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Abstract

In this thesis, the problems that we study are with respect to the approximation

and error estimation of the linear positive operators. The techniques of simultaneous

approximation and King type modification have been applied successfully to improve

the order of approximation for various operators.

Firstly, some theorems on approximation of the r-th derivative of a given function

f by corresponding r-th derivative of the Durrmeyer variant of generalized Bernstein

operator have been studied by contracting the interval of the definition of integrability

of function from class [0, 1] to [0, 1− 1
n+1

].

The basic properties and Voronoskaya type results for the ordinary approximation

for modified Baskakov operators and Balázs operators have been studied and the

results for better error estimation after considering King type modification of these

operators have been obtained. Some results have been calculated for multidimensional

Bernstein operators and its Durrmeyer variant. Quantitative global estimates for

generalized double Baskakov operators have been studied. In the sequel, direct and

inverse theorems for Beta Durrmeyer operators have been obtained.

In the end, some approximation properties of modified Beta operators and an

operator introduced by Jain with the help of Poisson type distribution have been

studied, which include rate of convergence and statistical convergence.
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Introduction

0.1 General Introduction

The theory of approximation is an area of mathematical analysis, which at its

core, is concerned with the approximations of functions by simpler and more easily

calculated functions. The basis of the theory of approximation of functions of a

real variable is the theorem discovered by K. Wierstrass in 1885, which asserts that

for any continuous function f on the finite interval [a, b], there exists a sequence

of polynomials which converges uniformly to f on [a, b]. In 1912, S.N. Bernstein

gave a simple and elegant proof of Weierstrass theorem, constructing by probabilistic

methods, a sequence of polynomials that converges uniformly to the function to be

approximated. Thus, introduced the Bernstein operators. These operators belong to

the class of positive linear operators.

In the 50s, the theory of approximation of functions by positive linear oper-

ators developed a lot when T. Popoviciu(1951), H. Bohman(1952) and P.P. Kro-

vokin(1953) [93] discovered independently, a simple and easily applicable criterion to

check if a sequence of positive linear operators converges uniformly to the function

to be approximated. This criterion says that the necessary and sufficient condition

for the uniform convergence of the sequence Pn of positive linear operators to the

continuous function f on the compact interval [a, b], is the uniform convergence of

the sequence Pnf to f for the only three functions ek(x) = xk, k = 0, 1, 2. If the

domain of definition of function f is unbounded, then the result remains valid only

for the continuous function having a finite limit at infinity.

1
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To the theorem of Popoviciu-Bohman-Krovokin to continuous and unbounded

functions defined on [0,∞), some bounds on the functions must be required, which

was first noted by Z. Ditzian. In 1974, A.D. Gadjiev introduced the weighted space

Cρ(I), which is the set of all continuous function f on the interval I ⊂ R for which

there exists a constant M > 0 such that |f(x)| ≤ Mρ(x), for every x ∈ I, where ρ is

a positive continuous function called weight. This space is a Banach space, endowed

with the norm

||f ||ρ = sup
x∈I

|f(x)|
ρ(x)

.

The Krovokin type theorem found by Gadjiev is the following:

Let ϕ : [0,∞) → [0,∞) be a strictly increasing, continuous and unbounded

function and set ρ(x) = 1 + ϕ2(x); the sequence of positive linear operators Pn :

Cρ [0,∞)→ Cρ [0,∞) verifies

lim
n→∞

∥∥Pnϕi − ϕi∥∥ρ = 0, i = 0, 1, 2.

Then, lim
n→∞

‖Pnf − f‖ρ = 0, for every function f ∈ Cρ[0,∞) for which the limit

lim
x→∞

f(x)
ρ(x)

exists and finite.

Some of the general problems arising in approximation of operators are: (i) the

basic convergence in approximation (ii) various estimates of error for classes of func-

tions (iii) a precise rate of convergence for smooth functions (iv) the possibility of

simultaneously approximating the derivatives of operators. The recognition of the

basic role of linear positive operators triggered a virtual chain reaction in approxima-

tion theory.

0.2 Preliminary and Auxiliary Results

Given a non-empty set X, we denote by B(X) the space of all real valued bounded

functions defined on X, endowed with the norm of the uniform convergence (or the
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sup-norm) defined by

‖f‖ = sup
x∈X
|f(x)| , f ∈ B(X).

The set B(X) is a linear subspace of RX .

If X is a topological space, then C(X) denotes the space of all real-valued con-

tinuous functions on X. Furthermore, we set

CB(X) = C(X) ∩B(X).

If X is a topological space, then B(X) and CB(X) endowed with the sup-norm,

are Banach spaces.

If X is a topological compact space, then C(X) = CB(X).

Let X, Y be two linear spaces of real functions. The mapping L : X → Y is called

a linear operator if and only if L(αf +βg) = αL(f) +βL(g),∀f, g ∈ X and α, β ∈ R.

The operator L is called positive if and only if Lf ≥ 0,∀f ≥ 0, f ∈ X.

The set L(X, Y ) = {L : X → Y | L is a linear operator} is a real vector space.

Let L : X → Y be a linear positive operator, it has following properties:

1. If f, g ∈ X with f ≤ g, then Lf ≤ Lg.

2. ∀f ∈ X we have |Lf | ≤ L |f |.

The main tools to measure the degree of approximation by linear positive oper-

ators are moduli of smoothness and K-functionals. Let f belongs to CB(I), I ⊂ R.

The modulus of continuity ω(f ; .) ∈ R[0,∞) of the function f is defined by

ω(f ; δ) ∈ {|f(x′)− f(x′′)| : x′, x′′ ∈ I, |x′ − x′′| ≤ δ} (0.2.1)

for every δ ≥ 0. We recall the forward differences of a function f : M → R, where

M = {ak|ak = x+ kh, k = (0, r), x, h ∈ R, h 6= 0}, 41
hf(x) = f(x + h) − f(x) and

4r
hf(x) = 41

h(4r−1
h f)(x), r ≥ 2.

Let f ∈ CB(I), the following properties of modulus of continuity take place:
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1. ω (f ; .) ≥ 0,

2. ω (f ; 0) = 0,

3. ω (f ; .) is non-decreasing,

4. ω (f ; .) is sub-additive,

5. ω (f ; .) is uniform continuous,

6. ∀δ ≥ 0,∀n ∈ N, ω (f ;nδ) ≤ nω (f ; δ) ,

7. ∀δ ≥ 0,∀λ > 0, ω (f ;λδ) ≤ (λ+ 1)ω (f ; δ) ,

8. ∀δ > 0, |f(y)− f(x)| ≤
(
1 + δ−2(y − x)2

)
ω (f ;λδ) ≤ (λ+ 1)ω (f ; δ) ,

9. ∀f1, f2 ∈ CB (I) , ω (f1f2; δ) ≤ ‖f1‖ω (f2; δ) + ‖f2‖ω (f1; δ) ,

10. If α ∈ (0, 1] then f ∈ LipMα ⇔ ω (f ; δ) ≤Mδα.

For k ∈ N and f ∈ B(I), I ⊂ R, the modulus of smoothness of order k of f is

defined by

ωk(f ; δ) = sup
{∣∣4k

hf(x)
∣∣ , 0 ≤ h ≤ δ, x, x+ kh ∈ I

}
, δ ≥ 0.

In case, k = 1, ω1(f ; δ) = ω(f ; δ).

In 1963, J. Peetre [112] introduced an expression called Peetre’s K-functional,

which represents another important instrument to measure the smoothness of a func-

tion. For any f ∈ C([a, b]), δ ≥ 0 and integer s ≥ 1, we call

Ks(f ; δ)[a,b] = K(f ; δ;C([a, b]), Cs([a, b])) (0.2.2)

= inf
{
‖f − g‖+ δ

∥∥g(s)∥∥ : g ∈ Cs([a, b])
}
,

Peetre’s K-functional of order s. Whenever there is no doubt about the interval of

definition of f we shall use the notation Ks(f ; δ) instead of Ks(f ; δ)[a,b].

Let us assume that 0 < a < a1 < b1 < b <∞ and f ∈ Cα [0,∞), then for m ∈ N

the Steklov mean fη,m of m− th order corresponding to f, for sufficiently small values
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of η > 0 is defined by

fη,m(x) = η−m

(∫ η/2

−η/2

)m{
f(x) + (−1)m−14m

m∑
i=1

xi
f(x)

}
m∏
i=1

dxi, (0.2.3)

where x ∈ [a, b] and 4m
η f(x) is the m− th order forward difference with step length

η. It is easily checked (see e.g. [58], [77]) that

(i) fη,m ∈ C[a, b];

(ii)
∥∥f (r)

η,m

∥∥
C[a1,b1]

≤M1η
−rωr(f, η, a, b), r = 1, 2, ...,m;

(iii)
∥∥f − fη,m∥∥C[a1,b1]

≤M2ωm(f, η, a, b);

(iv)
∥∥fη,m∥∥C[a1,b1]

≤M3

∥∥f∥∥
C[a,b]

≤M4

∥∥f∥∥
Cα
,

where Mi, i = 1, 2, 3, 4 are certain constants independent of f and η.

Lipschitz-type space is defined as

Lip∗M (α) =

{
f ∈ C[0,∞) : |f(y)− f(x)| ≤M

|y − x|α

(y + x)
α/2

;x, y ∈ (0,∞)

}
(0.2.4)

where M is any +ve constant and 0 < α ≤ 1.

0.3 Historical Background

In 1885, Karl Weierstrass [134], has given two starting results in the Theory of Ap-

proximation, which are the milestone for the development in this area. Result for

algebraic polynomials is as follows:

If a function f(x) is continuous in the interval a ≤ x ≤ b and ε > 0, then we can

find a polynomial p(x) such that the inequality

|f(x)− p(x)| < ε

would hold for all values of x in this interval.

For trigonometric polynomials, he gave the following result:
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If a function f(x) has period 2π and is continuous on the real axis, then we can find

a trigonometric polynomial T (x) for ε > 0 such that there holds the inequality

|T (x)− f(x)| < ε,−π ≤ x ≤ π.

In the year 1912, Russian mathematician, Sergei Bernstein (1880-1968) [22],

one of the “fathers”of approximation theory, defined, well known Bernstein operators

as: For f ∈ C[0, 1], the Bernstein polynomials of f are

(Bnf)(x) =
n∑
k=0

(n
k

)
xk(1− x)n−kf

(
k

n

)
, x ∈ [0, 1]. (0.3.1)

Later O. Szász and G. Mirakian [124] extended the result of S. Bernstein and

gave the following results:

Let f be a continuous function defined on the interval [0,∞) , the Szász-Mirakian

operators (Snf) is defined as follows:

(Snf)(x) =
∞∑
k=0

e−nx
(nx)k

k!
f

(
k

n

)
, x ∈ [0,∞) . (0.3.2)

Similarly, Baskakov [18] introduced the following operators and studied some

approximation results

(Vnf)(x) =
∞∑
k=0

(
n+ k − 1

k

)
xk

(1 + x)n+k
f

(
k

n

)
, x ∈ [0,∞) . (0.3.3)

At the same time, Lupaş also introduced these type of operators, therefore these

operators are also known as Lupaş operators.

In 1960, Meyer-König and Zeller [102] introduced a sequence of positive linear

operators which were studied, modified and generalized by several authors. The

classical Meyer-König and Zeller operators Zn : C [0, 1] → C [0, 1] , n ∈ N are
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defined as:

(Znf)(x) =
∞∑
k=0

(
n+ k

k

)
xk(1− x)n+1f

(
k

k + n

)
, x ∈ [0, 1].

To approximate integrable functions, Kantorovich [87] was the first to introduce

the integral variant of Bernstein polynomials. The Bernstein-Kantorovich operators

are defined as:

(B̃nf)(x) = (n+ 1)
∞∑
k=0

bn,k(x)

∫ k+1
n+1

k
n+1

f(t)dt,

where bn,k(x) =
(
n
k

)
xk(1− x)n−k.

Totik [126] introduced integral variant of Szász-Mirakian operators known as

Szász Kantorovich operators:

(S̃nf)(x) = n
∞∑
k=0

sn,k(x)

∫ k+1
n

k
n

f (t) dt,

where sn,k(x) = e−nx (nx)k

k!
.

For Baskakov operators appeared in literature as following:

(Ṽnf)(x) = (n− 1)
∞∑
k=0

vn,k(x)

∫ k+1
n−1

k
n−1

f(t)dt,

where vn,k(x) =
(
n+k−1

k

)
xk

(1+x)n+k
.

In 1967, Durrmeyer [54] introduced a more generalized integral modification of

the Bernstein polynomials so as to approximate integrable function on the interval

[0,1]. The integral modification given by Durrmeyer is independent on the value of k

in integration. Bernstein-Durrmeyer operators were first studied by Derrienic [41],

(B̄nf)(x) = (n+ 1)
∞∑
k=0

bn,k(x)

∫ 1

0

bn,k(t)f(t)dt (0.3.4)

who gave the interesting results.
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On the similar lines, the integral modification of the Szász operators [100] is as

follows:

(S̄nf)(x) = n

∞∑
k=0

sn,k(x)

∫ ∞
0

sn,k(t)f(t)dt. (0.3.5)

The Baskakov-Durrmeyer operators [117] on [0,∞) are defined as

(V̄nf)(x) = (n− 1)
∞∑
k=0

vn,k(x)

∫ ∞
0

vn,k(t)f(t)dt. (0.3.6)

In the recent years, several modifications have been done for these operators

to make the convergence rate faster. Hybrid form of different operators have been

obtained by several mathematicians for example, Szász-Beta operators, Baskakov-

Szász operators, Baskakov-Beta operators, their Durrmeyer and Kantorovich forms

etc.. Approximation properties, Voronskaya type results, error estimation, rate of

convergence, central theorems etc. results have already been calculated, see([1, 2, 12,

38, 130, 132, 133]).

0.4 Approximation of Functions, Direct and In-

verse theorem

For a given approximation method, the study of the central theorems of approxima-

tion eg. direct, inverse and saturation are the most important aspects of considera-

tion. A direct theorem provides the order of approximation for functions of specified

smoothness. On the other hand, an inverse theorem infers the nature of smoothness of

a function when the order of approximation is specified. A saturation theorem refers

to an inherent limitation of the approximation method. The order of approximation

beyond a certain limit is possible only for a trivial (finite dimensional) subspace. The

functions for which the order is attained, form the saturation (Favard) class and those

with the approximation order o(φ(n)) come in the trivial class. Thus, a saturation

theorem consists of a determination of the saturation order φ(n), the saturation class
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and the trivial class.

The study of direct theorems in approximation theory was initiated by the classi-

cal work of Jackson [81] on algebraic and trigonometric polynomials of best approxi-

mation. The corresponding inverse theorems for Bernstein polynomials was obtained

by Bernstein by an ingenious application of his famous inequality. But the result for

α = 1, in trigonometric case was proved by Zygmund. In the trigonometric case, the

results of Jackson-Bernstein had an essential gap for the case α = 1. This was filled,

much later by Zygmund through the introduction of the class Z(Lip∗1). The gener-

alisations of Zygmund class have been found very useful in approximation theory.

Direct, inverse and saturation theorems in approximation by semigroup of oper-

ators had been extensively developed by Butzer and Berens [25]. Some studied the

convergence of iterates of certain sequences of linear positive operators to semigroup

of operators.

Theorems and equalities establishing a connection between the difference- dif-

ferential properties of the function to be approximated and the magnitude(and be-

haviour) of the error of approximation, by various methods. Direct theorems give an

estimate of the error of approximation of a function in terms of its smoothness prop-

erties (the existence of derivatives of a given order, the modulus of continuity of f or

of some of its derivatives, etc.). In the case of best approximation by polynomials, di-

rect theorems are also known as Jackson-type theorems [80], together with their many

generalizations and refinements. Inverse theorems characterize difference-differential

properties of functions depending on the rapidity with which the errors of best, or

any other, approximations tend to zero. The problem of obtaining inverse theorems

in the approximation of functions was first stated, and in some cases solved, by S.N.

