiliary variable, which is an index 

variable. We denote it by 𝑘𝑘 and we index it by 𝑚𝑚, so that we write it as 𝑘𝑘𝑚𝑚 . We draw 

it from the set {1,2, … ,𝑀𝑀} , and it denotes the particle stream which we want to 

update. Thus, if we draw 𝑘𝑘𝑚𝑚 = 5, we work with 5th stream, if we have 𝑘𝑘𝑚𝑚 = 11, it is 

the 11th stream and so on. 

First we describe the basic APF method. This method makes easy the 

problem of drawing 𝑥𝑥(𝑛𝑛) from (3.1) by using estimates of 𝑥𝑥(𝑛𝑛) for each stream of 

particles. If we denote the estimates by 𝑥𝑥�(𝑚𝑚)(𝑛𝑛) , we modify (3.1) and create a 

proposal distribution given by 

� 𝑤𝑤(𝑚𝑚)(𝑛𝑛 − 1)𝑓𝑓�𝑦𝑦(𝑛𝑛)�𝑥𝑥�(𝑚𝑚)(𝑛𝑛)�𝑓𝑓�𝑥𝑥(𝑛𝑛)�𝑥𝑥(𝑚𝑚)(𝑛𝑛 − 1)�        
𝑀𝑀

𝑚𝑚=1

                       (3.2)      

An estimate of 𝑥𝑥(𝑚𝑚)(𝑛𝑛) can be any value of 𝑥𝑥(𝑛𝑛) that is a good representative, 

which means that it should be a value that can easily be computed and has high 

likelihood.  

For example, if the state equation is  𝑥𝑥(𝑛𝑛) = 𝑔𝑔1�𝑥𝑥(𝑛𝑛)� + 𝑣𝑣1(𝑛𝑛) and the noise vector 

𝑣𝑣1(𝑛𝑛) is zero mean, an estimate of 𝑥𝑥(𝑚𝑚)(𝑛𝑛) could be 𝑥𝑥�(𝑚𝑚)(𝑛𝑛) = 𝑔𝑔1 �𝑥𝑥�(𝑚𝑚)(𝑛𝑛 − 1)�.  

With the estimates 𝑥𝑥�(𝑚𝑚)(𝑛𝑛) and new form of the proposal distribution (3.2), it is 

much easier to propose new particles 𝑥𝑥(𝑚𝑚)(𝑛𝑛). The idea has subtle point: we use 

(3.2) as a joint distribution of the auxiliary variable and the state. The implications is 

that first we draw the auxiliary variable (index) 𝑘𝑘𝑚𝑚  from a multinomial distribution, 

where Pr(𝑘𝑘𝑚𝑚 = 𝑖𝑖) ∝ 𝑤𝑤(𝑖𝑖)(𝑛𝑛 − 1)𝑓𝑓�𝑦𝑦(𝑛𝑛)�𝑥𝑥�(𝑖𝑖)(𝑛𝑛)�. 

The drawn index, say, 𝑖𝑖 , identifies the distribution from which we draw 

𝑥𝑥(𝑚𝑚)(𝑛𝑛) , 𝑓𝑓�𝑥𝑥(𝑛𝑛)�𝑥𝑥(𝑘𝑘𝑚𝑚=𝑖𝑖)(𝑛𝑛 − 1)� , so we proceed by drawing a particle from 

𝑓𝑓�𝑥𝑥(𝑛𝑛)�𝑥𝑥(𝑘𝑘𝑚𝑚=𝑖𝑖)(𝑛𝑛 − 1)�. Once the particles are drawn, as with SIR, the last step is the 

computation of the weights. 

Before we derive the formula for the update of the weights, we express the 

proposal distribution in a form that will make the derivation easy. First, we rewrite the 

proposal as 

𝜋𝜋( 𝑥𝑥(𝑛𝑛),𝑘𝑘𝑚𝑚 ∣∣  𝑦𝑦(1:𝑛𝑛) ) = 𝑓𝑓( 𝑥𝑥(𝑛𝑛) ∣∣ 𝑘𝑘𝑚𝑚 ,𝑦𝑦(1:𝑛𝑛) )𝑓𝑓(𝑘𝑘𝑚𝑚 ∣∣  𝑦𝑦(1:𝑛𝑛) )                

The first factor on the right is 

𝑓𝑓( 𝑥𝑥(𝑛𝑛) ∣∣ 𝑘𝑘𝑚𝑚 ,𝑦𝑦(1:𝑛𝑛) ) =  𝑓𝑓� 𝑥𝑥(𝑛𝑛) ∣∣ 𝑥𝑥(𝑘𝑘𝑚𝑚 )(𝑛𝑛 − 1) � 
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Because according to (3.2), given 𝑘𝑘𝑚𝑚 , 𝑦𝑦(𝑛𝑛) does not affect the density of 𝑥𝑥(𝑛𝑛) 

and furthermore, given 𝑘𝑘𝑚𝑚 , the density of 𝑥𝑥(𝑛𝑛) is not a function of 𝑦𝑦(1:𝑛𝑛 − 1) either, 

and instead it is simply the prior. This follows from the markovian nature of the state 

variable. Recall that 𝑘𝑘𝑚𝑚  is an index that points to the 𝑘𝑘𝑚𝑚 − 𝑡𝑡ℎ  stream and all its 

particles 𝑥𝑥(𝑘𝑘𝑚𝑚 )(0:𝑛𝑛 − 1). Thus, once, 𝑘𝑘𝑚𝑚  is known, so is 𝑥𝑥(𝑘𝑘𝑚𝑚 )(𝑛𝑛 − 1), implying that 

all of the measurements 𝑦𝑦(1:𝑛𝑛 − 1) become irrelevant in expressing the density of 

𝑥𝑥(𝑛𝑛). 

For the second factor we can write 

𝑓𝑓(𝑘𝑘𝑚𝑚 ∣∣  𝑦𝑦(1:𝑛𝑛) ) ∝ 𝑤𝑤𝑘𝑘𝑚𝑚 (𝑛𝑛 − 1)𝑓𝑓�𝑦𝑦(𝑛𝑛)�𝑥𝑥�(𝑘𝑘𝑚𝑚 )(𝑛𝑛)� 

Where the weight 𝑤𝑤𝑘𝑘𝑚𝑚 (𝑛𝑛 − 1)  is a function of 𝑦𝑦(1:𝑛𝑛 − 1)  and, 

clearly, 𝑓𝑓�𝑦𝑦(𝑛𝑛)�𝑥𝑥�(𝑘𝑘𝑚𝑚 )(𝑛𝑛)� is a function of of 𝑦𝑦(𝑛𝑛). It is obvious that 𝑓𝑓( 𝑘𝑘𝑚𝑚 ∣∣  𝑦𝑦(1:𝑛𝑛) ) 

represents the probability of drawing 𝑘𝑘𝑚𝑚 . 

Therefore, for the update of the weight, we have the following 

𝑤𝑤� (𝑚𝑚)(𝑛𝑛) = 𝑤𝑤(𝑘𝑘𝑚𝑚 )(𝑛𝑛 − 1)
𝑓𝑓 �𝑦𝑦(𝑛𝑛)�𝑥𝑥(𝑚𝑚)(𝑛𝑛)� 𝑓𝑓 �𝑥𝑥(𝑚𝑚)(𝑛𝑛)�𝑥𝑥(𝑘𝑘𝑚𝑚 )(𝑛𝑛 − 1)�

𝜋𝜋�𝑥𝑥(𝑚𝑚)(𝑛𝑛),𝑘𝑘𝑚𝑚�𝑦𝑦(1:𝑛𝑛)�
                                     

                  = 𝑤𝑤(𝑘𝑘𝑚𝑚 )(𝑛𝑛 − 1)
𝑓𝑓�𝑦𝑦(𝑛𝑛)�𝑥𝑥 (𝑚𝑚 )(𝑛𝑛)�𝑓𝑓�𝑥𝑥(𝑚𝑚 )(𝑛𝑛)�𝑥𝑥 (𝑘𝑘𝑚𝑚 )(𝑛𝑛−1)�

𝑤𝑤 (𝑘𝑘𝑚𝑚 )(𝑛𝑛−1)𝑓𝑓�𝑦𝑦(𝑛𝑛)�𝑥𝑥�(𝑘𝑘𝑚𝑚 )(𝑛𝑛)�𝑓𝑓�𝑥𝑥 (𝑚𝑚 )(𝑛𝑛)�𝑥𝑥(𝑘𝑘𝑚𝑚 )(𝑛𝑛−1)�
 

                  =
𝑓𝑓�𝑦𝑦(𝑛𝑛)�𝑥𝑥(𝑚𝑚 )(𝑛𝑛)�

𝑓𝑓�𝑦𝑦(𝑛𝑛)�𝑥𝑥�(𝑘𝑘𝑚𝑚 )(𝑛𝑛)�
 

In summary, the procedure is rather straightforward. Given the particles and 

their weights at time instant (𝑛𝑛 − 1), 𝑥𝑥(𝑚𝑚)(𝑛𝑛 − 1) and 𝑤𝑤(𝑚𝑚)(𝑛𝑛 − 1), respectively, first 

we compute estimates 𝑥𝑥�(𝑚𝑚)(𝑛𝑛). For these estimates we evaluate the weights by 

𝑤𝑤� (𝑚𝑚)(𝑛𝑛) ∝ 𝑤𝑤(𝑚𝑚)(𝑛𝑛 − 1)𝑓𝑓�𝑦𝑦(𝑛𝑛)�𝑥𝑥�(𝑚𝑚)(𝑛𝑛)�                                     (3.3) 

Next we draw the indexes of the particles streams that we will continue to 

append. The indexes are drawn from the multinomial distribution with parameters 

𝑤𝑤� (𝑚𝑚)(𝑛𝑛). With this, we effectively perform resampling. After this step, we draw the 

particles of 𝑥𝑥(𝑛𝑛) according to 

𝑥𝑥(𝑚𝑚)(𝑛𝑛) ∼  𝑓𝑓 �𝑥𝑥(𝑛𝑛)�𝑥𝑥(𝑘𝑘𝑚𝑚 )(𝑛𝑛 − 1)� ,     𝑚𝑚 = 1,2, … ,𝑀𝑀                                    

The last step amounts to computing the weights of these particles by 

𝑤𝑤(𝑚𝑚)(𝑛𝑛) ∝
𝑓𝑓 �𝑦𝑦(𝑛𝑛)�𝑥𝑥(𝑚𝑚)(𝑛𝑛)�

𝑓𝑓(𝑦𝑦(𝑛𝑛)|𝑥𝑥�(𝑘𝑘𝑚𝑚 )(𝑛𝑛))
                                                              (3.4) 

The algorithm is summarized in Table 3.2. 
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Table 3.2: Auxiliary Particle Filter 