Bernstein [23]. A comparison of direct and inverse theorems allows one sometimes to

characterize completely the class of functions having specific smoothness properties

using sequence of best approximation.



10

0.5 Jackson Inequality

An inequality estimating the rate of decrease of the best approximation error of a

function by trigonometric or algebraic polynomials in dependence on its differentia-

bility and finite-difference properties. Let f be a 2π-periodic continuous function on

the real axis, let En(f)be the best uniform approximation error of f by trigonometric

polynomials Tn of degree n, i.e.

En (f) = inf
Tn

max
x
|f(x)− Tn(x)|

and let

ω (f ; δ) = max
|t1−t2|≤δ

|f (t1)− f (t2)|

be the modulus of continuity of f . It was shown by D. Jackson [80] that

En (f) ≤ Cω

(
f ;

1

n

)
(0.5.1)

(where C is an absolute constant), while if f has an rth order continuous derivative

f (r) ≥ 1, then

En (f) ≤ Cr
nr
ω

(
f (r);

1

n

)
,

where the constant Cr depends on r only. S.N. Bernstein [23] obtained inequality

(0.5.1) in an independent manner for the case

ω (f ; t) ≤ Ktα, 0 < α < 1.

If f is continuous or r times continuously differentiable on a closed interval

[a, b], r = 1, 2, ..., and if En(f ; a, b) is the best approximation error of the function

f on [a, b] by algebraic polynomials of degree n, then, for n > r one has the relation

f 0 = f

En (f ; a, b) ≤ Ar(b− a)r

nr
ω

(
f (r);

b− a
n

)
,

where the constant Ar depends on r only.
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The Jackson inequalities are also known as the Jackson theorems or as direct

theorems in the theory of approximation of functions. They may be generalized in

various directions: to approximate using an integral metric, to approximate by entire

functions of finite order, to an estimate concerning the approximation using a modulus

of smoothness of order k, or to a function of several variables. The exact values of

the constants in Jackson’s inequalities have been determined in several cases.

Another topic of interest is the phenomena of simultaneous approximation (ap-

proximation of derivatives of functions by the corresponding order derivatives of oper-

ators). The study in this direction began with a remarkable result for Bernstein poly-

nomials (Bn) owing to Lorentz [96], who proved that B
(k)
n (f) (x)→ f (k) (x) , n→∞,

whenever the latter exists at the particular point x ∈ [0, 1], k = 1, 2, 3, ... being arbi-

trary. His method for this pointwise convergence in simultaneous approximation has

since been applied by several mathematicians to other operators.

For the simultaneous approximation, a crucial property is the convexity of higher

order of the operators. The main result in this direction is a theorem of Sendov and

Popov [118]. A simplified version of it is the following:

Theorem 0.5.1. If Ln is a sequence of linear positive operators. Ln : C [a, b] →

C [a, b] , p ≥ 1, such that

(i) Ln are convex of order k, for any k, 0 ≤ k ≤ p, and

(ii) lim
n→∞

‖Ln (ei)− ei‖[a,b] = 0, for i = 0, 1, 2

then for any f ∈ Cp[a, b] and any subinterval [c, d] ⊂ [a, b] we have

lim
n→∞

∥∥L(p)
n (f)− fp

∥∥
[c,d]

= 0.

0.6 Improvement in Order of Approximation

Though the linear positive operators are conceptually simpler, easier to construct and

study, they lack in the rapidity of convergence for sufficiently smooth functions. In

the same context a well known theorem of Korovkin (1960) states that the optimal
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rate of convergence for any sequence of linear positive operators is atmost O(n−2).

Thus, if we want to have a better order of approximation for smoother functions, we

have to slacken the positivity condition. Several investigations indicated that even

when a sequence or class of linear positive operators is saturated with a certain order

of approximation, some carefully chosen linear combinations of its members give a

better order of approximation for smoother functions. The first attempt at some how

improving the order of approximation was made by Butzer [24], who showed that

by taking a linear combination of the Bernstein polynomials, the order of approx-

imation considerably improves for smoother functions. More general combinations

have been studied by Rathore [115] and May [99] for other sequence of linear positive

operators. Micchelli [103] offered yet another approach for improving the order of

approximation by Bernstein polynomials by considering the iterative combinations

Un,k =
[
I − (I −Bn)k

]
. Agrawal and Gupta [5] applied his technique to improve the

order of approximation by Phillips operators.

For obvious reasons, summation type operators as such are not Lp-approximation

methods. Nevertheless, several linear positive operators of summation type have

been appropriately modified to become Lp-approximation method. The underlying

idea behind such a modification is to replace, in the expression for the operator, the

function value at a nodal point by an average value(in the sense of integration) of

the function in an appropriate neighbourhood of the point. The first such modifica-

tion was made by Kantorovich [86] for the case of Bernstein polynomials. Another

modification of Bernstein polynomials was introduced by Durrmeyer [54] and later

studied extensively by Derrienic [41], Sahai and Prasad [117]. Mazhar and Totik [100]

modified Lupas and Szász operators respectively in an analogous manner to make it

possible to approximate functions in Lp[0,∞), p ≥ 1.
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0.7 Statistical Approximation of Linear Positive

Operators

One of the most recently studied subject in Approximation Theory is the approxima-

tion of continuous functions by linear positive operators using the statistical conver-

gence or the matrix summability method.

Statistical convergence was introduced in connection with problems of series sum-

mation. The main idea of statistical convergence of a sequence (xn)n∈N is that the

majority, in a certain sense, of its elements converges and we do not care what is

going on with other elements. At the time, it is known that sequences that come

from real life sources are not convergent in the strictly mathematical sense. This way,

the advantage of replacing the uniform convergence by statistical convergence con-

sists in the fact the second convergence models and improves the technique of signal

approximation in different function spaces.

The first research which deals with the statistical convergence for sequences of lin-

ear positive operators was attempted in the year 2002 by A.D. Gadjiev and C. Orhan.

The research field was proved to be extremely fertile, many researchers approaching

this subject.

Motivated by this research direction, our interest is to construct different classes

of linear positive operators of discrete or integral type and to study their statistical

approximation properties. We know that any convergent sequence is statistically

convergent but the converse is not true. The aim is to construct such sequences of

operators which approximated the function in statistical sense.

0.8 Contents of the Thesis

The present thesis consists of six chapters, whose contents are as described below:

Chapter 1 is a study of some theorems on approximation of the r-th derivative
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of a given function f by corresponding r-th derivative of the generalized Bernstein

operator.

Chapter 2 In this chapter, we give another modification of Baskakov operators

and Balázs operators and obtain the approximation properties of these operators.

Then we show that our modified operators have a better error estimation. Then we

also study rate of convergence as well as their Voronovskaya type results.

Chapter 3 We consider the multidimensional Bernstein operators Gn(f, x, y)

and its Durrmeyer variants Qn(f, x, y) on a simplex. We characterize the rate of

approximation by means of K−functionals and estimate the order of convergence by

means of a semi-norm φ(f). At the end of the chapter we establish an inverse theorem

of approximation.

Chapter 4 In this chapter, we obtain quantitative estimates for generalized

double Baskakov operators. We calculate global results for these operators using

Lipscitz-type spaces and estimate the error using modulus of continuity.

Chapter 5 This chapter is a study of linear combinations of Beta-Durrmeyer

operators Jn(f, x). We consider the direct theorem in terms of higher order modulus

of continuity in simultaneous approximation and inverse theorem for these operators

in ordinary approximation.

Chapter 6 In this chapter, we consider general Beta operators, which is a

general sequence of integral type operators including Beta function and an operator

introduced by Jain [83] with the help of Poisson type distribution. We study the

King type Beta operators which preserves the third test function x2 then we ob-

tain some approximation properties, which include rate of convergence and statistical

convergence. Finally, we show how to reach best estimation by these operators.



Chapter 1

Simultaneous Approximation On

Generalized Bernstein-Durrmeyer

Operators

1.1 Introduction

Denoted by B [0, 1], the space of bounded functions on the interval [0, 1], with the

sup-norm: ‖.‖ and by C [0, 1], the subspace of continuous functions, the Bernstein

operators Bn : B [0, 1] → R[0,1], n ∈ N are given by (0.3.1). Consider the monomial

functions ej (x) = xj, t ∈ [0, 1] , j = 0, 1, 2, ... we have

(i) Bn(e0, x) = e0,

(ii) Bn(e1, x) = e1,

(iii) Bn(e2, x) = e2 + e1(e0−e1)
n

.

In 1967, J.L. Durrmeyer [54] introduced Bernstein-Durrmeyer operators B̄n (0.3.4)

and independently, by Lupaş [[97],pg.68] associate with each function f integrable on

I = [0, 1]. They result from the classical Bernstein operators (0.3.1) in which the dis-

crete values f
(
k
n

)
is replaced by the integral

∫ 1

0
bn,k(t)f(t)dt in order to approximate

Lp functions (1 ≤ p <∞).

15
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Later Derriennic [41], Gupta [65], Gupta & Srivastava [73] and Heilmann [76]

studied so called Bernstein Durrmeyer operators B̄n in detail and established many

interesting properties of these operators.

Various generalizations of the Bernstein operators defined on C[0, 1] by the rela-

tion (0.3.1) have been given. Besides the convergence and approximation Bernstein

polynomial preserve some properties of original function:

(i) if f(x) is non-decreasing, then for all n ≥ 1, (Bn(f ;x)) are also non-decreasing,

(ii) if f(x) is convex then for all n ≥ 1 the (Bn(f ;x)) are convex and

Bn(f ;x) ≥ Bn+1(f ;x) ≥ f (x) , x ∈ [0, 1] ,

(iii) if f ∈ LipµA then for all n ≥ 1, Bn(f ;x) ∈ LipAµ.

In 1964, E.W. Cheney and A. Sharma [28] generalized the Bernstein polynomials

by the relation

(Anf) (x) = (1 + ntn)
−n

n∑
k=0

 n

k

x(x+ ktn)
k−1(1− x+ (n− k) tn)

n−kf

(
k

n

)
, (1.1.1)

where {tn}n∈N is a sequence of positive real numbers.

The operator An (1.1.1) is called nth Bernstein Cheney Sharma operator and

constitute a different generalization of the Bernstein operator which can be obtained

by tn = 0.

Very recently Deo et al. [39] introduced modified Bernstein operator Mn defined

as:

(Mnf) (x) =
n∑
k=0

dn,k(x)f

(
k

n

)
, (1.1.2)

where

dn,k(x) =

(
1 +

1

n

)n n

k

xk
(

n

n+ 1
− x

)n−k
and x ∈

[
0, 1− 1

n+ 1

]
.
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In this context Deo [31] has studied direct as well as converse results for the Beta

operators and in [32, 33] Deo has given Voronovskaya type results for exponential

operators. Some basic results for the operator Mn (1.1.2) are, for n ≥ 1:

(i) (Mn1) (x) = 1,

(ii) (Mnt) (x) =
(
1 + 1

n

)
x,

(iii) (Mnt
2) (x) =

(
1 + 1

n
− 1

n2 − 1
n3

)
x2 +

(
1
n

+ 1
n2

)
x.

We study the following Durrmeyer variant of the operator (1.1.2) as:

(
M̄nf

)
(x) = n

(
1 +

1

n

)2 n∑
k=0

dn,k(x)

∫ n
n+1

0

dn,k(t)f(t)dt, (1.1.3)

where dn,k(x) is defined in (1.1.2) above. In the operators (1.1.3), the interval of the

definition of integrability of function has been contracted from class [0, 1] to
[
0, 1 −

1
n+1

]
. Very recently, Jung et al. [84] have given some interesting results for modified

Bernstein operators. Also see( [29], [62], [135], [136]) for simultaneous approximation

of various operators.

In this chapter, we prove some theorems on the approximation of r-th derivative of a

function f by the corresponding operators
(
M̄

(r)
n

)
.

1.2 Auxiliary Results

In this section, we shall mention some definitions and certain lemmas to prove our

main theorems.

Lemma 1.2.1. If f is differentiable r times on
[
0, 1− 1

n+1

]
, then we get

(
M̄ (r)

n f
)

(x) =
(n+ 1)2(r+1)

n2r+1

(n!)2

(n− r)!(n+ r)!

n−r∑
k=0

dn−r,k(x)

∫ n
n+1

0

dn+r,k+r(t)f
(r)(t)dt.

(1.2.1)
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Proof. We have by Leibniz’s theorem

(
M̄ (r)

n f
)

(x) =
(n+ 1)n+2

nn+1

r∑
i=0

n−r+i∑
k=0

 r

i

 (−1)r−in!xk−i

(k − i)!(n− k − r + i)!

.

(
n

n+ 1
− x
)n−k−r+i ∫ n

n+1

0

dn,k(t)f(t)dt

=
(n+ 1)n+2

nn+1

r∑
i=0

n−r+i∑
k=0

 r

i

(−1)r−i
n!

k! (n− k)!
(k(k − 1)...(k − i+ 1))xk−i

((n− k)(n− k − 1)...(n− k − r + i+ 1))

(
n

n+ 1
− x
)n−k−r+i

.

∫ n
n+1

0

dn,k(t)f(t)dt

=
(n+ 1)r+2

nr+1

n−r+i∑
k=i

r∑
i=0

 r

i

(−1)r−in!

(n− r)!
dn−r,k−i(x)

∫ n
n+1

0

dn,k(t)f(t)dt

=
(n+ 1)n+2

nn+1

r∑
i=0

n−r+i∑
k=i

 r

i

(−1)r−i
n!

(k − i)! (n− k − r + i)!
xk−i

(
n

n+ 1
− x
)n−k−r+i ∫ n

n+1

0

dn,k(t)f(t)dt

=
(n+ 1)n+2

nn+1

(
n

n+ 1

)n−r r∑
i=0

n−r+i∑
k=0

 r

i

(−1)r−i
n!

(n− r)!

(
n+ 1

n

)n−r
 n− r

k

xk
(

n

n+ 1
− x
)n−k−r ∫ n

n+1

0

dn,k+i(t)f(t)dt

.

∫ n
n+1

0

dn,k+i(t)f(t)dt

=
(n+ 1)r+2

nr+1

n!

(n− r)!

n−r∑
k=0

(−1)rdn−r,k(x)

∫ n
n+1

0

r∑
i=0

 r

i

(−1)idn,k+i(t)f(t)dt.

Again using Leibniz’s theorem

dr

dtr
dn+r,k+r(t) =

r∑
i=0

 r

i

 (−1)i
(n+ r)!

n!

(
n

n+ 1

)r
dn,k+i(t)



19

(
M̄ (r)

n f
)

(x) =
(n+ 1)2(r+1)

n2r+1

(n!)2

(n− r)!(n+ r)!

n−r∑
k=0

dn−r,k(x)

∫ n
n+1

0

(−1)rd
(r)
n+r,k+r(t)f(t)dt.

Further integrating by parts r times, we get the required result.

Lemma 1.2.2. Let r,m ∈ N0 (the set of non-negative integers), n ∈ N and x ∈

[0,∞). Let the m-th order moments are defined by if

µn,m(x) = (n+ r + 1)

(
1 +

1

n

) n−r∑
k=0

dn−r,k(x)

∫ n
n+1

0

dn+r,k+r(t)(t− x)mdt,

then we get

µn,0(x) = 1, µn,1(x) =
(1 + r){n− 2x(n+ 1)}

(n+ 1)(n+ r + 2)
, (1.2.2)

µn,2(x) =
(r + 1)(r + 2){n− 2x(n+ 1)}2

(n+ 1)2(n+ r + 2)(n+ r + 3)
+

2x {n− x(n+ 1)}
(n+ r + 2)(n+ r + 3)

(1.2.3)

and

(m+ n+ r + 2)µn,m+1(x) = (1 +m+ r)

(
n

n+ 1
− 2x

)
µn,m(x)

+ 2mx

(
n

n+ 1
− x
)
µn,m−1(x) + x

(
n

n+ 1
− x
)
µ′n,m(x).