Initialization 
For 𝑚𝑚 = 1,2, … ,𝑀𝑀 

      sample 𝑥𝑥(𝑚𝑚)(0) ∼  𝑓𝑓(𝑥𝑥(0)) 

      𝑤𝑤(𝑚𝑚)(0) = 1
𝑀𝑀

 

Recursions 
For 𝑛𝑛 = 1,2, … ,𝑁𝑁 

  For 𝑚𝑚 = 1,2, … ,𝑀𝑀 

  Estimation of next particles 

     Compute  𝑥𝑥�(𝑚𝑚)(𝑛𝑛) = 𝐸𝐸 �𝑥𝑥(𝑛𝑛) ∣∣ 𝑥𝑥
(𝑚𝑚)(𝑛𝑛 − 1) � 

      Sample the indexes 𝑘𝑘𝑚𝑚  of the streams that survive 

        Sample 𝑘𝑘𝑚𝑚 = 𝑖𝑖 with probability 𝑤𝑤(𝑖𝑖)(𝑛𝑛 − 1)𝑓𝑓�𝑦𝑦(𝑛𝑛)�𝑥𝑥�(𝑖𝑖)(𝑛𝑛)�    

                         Sample the new particles for time instant, 𝑛𝑛 

𝑥𝑥(𝑚𝑚)(𝑛𝑛) ∼  𝑓𝑓 �𝑥𝑥(𝑛𝑛)�𝑥𝑥(𝑘𝑘𝑚𝑚 )(𝑛𝑛 − 1)�                                   

                         Computation of weights 

                             Evaluate the weights, 𝑤𝑤� (𝑚𝑚)(𝑛𝑛) =  
𝑓𝑓�𝑦𝑦(𝑛𝑛)�𝑥𝑥(𝑚𝑚 )(𝑛𝑛)�

𝑓𝑓�𝑦𝑦(𝑛𝑛)�𝑥𝑥�(𝑘𝑘𝑚𝑚 )(𝑛𝑛)�
 

                             Normalize the weights, 𝑤𝑤(𝑚𝑚)(𝑛𝑛) = 𝑤𝑤� (𝑚𝑚 )(𝑛𝑛)
∑ 𝑤𝑤� (𝑗𝑗)(𝑛𝑛)𝑀𝑀
𝑖𝑖=1

     

 

So, what do we gain by computing estimates of 𝑥𝑥(𝑛𝑛) and implementing the 

drawing of particles by auxiliary variables? By using the estimates of 𝑥𝑥(𝑚𝑚)(𝑛𝑛), we 

look ahead to how good the particle streams may be. Rather than resampling from 

samples obtained from the prior, we first resample by using the latest measurement 

and then propagate from the surviving streams. Thereby, at the end of the recursion 

instead of having particles propagated without the use of 𝑦𝑦(𝑛𝑛), we have particles 

moved in directions preferred by 𝑦𝑦(𝑛𝑛). With SIR, the data 𝑦𝑦(𝑛𝑛) affect the direction of 

particle propagation later they do with APF. 

It is important to know that one cannot guarantee that the basic APF method 

will perform better than the SIR algorithm inspite of the help of the latest 

observations. The reason for this is that   the new particles are still generated by the 

prior only. 
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  Now we describe a more general version of the APF method. As with the 

basic APF, one preselects the streams that are propagated. Instead of a preselection 

based on the weights (3.3), we use weights that we denote by 𝑤𝑤𝑎𝑎
(𝑚𝑚)(𝑛𝑛). After the 𝑘𝑘𝑚𝑚  

is selected, for propagation, we use the proposal distribution 

𝜋𝜋� 𝑥𝑥(𝑛𝑛) ∣∣ 𝑥𝑥(𝑘𝑘𝑚𝑚 )(𝑛𝑛 − 1),𝑦𝑦(𝑛𝑛) �, that is, 

𝑥𝑥(𝑚𝑚)(𝑛𝑛) ∼ 𝜋𝜋�𝑥𝑥(𝑛𝑛) ∣∣ 𝑥𝑥(𝑘𝑘𝑚𝑚 )(𝑛𝑛 − 1),𝑦𝑦(𝑛𝑛) �                                         (3.5) 

The new weights are then computed according to 

𝑤𝑤� (𝑚𝑚)(𝑛𝑛)

=
𝑤𝑤(𝑘𝑘𝑚𝑚 )(𝑛𝑛 − 1)

𝑤𝑤𝑎𝑎
(𝑘𝑘𝑚𝑚 )(𝑛𝑛)

𝑓𝑓 �𝑦𝑦(𝑛𝑛)�𝑥𝑥(𝑚𝑚)(𝑛𝑛)� 𝑓𝑓 �𝑥𝑥(𝑚𝑚)(𝑛𝑛)�𝑥𝑥(𝑘𝑘𝑚𝑚 )(𝑛𝑛 − 1)�

𝜋𝜋(𝑥𝑥(𝑚𝑚)(𝑛𝑛)|𝑥𝑥(𝑘𝑘𝑚𝑚 )(𝑛𝑛 − 1),𝑦𝑦(𝑛𝑛))
                           (3.6)                                

Note that for the basic APF we have 

𝑤𝑤𝑎𝑎
(𝑘𝑘𝑚𝑚 )(𝑛𝑛) ∝ 𝑤𝑤(𝑘𝑘𝑚𝑚 )(𝑛𝑛 − 1)𝑓𝑓�𝑦𝑦(𝑛𝑛)�𝑥𝑥�(𝑘𝑘𝑚𝑚 )(𝑛𝑛)�                                      

And        𝜋𝜋�𝑥𝑥(𝑚𝑚)(𝑛𝑛)�𝑥𝑥(𝑘𝑘𝑚𝑚 )(𝑛𝑛 − 1),𝑦𝑦(𝑛𝑛)� =  𝑓𝑓 �𝑥𝑥(𝑚𝑚)(𝑛𝑛)�𝑥𝑥(𝑘𝑘𝑚𝑚 )(𝑛𝑛 − 1)� 

As with the standard PFs, the performance of the APF depends strongly on 

the proposal distribution 𝜋𝜋�𝑥𝑥(𝑛𝑛)�𝑥𝑥(𝑘𝑘𝑚𝑚 )(𝑛𝑛 − 1),𝑦𝑦(𝑛𝑛)�. However, its performance also 

depends on the choice of the weights𝑤𝑤𝑎𝑎
(𝑘𝑘𝑚𝑚 )(𝑛𝑛). 

 
Figure 3.7 : State and estimated state of APF Particle filter for univariate 
nonstationary growth 
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Fig.16:State & esti. state of APF for univar. nonstationary growth
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3.3 GAUSSIAN PARTICLE FILTERING 
With Gaussian particle filtering, we approximate the posterior and the 

predictive densities of the states with Gaussians [2]. The method is very simple to 

implement, and its advantage over other particle filtering method is that it does not 

require resampling. Another advantage is that the estimation of constant parameters 

is not a problem as is the case with other methods. In brief, the treatment of dynamic 

and constant states is identical. On the other hand, its disadvantage is that if the 

approximated densities are not Gaussians, the estimates may be inaccurate and the 

filter may diverge as any other method that uses Gaussian approximations. In that 

case, an alternative could be the use of Gaussian sum filtering where the densities in 

the system are approximated by mixture Gaussian [3]. The method proceeds as 

follows. Let the random measure at time instant (𝑛𝑛 − 1)  be given by 

χ(n-1) = �𝑥𝑥(𝑚𝑚)(𝑛𝑛 − 1), 1/𝑀𝑀 �
𝑚𝑚=1
𝑀𝑀

 . In the first step, we draw samples 𝑥𝑥𝑐𝑐
(𝑚𝑚)(𝑛𝑛) from the 

prior, that is 

𝑥𝑥𝑐𝑐
(𝑚𝑚)(𝑛𝑛) ∼  𝑓𝑓 �𝑥𝑥(𝑛𝑛)�𝑥𝑥(𝑚𝑚)(𝑛𝑛 − 1)�                                   

For the obtained samples, we compute their weights according to 

𝑤𝑤� (𝑚𝑚)(𝑛𝑛) = 𝑓𝑓 �𝑦𝑦(𝑛𝑛)�𝑥𝑥𝑐𝑐
(𝑚𝑚)(𝑛𝑛)�  

And then we normalize them. Now, the assumption is that the particles 

𝑥𝑥𝑐𝑐
(𝑚𝑚)(𝑛𝑛) and their weights 𝑤𝑤(𝑚𝑚)(𝑛𝑛) approximate a normal distribution whose moments 

are estimated by 

𝜇𝜇(𝑛𝑛) = � 𝑤𝑤(𝑚𝑚)(𝑛𝑛)
𝑀𝑀

𝑚𝑚=1

𝑥𝑥𝑐𝑐
(𝑚𝑚)(𝑛𝑛) 

�(𝑛𝑛) = �𝑤𝑤(𝑚𝑚)(𝑛𝑛)
𝑀𝑀

𝑚𝑚=1

(𝑥𝑥𝑐𝑐
(𝑚𝑚)(𝑛𝑛) − 𝜇𝜇(𝑛𝑛))(𝑥𝑥𝑐𝑐

(𝑚𝑚)(𝑛𝑛) − 𝜇𝜇(𝑛𝑛))𝑇𝑇 

Finally, the particles that are used for propagation at the next time instant (𝑛𝑛 + 1) are 

generated by 

𝑥𝑥(𝑚𝑚)(𝑛𝑛) ∼ 𝑁𝑁(𝜇𝜇(𝑛𝑛),�(𝑛𝑛)) 

And they are all assigned the same weights. The method is summarized in Table 

3.3. 
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Table 3.3: The GPF algorithm 

Initialization 
For 𝑚𝑚 = 1,2, … ,𝑀𝑀 

      sample 𝑥𝑥𝑐𝑐
(𝑚𝑚)(0) ∼  𝑓𝑓(𝑥𝑥(0)) 

      𝑤𝑤(𝑚𝑚)(0) = 1
𝑀𝑀

 

Recursions 
    For 𝑛𝑛 = 1,2, … ,𝑁𝑁 

   Drawing particles from the predictive density 

        𝑥𝑥𝑐𝑐
(𝑚𝑚)(𝑛𝑛) ∼ 𝑓𝑓 �𝑥𝑥(𝑛𝑛) ∣∣ 𝑥𝑥

(𝑚𝑚)(𝑛𝑛 − 1) � ,𝑚𝑚 = 1,2, … ,𝑀𝑀 

Computation of weights 

        Evaluate the weights, 𝑤𝑤� (𝑚𝑚)(𝑛𝑛) =  𝑓𝑓 � 𝑦𝑦(𝑛𝑛) ∣∣
∣ 𝑥𝑥𝑐𝑐

(𝑚𝑚)(𝑛𝑛) � 

                Normalize the weights, 𝑤𝑤(𝑚𝑚)(𝑛𝑛) = 𝑤𝑤� (𝑚𝑚 )(𝑛𝑛)
∑ 𝑤𝑤� (𝑗𝑗)(𝑛𝑛)𝑀𝑀
𝑗𝑗=1

     

                       Computations of the moments of the filtering density 

𝜇𝜇(𝑛𝑛) = � 𝑤𝑤(𝑚𝑚)(𝑛𝑛)
𝑀𝑀

𝑚𝑚=1

𝑥𝑥𝑐𝑐
(𝑚𝑚)(𝑛𝑛) 

�(𝑛𝑛) = �𝑤𝑤(𝑚𝑚)(𝑛𝑛)
𝑀𝑀

𝑚𝑚=1

(𝑥𝑥𝑐𝑐
(𝑚𝑚)(𝑛𝑛) − 𝜇𝜇(𝑛𝑛))(𝑥𝑥𝑐𝑐

(𝑚𝑚)(𝑛𝑛) − 𝜇𝜇(𝑛𝑛))𝑇𝑇 

                                  Drawing particles for propagation at the next time instant 

𝑥𝑥(𝑚𝑚)(𝑛𝑛) ∼ 𝑁𝑁(𝜇𝜇(𝑛𝑛),�(𝑛𝑛)) ,𝑚𝑚 = 1,2, … ,𝑀𝑀 
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Figure 3.8 : State and estimated state of GPF Particle filter for univariate 
nonstationary growth 
Comparison of MSEs of SIR PF, APF, and GPF with respect to total number of data 

samples is also shown in Fig.18 of Figure 3.9. 