(1.2.4)

Consequently,

(i) µn,m(x) is a polynomial in x of degree ≤ m,

(ii) µn,m(x) = O
(
n−[m+1

2 ]
)
, where [α] denotes the integral part of α.

Proof. The values of µn,0 and µn,1 can easily follows from the definition. We prove

the recurrence relation as follows:

µ′n,m(x) = (n+ r+ 1)

(
1 +

1

n

) n−r∑
k=0

d′n−r,k(x)

∫ n
n+1

0

dn+r,k+r(t)(t− x)mdt−mµn,m−1(x)
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Using the following relation

x

(
n

n+ 1
− x
)
d′n,k(x) = n

(
k

n+ 1
− x
)
dn,k(x), (1.2.5)

then we get

x

(
n

n+ 1
− x
){

µ′n,m(x) +mµn,m−1(x)
}

= (n+ r + 1)

(
1 +

1

n

) n−r∑
k=0

x

(
n

n+ 1
− x
)
d′n−r,k(x)

∫ n
n+1

0

dn+r,k+r(t)(t− x)mdt

= (n+ r + 1)

(
1 +

1

n

) n−r∑
k=0

dn−r,k(x)

∫ n
n+1

0

{
nk

n+ 1
− (n− r)x

}
dn+r,k+r(t)(t− x)mdt

= (n+ r + 1)

(
1 +

1

n

) n−r∑
k=0

dn−r,k(x)

∫ n
n+1

0

[(
(k + r)

(
n

n+ 1

)
− t (n+ r)

)
− r

(
n

n+ 1
− 2x

)
+ (n+ r) (t− x) dn+r,k+r(t)(t− x)mdt

]
= (n+ r + 1)

(
1 +

1

n

) n−r∑
k=0

dn−r,k(x)

∫ n
n+1

0

t

(
n

n+ 1
− t
)
d′n+r,k+r(t)(t− x)mdt

− r
(

n

n+ 1
− 2x

)
µn,m(x) + (n+ r)µn,m+1(x)

= (n+ r + 1)

(
1 +

1

n

) n−r∑
k=0

dn−r,k(x)

∫ n
n+1

0

[
− (t− x)m+2 +

(
n

n+ 1
− 2x

)
(t− x)m+1

+ x

(
n

n+ 1
− x
)

(t− x)m
]
d′n+r,k+r(t)dt− r

(
n

n+ 1
− 2x

)
µn,m(x) + (n+ r)µn,m+1(x)

= (m+ 2)µn,m+1(x)−
(

n

n+ 1
− 2x

)
(m+ 1)µn,m(x)−mx

(
n

n+ 1
− x
)
µn,m−1(x)

− r
(

n

n+ 1
− 2x

)
µn,m(x) + (n+ r)µn,m+1(x).

This completes the proof of the recurrence relation. The values of µn,1(x) and

µn,2(x) can be easily obtained from the above recurrence relation.

1.3 Main Results

In this section we shall prove the following main results.
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Theorem 1.3.1. If f (r) is a bounded and integrable in
[
0, 1− 1

n+1

]
and admits (r+2)-

th derivative at a point x ∈
[
0, 1− 1

n+1

]
, then

lim
n→∞

n

[
n2r(n− r)!(n+ r + 1)!

(n+ 1)2r+1(n!)2
(
M̄ (r)

n f
)

(x)− f (r)(x)

]
(1.3.1)

= (1− 2x)(1 + r)f (r+1)(x) + x(1− x)f (r+2)(x).

Proof. By Taylor’s formula, we have

f (r)(t) = f (r)(x) + (t− x)f (r+1)(x) +
(t− x)2

2
f (r+2)(x) +

(t− x)2

2
ζ(t− x), (1.3.2)

where ζ(u)→ 0 as u→ 0 and ζ is a bounded and integrable function on [−x, 1− x].

Now, using (1.3.2) and by Lemma 1.2.2, we get

n2r(n− r)!(n+ r + 1)!

(n+ 1)2r+1(n!)2
(
M̄ (r)

n f
)

(x)− f (r)(x) =

{
(1 + r){n− 2x(n+ 1)}

(n+ 1)(n+ r + 2)

}
f (r+1)(x)

+
1

2

{
(r + 1)(r + 2){n− 2x(n+ 1)}2

(n+ 1)2(n+ r + 2)(n+ r + 3)
+

2x {n− x(n+ 1)}
(n+ r + 2)(n+ r + 3)

}
f (r+2)(x) +Rn,r(x),

where

Rn,r(x) =
1

2

n−r∑
k=0

dn−r,k(x)

∫ n
n+1

0

dn+r,k+r(t)(t− x)2ζ(t− x)dt.

Now we have to show that nRn,r → 0 as n → ∞. Let K = sup
u∈[−x,1−x]

|ζ(u)| and

let ε > 0. Choose δ > 0 such that |ζ(u)| < ε when |u| ≤ δ. So for all t ∈
[
0, 1− 1

n+1

]
,

we have |ζ(t− x)| < ε+K (t−x)2
δ2

.

Clearly

|nRn,r(x)| < nε

2
M̄ (r)

n (t− x)2(x) +
Kn

2δ2
M̄ (r)

n (t− x)4(x)

=
nε

2

{
(r + 1)(r + 2){n− 2x(n+ 1)}2

(n+ 1)2(n+ r + 2)(n+ r + 3)
+

2x {n− x(n+ 1)}
(n+ r + 2)(n+ r + 3)

}
+

K

2δ2
O

(
1

n

)
,

since ε > 0 is arbitrary, this implies that |nRn,r(x)| → 0 as n→∞. Thus as n→∞,

we get the required result from (1.3.2). This completes the proof of the theorem.
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Theorem 1.3.2. If f (r+1) ∈ C
[
0, 1 − 1

n+1

]
and let ω

(
f (r+1); .

)
be the moduli of

continuity of f (r+1). Then for n ≥ r, (r = 0, 1, 2, ....), we have

∥∥M̄ (r)
n − f (r)

∥∥ ≤ ∥∥f (r+1)
∥∥+

1

2
√
n

{√
λr +

λr

2

}
ω

(
f (r+1);

1√
n

)
, (1.3.3)

where the norm is sup-norm over
[
0, 1− 1

n+1

]
and λr = 1 + r

2
.

Proof. Following [119] and by the Taylor formula

f (r)(t)− f (r)(x) = (t− x)f (r+1)(x) +

∫ t

x

{
(f (r+1)(y)− f (r+1)(x)

}
.

Now, applying (1.2.1)to the above and using the inequality

∣∣f (r+1)(y)− f (r+1)(x)
∣∣ ≤ {1 +

|y − x|
δ

}
ω
(
f (r+1); δ

)
and the results (1.2.2) and (1.2.3), we have

∣∣(M̄ (r)
n f

)
(x)− f (r)(x)

∣∣
≤
∣∣f (r+1)(x)

∣∣ ∣∣M̄ (r)
n (t− x)(x)

∣∣+ ω
(
f (r+1); δ

)
M̄ (r)

n

[∣∣∣∣∫ t

x

1 +
|y − x|
δ

dy

∣∣∣∣] (x),

≤
∣∣f (r+1)(x)

∣∣ ∣∣M̄ (r)
n (t− x)(x)

∣∣+ ω
(
f (r+1); δ

){√
M̄

(r)
n (t− x)2(x) +

1

2δ
M̄ (r)

n (t− x)2(x)

}
.

Choosing δ = 1√
n

and using the result (1.2.3), we get the required result (1.3.3). This

completes the proof.



Chapter 2

Better Approximation for Positive

Linear Operators

In 2003, King [91] introduced an exotic sequence of positive linear operators Hn :

C ([0, 1])→ C ([0, 1]), which modifies the Bernstein operators:

(Hnf) (x) =
n∑
k=0

 n

k

 (cn(x))k(1− cn(x))n−kf

(
k

n

)
, f ∈ C ([0, 1]) , x ∈ [0, 1],

where cn(x) : [0, 1]→ [0, 1] are continuous function,

cn(x) =


x2, n=1,

− 1
2(n−1) +

√
n
n−1x

2 + 1
4(n−1)2 , n=2,3,...

(2.0.1)

This sequence preserves two test functions e0, e2 and (Hne1) (x) = cn(x). He also

proved that the operatorsHn have a better rate of convergence than the classical Bern-

stein polynomials whenever 0 ≤ x ≤ 1/3. After this several researchers have studied

that many approximating operators, L, possess these properties, i.e., L (ei, x) = ei(x)

where ei(x) = xi(i = 0, 1) or (i = 0, 2). For example similar problems were ac-

compolished for Szász-Mirakyan operators [51], Szász-Mirakyan-Beta operators by

Duman, Özarslan and Aktuglu [52], Meyer-König and Zeller operators by Özarslan

23
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and Duman [107], Bernstein-Chlodovsky operators [8], q-Bernstein operators [98],

q-analogue of complex summation-integral type operators [6] and some other kinds

of summation-type positive linear operators [9]. Local approximation properties of

modified Szász-Mirakyan operators have been investigated in [108]. Certain results on

modified Szász-Mirakyan operators have been calculated by Finta, Govil and Gupta

in [56].

Recently, Rempulska and Tomczak [116] have investigated the King type oper-

ators on an appropriate weighted space and they have given some significant ap-

plications, such as modifications of Baskakov operators, Post-Widder and Stancu

operators.

Very recently Deo and Singh [40] have given another modification of Baskakov

operators and studied Voronovskaya type results. Deo [31, 33], Pop [114, 113] and

Srivastava and Gupta [120] have studied Voronovskaya formula for other positive

linear operators.

2.1 Some Approximation Results for Durrmeyer

Operators

Now we consider Heilmann’s operator which is defined as:

Definition 2.1.1. [32, 76] The n-th operator Dn of Baskakov-Durrmeyer operator,

n ∈ N, c ∈ N0, n > c, is defined by

(Dnf) (x) = (n− c)
∞∑
k=0

pn,k(x)

∫ ∞
0

pn,k(t)f(t)dt (2.1.1)

with x ∈ [0,∞) , pn,k(x) = (−1)k x
k

k!
φ
(k)
n (x), where

φn(x) =

 e−nx for the interval [0,∞) with c = 0,

(1 + cx)−n/c, for the interval [0,∞) with c > 0,

and f is a function for which the right side of (2.1.1) makes sense. It is easy to
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see that Dn are Szász-Durrmeyer operators [89, 100], Lupaş-Durrmeyer [117] and

Baskakov-Durrmeyer operators [76] for c = 0, c = 1 and c > 0, respectively.

Lemma 2.1.1. [32, 76] Let ei(x) = xi, i = 0, 1, 2, then for x ∈ [0,∞), n ∈ N and

n > 3c, we have

(i) (Dne0) (x) = 1,

(ii) (Dne1) (x) = nx+1
n−2c ,

(iii) (Dne2) (x) = n(n+c)x2+4nx+2
(n−2c)(n−3c) .

Lemma 2.1.2. For x ∈ [0,∞) , n ∈ N, n > 3c and ϕx(t) = t− x, we have

(i) (Dnϕx) (x) = −1+2cx
n−2c ,

(ii) (Dnϕ
2
x) (x) = 2{(n+3c)x(1+cx)+1}

(n−2c)(n−3c) .

The linear functions, i.e., for h(t) = ct + d, where c, d any real constants, we get

(Dnh) (x) = h(x).

2.1.1 Construction of the Operators and Basic Results

Let {qn(x)} be a sequence of real-valued continuous functions defined on [0,∞) with

0 ≤ qn(x) <∞, for x ∈ [0,∞) , n ∈ N then we have

(
D̂nf

)
(x) = (n− c)

∞∑
k=0

pn,k(qn(x))

∫ ∞
0

pn,k(t)f (t) dt (2.1.2)

with x ∈ [0,∞) , pn,k(qn(x)) = (−1)k (qn(x))
k

k!
φ
(k)
n (qn(x)), where

φn (qn(x)) =

 e−nqn(x), for the interval [0,∞) with c = 0,

(1 + cqn(x))−n/c , for the interval [0,∞) with c > 0,

and

qn(x) =
(n− 2c)x− 1

n
.

We obtain the following results at once.

Lemma 2.1.3. Let ei(x) = xi, i = 0, 1, 2 then for each x ≥ 0 and n > 3c, we have
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(i)
(
D̂ne0

)
(x) = 1,

(ii)
(
D̂ne1

)
(x) = x,

(iii)
(
D̂ne2

)
(x) = (n+c)(n−2c)2x2+2(n−c)(n−2c)x−(n−c)

n(n−2c)(n−3c) .

Lemma 2.1.4. For x ∈ [0,∞) , n ∈ N, n > 3c and ϕx(t) = t− x, we have

(i)
(
D̂nϕx

)
(x) = 0,

(ii)
(
D̂nϕ

2
x

)
(x) = (n−c){2x(1+cx)(n−2c)−1}

n(n−2c)(n−3c) ,

(iii)
(
D̂nϕ

m
x

)
(x) = O

(
n−[m+1

2 ]
)
.

2.1.2 Voronovskaya Type Results & Better Error Estimation

In this section we compute the rates of convergence and Voronovskaya type results of

these operators D̂n given by (2.1.2).

Theorem 2.1.5. Let f ∈ CB[0,∞), then for every x ∈ [0,∞) and for C > 0, n > 0

and n > 3c, we have

∣∣∣(D̂nf
)

(x)− f(x)
∣∣∣ ≤ Cω2

(
f,

√
(n− c) {2x (1 + cx) (n− 2c)− 1}

n(n− 2c)(n− 3c)

)
. (2.1.3)

Proof. Let g ∈ W 2
∞. Using Taylor’s expansion

g(t) = g(x) + g′(x)(t− x) +

∫ t

x

(t− u)g′′(u)du.

From Lemma 2.1.4, we have

(
D̂ng

)
(x)− g(x) =

(
D̂n

∫ t

x

(t− u)g′′(u)du

)
(x).

We know that ∣∣∣∣∫ t

x

(t− u)g′′(u)du

∣∣∣∣ ≤ (t− u)2 ‖g′′‖ .
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Therefore

∣∣∣(D̂ng
)

(x)− g(x)
∣∣∣ ≤ (D̂n(t− u)2

)
(x) ‖g′′‖ =

(n− c) {2x (1 + cx) (n− 2c)− 1}
n(n− 2c)(n− 3c)

‖g′′‖ .

By Lemma 2.1.3, we have

∣∣∣(D̂nf
)

(x)
∣∣∣ ≤ (n− c)

∞∑
k=0

pn,k (qn(x))

∫ ∞
0

pn,k(t)|f(t)|dt ≤ ‖f‖ .

Hence

∣∣∣(D̂nf
)

(x)− f(x)
∣∣∣ ≤ ∣∣∣(D̂n(f − g)

)
(x)− (f − g)(x)

∣∣∣+
∣∣∣(D̂ng

)
(x)− g(x)

∣∣∣
≤ 2 ‖f − g‖+

(n− c) {2x (1 + cx) (n− 2c)− 1}
n(n− 2c)(n− 3c)

‖g′′‖ .

Taking the infimum on the right side over all g ∈ W 2
∞ and using Peetre’s K2 functional

( 0.2.2), we get the required result.

Theorem 2.1.6. If a function f is such that its first and second derivative are

bounded in [0,∞), then we get

lim
n→∞

n
{(
D̂nf

)
(x)− f(x)

}
= x (1 + cx) f ′′(x). (2.1.4)

Proof. Using Taylor’s theorem we write that

f(t)− f(x) = (t− x)f ′(x) +
(t− x)2

2!
f ′′(x) +

(t− x)2

2!
ξ(t, x), (2.1.5)

where ξ(t, x) is a bounded function ∀ t, x and lim
t→x

ξ(t, x) = 0.

Now applying (2.1.2) and (2.1.5), we get

(
D̂nf

)
(x)− f(x) = f ′(x)D̂n (ϕx, x) +

f ′′(x)

2
D̂n

(
ϕ2
x, x
)

+ I1,

where

I1 =
1

2
D̂n

(
ϕ2
x, x
)
ξ(t, x).
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Using Lemma 2.1.4, we get

n
{(
D̂nf

)
(x)− f(x)

}
=
f ′′(x)

2

{
(n− c) {2x (1 + cx) (n− 2c)− 1}

(n− 2c)(n− 3c)

}
+ nI1.