 
Figure 3.9 : Comparison of SIR PF, APF and GPF in terms of MSE  
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Fig.17:State & esti. state of GPF for univar. nonstationary growth
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Fig.18:Comparison of SIR PF, APF and GPF in terms of MSE
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Comparison of particles and associated weights in respect of SIR PF, APF, 

and GPF at time n=1, 2, 4, and 7 are also shown in Fig.19-22 (Figure 3.10), Fig. 23-

26 (Figure 3.11), and Fig. 27-30, (Figure 3.12) respectively.  From this results, we 

can find out that, APF, rather than resampling from samples obtained from the prior, 

does resampling by using the latest measurement and then propagate from the 

surviving streams, making the particles move in directions preferred by the 

observation equation. In GPF results, we find out that the propagating particles are 

updated according to mean and variance of the approximated Normal distribution of 

the posterior and prior densities. 

 
Figure 3.10 : SIR PF  Particles and its weight at different time instants 
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Figure 3.11 : APF  Particles and its weight at different time instants 

 
Figure 3.12 : GPF  Particles and its weight at different time instants 
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3.4 HANDLING CONSTANT PARAMETERS 
The particle filter methodology was originally devised for the estimation of 

dynamic signals rather than static parameters. The most efficient way to address the 

problem is to integrate out the unknown parameters when possible, either 

analytically or by Monte Carlo procedures. The former methods, however, depend on 

the feasibility of integration that is, on the mathematical model of the system. 

Generic solutions, useful for any model, are scant and limited in performance. A 

common feature of most of the approaches is that they introduce artificial evolution 

of the fixed parameters and thereby treat them in a similar way as the dynamic 

states of the model. Some methods insert the use of Markov chain Monte Carlo 

sampling to preserve the diversity of the particles. 

A recent work [4] introduces a special class of PFs called density-assisted 

PFs that approximate the filtering density with a predefined parametric density by 

generalizing the concepts of Gaussian PFs and Gaussian sum PFs. These new 

filters can cope with constant parameters more naturally than the previously 

proposed methods. In this section, the problem of handling static parameters by PFs 

is reviewed under a kernel-based auxiliary PF method and the density-assisted 

particle filtering technique. 

We can reformulate the state-space model to explicitly incorporate fixed 

parameters as 

𝑥𝑥(𝑛𝑛) =  𝑔𝑔1�𝑥𝑥(𝑛𝑛 − 1),𝜃𝜃, 𝑣𝑣1(𝑛𝑛)�                                         

𝑦𝑦(𝑛𝑛) =  𝑔𝑔2�𝑥𝑥(𝑛𝑛),𝜃𝜃, 𝑣𝑣2(𝑛𝑛)�                                              

Where all the symbols have the same meaning as before and 𝜃𝜃 is a vector of 

fixed parameters. Based on the observations 𝑦𝑦(𝑛𝑛)  and the assumptions, the 

objective is to estimate 𝑥𝑥(𝑛𝑛) and 𝜃𝜃 recursively. In the particle filtering context, this 

amounts to obtaining the approximation of 𝑓𝑓�𝑥𝑥(𝑛𝑛),𝜃𝜃�𝑦𝑦(1:𝑛𝑛)�  by updating the 

approximation for 𝑓𝑓�𝑥𝑥(𝑛𝑛 − 1),𝜃𝜃�𝑦𝑦(1:𝑛𝑛 − 1)�. 

 

3.4.1 Kernel-based Auxiliary Particle Filter 
The inclusion of fixed parameters in the model implies extending the random 

measure to the form 

χ(n) = �𝑥𝑥(𝑚𝑚)(𝑛𝑛), 𝜃𝜃(𝑚𝑚)(𝑛𝑛), 𝑤𝑤(𝑚𝑚)(𝑛𝑛) �
𝑚𝑚=1
𝑀𝑀
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where the index 𝑛𝑛  in the samples of 𝜃𝜃  indicates the approximation of the 

posterior at time n and not the time-variation of the parameter vector. The random 

measure approximates the density of interest 𝑓𝑓�𝑥𝑥(𝑛𝑛),𝜃𝜃�𝑦𝑦(𝑛𝑛)�  which can be 

decomposed as  

𝑓𝑓� 𝑥𝑥(𝑛𝑛),𝜃𝜃 ∣∣  𝑦𝑦(1:𝑛𝑛) � ∝ 

𝑓𝑓(𝑦𝑦(𝑛𝑛) ∣∣ 𝑥𝑥(𝑛𝑛),𝜃𝜃) 𝑓𝑓( 𝑥𝑥(𝑛𝑛) ∣ 𝜃𝜃,𝑦𝑦(1:𝑛𝑛 − 1) )𝑓𝑓(𝜃𝜃 ∣ 𝑦𝑦(1:𝑛𝑛 − 1))                

From the previous expression it is clear that there is a need for approximation 

of the density          𝑓𝑓(𝜃𝜃 ∣ 𝑦𝑦(1:𝑛𝑛 − 1)).  

𝑓𝑓� 𝜃𝜃 ∣∣ 𝑦𝑦(1:𝑛𝑛 − 1) � ≈ � 𝑤𝑤(𝑚𝑚)(𝑛𝑛) 𝑁𝑁(
𝑀𝑀

𝑚𝑚=1

𝜃𝜃 ∣ 𝜃̅𝜃(𝑚𝑚)(𝑛𝑛),ℎ2 �(𝑛𝑛))
𝜃𝜃

 

The above expression represents a mixture of Gaussian distributions, where 

the mixands  𝑁𝑁(𝜃𝜃 ∣ 𝜃̅𝜃(𝑚𝑚)(𝑛𝑛),ℎ2 ∑ (𝑛𝑛))𝜃𝜃  are weighted by the particle weight 𝑤𝑤(𝑚𝑚)(𝑛𝑛). 

The parameters of the mixands are obtained using the previous time instant particles 

and weights, that is, 

𝜃̅𝜃(𝑚𝑚)(𝑛𝑛) = �(1 − ℎ2)𝜃𝜃(𝑚𝑚)(𝑛𝑛 − 1) + (1 −�(1 − ℎ2))∑ 𝑤𝑤(𝑖𝑖)(𝑛𝑛 − 1) 𝜃𝜃(𝑖𝑖)(𝑛𝑛 − 1)𝑀𝑀
𝑖𝑖=1   

�(𝑛𝑛) =
𝜃𝜃

 � 𝑤𝑤(𝑚𝑚)(𝑛𝑛) (𝜃𝜃(𝑚𝑚)(𝑛𝑛)
𝑀𝑀

𝑚𝑚=1

− 𝜃̅𝜃(𝑚𝑚)(𝑛𝑛))(𝜃𝜃(𝑚𝑚)(𝑛𝑛) − 𝜃̅𝜃(𝑚𝑚)(𝑛𝑛))𝑇𝑇 

Where ℎ2  is a smoothing parameter computed by ℎ2 = 1 − (3𝛾𝛾−1
2𝛾𝛾

)2 , and 

γ∈ (0,1) represents a discount factor, typically around 0.95-0.99. 

We now describe the implementation of this idea in the context of auxiliary 

particle filtering. Assume that at time instant (𝑛𝑛 − 1), we have the random measure 

χ(n-1) = �𝑥𝑥(𝑚𝑚)(𝑛𝑛 − 1),𝜃𝜃(𝑚𝑚)(𝑛𝑛 − 1),𝑤𝑤(𝑚𝑚)(𝑛𝑛 − 1) �
𝑚𝑚=1
𝑀𝑀

  . Then, we proceed as follows. 

1. Estimate the next particle by 𝑥𝑥�(𝑚𝑚)(𝑛𝑛) = 𝐸𝐸(𝑥𝑥(𝑛𝑛) ∣ 𝑥𝑥(𝑚𝑚)(𝑛𝑛 − 1),𝜃𝜃(𝑚𝑚)(𝑛𝑛 − 1)) . 

This step is identical to the APF. 

2. Sample the indexes 𝑘𝑘𝑚𝑚  of the streams that survive, where 𝑘𝑘𝑚𝑚 = 𝑖𝑖  with 

probability 𝑤𝑤𝑎𝑎
(𝑖𝑖) ∝  𝑤𝑤(𝑖𝑖)(𝑛𝑛 − 1)𝑓𝑓(𝑦𝑦(𝑛𝑛) ∣ 𝑥𝑥�(𝑖𝑖)(𝑛𝑛), 𝜃̅𝜃(𝑖𝑖)(𝑛𝑛 − 1)) . Here we basically 

resample so that the most promising streams are kept in the random measure 

and the less promising are removed. 

3. Draw particles of the fixed parameter vector according to 

𝜃𝜃(𝑚𝑚)(𝑛𝑛) ∼ 𝑁𝑁(𝜃̅𝜃(𝐾𝐾𝑚𝑚 )(𝑛𝑛 − 1),ℎ2 �(𝑛𝑛 − 1))
𝜃𝜃
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Where the means and covariance of the mixands are obtained at the end of 

the cycle of computations for time instant (𝑛𝑛 − 1). This step takes care of the 

vector of constant parameters. 

4. Draw particles of the state according to 

𝑥𝑥(𝑚𝑚)(𝑛𝑛)~𝑓𝑓(𝑥𝑥(𝑛𝑛) ∣ 𝑥𝑥(𝐾𝐾𝑚𝑚 )(𝑛𝑛 − 1),𝜃𝜃(𝑚𝑚)(𝑛𝑛)) 

With this step we complete the drawing of new particles. 