Now, we have to show that as n→∞, the value of nI1 → 0. Let ε > 0 be given

since ξ(t, x)→ 0 as t→ 0, then there exists δ > 0 such that when |t− x| < δ we have

|ξ(t, x)| < ε and when |t− x| ≥ δ, we write

|ξ(t, x)| ≤ C < C
(t− x)2

δ2
.

Thus, for all t, x ∈ [0,∞)

|ξ(t, x)| ≤ ε+ C
(t− x)2

δ2

and

nI1 ≤ n

(
D̂nϕ

2
x

(
ε+

Cϕ2
x

δ2

))
(x)

≤ εn
(
D̂nϕ

2
x

)
(x) +

C

δ2
n
(
D̂nϕ

4
x

)
(x).

Using Lemma 2.1.4, we get that,

nI1 → 0 as n→∞.

This leads to (2.1.4).

Remark 2.1.7. We may note here that under the conditions of Theorem 2.1.6, we

have

lim
n→∞

n {(Dnf) (x)− f(x)} = −(1 + 2cx)f ′(x) + x (1 + cx) f ′′(x). (2.1.6)

Theorem 2.1.8. If g ∈ C2
B [0,∞) then we have

∣∣∣(D̂ng
)

(x)− g(x)
∣∣∣ ≤ σn(x) ‖g‖C2

B
, (2.1.7)
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where

σn(x) =
(n− c) {2x (1 + cx) (n− 2c)− 1}

2n(n− 2c)(n− 3c)
, n > 3c.

Proof. We write that

g(t)− g(x) = (t− x)g′(x) +
1

2
(t− x)2g′′(ζ), (2.1.8)

where t ≤ ζ ≤ x. From Lemma 2.1.4 and (2.1.8), we have

∣∣∣(D̂ng
)

(x)− g(x)
∣∣∣ ≤ ‖g′‖ ∣∣∣(D̂nϕx

)
(x)
∣∣∣+

1

2
‖g′′‖

∣∣∣(D̂nϕ
2
x

)
(x)
∣∣∣

≤ (n− c) {2x (1 + cx) (n− 2c)− 1}
2n(n− 2c)(n− 3c)

‖g′′‖

= σn(x) ‖g‖C2
B
.

This proves the theorem completely.

Remark 2.1.9. Under the same conditions of Theorem 2.1.8, we obtain

|(Dng) (x)− g(x)| ≤ σ∗n(x) ‖g‖C2
B
, (2.1.9)

where

σ∗n(x) =
(n+ 3c)x(1 + cx) + 1

(n− 2c)(n− 3c)
.

Theorem 2.1.10. For f ∈ CB [0,∞), we obtain

∣∣∣(D̂nf
)

(x)− f(x)
∣∣∣ ≤ A

{
ω2

(
f,

√
σn(x)

2

)
+ min

(
1,
σn(x)

2

)
‖f‖CB

}
, (2.1.10)

where n > 3c and constant A depends on f & σn(x).

Proof. For f ∈ CB [0,∞) and g ∈ C2
B [0,∞) we write

(
D̂nf

)
(x)− f(x) =

(
D̂nf

)
(x)−

(
D̂ng

)
(x) +

(
D̂ng

)
(x)− g(x) + g(x)− f(x).
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By using (2.1.7) and Peetre’s K2-functional, we get

∣∣∣(D̂nf
)

(x)− f(x)
∣∣∣ =

∣∣∣(D̂nf
)

(x)−
(
D̂ng

)
(x)
∣∣∣+
∣∣∣(D̂ng

)
(x)− g(x)

∣∣∣+ |g(x)− f(x)|

≤
∥∥∥D̂nf

∥∥∥ ‖f − g‖+ σn(x) ‖g‖C2
B

+ ‖f − g‖

≤ 2 ‖f − g‖+ σn(x) ‖g‖C2
B

≤ 2

{
‖f − g‖+

1

2
σn(x) ‖g‖C2

B

}
≤ 2K2

{
f,

1

2
σn(x)

}
≤ 2A

{
ω2

(
f,

1

2

√
σn(x)

)
+ min

(
1,

1

2
σn(x)

)
‖f‖CB

}
.

This completes the proof of the theorem.

Remark 2.1.11. Under the same conditions of Theorem 2.1.10, we get

|(Dnf) (x)− f(x)| ≤ 2A
{
ω2

(
f,
√
σ∗n(x)

)
+ min (1, σ∗n(x)) ‖f‖CB

}
. (2.1.11)

Theorem 2.1.12. For every f ∈ C [0,∞) , x ∈ [0,∞), we obtain

∣∣∣(D̂nf
)

(x)− f(x)
∣∣∣ ≤ 2ω (f, δx) , (2.1.12)

where

δx =

√
(n− c) {2x (1 + cx) (n− 2c)− 1}

n(n− 2c)(n− 3c)
, n > 3c

and ω (f, δx) is the modulus of continuity of f .

Proof. Using linearity and monotonicity of D̂n, we easily obtain, for every δ > 0 and

n ∈ N, that ∣∣∣(D̂nf
)

(x)− f(x)
∣∣∣ ≤ ω(f, δ)

{
1 +

1

δ

√
D̂n (ϕ2

x, x)

}
.

By using Lemma 2.1.4 and choosing δ = δx the proof is completed.

Remark 2.1.13. For the original operator Dn defined in, we may write that, for

every f ∈ C [0,∞)

|(Dnf) (x)− f(x)| ≤ 2ω (f, νx) , (2.1.13)
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where

νx =

√
2 {(n+ 3c)x(1 + cx) + 1}

(n− 2c)(n− 3c)

and ω (f, νx) is the modulus of continuity of f . The error estimate in Theorem 2.1.12

is better than that of (2.1.13) for f ∈ C [0,∞) and x ∈ [0,∞), we get δx ≤ νx.

Now we compute rate of convergence of the operators of D̂n by means of the

Lipschitz class LipM(γ), (0 < γ ≤ 1). As usual, we say that f ∈ CB [0,∞) belongs

to LipM(γ) if the inequality ( 0.2.4) holds.

Theorem 2.1.14. If f ∈ LipM(γ), x ∈ [0,∞) and n > 3c, we have

∣∣∣(D̂nf
)

(x)− f(x)
∣∣∣ ≤M

[
(n− c) {2x (1 + cx) (n− 2c)− 1}

n(n− 2c)(n− 3c)

]γ/2
.

Proof. Since f ∈ LipM(γ) and x ≥ 0, from inequality ( 0.2.4) and applying the Holder

inequality with p = 2
γ
, q = 2

2−γ , we have

∣∣∣(D̂nf
)

(x)− f(x)
∣∣∣ ≤ (D̂n |f(t)− f(x)|

)
(x)

≤M
(
D̂n|t− x|γ

)
(x)

≤M
{(
D̂nϕ

2
x

)
(x)
}γ/2

≤M

[
(n− c) {2x (1 + cx) (n− 2c)− 1}

n(n− 2c)(n− 3c)

]γ/2
.

This completes the proof.

Remark 2.1.15. If using Lemma 2.1.2, for the original operator Dn, then we get the

following result

|(Dnf) (x)− f(x)| ≤M

{
2 {(n+ 3c)x(1 + cx) + 1}

(n− 2c)(n− 3c)

}γ/2
for every f ∈ LipM(γ), x ≥ 0 and n ≥ 1.
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2.2 A Better Error Estimation On Balázs Opera-

tors

Let f be a real-valued continuous function on the closed unit interval [0, 1] of the

real line and let n ∈ N = {1, 2, 3, ...}. Then n − th Bernstein polynomial of f

is defined as (0.3.1). It is well known that the sequence {Bn(f)}n∈N converges

uniformly to f on [0, 1] and the Bernstein polynomials and their generalization as

well as modification have an important role in approximation theory (see, for in-

stance, [13], [14], [39], [42], [54], [121], [131]).

In view of these concernments, Katalin Balázs [17] introduced and studied several

approximation properties of the Bernstein type rational functions defined as follows:

Let f be a real single valued function defined on [0,∞) and n ∈ N, and define

Rn(f ;x) =
1

(1 + anx)n

n∑
k=0

 n

k

 (anx)kf

(
k

bn

)
, x ∈ [0,∞) , (2.2.1)

where a = {an}n∈N and b = {bn}n∈N are suitable chosen sequence of positive real

numbers, independent of x.

In this section we study the approximation properties of modified Balázs [17]

operators and obtain better error estimation, rate of convergence and Voronovskaya

result.

Lemma 2.2.1. [17, 48] Let ei(t) = ti, i = 0, 1, 2, 3, 4 then for x ≥ 0 and n ∈ N, we

have

(i) Rn(e0;x) = 1,

(ii) Rn(e1;x) = n
bn

(
anx

1+anx

)
,

(iii) Rn(e2;x) = n(n−1)
b2n

(
anx

1+anx

)2
+ n

b2n

(
anx

1+anx

)
,

(iv) Rn(e3;x) = n(n−2)
b3n

(anx)
2{1+nanx}

(1+anx)
3 + n

b3n

anx{1+2nanx}
(1+anx)

2 ,

(iv) Rn(e4;x) = n(n−3)
b4n

(anx)
2{1+(3n−1)anx+(nanx)

2}
(1+anx)

4 + n
b4n

anx{1+2(3n−1)anx+3(nanx)
2}

(1+anx)
3 .
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Thus

Rn(ϕx;x) = − anx
2

1 + anx
and Rn(ϕ2

x;x) =
x
{

1 + n(anx)3
}

bn(1 + anx)2
,

where ϕx(e1) = e1 − e0x and an = bn/n, bn > 0 is an arbitrary real number.

Agratini [7], İspir & Atakut [78] and Gupta [67] have studied and given some in-

teresting results on the variant of Balázs operators. Many researchers have given King

type modification for different operators (see, for instance, [36], [49], [52], [51], [70], [71],

[91], [111], [116]), now we consider Balázs [17] operators for this type of modification.

2.2.1 Construction of the Operators

We assume that {un(x)} is a sequence of real-valued continuous functions defined on

[0,∞) with 0 ≤ un(x) < ∞, for x ∈
[
1, n

bn

)
( n
bn
→ ∞ as n → ∞) , n ∈ N and n ≥ 2

then we have

R̂n(f ;x) =
1

(1 + anun(x))n

n∑
k=0

(
n

k

)
(anun(x))kf

(
k

bn

)
, (2.2.2)

where

un(x) =
bn
an

x

(n− bnx)
, x 6= n

bn
.

We obtain the following results at once.

Lemma 2.2.2. Let ei(x) = xi, i = 0, 1, 2, 3, 4 then for x ∈
[
1, n

bn

)
and n ≥

2 where n ∈ N, we have

(i) R̂n(e0;x) = 1,

(ii) R̂n(e1;x) = x,

(iii) R̂n(e2;x) =
(
n−1
n

)
x2 + 1

bn
x,

(iv) R̂n(e3;x) = (n−1)(n−2)
n2 x3 + 3(n−1)

nbn
x2 + x

b2n
,

(v) R̂n(e4;x) = (n−3)(n−2)(n−1)
n3 x4 + 6(n−1)(n−2)

n2bn
x3 + 7(n−1)

nb2n
x2 + x

b3n
.

Lemma 2.2.3. For x ∈
[
1, n

bn

)
, n ≥ 2 where n ∈ N and ϕx(t) = e1 − e0x, we have

(i) R̂n(ϕx;x) = 0,
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(ii) R̂n(ϕ2
x;x) = x(1−anx)

nan
,

(iii) R̂n(ϕ3
x;x) = 2x3

n2 + 3(2n−1)
nbn

x2 + x
b2n
,

(iv) R̂n(ϕ4
x;x) = 3(n−2)

n3 x4 − 6(n−2)
n2bn

x3 + (3n−7)
nb2n

x2 + x
b3n
.

The operators R̂n preserve the linear functions, i.e., for h(t) = ct + d, where c, d

any real constants, we obtain R̂n(h;x) = h(x).

Throughout, in this section we have taken λ (x) = x(1−anx)
nan

(an = n−1/3 & bn =

n2/3) and n ≥ 2, where n ∈ N.

2.2.2 Voronovskaya Type Results

In this section first we establish a direct local approximation theorem for the modified

operators R̂n in ordinary approximation then we compute the rates of convergence

and Voronovskaya type result of these operators (2.2.2).

Theorem 2.2.4. Let f ∈ CB[0,∞), then for every x ∈
[
1, n

bn

)
and for C > 0, n ≥

2 where n ∈ N, we have

∣∣∣(R̂nf
)

(x)− f(x)
∣∣∣ ≤ Cω2

(
f,
√
λ (x)

)
. (2.2.3)

Proof. Let g ∈ W 2
∞. Using Taylor’s expansion

g(y) = g(x) + g′(x)(y − x) +

∫ y

x

(y − u)g′′(u)du.

From Lemma 2.2.3, we have

(
R̂ng

)
(x)− g(x) =

(
R̂n

∫ y

x

(y − u)g′′(u)du

)
(x).

We know that ∣∣∣∣∫ y

x

(y − u)g′′(u)du

∣∣∣∣ ≤ (y − u)2 ‖g′′‖ .

Therefore

∣∣∣(R̂ng
)

(x)− g(x)
∣∣∣ ≤ (R̂n(y − u)2

)
(x) ‖g′′‖ = λ (x) ‖g′′‖ .
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By Lemma 2.2.2, we have

∣∣∣(R̂nf
)

(x)
∣∣∣ ≤ 1

(1 + anrn(x))n

n∑
k=0

f

(
k

bn

)(
n

k

)
(anrn(x))k ≤ ‖f‖ .

Hence

∣∣∣(R̂nf
)

(x)− f(x)
∣∣∣ ≤ ∣∣∣(R̂n(f − g)

)
(x)− (f − g)(x)

∣∣∣+
∣∣∣(R̂ng

)
(x)− g(x)

∣∣∣
≤ 2 ‖f − g‖+ λ (x) ‖g′′‖ .

Taking the infimum on the right side over all g ∈ W 2
∞ and using ( 0.2.2), we get the

required result.

Remark 2.2.5. Under the same conditions of Theorem 2.2.4, we obtain

|(Rnf) (x)− f(x)| ≤ Cω2

f,√x
{

1 + n(anx)3
}

bn(1 + anx)2

 . (2.2.4)

Theorem 2.2.6. If a function f is such that its first and second derivative are

bounded in [0,∞) then for C > 0 and n ≥ 2, where n ∈ N, we get

nan

[(
R̂nf

)
(x)− f(x)

]
=
x (1− anx)

2
f ′′(x). (2.2.5)

Proof. Applying Taylor’s theorem we write that

f(t)− f(x) = (t− x)f ′(x) +
(t− x)2

2!
f ′′(x) +

(t− x)2

2!
ξ(t, x), (2.2.6)

where ξ(t, x) is a bounded function ∀ t, x and lim
t→x

ξ(t, x) = 0.

Using (2.2.2) and (2.2.6), we obtain

(
R̂nf

)
(x)− f(x) = f ′(x)R̂n (ϕx, x) +

f ′′(x)

2
R̂n

(
ϕ2
x, x
)

+
1

2
R̂n

(
ϕ2
x, x
)
ξ(t, x).
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From Lemma 2.2.3, we get

nan

[(
R̂nf

)
(x)− f(x)

]
=
f ′′(x)

2
(x (1− anx)) +

nan
2
R̂n

(
ϕ2
x, x
)
ξ(t, x).

Now, we have to show that as n→∞, the value of I = nan
2
R̂n (ϕ2

x, x) ξ(t, x)→ 0.

Let ε ≥ 0 be given since ξ(t, x)→ 0 as t→ x, then there exists δ > 0 such that when

|t− x| < δ we have |ξ(t, x)| < ε and when |t− x| ≥ δ, we write

|ξ(t, x)| ≤ C < C
(t− x)2

δ2
.