5. Update and normalize the weights, where 

𝑤𝑤(𝑚𝑚)(𝑛𝑛) ∝
𝑓𝑓(𝑦𝑦(𝑛𝑛) ∣ 𝑥𝑥(𝑚𝑚)(𝑛𝑛),𝜃𝜃(𝑚𝑚)(𝑛𝑛))

𝑓𝑓(𝑦𝑦(𝑛𝑛) ∣ 𝑥𝑥�(𝐾𝐾𝑚𝑚 )(𝑛𝑛), 𝜃̅𝜃(𝐾𝐾𝑚𝑚 )(𝑛𝑛 − 1))
 

With this step we associate weights to the particles. 

6. Compute the parameters of the kernels used in constructing the mixture 

Gaussian according to 

𝜃̅𝜃(𝑚𝑚)(𝑛𝑛) = �(1 − ℎ2)𝜃𝜃(𝑚𝑚)(𝑛𝑛) + (1 −�(1 − ℎ2))�𝑤𝑤(𝑖𝑖)(𝑛𝑛) 𝜃𝜃(𝑖𝑖)(𝑛𝑛)
𝑀𝑀

𝑖𝑖=1

 

�(𝑛𝑛) =
𝜃𝜃

 � 𝑤𝑤(𝑚𝑚)(𝑛𝑛) (𝜃𝜃(𝑚𝑚)(𝑛𝑛)
𝑀𝑀

𝑚𝑚=1

− 𝜃̅𝜃(𝑚𝑚)(𝑛𝑛))(𝜃𝜃(𝑚𝑚)(𝑛𝑛) − 𝜃̅𝜃(𝑚𝑚)(𝑛𝑛))𝑇𝑇 

 

 Example 6: Consider the problem of tracking one target using two static 

sensors which collected bearings-only measurements. Here measurements are 

biased. The mathematical formulation of the problem is given by 

𝑥𝑥(𝑛𝑛) =  𝐴𝐴𝐴𝐴(𝑛𝑛 − 1) + 𝐵𝐵𝑣𝑣1(𝑛𝑛)                                        

𝑦𝑦(𝑛𝑛) =  𝑔𝑔2(𝑥𝑥(𝑛𝑛)) + 𝜃𝜃 + 𝑣𝑣2(𝑛𝑛)                                     

Where all the parameters have the same meaning as before and 𝜃𝜃 = [𝑏𝑏1𝑏𝑏2]𝑇𝑇 

represents a vector of unknown constant biases. 

In step 1, we generate  𝑥𝑥�(𝑚𝑚)(𝑛𝑛) = 𝐴𝐴𝑥𝑥(𝑚𝑚)(𝑛𝑛). 

The sampling is carried out by using weights that are proportional to     

𝑤𝑤(𝑖𝑖)(𝑛𝑛 − 1)𝑁𝑁(𝑔𝑔2 �𝑥𝑥�(𝑖𝑖)(𝑛𝑛)� + 𝜃̅𝜃(𝑖𝑖)(𝑛𝑛 − 1),∑ (𝑛𝑛 − 1))𝑣𝑣 , where the Gaussian is computed 

at 𝑦𝑦(𝑛𝑛). The remaining steps can readily be deduced from the scheme described by 

Table 3.3. 
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3.4.2 Density-assisted Particle Filter 
As seen in the previous section, the GPFs approximate the predictive and 

filtering densities by Gaussian densities whose parameters are estimated from the 

particles and their weights. Similarly, the Gaussian sum PFs [3] approximate these 

densities with mixture of Gaussians. The approximating densities can be other than 

Gaussian or mixture of Gaussian, and therefore, we refer to the general class of 

filters of this type as density-assisted PFs (DAPFs) [4], which are a generalization of 

the Gaussian and Guassian sum PFs. The main adavantages of DAPFs is that they 

do not necessarily use resampling in the sense carried out by standard PFs and they 

do not share the limitations regarding the estimation of constant model parameters. 

Here we explain how we can use DAPFs when we have constant parameters in the 

model. 

Let χ(n-1) = �𝑥𝑥(𝑚𝑚)(𝑛𝑛 − 1),𝜃𝜃(𝑚𝑚)(𝑛𝑛 − 1),𝑤𝑤(𝑚𝑚)(𝑛𝑛 − 1) �
𝑚𝑚=1
𝑀𝑀

  be the random 

measure at time instant (𝑛𝑛 − 1), 𝑥𝑥(𝑚𝑚)(𝑛𝑛 − 1) and 𝜃𝜃(𝑚𝑚)(𝑛𝑛 − 1) the particles of 𝑥𝑥(𝑛𝑛 − 1) 

and 𝜃𝜃 , respectively, and 𝑤𝑤(𝑚𝑚)(𝑛𝑛 − 1)  their associated weights. If we denote the 

approximating density of 𝑓𝑓( 𝑥𝑥(𝑛𝑛 − 1),𝜃𝜃 ∣∣  𝑦𝑦(1:𝑛𝑛 − 1) )  by 𝜋𝜋(Ф(𝑛𝑛 − 1)) , where 

Ф(𝑛𝑛 − 1) are the parameters of the approximating density, the steps of the density-

assisted particle filter  are the following. 

1. Draw particles according to 

{𝑥𝑥(𝑚𝑚)(𝑛𝑛 − 1),𝜃𝜃(𝑚𝑚)(𝑛𝑛 − 1)}~𝜋𝜋(Ф(𝑛𝑛 − 1)). 

2. Draw particles according to 

𝑥𝑥(𝑚𝑚)(𝑛𝑛)~𝑓𝑓(𝑥𝑥(𝑛𝑛) ∣ 𝑥𝑥(𝑚𝑚)(𝑛𝑛 − 1),𝜃𝜃(𝑚𝑚)(𝑛𝑛 − 1)). 

3. Set 𝜃𝜃(𝑚𝑚)(𝑛𝑛) = 𝜃𝜃(𝑚𝑚)(𝑛𝑛 − 1). 

4. Update and normalize the weights 

𝑤𝑤(𝑚𝑚)(𝑛𝑛) ∝ 𝑓𝑓(𝑦𝑦(𝑛𝑛) ∣ 𝑥𝑥(𝑚𝑚)(𝑛𝑛),𝜃𝜃(𝑚𝑚)(𝑛𝑛)). 

5. Estimate the parameters, Ф(𝑛𝑛), of the density from 

χ(n) = �𝑥𝑥(𝑚𝑚)(𝑛𝑛),𝜃𝜃(𝑚𝑚)(𝑛𝑛),𝑤𝑤(𝑚𝑚)(𝑛𝑛) �
𝑚𝑚=1
𝑀𝑀

  . 

The problem of standard PFs regarding constant parameters is avoided in the 

first step by drawing particles of the constant from an approximation of the posterior. 

It is important to note that one can combine standard PFs and DAPFs, in that we 

apply the standard PFs for the dynamic variables and DAPFs for the constant 

parameters. 
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Example 7:  We consider the problem of tracking in a two-dimensional plane. 

We assume that the marginal posterior density of the bias vector 𝜃𝜃 is a Gaussian 

density. Suppose that at time instant (𝑛𝑛 − 1) , we have the random measure 

χ(n-1) = �𝑥𝑥(𝑚𝑚)(𝑛𝑛 − 1),𝜃𝜃(𝑚𝑚)(𝑛𝑛 − 1),𝑤𝑤(𝑚𝑚)(𝑛𝑛 − 1) �
𝑚𝑚=1
𝑀𝑀

  . From the random measure, we 

can compute the parameters of the approximating Gaussian of the bias vector by 

𝜇𝜇(𝑛𝑛 − 1) =  �𝑤𝑤(𝑚𝑚)(𝑛𝑛 − 1) 𝜃𝜃(𝑚𝑚)(𝑛𝑛 − 1)
𝑀𝑀

𝑚𝑚=1

 

 �(𝑛𝑛 − 1)  = � 𝑤𝑤(𝑚𝑚)(𝑛𝑛 − 1) (𝜃𝜃(𝑚𝑚)(𝑛𝑛 − 1) 
𝑀𝑀

𝑚𝑚=1

− 𝜇𝜇(𝑛𝑛 − 1))(𝜃𝜃(𝑚𝑚)(𝑛𝑛 − 1) − 𝜇𝜇(𝑛𝑛 − 1))𝑇𝑇 

Then we draw the particles of 𝜃𝜃  for the next time step, that is, 

𝜃𝜃(𝑚𝑚)(𝑛𝑛)~𝑁𝑁(𝜇𝜇(𝑛𝑛 − 1),∑(𝑛𝑛 − 1)). Once we have particles of the biases, we proceed by 

using the favourite PF. For example, if it is the APF, first we project the dynamic 

particles, that is 𝑥𝑥�(𝑚𝑚)(𝑛𝑛) = 𝐴̂𝐴𝑥𝑥(𝑚𝑚)(𝑛𝑛). This is followed by resampling of the streams 

whose weights are given by 𝑤𝑤(𝑘𝑘𝑚𝑚 )(𝑛𝑛 − 1)𝑁𝑁(𝑔𝑔2 �𝑥𝑥�(𝑘𝑘𝑚𝑚 )(𝑛𝑛)� + 𝜃𝜃(𝑘𝑘𝑚𝑚 )(𝑛𝑛),∑ (𝑛𝑛)𝑣𝑣 ) and 

where the Gaussian is computed at 𝑦𝑦(𝑛𝑛) . Once the indexes of the streams for 

propagation are known, we draw the particles of the dynamic variables, 𝑥𝑥(𝑚𝑚)(𝑛𝑛). 

Next , the new weights of the streams are computed by 

𝑤𝑤(𝑚𝑚)(𝑛𝑛) ∝
𝑓𝑓(𝑦𝑦(𝑛𝑛) ∣ 𝑥𝑥(𝑚𝑚)(𝑛𝑛),𝜃𝜃(𝑘𝑘𝑚𝑚 )(𝑛𝑛))
𝑓𝑓(𝑦𝑦(𝑛𝑛) ∣ 𝑥𝑥�(𝐾𝐾𝑚𝑚 )(𝑛𝑛),𝜃𝜃(𝐾𝐾𝑚𝑚 )(𝑛𝑛))
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CHAPTER 4 
RAO-BLACKWELL PARTICLE FILTER 

 
4.1 BRIEF INTRODUCTION 

In many practical problems, the considered dynamic nonlinear system may 

have some states that are conditionally linear given the nonlinear states of the 

system. When the applied methodology is particle filtering, this conditional linearity 

can be expoited using the concept of Rao-Blackwellization [5, 6]. Rao-

Blackwellization is a statistical procedure that is used for reducing variance of 

estimates obtained by Monte Carlo sampling methods, and by employing it, we can 

have improved filtering of the unknown states. 

The main idea consists of tracking the linear states differently from the 

nonlinear states by treating the linear parameters as nuisance parameters and 

marginalizing them out of the estimation problem. This strategy allows for more 

accurate estimates of the unknowns because the dimension of the space that is 

explored with particles is reduced and therefore it is much better searched. At every 

time instant the particles of the nonlinear states are propagated randomly, and once 

they are known, the problem is linear in the rest of the states. Therefore, one can 

find their ‘optimal’ values by employing Kalman filtering and associate them with the 

sampled nonlinear states. Some recent applications of Rao-Blackwellized PFs 

include tracking of maneuvering targets in clutter [7] and joint target tracking using 

kinematic radar information [8]. In [9], a computational complexity analysis of Rao-

Blackwellized PFs is provided. 

 

4.2 DERIVATION 
For the scenario of a nonlinear system with conditionally linear states, we 

write the state space model as 

𝑥𝑥𝑛𝑛(𝑛𝑛) = 𝑔𝑔1,𝑛𝑛�𝑥𝑥𝑛𝑛(𝑛𝑛 − 1)� + 𝐴𝐴1,𝑛𝑛�𝑥𝑥𝑛𝑛(𝑛𝑛 − 1)�𝑥𝑥𝑙𝑙(𝑛𝑛 − 1) + 𝑣𝑣1,𝑛𝑛(𝑛𝑛) 

𝑥𝑥𝑙𝑙(𝑛𝑛) = 𝑔𝑔1,𝑙𝑙�𝑥𝑥𝑛𝑛(𝑛𝑛 − 1)� + 𝐴𝐴1,𝑙𝑙�𝑥𝑥𝑛𝑛(𝑛𝑛 − 1)�𝑥𝑥𝑙𝑙(𝑛𝑛 − 1) + 𝑣𝑣1,𝑙𝑙(𝑛𝑛) 

𝑦𝑦𝑡𝑡 = 𝑔𝑔2�𝑥𝑥𝑛𝑛(𝑛𝑛)� + 𝐴𝐴2�𝑥𝑥𝑛𝑛(𝑛𝑛)�𝑥𝑥𝑙𝑙(𝑛𝑛) + 𝑣𝑣2(𝑛𝑛) 

Where the system state, 𝑥𝑥(𝑛𝑛) , includes nonlinear and conditionally linear 

components, that is, 𝑥𝑥𝑇𝑇(𝑛𝑛) = [𝑥𝑥𝑛𝑛𝑇𝑇(𝑛𝑛)  𝑥𝑥𝑙𝑙𝑇𝑇(𝑛𝑛)], with 𝑥𝑥𝑛𝑛(𝑛𝑛) and 𝑥𝑥𝑙𝑙(𝑛𝑛) being the nonlinear 

and conditionally linear states, respectively; 𝑣𝑣1,𝑛𝑛(𝑛𝑛)  and 𝑣𝑣1,𝑙𝑙(𝑛𝑛)  are state noise 
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vectors at time instant 𝑛𝑛 which are assumed to be Gaussian; 𝑔𝑔1,𝑛𝑛(∙) and 𝑔𝑔1,𝑙𝑙(∙) are 

nonlinear state transition functions; 𝐴𝐴1,𝑛𝑛  and 𝐴𝐴1,𝑙𝑙  are matrices whose entries may be 

functions of the nonlinear states; 𝑔𝑔2(∙) is a nonlinear measurement function of the 

nonlinear states; 𝐴𝐴2  is another matrix whose entries may be functions of the 

nonlinear states; and 𝑣𝑣2(𝑛𝑛)  is observation noise vector at time 𝑛𝑛  which is also 

assumed to be Gaussian and independent from the state noises. 

Suppose that at time instant (𝑛𝑛 − 1), the random measure composed of 𝑀𝑀 

streams is given by 

χ(n-1) = �𝑥𝑥(𝑚𝑚)(𝑛𝑛 − 1), 𝑤𝑤(𝑚𝑚)(𝑛𝑛 − 1) �
𝑚𝑚=1
𝑀𝑀

   

and that the linear state 𝑥𝑥𝑙𝑙(𝑛𝑛 − 1)  in the 𝑚𝑚− 𝑡𝑡ℎ  stream is Gaussian 

distributed, that is 

𝑥𝑥𝑙𝑙(𝑛𝑛 − 1)~𝑁𝑁(𝑥𝑥�𝑙𝑙
(𝑚𝑚)(𝑛𝑛 − 1), 𝐶̂𝐶𝑥𝑥𝑙𝑙

(𝑚𝑚)(𝑛𝑛 − 1)) 

Where 𝑥𝑥�𝑙𝑙
(𝑚𝑚)(𝑛𝑛 − 1) is the estimate of 𝑥𝑥𝑙𝑙  in the 𝑚𝑚 − 𝑡𝑡ℎ stream at time instant 

(𝑛𝑛 − 1) and 𝐶̂𝐶𝑥𝑥𝑙𝑙
(𝑚𝑚)(𝑛𝑛 − 1) is the covariance matrix of that estimate. The scheme runs 

as follows. 

1. Generate the nonlinear state particles according to the marginalized prior 

PDF 

𝑥𝑥(𝑚𝑚)(𝑛𝑛)~𝑓𝑓(𝑥𝑥𝑛𝑛(𝑛𝑛) ∣ 𝑥𝑥(𝑚𝑚)(𝑛𝑛 − 1),𝑦𝑦(1:𝑛𝑛 − 1)) 

Where 

𝑓𝑓 �𝑥𝑥𝑛𝑛(𝑛𝑛)�𝑥𝑥𝑛𝑛
(𝑚𝑚)(𝑛𝑛 − 1),𝑦𝑦(1:𝑛𝑛 − 1)�

= �𝑓𝑓 �𝑥𝑥𝑛𝑛(𝑛𝑛)�𝑥𝑥𝑛𝑛
(𝑚𝑚)(𝑛𝑛 − 1), 𝑥𝑥𝑙𝑙

(𝑚𝑚)(𝑛𝑛 − 1)�

×  𝑓𝑓�𝑥𝑥𝑙𝑙
(𝑚𝑚)(𝑛𝑛 − 1)�𝑥𝑥𝑛𝑛

(𝑚𝑚)(𝑛𝑛 − 1),𝑦𝑦(1:𝑛𝑛 − 1)�𝑑𝑑𝑥𝑥𝑙𝑙
(𝑚𝑚)(𝑛𝑛 − 1)  

If the distribution inside the integral are Gaussians, 

𝑓𝑓 �𝑥𝑥𝑛𝑛(𝑛𝑛)�𝑥𝑥𝑛𝑛
(𝑚𝑚)(𝑛𝑛 − 1),𝑦𝑦(𝑛𝑛 − 1)� is also a Gaussian distribution. It can be 

shown that 

𝑓𝑓 �𝑥𝑥𝑛𝑛(𝑛𝑛)�𝑥𝑥𝑛𝑛
(𝑚𝑚)(𝑛𝑛 − 1),𝑦𝑦(𝑛𝑛 − 1)� = 𝑁𝑁(𝜇𝜇𝑥𝑥𝑛𝑛

(𝑚𝑚)(𝑛𝑛),� (𝑛𝑛))
(𝑚𝑚)

𝑥𝑥𝑛𝑛
 

Where  

𝜇𝜇𝑥𝑥𝑛𝑛
(𝑚𝑚)(𝑛𝑛) = 𝑔𝑔1,𝑛𝑛 �𝑥𝑥𝑛𝑛

(𝑚𝑚)(𝑛𝑛 − 1)� + 𝐴𝐴1,𝑛𝑛
(𝑚𝑚)(𝑛𝑛 − 1) 𝑥𝑥�𝑙𝑙

(𝑚𝑚)(𝑛𝑛 − 1)                                    
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� (𝑛𝑛)
(𝑚𝑚)

𝑥𝑥𝑛𝑛
=  𝐴𝐴1,𝑛𝑛

(𝑚𝑚)(𝑛𝑛 − 1)𝐶̂𝐶𝑥𝑥𝑙𝑙
(𝑚𝑚)(𝑛𝑛 − 1)𝐴𝐴1,𝑛𝑛

(𝑚𝑚)𝑇𝑇(𝑛𝑛 − 1) + 𝐶𝐶𝑣𝑣1,𝑛𝑛                                  

  Where we have dropped in the notation that the matrix 𝐴𝐴1,𝑛𝑛
(𝑚𝑚)(𝑛𝑛 − 1) may 

be a function of  𝑥𝑥𝑛𝑛
(𝑚𝑚)(𝑛𝑛 − 1). The symbol 𝑥𝑥�𝑙𝑙

(𝑚𝑚)(𝑛𝑛 − 1) is the estimate of the linear 

state at time instant (𝑛𝑛 − 1)  from the 𝑚𝑚 − 𝑡𝑡ℎ  stream, and 𝐶̂𝐶𝑥𝑥𝑙𝑙
(𝑚𝑚)(𝑛𝑛 − 1)  is the 

covariance matrix of that estimate. 

2. Update the linear states with quasi measurements. We define the quasi 

measurements by 

𝑧𝑧(𝑚𝑚)(𝑛𝑛) = 𝑥𝑥𝑛𝑛
(𝑚𝑚)(𝑛𝑛) − 𝑔𝑔1,𝑛𝑛 �𝑥𝑥𝑛𝑛

(𝑚𝑚)(𝑛𝑛 − 1)� 

                                                      = 𝐴𝐴1,𝑛𝑛
(𝑚𝑚)(𝑛𝑛 − 1)𝑥𝑥�𝑙𝑙

(𝑚𝑚)(𝑛𝑛 − 1) + 𝑣𝑣1,𝑛𝑛(𝑛𝑛) 

And use them to improve the estimate 𝑥𝑥�𝑙𝑙
(𝑚𝑚)(𝑛𝑛 − 1) . The new estimate 

𝑥𝑥��𝑙𝑙
(𝑚𝑚)(𝑛𝑛 − 1) is obtained by applying the measurement step of the Kalman 

filter, that is, 

𝑥𝑥��𝑙𝑙
(𝑚𝑚)(𝑛𝑛 − 1) = 𝑥𝑥�𝑙𝑙

(𝑚𝑚)(𝑛𝑛 − 1) + 𝐿𝐿(𝑚𝑚)(𝑛𝑛 − 1)(𝑧𝑧(𝑚𝑚)(𝑛𝑛) − 𝐴𝐴1,𝑛𝑛
(𝑚𝑚)(𝑛𝑛 − 1)𝑥𝑥�𝑙𝑙

(𝑚𝑚)(𝑛𝑛 − 1) 

𝐿𝐿(𝑚𝑚)(𝑛𝑛 − 1)

= 𝐶̂𝐶𝑥𝑥𝑙𝑙
(𝑚𝑚)(𝑛𝑛 − 1)  