Thus, for all t, x ∈ [0,∞)

|ξ(t, x)| ≤ ε+ C
(t− x)2

δ2

and

I ≤ nan

(
R̂nϕ

2
x

(
ε+

Cϕ2
x

δ2

))
(x)

≤ nanε
(
R̂nϕ

2
x

)
(x) +

nanC

δ2

(
R̂nϕ

4
x

)
(x)

= E1 + E2,

by Lemma 2.2.3 and choosing ε arbitrarily as 0, we obtain E1 and E2 tends to 0 as

n→∞.

Hence

I → 0 as n→∞.

This leads to (2.2.5).

Theorem 2.2.7. If g ∈ C2
B [0,∞) then we have

∣∣∣(R̂ng
)

(x)− g(x)
∣∣∣ ≤ λ (x)

2
‖g‖C2

B
. (2.2.7)

Proof. We have

g(t)− g(x) = (t− x)g′(x) +
1

2
(t− x)2g′′(ζ) (2.2.8)
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where t ≤ ζ ≤ x. From Lemma 2.2.3 and (2.2.8), we get

∣∣∣(R̂ng
)

(x)− g(x)
∣∣∣ ≤ ‖g′‖ ∣∣∣(R̂nϕx

)
(x)
∣∣∣+

1

2
‖g′′‖

∣∣∣(R̂nϕ
2
x

)
(x)
∣∣∣

≤ λ (x)

2
‖g′′‖ =

λ (x)

2
‖g‖C2

B
.

This proves the theorem.

Remark 2.2.8. Under the same conditions of Theorem 2.2.7, we obtain

|(Rng) (x)− g(x)| ≤
x
{

1 + n(anx)3
}

2bn(1 + anx)2
‖g‖C2

B
. (2.2.9)

Theorem 2.2.9. For f ∈ CB [0,∞), we obtain

∣∣∣(R̂nf
)

(x)− f(x)
∣∣∣ ≤ A

{
ω2

(
f,

1

2

√
λ (x)

)
+ min

(
1,
λ (x)

4

)
‖f‖CB

}
, (2.2.10)

where constant A depends on f &
{
λ(x)
2

}
.

Proof. For f ∈ CB [0,∞) and g ∈ C2
B [0,∞) we write

(
R̂nf

)
(x)− f(x) =

(
R̂nf

)
(x)−

(
R̂ng

)
(x) +

(
R̂ng

)
(x)− g(x) + g(x)− f(x).

From (2.2.7) and Peetre’s K2-functional( 0.2.2), we get

∣∣∣(R̂nf
)

(x)− f(x)
∣∣∣ =

∣∣∣(R̂nf
)

(x)−
(
R̂ng

)
(x)
∣∣∣+
∣∣∣(R̂ng

)
(x)− g(x)

∣∣∣
+ |g(x)− f(x)|

≤
∥∥∥R̂nf

∥∥∥ ‖f − g‖+
λ (x)

2
‖g‖C2

B
+ ‖f − g‖

≤ 2 ‖f − g‖+
λ (x)

2
‖g‖C2

B

= 2

{
‖f − g‖+

λ (x)

4
‖g‖C2

B

}
≤ 2K2

{
f,
λ (x)

4

}
≤ 2A

{
ω2

(
f,

1

2

√
λ (x)

)
+ min

(
1,
λ (x)

4

)
‖f‖CB

}
.

This completes the proof.
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Remark 2.2.10. By the same conditions of Theorem 2.2.9, we get

|(Rnf) (x)− f(x)| (2.2.11)

≤ 2A

ω2

f, 1

2

√
x
{

1 + n(anx)3
}

bn(1 + anx)2

+ min

(
1,
x
{

1 + n(anx)3
}

4bn(1 + anx)2

)
‖f‖CB

 .

Theorem 2.2.11. For every f ∈ C [0,∞) , x ∈
[
1, n

bn

)
and n ≥ 2 where n ∈ N,

we obtain ∣∣∣(R̂nf
)

(x)− f(x)
∣∣∣ ≤ 2ω (f, δx) , (2.2.12)

where ω (f, δx) is the modulus of continuity of f .

Proof. Let f ∈ C [0,∞) , x ∈
[
1, n

bn

)
and n ≥ 2, where n ∈ N. Using linearity and

monotonicity of R̂n, we obtain, for every δx > 0, that

∣∣∣(R̂nf
)

(x)− f(x)
∣∣∣ ≤ ω(f, δx)

{
1 +

1

δx

√
R̂n (ϕ2

x, x)

}
.

By using Lemma 2.2.3 and choosing δx =
√
λ (x) this completes the proof.

Remark 2.2.12. For the original operator Rn defined in, we may write that, for

every f ∈ C [0,∞)

|(Rnf) (x)− f(x)| ≤ 2ω (f, νx) , (2.2.13)

where

νx =

√
x
{

1 + n(anx)3
}

bn(1 + anx)2

and ω (f, νx) is the modulus of continuity of f . The error estimate in Theorem 2.2.11

is better than that of (2.2.13) for f ∈ C [0,∞) and x ∈
[
1, n

bn

)
, we get δx ≤ νx.

For rate of convergence of these operators by means of the Lipschitz class LipM(γ), (0 <

γ ≤ 1) we have, f ∈ CB [0,∞) belongs to LipM(γ) if the inequality ( 0.2.4) holds.

Theorem 2.2.13. If f ∈ LipM(γ) and x ∈
[
1, n

bn

)
, we have

∣∣∣(R̂nf
)

(x)− f(x)
∣∣∣ ≤M [λ (x)]γ/2.
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Proof. For f ∈ LipM(γ), x ∈
[
1, n

bn

)
and n ≥ 2,where n ∈ N, from inequality ( 0.2.4)

and using the Hölder inequality with p = 2
γ
, q = 2

2−γ , we get

∣∣∣(R̂nf
)

(x)− f(x)
∣∣∣ ≤ (R̂n |f(t)− f(x)|

)
(x)

≤M
(
R̂n|t− x|γ

)
(x)

≤M
{(
R̂nϕ

2
x

)
(x)
}γ/2

≤M [λ (x)]γ/2.

This leads to the result.

Remark 2.2.14. From Lemma 2.2.1, under the same conditions of Theorem 2.2.13

for the original operator Rn, then we have the following result

|(Rnf) (x)− f(x)| ≤M

{
x
{

1 + n(anx)3
}

2bn(1 + anx)2

}γ/2

for every f ∈ LipM(γ), x ∈
[
1, n

bn

)
.

2.3 Better Error Estimation of Modified Baskakov

Operators

For f ∈ C[0,∞), the Baskakov operator was introduced by V.A. Baskakov [19] as

(0.3.3).

Several modifications of Baskakov operators have been studied by many math-

ematicians (see [34], [66], [76], [117]). Now we have given another modification of

Baskakov operators as:

Pn (f, x) =
∞∑
k=0

pn,k(x)f

(
k

n+ 1

)
, (2.3.1)
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where

pn,k(x) =

(
1− 1

n+ 1

)n n+ k − 1

k

 xk(
1− 1

n+1
+ x
)n+k .

It is a generalized form of Baskakov operators, i.e., if n is sufficient large then our

operators convert in the classical Baskakov operators (0.3.3).

Durrmeyer variants of these operators (2.3.1) are:

Ln (f, x) =
(n2 − 1)

n

∞∑
k=0

pn,k(x)

∫ ∞
0

pn,k(t)f(t)dt. (2.3.2)

This modification is based on recent modification of Bernstein operator, which is

given by Deo et al. [39] and they established a Voronovskaya type asymptotic formula

and obtain an estimate of error in terms of modulus of continuity in simultaneous

approximation by the linear combinations of these operators. In [37], Deo and Singh

have given some theorems on the approximation of the r-th derivative of a function

f by same operators.

2.3.1 Construction of the Operators

Now we consider King type modification of these operators (2.3.2).

L̂n (f, (rn(x))) =
(n2 − 1)

n

∞∑
k=0

pn,k (rn(x))

∫ ∞
0

pn,k(t)f(t)dt, (2.3.3)

where

pn,k (rn(x)) =

(
1− 1

n+ 1

)n n+ k − 1

k

 (rn(x))k(
1− 1

n+1
+ rn(x)

)n+k
and

rn(x) =
(n+ 1)(n− 2)x− n

n(n+ 1)
.
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In this section, we give some ordinary as well as simultaneous approximation prop-

erties and we also study some ordinary approximation results including Voronovskaya

type results and better error estimates for these operators (2.3.2).

2.3.2 Properties and Basic Results

In this section we write some basic results to prove our theorem.

Lemma 2.3.1. For n ≥ 1 one obtains,

Pn (1, x) = 1,

Pn (t, x) = x,

Pn
(
t2, x

)
=

(
1 +

1

n

)
x2 +

x

n+ 1
.

Lemma 2.3.2. For m ∈ N0 (the set of non-negative integers), the m-th order moment

of the operator is defined as

Tn,m(x) =
∞∑
k=0

pn,k(x)

(
k

n+ 1
− x
)m

.

Consequently, Tn,0(x) = 1 and Tn,1(x) = x/n. There holds the recurrence relation

nTn,m+1(x) = x

(
1− 1

n+ 1
+ x

)[
T
′

n,m(x) +mTn,m−1(x)
]
.

Proof. It is easily observed that

x

(
1− 1

n+ 1
+ x

)
p′n,k(x) = n

(
k

n+ 1
− x
)
pn,k(x). (2.3.4)

We have

Tn,m(x) =
∞∑
k=0

pn,k(x)

(
k

n+ 1
− x
)m
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T ′n,m(x) =
∞∑
k=0

p′n,k(x)

(
k

n+ 1
− x
)m
−mTn,m−1(x)

x

(
1− 1

n+ 1
+ x

)
T ′n,m(x) =

∞∑
k=0

x

(
1− 1

n+ 1
+ x

)
p′n,k(x)

(
k

n+ 1
− x
)m

−mx
(

1− 1

n+ 1
+ x

)
Tn,m−1(x)

Using (2.3.4),

x

(
1− 1

n+ 1
+ x

)
T ′n,m(x) = n

∞∑
k=0

pn,k(x)

(
k

n+ 1
− x
)m

−mx
(

1− 1

n+ 1
+ x

)
Tn,m−1(x)

= nTn,m+1(x)−mx
(

1− 1

n+ 1
+ x

)
Tn,m−1(x).

Hence the result. Thus

(i) Tn,m(x) is a polynomial in x of degree ≤ m,

(ii) For every x ∈ [0,∞) , Tn,m(x) = O
(
n−[m+1

2 ]
)
, where [β] denotes the integral

part of β.

Lemma 2.3.3. Let the m− th order moment be defined by

Ur,n,m = (n− r − 1)

(
1 +

1

n

) ∞∑
k=0

pn+r,k(x)

∞∫
0

pn−r,k+r(t)(t− x)mdt,

then

Ur,n,0(x) = 1, Ur,n,1(x) =
{n(1 + 2x) + 2x} (1 + r)

(n+ 1) (n− r − 2)
, n− r > 2 (2.3.5)

Ur,n,2(x) =
2
[
(1 + r)2 {n(1 + 2x) + 2x}2 + x {n(1 + x) + x} (n2 − 1)

]
(n+ 1)2(n− r − 2)(n− r − 3)

(2.3.6)
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and

(n− r −m− 2)Ur,n,m+1(x) = (m+ r + 1)

(
1− 1

n+ 1
+ 2x

)
Ur,n,m(x) (2.3.7)

+ x

(
1− 1

n+ 1
+ x

)[
U ′r,n,m(x) + 2mUr,n,m−1(x)

]
.

Further, for all x ∈ [0,∞)

Ur,n,m(x) = O
(
n−[ (m+1)

2 ]
)
. (2.3.8)

Proof. We can easily obtain (2.3.5) and (2.3.6) by using the definition of Tn,m(x). For

the proof of (2.3.7), we proceed as follows. First

x

(
1− 1

n+ 1
+ x

)
U ′r,n,m(x) = (n− r − 1)

(
1 +

1

n

) ∞∑
k=0

x

(
1− 1

n+ 1
+ x

)
p′n+r,k(x)

.

∫ ∞
0

pn−r,k+r(t)(t− x)mdt−mx
(

1− 1

n+ 1
+ x

)
Ur,n,m−1(x).

Now, using inequality (2.3.4) two times, then we get

x

(
1− 1

n+ 1
+ x

)[
U ′r,n,m(x) +mUr,n,m−1(x)

]
=

(
1 +

1

n

)
(n− r − 1)

∞∑
k=0

pn+r,k(x)

[
nk

n+ 1
− (n+ r)x

] ∫ ∞
0

pn−r,k+r(t)(t− x)mdt

=

(
1 +

1

n

)
(n− r − 1)

∞∑
k=0

pn+r,k(x)

∫ ∞
0

[
n(k + r)

n+ 1
− (n− r)t

]
pn−r,k+r(t)(t− x)mdt

− r
(

1− 1

n+ 1
+ 2x

)
Ur,n,m(x) + (n− r)Ur,n,m+1(x)

= −r
(

1− 1

n+ 1
+ 2x

)
Ur,n,m(x) + (n− r)Ur,n,m+1(x) +

(
1 +

1

n

)
(n− r − 1)

∞∑
k=0

pn+r,k(x)

∫ ∞
0

[(
1− 1

n+ 1
+ 2x

)
(t− x) + (t− x)2 + x

(
1− 1

n+ 1
+ x

)]
p′n−r,k+r(t)(t− x)mdt
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= −r
(

1− 1

n+ 1
+ 2x

)
Ur,n,m(x) + (n− r)Ur,n,m+1(x)−

(
1− 1

n+ 1
+ 2x

)
(m+ 1)Ur,n,m(x)− (m+ 2)Ur,n,m+1(x)− x

(
1− 1

n+ 1
+ x

)
mUr,n,m−1(x).

This leads to (2.3.7). The proof of (2.3.8) easily follows from (2.3.5) and (2.3.7).

Corollary 2.3.4. When r = 0, we conclude from Lemma 2.3.3

Un,0(x) = 1, Un,1(x) =
n(1 + 2x) + 2x

(n+ 1)(n− 2)
, n > 2 (2.3.9)

Un,2(x) =
2
[
{n(1 + 2x) + 2x}2 + x {n(1 + x) + x} (n2 − 1)

]
(n+ 1)2(n− 2)(n− 3)

. (2.3.10)

Further, for all x ∈ [0,∞)

Un,m(x) = O
(
n−[ (m+1)

2 ]
)
. (2.3.11)

Corollary 2.3.5. Let ei(x) = xi, i = 0, 1, 2, then for x ∈ [0,∞) and n ∈ N, we have

(i) (Lne0) (x) = 1,

(ii) (Lne1) (x) = n{1+(1+n)x}
(n+1)(n−2) ,

(iii) (Lne2) (x) = n(n+1)3x2+4n2(1+n)x+2n2

(n+1)2(n−2)(n−3) .

Lemma 2.3.6. Let f be r times differentiable on [0,∞) such that f (r−1) = O (tα),

for some α > 0 as t→∞ then for r = 1, 2, 3, ... and n > α + r, we have

(
L(r)
n f
)

(x) =
(n+ r − 1)!(n− r − 1)!(n+ 1)

n!(n− 2)!

∞∑
k=0

pn+r,k(x)

∫ ∞
0

pn−r,k+r(t)f
(r)(t)dt.

(2.3.12)

Proof. We have by Leibniz theorem

(
L(r)
n f
)

(x) =

(
n

n+ 1

)n(
n2 − 1

n

) r∑
i=0

∞∑
k=i

 r

i

 (−1)r−i (n+ k + r − i− 1)

(n− 1)!(k − i)!
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xk−i(
1− 1

n+1
+ x
)n+k+r−i .∫ ∞

0

pn,k(t)f(t)dt

=
(n+ r − 1)!

(n− 2)!

(
n+ 1

n

)r+1 ∞∑
k=0

pn+r,k(x)

∫ ∞
0

r∑
i=0

(−1)r−i

 r

i

 pn,k+i(t)f(t)dt.