× (𝐴𝐴1,𝑛𝑛
(𝑚𝑚)(𝑛𝑛 − 1)𝐴𝐴1,𝑛𝑛

(𝑚𝑚)(𝑛𝑛 − 1)𝐶̂𝐶𝑥𝑥𝑙𝑙
(𝑚𝑚)(𝑛𝑛 − 1)𝐴𝐴1,𝑛𝑛

(𝑚𝑚)𝑇𝑇(𝑛𝑛 − 1) + 𝐶𝐶𝑣𝑣1,𝑛𝑛)−1 

 

𝐶̂̂𝐶𝑥𝑥𝑙𝑙
(𝑚𝑚)(𝑛𝑛 − 1) = (𝐼𝐼 − 𝐿𝐿(𝑚𝑚)(𝑛𝑛 − 1)𝐴𝐴1,𝑛𝑛

(𝑚𝑚)(𝑛𝑛 − 1))𝐶̂𝐶𝑥𝑥𝑙𝑙
(𝑚𝑚)(𝑛𝑛 − 1) 

3. Perform time update of the linear states according to 

𝑥𝑥�𝑙𝑙
(𝑚𝑚)(𝑛𝑛) = 𝑔𝑔1,𝑙𝑙 �𝑥𝑥𝑛𝑛

(𝑚𝑚)(𝑛𝑛 − 1)� + 𝐴𝐴1,𝑙𝑙
(𝑚𝑚)(𝑛𝑛 − 1)𝑥𝑥��𝑙𝑙

(𝑚𝑚)(𝑛𝑛 − 1) 

𝐶̃𝐶𝑥𝑥𝑙𝑙
(𝑚𝑚)(𝑛𝑛) = 𝐴𝐴1,𝑙𝑙

(𝑚𝑚)(𝑛𝑛 − 1)𝐶̂̂𝐶𝑥𝑥𝑙𝑙
(𝑚𝑚)(𝑛𝑛 − 1)𝐴𝐴1,𝑙𝑙

(𝑚𝑚)𝑇𝑇(𝑛𝑛 − 1) + 𝐶𝐶𝑣𝑣1,𝑙𝑙  

4. Compute the weights by  

𝑤𝑤𝑎𝑎
(𝑚𝑚)(𝑛𝑛) ∝ 𝑤𝑤(𝑚𝑚)(𝑛𝑛 − 1)𝑓𝑓�𝑦𝑦(𝑛𝑛)�𝑥𝑥𝑛𝑛

(𝑚𝑚)(0:𝑛𝑛),𝑦𝑦(1:𝑛𝑛 − 1)�      

Where 

𝑓𝑓 �𝑦𝑦(𝑛𝑛)�𝑥𝑥𝑛𝑛
(𝑚𝑚)(0:𝑛𝑛),𝑦𝑦(1:𝑛𝑛 − 1)�

= �𝑓𝑓 �𝑦𝑦(𝑛𝑛)�𝑥𝑥𝑛𝑛
(𝑚𝑚)(𝑛𝑛), 𝑥𝑥𝑙𝑙

(𝑚𝑚)(𝑛𝑛)�

×  𝑓𝑓�𝑥𝑥𝑙𝑙
(𝑚𝑚)(𝑛𝑛)�𝑥𝑥𝑛𝑛

(𝑚𝑚)(0:𝑛𝑛),𝑦𝑦(1:𝑛𝑛 − 1)�𝑑𝑑𝑥𝑥𝑙𝑙
(𝑚𝑚)(𝑛𝑛)  
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Again, if the two densities of 𝑥𝑥𝑙𝑙
(𝑚𝑚)(𝑛𝑛)  inside the integral are Gaussian 

densities, the integral can be solved analytically. We obtain 

 𝑓𝑓 �𝑦𝑦(𝑛𝑛)�𝑥𝑥𝑛𝑛
(𝑚𝑚)(0:𝑛𝑛),𝑦𝑦(1:𝑛𝑛 − 1)� = 𝑁𝑁(𝜇𝜇𝑦𝑦

(𝑚𝑚)(𝑛𝑛),∑ (𝑛𝑛))(𝑚𝑚)
𝑦𝑦  

        Where         

                             𝜇𝜇𝑦𝑦
(𝑚𝑚)(𝑛𝑛) = 𝑔𝑔2 �𝑥𝑥𝑛𝑛

(𝑚𝑚)(𝑛𝑛)� + 𝐴𝐴2
(𝑚𝑚)(𝑛𝑛) 𝑥𝑥�𝑙𝑙

(𝑚𝑚)(𝑛𝑛)                                    

�(𝑛𝑛)
(𝑚𝑚)

𝑦𝑦

= 𝐴𝐴2
(𝑚𝑚)(𝑛𝑛)𝐶̃𝐶𝑥𝑥𝑙𝑙

(𝑚𝑚)(𝑛𝑛)𝐴𝐴2
(𝑚𝑚)𝑇𝑇(𝑛𝑛) +  𝐶𝐶𝑣𝑣2          

5. Finally we carry out the measurement update of the linear states 

𝑥𝑥�𝑙𝑙
(𝑚𝑚)(𝑛𝑛) = 𝑥𝑥�𝑙𝑙

(𝑚𝑚)(𝑛𝑛) + 𝐾𝐾(𝑚𝑚)(𝑛𝑛)(𝑦𝑦(𝑛𝑛) − 𝑔𝑔2 �𝑥𝑥𝑛𝑛
(𝑚𝑚)(𝑛𝑛)� + 𝐴𝐴2

(𝑚𝑚)(𝑛𝑛) 𝑥𝑥�𝑙𝑙
(𝑚𝑚)(𝑛𝑛)) 

𝐾𝐾(𝑚𝑚)(𝑛𝑛) = 𝐶̃𝐶𝑥𝑥𝑙𝑙
(𝑚𝑚)(𝑛𝑛)𝐴𝐴2

(𝑚𝑚)(𝑛𝑛)(𝐴𝐴2
(𝑚𝑚)(𝑛𝑛)𝐶̃𝐶𝑥𝑥𝑙𝑙

(𝑚𝑚)(𝑛𝑛)𝐴𝐴2
(𝑚𝑚)𝑇𝑇(𝑛𝑛) +  𝐶𝐶𝑣𝑣2 )−1 

𝐶̂𝐶𝑥𝑥𝑙𝑙
(𝑚𝑚)(𝑛𝑛) = (𝐼𝐼 − 𝐾𝐾(𝑚𝑚)(𝑛𝑛)𝐴𝐴2

(𝑚𝑚)(𝑛𝑛))𝐶̃𝐶𝑥𝑥𝑙𝑙
(𝑚𝑚)(𝑛𝑛) 

In general, the Rao-Blackwellization amounts to the use of a bank of Kalman 

filters, one for each particle stream. So, with 𝑀𝑀 particle streams, we will have 𝑀𝑀 KFs. 

 
4.3 TRACKING OF A MANEUVERING TARGET  
 One application of RBPF is to track moving objects that have piecewise linear 

dynamics. Here we address the problem of tracking a maneuvering target in the 

noise. The difficulty arises from the uncertainty in the maneuvering command driving 

the target. The state of the target at time 𝑡𝑡  is denoted as 𝑥𝑥𝑡𝑡 ≜ (𝑙𝑙𝑥𝑥 ,𝑡𝑡 , 𝑠𝑠𝑥𝑥 ,𝑡𝑡 , 𝑙𝑙𝑦𝑦 ,𝑡𝑡 , 𝑠𝑠𝑦𝑦 ,𝑡𝑡)𝑇𝑇 

where 𝑙𝑙𝑥𝑥 ,𝑡𝑡  (𝑙𝑙𝑦𝑦 ,𝑡𝑡) and 𝑠𝑠𝑥𝑥 ,𝑡𝑡  (𝑠𝑠𝑦𝑦 ,𝑡𝑡) represent the position and velocity of the target in the 

𝑥𝑥 (𝑦𝑦) direction. It evolves according to following the Jump Markov Linear System 

(JMLS) model of parameters: 

 Let 𝑟𝑟𝑡𝑡 , 𝑡𝑡 = 1, 2, … .. denote a discrete time Markkov chain with known transition 

probabilities. A JMLS can be modelled as  

𝑥𝑥𝑡𝑡+1 = 𝐴𝐴(𝑟𝑟𝑡𝑡+1)𝑥𝑥𝑡𝑡 +  𝐵𝐵(𝑟𝑟𝑡𝑡+1)𝑣𝑣𝑡𝑡+1 +  𝐹𝐹(𝑟𝑟𝑡𝑡+1)𝑢𝑢𝑡𝑡+1 

𝑦𝑦𝑡𝑡 = 𝐶𝐶(𝑟𝑟𝑡𝑡)𝑥𝑥𝑡𝑡 +  𝐷𝐷(𝑟𝑟𝑡𝑡)𝜀𝜀𝑡𝑡 +  𝐺𝐺(𝑟𝑟𝑡𝑡)𝑢𝑢𝑡𝑡 

Where 𝑢𝑢𝑡𝑡  denotes a known exogenous input, and 𝑣𝑣𝑡𝑡  and 𝜀𝜀𝑡𝑡  denote independent 

white Gaussian noise sequences. A jump Markov llinear system can be viewed as a 

linear system whose parameters evolve (𝐴𝐴(𝑟𝑟𝑡𝑡), 𝐵𝐵(𝑟𝑟𝑡𝑡),𝐶𝐶(𝑟𝑟𝑡𝑡),𝐷𝐷(𝑟𝑟𝑡𝑡),𝐹𝐹(𝑟𝑟𝑡𝑡),𝐺𝐺(𝑟𝑟𝑡𝑡) ) 

evolve with time according to a finite state Markov chain  𝑟𝑟𝑡𝑡  . Neither the continuous-
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state process 𝑥𝑥𝑡𝑡  nor the finite state process 𝑟𝑟𝑡𝑡  are observed – instead, we observe 

the noisy measurement process 𝑦𝑦𝑡𝑡 . 

𝐴𝐴 = �
1 𝑇𝑇
0 1

0 0
0 0

0 0
0 0

1 𝑇𝑇
0 1

�, = 0.2 𝐼𝐼4 , 𝐶𝐶 =  𝐼𝐼4, 𝐷𝐷 =  √3 diag (2, 1, 2, 1) , 𝐺𝐺 =  04𝑥𝑥𝑥𝑥  

The switching term is 𝐹𝐹(𝑟𝑟𝑡𝑡) 𝑢𝑢𝑡𝑡 where 𝑟𝑟𝑡𝑡  is a three-state Markov  chain corresponding 

to the three possible maneuvering commands: straight; left turn; right turn. 