Again applying Leibniz theorem

p
(r)
n−r,k+r(t) =

r∑
i=0

(
n+ 1

n

)r
(n− 1)!

(n− r − 1)!
(−1)i

 r

i

 pn,k+i(t)

(
L(r)
n f
)

(x) =
(n+ r − 1)!(n− r − 1)!(n+ 1)

n!(n− 2)!

∞∑
k=0

pn+r,k(x)

∫ ∞
0

(−1)rp
(r)
n−r,k+r(t)f(t)dt.

Further integrating by parts r times, we get the required result.

Lemma 2.3.7. Let ei(x) = xi, i = 0, 1, 2 then for each x ≥ 0, we have

(i)
(
L̂ne0

)
(x) = 1,

(ii)
(
L̂ne1

)
(x) = x,

(iii)
(
L̂ne2

)
(x) =

(n+1)(n−2)[(n+1)2(n−2)x2+2nx(n−1)]−n2(n−1)
n(n+1)2(n−2)(n−3) .

Lemma 2.3.8. For x ∈ [0,∞) , n ∈ N and ϕx(t) = t− x, we have

(i)
(
L̂nϕx

)
(x) = 0,

(ii)
(
L̂nϕ

2
x

)
(x) =

(n−1)[2(n+1)(n−2)x{(n+1)x+n}−n2]
n(n+1)2(n−2)(n−3) ,

(iii)
(
L̂nϕ

m
x

)
(x) = O

(
n−[m+1

2 ]
)
.

Operator preserves the linear functions, i. e., for h(t) = ct+d, where c, d any real

constants, we get
(
L̂nh

)
(x) = h(x).

2.3.3 Main Results

Let f ∈ CB[0,∞) be the space of all real valued continuous bounded functions on

[0,∞), equipped with the norm ‖f‖ = sup
x∈[0,∞)

|f(t)| . The Peetre’s K−functional is

defined by ( 0.2.2) where W∞ = {g ∈ CB[0,∞)}. From [42], there exists a positive
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constant C such that

K(f, δ) ≤ Cω
(
f,
√
δ
)
. (2.3.13)

Theorem 2.3.9. If a function f is such that its first and second order derivatives

are bounded in [0,∞), then

lim
n→∞

(n+ 1) {(Lnf) (x)− f(x)} = f ′(x)(1 + 2x) + x(1 + x)f ′′(x). (2.3.14)

Proof. Using Taylor’s theorem we write that

f(t)− f(x) = (t− x)f ′(x) +
(t− x)2

2!
f ′′(x) +

(t− x)2

2!
η(t, x), (2.3.15)

where η(t, x) is a bounded function ∀t, x and lim
t→x

η(t, x) = 0.

Now applying (2.3.2) and (2.3.15), we get

(Lnf) (x)− f(x) = f ′(x) (Ln(t− x)) (x) +
f ′′(x)

2

(
Ln(t− x)2

)
(x) + I1,

where

I1 =
1

2

(
Ln(t− x)2η(t, x)

)
(x).

Using (2.3.9) and (2.3.10), we get

(Lnf) (x)− f(x) = f ′(x)Un,1(x) +
f ′′(x)

2
Un,2(x) + I1

= f ′(x)

{
n(1 + 2x) + 2x

(n+ 1)(n− 2)

}
+ f ′′(x)

[
{n(1 + 2x) + 2x}2 + x {n(1 + x) + x} (n2 − 1)

]
(n+ 1)2(n− 2)(n− 3)

+ I1

⇒ (n+ 1) {(Lnf) (x)− f(x)} = f ′(x)

{
n(1 + 2x) + 2x

n− 2

}
+ f ′′(x)

[
{n(1 + 2x) + 2x}2 + x {n(1 + x) + x} (n2 − 1)

]
(n+ 1)(n− 2)(n− 3)

+ (n+ 1)I1.
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Now, we have to show that as n→∞, the value of (n + 1)I1 → 0. Let ε > 0 be

given since η(t, x)→∞ as t→ 0, then there exists δ > 0 such that when |t− x| < δ

we have |η(t, x)| < ε and when |t− x| ≥ δ, we write

|η(t, x)| ≤M < M
(t− x)2

δ2
.

Thus, for all t, x ∈ [0,∞)

|η(t, x)| ≤ ε+M
(t− x)2

δ2

(n+ 1)I1 ≤ (n+ 1)

{
Ln(t− x)2

(
ε+

M(t− x)2

δ2

)}
(x)

≤ ε(n+ 1)
{
Ln(t− x)2

}
(x) +

M

δ2
(n+ 1)

{
Ln(t− x)4

}
(x).

Using (2.3.9) and (2.3.11), we see that,

(n+ 1)I1 → 0 as n→∞.

This leads to (2.3.14).

Remark 2.3.10. Under the same conditions of Theorem 2.3.9, we have

lim
n→∞

(n+ 1)
{(
L̂nf

)
(x)− f(x)

}
= x(1 + x)f ′′(x). (2.3.16)

Theorem 2.3.11. If g ∈ C2
B [0,∞) then we have

|(Lng) (x)− g(x)| ≤ λn(x) ‖g‖C2
B
, (2.3.17)

where

λn(x) =
n(1 + 2x) + 2x

(n+ 1)(n− 2)
.

Proof. We write that

g(t)− g(x) = (t− x)g′(x) +
1

2
(t− x)2g′′(ξ) (2.3.18)
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where t ≤ ξ ≤ x. Now applying (2.3.2) on (2.3.18)

|(Lng) (x)− g(x)| ≤ ‖g′‖ |Ln(t− x)(x)|+ 1

2
|g′′|

∣∣Ln(t− x)2(x)
∣∣

≤ n(1 + 2x) + 2x

(n+ 1)(n− 2)
‖g′‖

+

[
{n(1 + 2x) + 2x}2 + x {n(1 + x) + x} (n2 − 1)

]
(n+ 1)2(n− 2)(n− 3)

‖g′′‖

≤ λn(x) {‖g′‖+ ‖g′′‖} ≤ λn(x) ‖g‖C2
B
.

Remark 2.3.12. We may note here that under the conditions of Theorem 2.3.11, we

obtain ∣∣∣(L̂ng) (x)− g(x)
∣∣∣ ≤ λ∗n(x) ‖g‖C2

B
, (2.3.19)

where

λ∗n(x) =
(n− 1) [2(n+ 1)(n− 2)x {(n+ 1)x+ n} − n2]

n(n+ 1)2(n− 2)(n− 3)
.

Theorem 2.3.13. For f ∈ CB [0,∞), we obtain

|(Lnf) (x)− f(x)| ≤ A

{
ω2

(
f,

√
λn(x)

2

)
+ min

(
1,
λn(x)

2

)
‖f‖CB

}
, (2.3.20)

where constant A depends on f and λn(x).

Proof. For f ∈ CB [0,∞) and g ∈ C2
B [0,∞) we write

(Lnf) (x)− f(x) = (Lnf) (x)− (Lng) (x) + (Lng) (x)− g(x) + g(x)− f(x).

By using (2.3.17) and Peetre’s K2-functional (0.2.2), we get

|(Lnf) (x)− f(x)| = |(Lnf) (x)− (Lng) (x)|+ |(Lng) (x)− g(x)|+ |g(x)− f(x)|

≤ ‖Lnf‖ ‖f − g‖+ λn(x) ‖g‖C2
B

+ ‖f − g‖
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≤ 2 ‖f − g‖+ λn(x) ‖g‖C2
B

≤ 2

{
‖f − g‖+

1

2
λn(x) ‖g‖C2

B

}
≤ 2K

{
f ;

1

2
λn(x)

}
≤ 2A

{
ω2

(
f,

1

2

√
λn(x)

)
+ min

(
1,

1

2
λn(x)

)
‖f‖CB

}
.

This completes the proof of the theorem.

Remark 2.3.14. In the proof of Theorem 2.3.13, if we use Lemma 2.3.8, then we

get following result for the operators

∣∣∣(L̂nf) (x)− f(x)
∣∣∣ ≤ A1

{
ω2

(
f,

√
λ∗n(x)

2

)
+ min

(
1,
λ∗n(x)

2

)
‖f‖CB

}
, (2.3.21)

where constant A1 depends on f and λ∗n(x).





Chapter 3

Some Approximation Theorems

For Multivariate Bernstein

Operators

3.1 Introduction

The Bernstein polynomials are given by (0.3.1). Some approximation properties of

multivariate Bernstein operators were studied by several researchers see ( [27], [26], [44],

[46], [122] and [139]). Guo [64] and Li [95] studied two-dimensional Baskakov opera-

tors and Szász–Durrmeyer operators respectively and gave some interesting results. It

may be observed that bivariate Bernstein operators play an important role in theory

of approximation.

In [24], P.L. Butzer also introduced two dimensional Bernstein polynomials

Ln,m(f, x, y) on the square � := {(x, y) : 0 ≤ x, y ≤ 1} and defined for f : [0, 1] ×

[0, 1]→ R, as follows:

Ln,m(f, x, y) =
n∑
k=0

m∑
l=0

bn,k(x)bm,l(y)f

(
k

n
,
l

m

)
, (x, y) ∈ [0, 1]× [0, 1].

D.D. Stancu [122] defined another bivariate Bernstein operators on the triangle

51
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4 := S = {(x, y) : x + y ≤ 1, 0 ≤ x, y ≤ 1} for the functions f : S → R. More

precisely, in [122] there is considered Gn(f, x, y) with

Gn(f, x, y) =
n∑
k=0

n−k∑
l=0

(
n

k

)(
n− k
l

)
xkyl(1− x− y)n−k−lf

(
k

n
,
l

n

)

≡
n∑
k=0

n−k∑
l=0

bn,k,l(x, y)f

(
k

n
,
l

n

)
, (x, y) ∈ S. (3.1.1)

If Πn denotes the linear space of all real polynomials of degree ≤ n, the one-

dimensional Bernstein-Durrmeyer operators B̄n : C[0, 1]→ Πn are given by

B̄n(f, x) = (n+ 1)
n∑
k=0

bn,k(x)

∫ 1

0

bn,k(t)f(t)dt, x ∈ [0, 1] and f ∈ C[0, 1].

In 1992, Zhou [138] defined the two-dimensional Bernstein-Durrmeyer operators

Qn : f → Qn(f, ·, ·), f ∈ C(S), as

Qn(f, x, y) = (n+ 1)(n+ 2)
n∑
k=0

n−k∑
l=0

bn,k,l(x, y)

∫ 1

0

∫ 1−t

0

bn,k,l(s, t)f(s, t)ds dt, (3.1.2)

and studied its rate of approximation by means of K-functionals and smoothness of

functions.

Very recently, Deo et al. [39] has given another modification of Bernstein oper-

ators Bn and studied Voronovskaya type asymptotic formula as well as error esti-

mate in terms of modulus of continuity in simultaneous approximation by the linear

combinations of these operators. In [33, 32], author has also studied direct result

and Voronovskaya type asymptotic formula for the exponential-type operators in si-

multaneous approximation. Now in this chapter, we study some direct results for

two dimensional Bernstein operators Gn(f, x, y) by using the multivariate decompo-

sition skills and in the second part we give equivalent theorems for two dimensional

Bernstein-Durrmeyer operators in C(S).
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3.2 Auxiliary Results

First we need some results for one-dimensional Bernstein operators, definitions and

some notational convention, which are necessary to prove the main result.

Ca,b,c,d(R2
+) = {f : f ∈ C(R2

+), wf ∈ L∞(R2
+)},

C0
a,b,c,d(R2

+) = {f : f ∈ Ca,b,c,d(R2
+), f(x, 0) = f(0, y) = 0}

and w(x, y) = xa(1− x)b
(

y

1− x

)c(
1− y

1− x

)d
,

where 0 < a, c < 1; b, d < 0; w(x) = xa(1− x)b and the norm ‖.‖∞ is defined as

‖f‖∞ = sup
(x,y)∈R2

+

|f(x, y)| .

Also the weighted norm is given by

‖f‖w = sup
(x,y)∈R2

+

{|w(x, y)f(x, y)|+ |f(x, 0)|+ |f(0, y)|} .

For 0 < λ < 1, we define the Peetre’s K−functional as

Kt,φλ(f, t) = inf
g∈D
{‖f − g‖w + tΦ(g)},

where

D =
{
g : g ∈ C(R2

+), Φ(g) <∞, gx, gy ∈ A.Cloc
}
,

and with φ2(x) = x(1− x),

Φ(g) = max
{∥∥φ2λgxx

∥∥
w
,
∥∥φ2λgyy

∥∥
w
,
∥∥φ2λgxy

∥∥
w

}
.

Throughout this chapter we consider C as a positive constant, but it is not necessarily

the same in each occurrence.
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Lemma 3.2.1. For the bivariate operators Gn(f, x, y), we have

Gn(f, x, y) =
n∑
k=0

bn,k(x)
n−k∑
l=0

bn−k,l

(
y

1− x

)
f

(
k

n
,
l

n

)
, (3.2.2a)

Gn(f, x, y) =
n∑
l=0

bn,m(y)
n−l∑
k=0

bn−l,k

(
x

1− y

)
f

(
k

n
,
l

n

)
. (3.2.2b)

Proof. We have

Gn(f, x, y) =
n∑
k=0

n−k∑
l=0

bn,k,l(x, y)f

(
k

n
,
l

n

)

=
n∑
k=0

bn,k(x)
n−k∑
l=0

(
n− k
l

)
yl

(1− x)n−k
(1− x− y)n−k−lf

(
k

n
,
l

n

)

=
n∑
k=0

bn,k(x)
n−k∑
l=0

bn−k,l

(
y

1− x

)
f

(
k

n
,
l

n

)
.

Similarly, we can prove (3.2.2b).

Remark 3.2.2. By properties of one dimensional Bernstein operators, we have

n−k∑
l=0

bn−k,l

(
y

1− x

)
= 1 and

n−l∑
k=0

bn−l,k

(
x

1− y

)
= 1, where x, y ∈ [0, 1).

Lemma 3.2.3. [138] Suppose n ∈ N and (x, y) ∈ R2
+. Then it is easily verified from

previous lemma that

(i) Gn(1, x, y) = 1,

(ii) Gn(s, x, y) = x, for f(s, t) = s,

(iii) Gn(t, x, y) = y, for f(s, t) = t,

(iv) Gn((s− x)2, x, y) = x(1−x)
n

,

(v) Gn((t− y)2, x, y) = y(1−y)
n

,

(vi) Gn (s2, x, y) = x2 + x(1−x)
n

,

(vii) Gn (t2, x, y) = y2 + y(1−y)
n

,

(viii) Gn (st, x, y) =
(
1− 1

n

)
xy,
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(ix) Gn((s− x)(t− y), x, y) = −xy
n
.

Remark 3.2.4. By Lemma 3.2.3 and using Hölder’s inequality, we have

Gn(|s− x| , x, y) = O(φ(x)n−1/2)

and

Gn(|t− y| , x, y) = O(φ(y)n−1/2).

Lemma 3.2.5. (i) If (x, y) ∈
[
1
n
, 1− 1

n

]
× [0, 1], then

Gn((s− x)2l, x, y) ≤ Cnl(φ(x))2l.

(ii) If (x, y) ∈ [0, 1]×
[
1
n
, 1− 1

n

]
, then

Gn((t− y)2l, x, y) ≤ Cnl(φ(y))2l.

Proof. By using the properties of one dimensional Bernstein operators and (3.2.1),

we have

Gn((s− x)2l, x, y) =
n∑
k=0

(
k

n
− x
)2l

bn,k(x)
n−k∑
l=0

bn−k,l

(
y

1− x

)

=
n∑
k=0

(
k

n
− x
)2l

bn,k(x) ≤ Cnl(φ(x))2l.

The proof of (ii) is similar, we omit the details.

Lemma 3.2.6. For 0 < λ < 1, φ2(u) = u(1− u), u ∈ [0, 1], t ∈ [0, 1], we get∣∣∣∣∫ t

x

|t− z|φ−2λ(z)dz

∣∣∣∣ ≤ C(t− u)2
(
φ−2λ(u) + u−λ(1− u)−λ

)
. (3.2.5)

Proof. Suppose z = t+ µ(u− t), 0 ≤ µ ≤ 1, then

∣∣∣∣∫ t

x

|t− z|φ−2λ(z)dz

∣∣∣∣ ≤ ∫ t

x

∣∣t− z∣∣
zλ

dz

{
1

(1− u)λ
+

1

(1− t)λ

}
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≤
∫ t

x

µ(t− u)2

(µu+ (1− µ)t)λ
dµ

{
1

(1− u)λ
+

1

(1− t)λ

}

≤ (t− u)2
∫ 1

0

µ1−λ

uλ
dµ

{
1

(1− u)λ
+

1

(1− t)λ

}
≤ 1

2− λ
(t− u)2

(
φ−2λ(u) + u−λ(1− u)−λ

)
.

This completes the proof of the theorem.

Lemma 3.2.7.
n∑
k=1

n−k∑
l=1

bn,k,l(x, y)
w(x, y)

w
(
k
n
, l
n

) ≤ C. (3.2.6)

Proof. By [137], we have

n∑
k=1

bn,k(x)
w(x)

w
(
k
n

) ≤ C and
n−k∑
l=1

bn,k(x, y)
( w(x)

w
(
k
n

))2 ≤ C.

Using multivariate decomposition skills, we obtain

n∑
k=1

n−k∑
l=1

bn,k,l(x, y)
w(x, y)

w
(
k
n
, l
n

) =
n∑
k=1

bn,k(x)
w(x)

w( k
n
)

n−k∑
l=1

bn−k,l

(
y

1− x

)
w
(

y
1−x

)
w( l

n−k )
≤ C.

Lemma 3.2.8. If f ∈ C0
a,b,c,d(R2

+), then

∥∥Gn(f)
∥∥
∞ ≤

∥∥f∥∥∞. (3.2.7)

Proof. By (3.2.1) and (3.2.7), we get

∣∣∣∣w(x, y)
n∑
k=1

n−k∑
l=1

bn,k,l(x, y)f

(
k

n
,
l

n

) ∣∣∣∣
≤
∥∥wf∥∥∞ n∑

k=1

bn,k(x)
w(x)

w
(
k
n

) n−k∑
l=1

bn−k,l

(
y

1− x

)
w
(

y
1−x

)
w
(

l
n−k

) ≤ C
∥∥wf∥∥∞.

This completes the proof.
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Lemma 3.2.9. For Qn(f, x, y) given by (3.1.2) and for f(s, t) = s, t, 1 − s − t, we

have

(i) Qn(1, x, y) = 1,

(ii) Qn(s, x, y) = 1+nx
n+3

,

(iii) Qn(t, x, y) = 1+ny
n+3

,

(iv) Qn (s2, x, y) = n(n−1)x2+4nx+2
(n+3)(n+4)

,

(v) Qn (t2, x, y) = n(n−1)y2+4ny+2
(n+3)(n+4)

,

(vi) Qn (st, x, y) = n(n−1)xy+n(x+y)+1
(n+3)(n+4)

,

(vii) Qn ((s− x)2, x, y) =
2[(6−n)x2+(n−4)x+1]

(n+3)(n+4)
,

(viii) Qn ((t− y)2, x, y) =
2[(6−n)y2+(n−4)y+1]

(n+3)(n+4)
,

(ix) Qn(1− s− t, x, y) = n(1−x−y)+1
n+3

,

(x) Qn ((1− s− t)2, x, y) = n(n−1)(x+y)2−2n(n+1)(x+y)+(n2+3n+2)
(n+3)(n+4)

.

Lemma 3.2.10. If ∂f
∂x
, ∂f
∂y
, ∂

2f
∂x2
, ∂

2f
∂y2

and ∂2f
∂x∂y

exists, then we have

(i) ∂
∂x
Qn(f, x, y) =

n∑
k=0

n−k∑
l=0

(
k
x
− n−k−l

1−x−y

)
F (x, y),

(ii) ∂
∂y
Qn(f, x, y) =

n∑
k=0

n−k∑
l=0

(
l
y
− n−k−l

1−x−y

)
F (x, y),

(iii) ∂2

∂x2
Qn(f, x, y) =

n∑
k=0

n−k∑
l=0

[
k(k−1)
x2
− 2 k(n−k−l)

x(1−x−y) + (n−k−l)(n−k−l−1)
(1−x−y)2

]
F (x, y),

(iv) ∂2

∂y2
Qn(f, x, y) =

n∑
k=0

n−k∑
l=0

[
l(l−1)
y2
− 2 l(n−k−l)

y(1−x−y) + (n−k−l)(n−k−l−1)
(1−x−y)2

]
F (x, y),

(v) ∂2

∂x∂y
Qn(f, x, y) =

n∑
k=0

n−k∑
l=0

[
lk
xy
−
(
k
x

+ l
y

)
(n−k−l)
(1−x−y) + (n−k−l)(n−k−l−1)

(1−x−y)2

]
F (x, y),

where

F (x, y) = (n+ 1)(n+ 2)bn,k,l(x, y)

∫ 1

0

∫ 1−t

0

bn,k,l(s, t)f(s, t)ds dt.

Result of the Lemma is obvious, we omit the details.

Definition 3.2.1. The subspace G of C(S) is the collection of f ∈ C(S) for which
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the seminorm

φ(f) = max

(∣∣∣∣x ∂2∂x2f(x, y)

∣∣∣∣ , ∣∣∣∣y ∂2∂y2f(x, y)

∣∣∣∣ , ∣∣∣∣xy ∂2

∂x∂y
f(x, y)

∣∣∣∣)

is bounded, where f is locally twice differentiable in the interior of S and that f, ∂f
∂x

and ∂f
∂y

are locally absolutely continuous for both the variables.

Definition 3.2.2. The interpolation space (C,G)β is the collection of all f ∈ C(S)

for which H(f, t) ≤ L(f)tβ for all t ≤ t0, where H(f, t) = infg∈G (‖f − g‖+ tφ(g)) .

Lemma 3.2.11. Let f(x, y) ∈ C2(S) such that∥∥∥∥∂f∂x
∥∥∥∥ ≤ C,

∥∥∥∥∂f∂y
∥∥∥∥ ≤ C,

∥∥∥∥∂2f∂x2
∥∥∥∥ ≤ C,

∥∥∥∥∂2f∂y2
∥∥∥∥ ≤ C and

∥∥∥∥ ∂2f∂x∂y

∥∥∥∥ ≤ C

then we get |Qn(f, x, y)− f(x, y)| ≤ Cn−1[x(1−x)+y(1−y)], where ‖.‖ means ‖.‖C(S) .

Lemma 3.2.12. If f ∈ C(S), then φ (Qn (f)) ≤ Ln ‖f‖ .

Lemma 3.2.13. For f ∈ C(S), f ∈ C2 locally in interior of S and f ∈ G, we have

φ (Qn (f)) ≤ L ‖φ(f)‖, where L is a constant independent of f and n.

3.3 Main Theorem

Theorem 3.3.1. If f ∈ C0
a,b,c,d(R2

+), 0 < λ < 1 then

w(x, y)
∣∣Gn(f, x, y)− f(x, y)

∣∣ ≤ C.K2,φλ(f, n−1(φ2(1−λ)(x) + φ2(1−λ)(y))), (3.3.1)

where C is positive constant independent from n, x, y.

Proof. Initially

Gn

(
(s− x)2(1− s)−λ;x, y

)
≤ Cn−1φ2(x)(1− x)−λ, (3.3.2)

Gn

(
(t− x)2(1− t)−λ;x, y

)
≤ Cn−1φ2(y)(1− y)−λ, (3.3.3)
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Gn

(
(s− x)(1− s)−

λ
2 (t− y)(1− t)−

λ
2 , x, y

)
≤ C.n−1φ(x)φ(y)(1− x)−

λ
2 (1− y)−

λ
2 .

(3.3.4)

Using Hölder inequality, Schwartz’s inequality, (3.2.1) and (3.2.5), for (x, y) ∈ In =[
1
n
, 1− 1

n

)
×
[
1
n
, 1− 1

n

)
, we get

Gn

(
(s− x)2(1− s)−λ;x, y

)
≤
(
Gn(s− x)4, x, y

) 1
2
(
Gn(1− s)−2λ, x, y

) 1
2

≤
(
Gn(s− x)4, x, y

) 1
2
(
Gn(1− s)−2, x, y

)λ
2

≤ C.n−1φ2(x)(1− x)−λ.

Now for (x, y) ∈ Icn, we get

Gn

(
(s− x)2(1− s)−λ;x, y

)
≤
(
Gn(s− x)2, x, y

)
= n−1φ2(x) = n−1φ2(x)

(1− x)λ

(1− x)λ

≤ Cn−1φ2(x)(1− x)−λ.

Similarly we can prove (3.3.3) and (3.3.4).

Now again using Lemma 3.2.1, Lemma 3.2.5 and (3.2.5), (3.3.1), (3.3.2), (3.3.3)

and applying the Taylor’s formula as well as Hardy-Littlewood majorant, for g ∈ D,

we obtain

w(x, y)
∣∣Gn(g, x, y)− g(x, y)

∣∣
≤ w(x, y)

∣∣∣∣∣Gn

(∫ s

x

(s− η)
∂2g(η, y)

∂2x
dη, x, y

)∣∣∣∣∣+ w(x, y)

∣∣∣∣∣Gn

(∫ t

y

(t− ξ)∂
2g(x, ξ)

∂2x
dξ, x, y

)∣∣∣∣∣
+ w(x, y)

∣∣∣∣∣Gn

(∫ s

x

(s− η)

∫ t

y

(t− ξ)∂
2g(η, ξ)

∂2x
dηdξ, x, y

)∣∣∣∣∣
≤ C

[∥∥wφ2λgxx
∥∥
∞φ
−2λ(x)Gn

(
(s− x)2, x, y

)
+ x−λGn

(
(s− x)2(1− s)−λ, x, y

)
+
∥∥wφ2λgyy

∥∥
∞φ
−2λ(y)Gn

(
(t− y)2, x, y

)
+ x−λGn

(
(t− y)2(1− s)−λ, x, y

)
+
∥∥wφ2λgxy

∥∥
∞φ
−λ(x)φ−λ(y)Gn

(
(s− x)(t− y), x, y

)
+ x−λGn

(
(t− x)2(1− t)−λ, x, y

)]
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≤ C.n−1
(
φ2(1−λ)(x) + φ2(1−λ)(y) + φ1−λ(x)φ1−λ(y)

)
Φ(g)

≤ C.n−1
(
φ2(1−λ)(x) + φ2(1−λ)(y)

)
Φ(g). (3.3.5)

Thus, from (3.2.7) and (3.3.5), for g ∈ D and f ∈ C0
a,b,c,d(R2

+) we have

w(x, y)
∣∣Gn(f, x, y)− f(x, y)

∣∣ ≤ ∣∣w(x, y)Gn

(
(f − g), x, y

)∣∣+ w(x, y)
∣∣f(x, y)− g(x, y)

∣∣
+ w(x, y)

∣∣Gn(g, x, y)− g(x, y)
∣∣

≤ C.K2,φλ
(
f, n−1(φ2(1−λ)(x) + φ2(1−λ)(y)

))
.

This completes the proof.

Theorem 3.3.2. For f ∈ C(S), which is twice continuously differentiable in the

interior of S, then we have |Qn (f, x, y)− f(x, y)| ≤ Cn−n (1 + φ(f)) , where C is

independent of n.

Proof. Using Taylor’s formula

f(s, t) = f(x, y) + (s− x)
∂

∂x
f(x, y) + (t− y)

∂

∂y
f(x, y)

+ (s− x)2
∫ 1

0

u
∂2

∂x2
f(s+ u(x− s), t+ u(y − t))du

+ (t− y)2
∫ 1

0

u
∂2

∂y2
f(s+ u(x− s), t+ u(y − t))du

+ (s− x)(t− y)

∫ 1

0

u
∂2

∂x∂y
f(s+ u(x− s), t+ u(y − t))du,

since

(s− x)2
∫ 1

0

u
∂2

∂x2
f(s+ u(x− s), t+ u(y − t))du ≤ (s− x)2

∫ 1

0

uφ(f)

|s+ u(x− s)|
du

= φ(f)

∫ x

s

ξ − s
ξ

dξ ≤ φ(f)
(x− s)2

x
,

as for ξ between x and s,
∣∣∣ ξ−sξ ∣∣∣ ≤ ∣∣x−sx ∣∣. Similarly,

(t− y)2
∫ 1

0

u
∂2

∂y2
f(s+ u(x− s), t+ u(y − t))du ≤ φ(f)

(y − t)2

y
,
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and ∣∣∣∣(x− s)(y − t)∫ 1

0

u
∂2

∂x∂y
f(s+ u(x− s), t+ u(y − t))du

∣∣∣∣
≤

∣∣∣∣∣φ(f)

∫ 1

0

u(x− s)(y − t)du
|s+ u(x− s)|1/2 |t+ u(y − t)|1/2

∣∣∣∣∣
≤ φ(f)

[∫ x

s

(ξ − s)2

ξ
dξ

]1/2 [∫ x

s

(η − t)2

η
dη

]1/2
≤ φ(f) |s− x| |y − t|

√
xy

.

We have∣∣∣∣Qn(s− t, x, y)
∂

∂x
f(x, y)

∣∣∣∣ ≤ C1,

∣∣∣∣Qn(t− y, x, y)
∂

∂y
f(x, y)

∣∣∣∣ ≤ C2
1

n
,

Qn

(
(x− s)2, x, y

) φ(f)

x(1− x)
≤ φ(f)

x(1− x)

2 [x(1− x)(n− 6) + (1 + 2x)]

(n+ 3)(n+ 4)

≤ φ(f)

x(1− x)

[
2x(1− x)(n− 6)

(n+ 3)(n+ 4)

]
≤ C3

1

n
φ(f).

Similarly

Qn

(
(y − t)2, x, y

) φ(f)

y(1− y)
≤ C4

1

n
φ(f),

Qn

(
|x− s| |y − t|
√
xy

;x, y

)
φ(f) ≤ φ(f)

2

{
Qn

(
(x− s)2 ;x, y

)
x

+
Qn

(
(y − t)2 ;x, y

)
y

}
≤ C5

1

n
φ(f),

then, we get

|Qn (f, x, y)− f(x, y)| ≤ Cn−n (1 + φ(f)) ,

where

C1 = max

(∣∣∣∣∂f∂x
∣∣∣∣ , ∣∣∣∣∂f∂y

∣∣∣∣) , C = max (C2, C3) .

Theorem 3.3.3. If f ∈ (C(S), G)β , 0 < β < 1, then we have

‖Qn(f, x, y)− f(x, y)‖ ≤ C1n
−β. (3.3.6)
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Proof. For t = 1
n

and H
(
f, 1

n

)
≤ L (f) tβ, we have g ∈ G such that

‖f − g‖+ n−1φ(g) ≤ 2L(f)n−β

or ‖f − g‖ ≤ 2L(f)n−β and φ(g) ≤ 2L(f)n1−β,

then we have

|Qn (f, x, y)− f(x, y)| ≤ |Qn (f − g, x, y)− f(x, y) + g(x, y)|+ |Qn (g, x, y)− g(x, y)|

≤ |Qn (f − g, x, y)|+ ‖f − g‖+ n−nC (1 + φ(f))

≤ 2 ‖f − g‖+ n−nC (1 + φ(f)) ≤ 2L(f) (1 + C)n−β + Cn−1.

This leads to (3.3.6).

Now we will prove the inverse theorem.

Theorem 3.3.4. For f ∈ C(S), 0 < β < 2 and ‖Qn(f, x, y)− f(x, y)‖ ≤ C1n
−β,

then we have f ∈ (C(S), G)β .

Proof. Since Qn(f, x, y) belongs to C2 locally in the interior of S, therefore

H(f, t) ≤ ‖f(x, y)−Qn(f, x, y)‖+ tφ (Qn(f)) .