It has the following transition probabilities: 

𝑝𝑝𝑚𝑚 ,𝑚𝑚=0.9 and 𝑝𝑝𝑚𝑚 ,𝑛𝑛=0.05 for 𝑚𝑚 ≠ 𝑛𝑛. We have for any 𝑡𝑡, 𝐹𝐹(1)𝑢𝑢𝑡𝑡  =  (0, 0, 0, 0)𝑇𝑇, 

 𝐹𝐹(2)𝑢𝑢𝑡𝑡  =  (−1.225,−0.35, 1.225, 0.35)𝑇𝑇, 𝐹𝐹(3)𝑢𝑢𝑡𝑡  =  (1.225, 0.35,−1.225,− 0.35)𝑇𝑇 

We sample according to the optimal distribution. We realize the signal and the MSE 

target position and velocity estimate computed using 𝑁𝑁 = 500 particles. 

 

Figure 4.1 : A maneuvering target. The colored  symbols represents the hidden 
discrete state. 
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Figure 4.2 : Particle filter estimate 

 

Figure 4.3 : RBPF estimate 
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Figure 4.4 : Discrete state corresponding to Figure 4.1, 4.2 and 4.3. The system 
starts in state 2 (red x), then moves to state 3 (black *), returns briefly to  state 
2, then switches to state 1(blue circle). 

 

Figure 4.5 : Horizontal location of PF estimate with 𝑿𝑿𝟏𝟏,𝒕𝒕 
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Figure 4.6 : Horizontal location of PF estimate with 𝑿𝑿𝟑𝟑,𝒕𝒕 

Table 4.1 : Comparison of PF and RBPF on the maneuvering target 

Method Misclassification rate MSE Time (seconds) 
PF 0.440 21.051 7.0893 
RBPF 0.340 18.168 12.6829 
 

Figure 4.1 shows the true state of the system from a sample run, starting at (0, 0): 

the colored symbols denote the discrete state, and the location of the symbol 

denotes the (x, y) location. The small dots represent noisy observations.  

Figure 4.2 shows the estimate of the state computed using particle filtering with 500 

particles, where the proposal is to sample from the prior. The colored symbols 

denote the MAP estimate of the state, and the location of the symbol denotes the 

MMSE (minimum mean square error) estimate of the location, which is given by the 

posterior mean.  

Figure 4.3 shows the estimate computing using RBPF with 500 particles, using the 

optimal proposal distribution.  

Figure 4.4 visualizes the belief state of the system. we show the distribution over the 
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discrete states. We see that the particle filter estimate of the belief state (second 

column) is not as accurate as the RBPF estimate (third column) in the beginning, 

although after the first few observations performance is similar for both methods.  

Figure 4.5 and 4.6 plot the posterior over the x locations. For simplicity, we use the 

PF estimate, which is a set of weighted samples, but we could also have used the 

RBPF estimate, which is a set of weighted Gaussians. 

Table 4.1 shows the more quantitative comparison between PF and RBPF. We see 

that RBPF has slightly better performance, although it is also slightly slower. 
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CHAPTER 5 
PARTICLE FILTER FOR VISUAL OBJECT TRACKING 

 

The particle filter was invented to numerically implement the Bayesian 

estimator which recursively approximates the posterior distribution using a finite set 

of weighted samples or particles. It has been introduced by many researchers to 

solve the estimation problem when the system is nonlinear and non-Gaussian. The 

basic idea behind the particle filter is Monte Carlo simulation, in which the posterior 

density is approximated by a set of particles with associated weights. As a Bayesian 

estimator, particle filter has two main steps: prediction and update. Prediction is done 

by propagating the samples based on the system model. The update step is done by 

measuring the weight of each samples based on the observation model. The 

implementation of particle filter can be described as follows. 

 

5.1 PROPOSED METHOD 
The proposed method presents tracking of the object of interest using a 

particle filter to naturally integrate two complementary cues: intensity gradient and 

color histogram. The shape of the object of interest is modeled as an ellipse, along 

which an intensity gradient is estimated, while the interior appearance is modeled 

using a color histogram. These two cues play complementary roles in tracking an 

object of intererst with free rotation on a cluttered background. 

The object of interest is modeled as an ellipse centered at (𝑥𝑥,𝑦𝑦) and with size 

(𝐻𝐻𝑥𝑥 ,𝐻𝐻𝑦𝑦). At the first frame, we detect the location and size of the ellipse of the object. 

The dynamics of the (moving) object at time 𝑡𝑡 are described by a state vector 𝑆𝑆𝑡𝑡  

consisting of the following eight components 

�𝑥𝑥,𝑦𝑦,𝑋𝑋𝑣𝑣 ,𝑌𝑌𝑣𝑣 ,𝐻𝐻𝑥𝑥 ,𝐻𝐻𝑦𝑦 ,𝐻𝐻𝑣𝑣𝑣𝑣 ,𝐻𝐻𝑣𝑣𝑣𝑣�   

where (𝑥𝑥,𝑦𝑦) represent the center location of the object ellipse, (𝑋𝑋𝑣𝑣 ,𝑌𝑌𝑣𝑣)  represent the 

motion velocity, (𝐻𝐻𝑥𝑥 ,𝐻𝐻𝑦𝑦)  are the lengths of the half axes, and (𝐻𝐻𝑣𝑣𝑣𝑣 ,𝐻𝐻𝑣𝑣𝑣𝑣 )  are the 

corresponding scale changes on the axes. 

 

 (a)  Particle initialization: 

Starting with a weighted set of samples at 𝑘𝑘 − 1, {𝑋𝑋𝑘𝑘−1
𝑖𝑖  ,𝜋𝜋𝑘𝑘−1

𝑖𝑖  ; 𝑖𝑖 = 1 ∶ 𝑁𝑁} 

approximately distributed according to 𝑝𝑝(𝑥𝑥𝑘𝑘−1|𝑦𝑦𝑘𝑘−1)  as initial distribution 
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𝑝𝑝(𝑥𝑥0), new samples are generated from a suitable proposal distribution, which 

may depend on the previous state and the new measurements. 

 

(b) Prediction step: 

Using the probabilistic system transition model 𝑝𝑝(𝑥𝑥𝑘𝑘 |𝑥𝑥𝑘𝑘−1), the particles 

are predicted at time 𝑘𝑘. It is done by propagating each particle based on the 

transition or system model. 

𝑥𝑥𝑘𝑘+1 =  𝑓𝑓𝑘𝑘(𝑥𝑥𝑘𝑘  ,𝜔𝜔𝑘𝑘) =  𝑝𝑝(𝑥𝑥𝑘𝑘 |𝑥𝑥𝑘𝑘−1) 

(c)  Update step: 

To maintain a consistent sample, the new importance weights are set 

to 

 πk
i =  πk−1

i  
𝑝𝑝�𝑦𝑦𝑘𝑘�𝑥𝑥𝑘𝑘

𝑖𝑖 �𝑝𝑝(𝑥𝑥𝑘𝑘
𝑖𝑖 |𝑥𝑥𝑘𝑘−1

𝑖𝑖 )

𝑞𝑞(𝑥𝑥𝑘𝑘 |𝑥𝑥1:𝑘𝑘−1,𝑦𝑦1:𝑘𝑘)
  

It is done by measuring the likelihood of each sample based on the 

observation model. 

 

(d) Resample: 

This step is performed to generate a new samples set according to 

their weight for the next iteration. The resample step will decrease the number 

of the samples with low weight and will increase the number of high weight 

sample. The new particles set is re-sampled using normalized weights 𝜋𝜋𝑘𝑘𝑖𝑖  as 

probabilities. This sample set represents the posterior at time 𝑘𝑘, 𝑝𝑝(𝑥𝑥𝑘𝑘 |𝑦𝑦1:𝑘𝑘). 

  

(e) Then, the expectations can be approximated as 

𝐸𝐸𝐸𝐸(𝑥𝑥𝑘𝑘 |𝑦𝑦1:𝑘𝑘) =  �𝜋𝜋𝑘𝑘𝑖𝑖 𝑥𝑥𝑘𝑘𝑖𝑖  
𝑁𝑁

𝑖𝑖=1
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5.2 FLOW CHART OF PROCEDURE 
 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11. Research envisaged 
  
 
 
 
 
 
Figure 5.1 : Flowchart of procedure 
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5.3 INTENSITY GRADIENT HISTOGRAM BASED ON THE OBJECT SHAPE 
 If we obtain the contour of the object of interest, then computing the gradient 

along the object’s contour provides a good measure for distinguishing the object 

from the background. Assuming that the ellipse in the model matches the object 

contour, then, for a particular state sample specified by 𝑠𝑠, the normalized sum of the 

gradient magnitude around the ellipse boundary is computed as: 

𝜓𝜓𝑔𝑔(𝑠𝑠) =  
1
𝑁𝑁𝑠𝑠

� 𝑔𝑔(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖) 

𝑁𝑁 (𝐻𝐻𝑥𝑥 ,𝐻𝐻𝑦𝑦 ) 

𝑖𝑖=1

 

Where 𝑔𝑔(𝑥𝑥𝑖𝑖 , 𝑦𝑦𝑖𝑖) is the intensity gradient of pixel (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖) located at the boundary of 

ellipse specified by 𝑠𝑠 and 𝑁𝑁𝑠𝑠 is the number of pixels on the perimeter of the ellipse. 

Since an ellipse does not accurately describe the contour of the object, to 

make the above gradient estimate more useful in case of the inaccurate modeling, 

the gradient at pixel (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖)   is established as the maximum gradient by a local 

search along the normal direction. 

𝑔𝑔(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖) =  𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥𝑛𝑛 ,𝑦𝑦𝑛𝑛 )𝜀𝜀𝐿𝐿𝑛𝑛  {𝑔𝑔(𝑥𝑥𝑛𝑛 ,𝑦𝑦𝑛𝑛 )} 

Where 𝐿𝐿𝑛𝑛  represents the normal line, (𝑥𝑥𝑛𝑛 , 𝑦𝑦𝑛𝑛) is the coordinate of the points 

that are located on the normal line. (𝑥𝑥𝑛𝑛 ,𝑦𝑦𝑛𝑛) must satisfy the following criterion: 

�(𝑥𝑥𝑛𝑛 −  𝑥𝑥𝑖𝑖)2 +  (𝑦𝑦𝑛𝑛 −  𝑦𝑦𝑖𝑖)2 < 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 

𝑦𝑦𝑛𝑛 =  
�𝑦𝑦𝑖𝑖 −  𝐶𝐶𝑦𝑦� ∗  𝐻𝐻𝑥𝑥2

�𝑦𝑦𝑖𝑖 −  𝐶𝐶𝑦𝑦� ∗  𝐻𝐻𝑦𝑦2
∗ (𝑥𝑥𝑛𝑛 −  𝑥𝑥𝑖𝑖) +  𝑦𝑦𝑖𝑖   

The first formula specifies that the distance in the normal direction between 

points (𝑥𝑥𝑛𝑛 ,𝑦𝑦𝑛𝑛) and (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖) must be within a certain search range. This will help to 

restrict our search around the object contour and avoid hitting other distracting points 

on the background (or within the object) which have big intensity gradients. The 

second one is the normal line equation at point (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖). (𝐶𝐶𝑥𝑥 ,𝐶𝐶𝑦𝑦) denotes the ellipse 

center. 

A simple operator is used to compute the gradient in 𝑥𝑥  direction and 𝑦𝑦 

direction for pixel (𝑥𝑥𝑛𝑛 ,𝑦𝑦𝑛𝑛). 

𝑔𝑔𝑥𝑥(𝑥𝑥𝑛𝑛 ,𝑦𝑦𝑛𝑛) = 𝐼𝐼(𝑥𝑥𝑛𝑛 − 2,𝑦𝑦𝑛𝑛) + 2 ∗ 𝐼𝐼(𝑥𝑥𝑛𝑛 − 1,𝑦𝑦𝑛𝑛) −  2 ∗ 𝐼𝐼(𝑥𝑥𝑛𝑛 + 1,𝑦𝑦𝑛𝑛) − 𝐼𝐼(𝑥𝑥𝑛𝑛 + 2,𝑦𝑦𝑛𝑛)  

𝑔𝑔𝑦𝑦(𝑥𝑥𝑛𝑛 ,𝑦𝑦𝑛𝑛) = 𝐼𝐼(𝑥𝑥𝑛𝑛 , 𝑦𝑦𝑛𝑛 −  2) + 2 ∗ 𝐼𝐼(𝑥𝑥𝑛𝑛 ,𝑦𝑦𝑛𝑛 − 1) −  2 ∗ 𝐼𝐼(𝑥𝑥𝑛𝑛 ,𝑦𝑦𝑛𝑛 + 1) − 𝐼𝐼(𝑥𝑥𝑛𝑛 ,𝑦𝑦𝑛𝑛 + 2)  

And finally the gradient at point (𝑥𝑥𝑛𝑛 ,𝑦𝑦𝑛𝑛) is computed as  

𝑔𝑔(𝑥𝑥𝑛𝑛 ,𝑦𝑦𝑛𝑛) =  �𝑔𝑔𝑥𝑥2(𝑥𝑥𝑛𝑛 ,𝑦𝑦𝑛𝑛) +  𝑔𝑔𝑦𝑦2(𝑥𝑥𝑛𝑛 ,𝑦𝑦𝑛𝑛)  
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5.4 COLOR HISTOGRAM MODEL 
 Color distributions are used as target models as they achieve robustness 

against non-rigidity, rotation and partial occlusion. Suppose that the distributions are 

discretized into 𝑚𝑚 - bins. The histograms  are produced with the function of ℎ(𝑥𝑥𝑖𝑖), that 

assigns the color at location (𝑥𝑥𝑖𝑖) to the corresponding bin. In the present method, the 

histograms are typically calculated in the RGB space using 8x8x8 bins. To make the 

algorithm less sensitive to lighting conditions, the HSV color space could be used 

instead of less sensitivity to V (e.g. 8x8x4 bins) 

We determine the color distribution inside an upright elliptic region with half 

axes 𝐻𝐻𝑥𝑥  and 𝐻𝐻𝑦𝑦 . To increase the reliability of the color  distribution when boundary 

pixels belong to the background or get occluded, smaller weights are assigned to the 

pixels that are further away from the region center by employing a weighting  

function 

𝑘𝑘(𝑟𝑟) =  �1 − 𝑟𝑟2, 𝑟𝑟 < 1
0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒� 

Where 𝑟𝑟 is the distance from the region center. Thus, we increase the 

reliability of the color distribution when these boundary pixels belong to the 

background or get occluded.  

The color distribution 𝑝𝑝𝑦𝑦 =  �𝑝𝑝𝑦𝑦
(𝑢𝑢)�

𝑢𝑢=1..𝑚𝑚
 at location 𝑦𝑦 is calculated as 

𝑝𝑝𝑦𝑦
(𝑢𝑢) = 𝑓𝑓 ∑ 𝑘𝑘 ��|𝑦𝑦−𝑥𝑥𝑖𝑖|�

𝑎𝑎
�𝐼𝐼

𝑖𝑖=1 𝛿𝛿(ℎ(𝑥𝑥𝑖𝑖) −  𝑢𝑢)  

Where 𝐼𝐼 is the number of pixels in the region, 𝛿𝛿 is the Kronecker delta 

function, the parameter 𝑎𝑎 =  �𝐻𝐻𝑥𝑥2 +  𝐻𝐻𝑦𝑦2 is used to adapt the size of the region, and 

the normalization factor 

𝑓𝑓 =  
1

∑ 𝑘𝑘 �
�|𝑦𝑦 − 𝑥𝑥𝑖𝑖 |�

𝑎𝑎 �𝑙𝑙
𝑖𝑖=1

 

Ensures that ∑ 𝑝𝑝𝑦𝑦
(𝑢𝑢) = 1𝑚𝑚

𝑢𝑢=1 . 

In tracking approach, the estimated state is updated at each time step by 

incorporating the new observations. Therefore, we need a similarity measure, which 

is based on color distributions. A popular measure between two distributions 𝑝𝑝(𝑢𝑢) 

and 𝑞𝑞(𝑢𝑢) is the Bhattacharyya coefficient. 

𝜌𝜌(𝑝𝑝, 𝑞𝑞) =  ��𝑝𝑝(𝑢𝑢)𝑞𝑞(𝑢𝑢)𝑑𝑑𝑑𝑑 
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Considering discrete densities such as color histograms 𝑝𝑝 =  �𝑝𝑝(𝑢𝑢)�
𝑢𝑢=1..𝑚𝑚

 and 

𝑞𝑞 =  �𝑞𝑞(𝑢𝑢)�
𝑢𝑢=1..𝑚𝑚

, the coefficient is defined as  

𝜌𝜌(𝑝𝑝, 𝑞𝑞) =  �  �𝑝𝑝(𝑢𝑢)𝑞𝑞(𝑢𝑢) 
𝑚𝑚

𝑢𝑢=1

 

The larger 𝜌𝜌 is, the more similar the distributions are. For two identical 

normalized histograms,  we obtain 𝜌𝜌 = 1, indicating a perfect match. As distance 

between two distributions we define the measure 

𝑑𝑑 =  �1 − 𝜌𝜌[𝑝𝑝, 𝑞𝑞] 

Which is called the Bhattacharyya  distance. 

To weight the sample set, the Bhattacharyya coefficient has to be computed 

between the target histogram and the histogram of the hypotheses. Each 

hypothetical region is specified by its state vector 𝑠𝑠(𝑛𝑛). Both the target histogram 𝑞𝑞 

and the candidate histogram 𝑝𝑝𝑠𝑠(𝑛𝑛 ) are calculated where the target is centered at the 

origin of the elliptic region. 

As we want to  favor samples whose color distributions are similar to the 

target model, small Bhattacharyya distances correspond to large weights: 

𝜋𝜋(𝑛𝑛) =  
1

√2𝜋𝜋𝜋𝜋
 𝑒𝑒−

𝑑𝑑2

2𝜎𝜎2 =  
1

√2𝜋𝜋𝜋𝜋
 𝑒𝑒−

(1−𝜌𝜌�𝑝𝑝
𝑠𝑠(𝑛𝑛 ) ,𝑞𝑞�)

2𝜎𝜎2  

That are specified by a Gaussian with variance 𝜎𝜎. During filtering, samples 

with high weight may be chosen several times, leading to identical copies, while 

others with relatively low weights may not be chosen at all. The samples are located 

around the maximum of the Bhattacharyya coefficient, which represents the best 

match to the target model. 

 

5.5 RESULTS OF VISUAL OBJECT  TRACKING 
5.5.1 Visual object tracking of Helicopter with color histogram 
 This section is concerned with tracking a remote-controlled helicopter in a 

video sequence. The method uses a simple linear motion model for the centroid of 

the object, and a color histogram for the likelihood model, using Bhattacharya 

distance to compare histograms. The proposal distribution is obtained by sampling 

from the likelihood.  
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Figure 5.2 : Belief state at frame 1 
 

 

Figure 5.3 : Trajectory of the object over the  frames with red line.   
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Figure 5.4 : Trajectory of the object over the  frames with blue line 

 

Figure 5.5 : Plot of ellipse angle over the frames 
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Figure 5.6 : 3D Histogram of the target distribution  

 

Figure 5.7 : HSV cumulative Density Function of the object 
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5.5.2 Visual object tracking of Moving car with color histogram 

 
Figure 5.8 : Object Bounding ellipse for the moving red car 

 
Figure 5.9 : Prediction of object position 
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Figure 5.10 : Bounding ellipse particles for the object 
 

 
Figure 5.11 : Posterior distribution of the object over the frames 

Bounding ellipse particles

50
100

150
200

250
30050

100
150

200

0

0.005

0.01

0.015

0.02

0.025

0.03

Posterior distribution

ECE DEPTT, DTU Page 59 
 



 
Figure 5.12 : 3D Posterior distribution of the object over the frames  

 
Figure 5.13 : Tracked object at the last frame 
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Figure 5.14 : SIR resampling of the object over the frames 
 
5.5.3 Visual object tracking of Moving car with Intensity histogram 

 

Figure 5.15 : Object Bounding ellipse for the moving car with intensity 
histogram 
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Figure 5.16 : Intensity histogram of the moving car 

 

Figure 5.17 : Prediction of object position with intensity histogram 
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Figure 5.18 : Bounding ellipse particles with intensity histogram 

 

 

Figure 5.19 : Posterior distribution of moving car with intensity histogram  
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Figure 5.20 : Tracked object with intensity histogram 

 

Figure 5.21 : SIR resampling of the moving car with intensity histogram 
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CONCLUSION 
 
 In this dissertation, rigorous mathematical foundations of Particle filters and its 

types have been simulated using MATLAB and the same is sufficient to have the 

clear and analytical insights to this highly mathematical topic. 

 Having built on the foundation, we showed in MATLAB simulations that Rao-

Blackwellized Particle filter in conjuction with Jump markov linear system 

outperformed the traditional Particle filters for the tracking of Maneuvering target in 

the presence of noise. 

Further, we showed in MATLAB simulations that color and intensity histogram 

based tracking handled the fast moving objects efficiently and successfully in the two 

different videos under different appearance changes.  

Both methods are able to keep track for a fairly long time, despite the 

presence of clutter. The simplest way to improve the performance is to use more 

particles. Amongst the results, posterior distribution of a moving object gives clear 

understanding about the changes in number of particles and corresponding weights 

over the frames.  

 

FUTURE SCOPE 
 
 This dissertation dealt with the tracking of single object in the video whereas 

tracking a varying number of non-rigid objects has two major difficulties. First, the 

observation models and target distributions can be highly non-linear and non-

Gaussian. Second, the presence of a large, varying number of objects creates 

complex interactions with overlap and ambiguities. To surmount these difficulties, we 

can go for a Particle filter based system that is capable of learning, detecting and 

tracking the objects of interest. Various classifiers can be merged with the particle 

filters to make the system work more efficiently.  
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