By Lemma 3.2.12 and Lemma 3.2.13, we get

tφ(Qn, f) = tφ (Qn(f − g) +Qn(g))

≤ t [φ (Qn(f − g) + φ (Qn(g)))]

≤ t [Ln ‖f − g‖+ Lφ(g)] ≤ tnL
[
‖f − g‖+ n−1φ(g)

]
, g ∈ G,

then we have

tφ(Qnf) ≤ tnLH
(
f, n−1

)
, H(f, t) ≤ Cn−β + tnLH

(
f, n−1

)
,
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by Lorentz-Hermann Lemma, for t ∈ (0, 1), we have

H(f, t) = O
(
n−β

)
.

This completes the proof of the theorem.





Chapter 4

Quantitative Global Estimates for

Generalized Two Dimensional

Operators

4.1 Introduction

In [109], Özarslan and Duman have introduced a different approach in order to get a

faster approximation without preserving the test functions for positive linear opera-

tors. In [105], Özarslan and Aktuǵlu have calculated quantitative global estimates for

double Szász-Mirakyan operators. Obtaining better error estimations in approxima-

tion to a function by a sequence of positive linear operators is an important problem

in the approximation theory. So far, some relating results have been presented for

Bernstein polynomials [91], Szász-Mirakyan operators [51], Szász-Mirakyan-Stancu

Durrmeyer operators [61], Meyer-König and Zeller operators [107] and Bernstein-

Chlodovsky operators [8] by preserving some test functions in the approximation.

Recently, Agratini [9] has applied similar idea to more general summation-type pos-

itive linear operators. In [109], without preserving the test functions, a different

approach in order to get a faster approximation have been introduced.

Let R+ := [0,∞) and R+
b := [0, b] with b > 0. Consider the function spaceE(R+)

65
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defined by

E
(
R+
)

:=

{
f ∈ C

(
R+
)

: lim
x→∞

f(x)

1 + x2
is finite

}
endowed with the norm

‖f‖+ = sup
x∈R+

f(x)

1 + x2
.

However, for the bounded interval R+
b , consider the function space C

(
R+
b

)
and the

usual maximum norm ‖.‖ on R+
b .

Assume that a sequence {Ln} of positive linear operators defined on E (R+) or

C
(
R+
b

)
satisfies the following conditions:

Ln (f0;x) = 1, Ln (f1;x) = anx+ bn, Ln (f2;x) = cnx
2 + dnx+ en (4.1.1)

where (an), (bn), (cn), (dn) and (en) are sequences of non-negative real numbers satis-

fying the following conditions:

lim
n→∞

an = lim
n→∞

cn = 1 (cn 6= 0) , lim
n→∞

bn = lim
n→∞

dn = lim
n→∞

en = 0. (4.1.2)

Many well-known approximation operators, such as Bernstein polynomials, Szász-

Mirakyan operators, Bernstein-Kantorovich operators etc.,satisfy the conditions (4.1.1)

and (4.1.2). In this chapter, we construct positive linear operators {Ln} as given

above.

Now consider the lattice homomorphism Tb : C (R+) → C
(
R+
b

)
defined by

Tb (f) := f |R+
b

for every f ∈ C (R+). In this case, from the classical Korovkin theorem

(see [94], p.14) that

lim
n→∞

Tb (Ln (f)) = Tb (f) uniformly on R+
b . (4.1.3)

On the other hand, with the universal Korovkin-type property with respect to mono-

tone operators (see Theorem 4.1.4(vi) of [13], p.199) we have the following:

“Let X be a compact set and H be cofinal subspace of C(X). If E is a Banach
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lattice, S : C (X)→ E is a lattice homomorphism and if {Ln} is a sequence of positive

linear operators from C (X) into E such that lim
n→∞

Ln (h) = S (h) for all h ∈ H, then

lim
n→∞

Ln (f) = f provided that f belongs to the Korovkin closure of H.”

Hence, by using (4.1.3) and the above property, there is a result.

Theorem 4.1.1. [109] Let {Ln} be a sequence of positive linear operators defined

on E(R+) (resp.C(R+
b )) satisfying the conditions in (4.1.1) and (4.1.2). Then, for

all f ∈ E(R+) (resp. for all f ∈ C(R+
b )) , we have lim

n→∞
Ln (f) = f uniformly on the

interval R+
b with b > 0.

We have used following definitions in this chapter for global results of the multi-

dimensional operators.

Ötto Szász [124] earlier considered this space of bivariate extension of Lipschitz-type

space, given as:

Lip∗M (α)

:=

{
f ∈ C ([0,∞)× [0,∞)) : |f (t)− f (x)| ≤M

‖t− x‖α

(‖t‖+ x+ y)
α/2

; t, s;x, y ∈ (0,∞)

}
,

where t = (t, s) ,x = (x, y) and M is any positive constant and 0 < α ≤ 1.

For all f ∈ C ([0,∞)× [0,∞)), the modulus of f denoted by ω (f ; δ) is defined as

ω (f ; δ)

:= sup

{
|f (t, s)− f (x, y)| :

√
(t− x)2 + (s− y)2 < δ, (t, s) , (x, y) ∈ [0,∞)× [0,∞)

}
.

4.2 Estimation for Generalized Double Baskakov

Operators

The Baskakov operator Vn (f ;x) was introduced by V.A. Baskakov [18] given by

(0.3.3) , f ∈ CB [0,∞) , CB [0,∞) is the set of function which is bounded.

By now, a number of results about the operator have been obtained ( [4], [20], [31],
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[36], [45], [64]). In this section, we address the investigation for the multivariate

Baskakov operator defined as follows.

Let V ∗n (f ;x, y) are the following two variate Baskakov operators:

V ∗n (f ;x, y) =
∞∑

k,l=0

vn,k (x) vn,l(y)f

(
k

n
,
l

n

)
, (4.2.1)

where 0 ≤ k ≤ n, 0 ≤ l ≤ n, f (x, y) ∈ CB [0,∞; 0,∞).

Consider the classical Baskakov operators defined by (0.3.3). Since

Vn (f0;x) = 1, Vn (f1;x) = x, Vn (f2;x) =

(
1 +

1

n

)
x2 +

x

n
.

Following the similar arguments as used in [109], the best error estimation among all

the general double Baskakov operators can be obtained from the case by taking

an = 1, bn = en = 0, cn = 1 +
1

n
, dn =

1

n

for all n ∈ N where (an) , (bn) , (cn) , (dn) and (en) are sequences of non-negative real

numbers as defined above.

Now observe that

un (x) =
2anx− dn

2cn
=

2nx− 1

2 (n+ 1)
∈ [0,∞) ,

where un is a functional sequence, un : I → A, where A denotes R+ and assume that

I be subinterval of A.

So, un (x) ∈ R+ if and only if x ≥ 1
2n

and n ≥ 1. Hence, choosing

I =

[
1

2
,∞
)
⊂ R+.

The best error estimation among all the general double Baskakov operators can be
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obtained from the case

un (x) =
2nx− 1

2 (n+ 1)
, vn (y) =

2ny − 1

2 (n+ 1)
;n ∈ N

for all f ∈ CB ([0,∞)× CB [0,∞)) and x, y ∈
[
1
2
,∞
)
. Hence, (4.2.1) becomes

V ∗∗n (f ;x, y) :V ∗n (f ;un (x) , vn (y)) (4.2.2)

=
∞∑

k,l=0

 n+ k − 1

k


 n+ l − 1

l

 f

(
k

n
,
l

n

)

(un (x))k(1 + un (x))−(n+k)(vn (y))l(1 + vn (y))−(n+l),

f ∈ CB ([0,∞)× CB [0,∞)) .

For the operators V ∗∗n (f ;x, y), we have following Lemma:

Lemma 4.2.1. Let x = (x, y), t = (t, s); ei,j(x) = xiyj, i, j = 0, 1, 2 and ψ2
x (t) =

‖t− x‖2. Then, for each x, y ≥ 0 and n > 1, we have

(i) V ∗∗n (e0,0;x, y) = 1,

(ii) V ∗∗n (e1,0;x, y) = un(x),

(iii) V ∗∗n (e0,1;x, y) = vn(y),

(iv) V ∗∗n (e2,0 + e0,2;x, y) =
(
1 + 1

n

)
(u2n (x) + v2n (y)) + un(x)+vn(y)

n
,

(v) V ∗∗n (ψ2
x (t) ;x, y) = (un (x)− x)2+(vn (y)− y)2+ 1

n
(u2n (x) + v2n (y) + un (x) + vn (y)).

4.3 Global Results

Now, for the space Lip∗M (α) with 0 < α ≤ 1, we have the following approximation

result.

Theorem 4.3.1. For any f ∈ Lip∗M (α) , α ∈ (0, 1], and for each x, y ∈ (0,∞) , n ∈ N,
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we have

|V ∗∗n (f ;x, y)− f (x, y)| (4.3.1)

≤ M

(x+ y)
α/2

[
(un (x)− x)2 + (vn (y)− y)2 +

1

n

(
u2n (x) + v2n (y) + un (x) + vn (y)

)]α/2
.

Proof. Let α = 1. For each x, y ∈ (0,∞) and for f ∈ Lip∗M (1), we have

|V ∗∗n (f ;x, y)− f (x, y)| ≤ V ∗∗n (|f (t, s)− f (x, y)| ;x, y)

≤MV ∗∗n

(
‖t− x‖

(‖t‖+ x+ y)
1/2

;x, y

)

≤ M

(x+ y)
1/2
V ∗∗n (‖t− x‖ ;x, y) .

Applying Cauchy-Schwarz inequality, we get

|V ∗∗n (f ;x, y)− f (x, y)| ≤ M

(x+ y)
1/2

√
V ∗∗n (ψ2

x (t) ;x, y)

=
M

(x+ y)
1/2

√
(un (x)− x)2 + (vn (y)− y)2 +

1

n
(u2n (x) + v2n (y) + un (x) + vn (y)).

Now, let 0 < α < 1. Then for each x, y ∈ (0,∞) and for f ∈ Lip∗M ( alpha), we

obtain

|V ∗∗n (f ;x, y)− f (x, y)| ≤ V ∗∗n (|f (t, s)− f (x, y)| ;x, y)

≤MV ∗∗n

(
‖t− x‖α

(‖t‖+ x+ y)
α/2

;x, y

)
≤ M

(x+ y)
α/2
V ∗∗n (‖t− x‖α;x, y) .

For Holder inequality with p = 2
α

and q = 2
2−α , for any f ∈ Lip∗M (α), we have

|V ∗∗n (f ;x, y)− f (x, y)| ≤ M

(x+ y)
α/2

[
V ∗∗n

(
ψ2
x (t) ;x, y

)]α/2
=

M

(x+ y)
α/2

[
(un (x)− x)2 + (vn (y)− y)2 +

1

n

(
u2n (x) + v2n (y) + un (x) + vn (y)

)]α/2
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which is the required result.

Lemma 4.3.2. For each x, y > 0,

V ∗∗n

(√(√
t−
√
x
)2

+
(√

s−√y
)2

;x, y

)
(4.3.2)

≤ 1√
x

√
(un (x)− x)2 +

u2n (x) + un (x)

n
+

1
√
y

√
(vn (y)− y)2 +

v2n (y) + vn (y)

n
.

Proof. We have
√
c+ d ≤

√
c+
√
d (c, d ≥ 0), therefore

V ∗∗n

(√(√
t−
√
x
)2

+
(√

s−√y
)2

;x, y

)

=
∞∑

k,l=0

 n+ k − 1

k

 n+ l − 1

l


√√√√(√k

n
−
√
x

)2

+

(√
l

n
−√y

)2

(un (x))k(1 + un (x))−(n+k)(vn (y))l(1 + vn (y))−(n+l)

≤
∞∑
k=0

 n+ k − 1

k

∣∣∣∣∣
√
k

n
−
√
x

∣∣∣∣∣ (un (x))k(1 + un (x))−(n+k)

+
∞∑
l=0

 n+ l − 1

l

∣∣∣∣∣
√
l

n
−√y

∣∣∣∣∣(vn (y))l(1 + vn (y))−(n+l)

=
∞∑
k=0

 n+ k − 1

k

 ∣∣ k
n
− x
∣∣√

k
n

+
√
x

(un (x))k(1 + un (x))−(n+k)

+
∞∑
l=0

 n+ l − 1

l

 ∣∣ l
n
− y
∣∣√

l
n

+
√
y

(vn (y))l(1 + vn (y))−(n+l)

=
1√
x

∞∑
k=0

 n+ k − 1

k

∣∣∣∣kn − x
∣∣∣∣ (un (x))k(1 + un (x))−(n+k)

+
1
√
y

∞∑
l=0

 n+ l − 1

l

∣∣∣∣ ln − y
∣∣∣∣(vn (y))l(1 + vn (y))−(n+l).
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Using the Cauchy-Schwarz inequality,

V ∗∗n

(√(√
t−
√
x
)2

+
(√

s−√y
)2

;x, y

)

≤ 1√
x

√√√√√ ∞∑
k=0

 n+ k − 1

k

(k
n
− x
)2

(un (x))k(1 + un (x))−(n+k)

+
1
√
y

√√√√√ ∞∑
l=0

 n+ l − 1

l

( l
n
− y
)2

(vn (y))l(1 + vn (y))−(n+l).

Using Lemma( 4.2.1),

V ∗∗n

(√(√
t−
√
x
)2

+
(√

s−√y
)2

;x, y

)

≤ 1√
x

√
(un (x)− x)2 +

u2n (x) + un (x)

n
+

1
√
y

√
(vn (y)− y)2 +

v2n (y) + vn (y)

n

which is the desired result.

Theorem 4.3.3. Let g (x, y) = f (x2, y2). Then we have for each x, y > 0,

|V ∗∗n (f ;x, y)− f (x, y)| ≤ 2ω (g; δn (x, y))

where δn (x, y) = 1√
x

√
(un (x)− x)2 + u2n(x)+un(x)

n
+ 1√

y

√
(vn (y)− y)2 + v2n(y)+vn(y)

n
.

Proof. We have

|V ∗∗n (f ;x, y)− f (x, y)| ≤ V ∗∗n (|f (t, s)− f (x, y)| ;x, y)

= V ∗∗n

(∣∣∣g (√t,√s)− g (√x,√y)∣∣∣ ;x, y)
≤ V ∗∗n

(
ω

(
g;

√
(t− x)2 + (s− y)2

)
;x, y

)
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=
∞∑

k,l=0

 n+ k − 1

k

 n+ l − 1

l


ω

g;

√√√√(√k

n
−
√
x

)2

+

(√
l

n
−√y

)2

;x, y


(un (x))k(1 + un (x))−(n+k)(vn (y))l(1 + vn (y))−(n+l)

=
∞∑

k,l=0

 n+ k − 1

k

 n+ l − 1

l



ω

g;

√(√
k
n
−
√
x
)2

+
(√

l
n
−√y

)2
V ∗∗n

(√(√
t−
√
x
)2

+
(√

s−√y
)2

;x, y

)
V ∗∗n

(√(√
t−
√
x
)2

+
(√

s−√y
)2

;x, y

)
;x, y

)
.

Now, we have

ω (f ;λδ) ≤ (1 + λ)ω (f ; δ) .

Therefore,

|V ∗∗n (f ;x, y)− f (x, y)| ≤ω

(
g;V ∗∗n

(√(√
t−
√
x
)2

+
(√

s−√y
)2

;x, y

))

×
∞∑

k,l=0

 n+ k − 1

k

 n+ l − 1

l


1 +

√(√
k
n
−
√
x
)2

+
(√

l
n
−√y

)2
V ∗∗n

(√(√
t−
√
x
)2

+
(√

s−√y
)2

;x, y

)


(un (x))k(1 + un (x))−(n+k)(vn (y))l(1 + vn (y))−(n+l)

≤ 2ω

(
g;V ∗∗n

(√(√
t−
√
x
)2

+
(√

s−√y
)2

;x, y

))
.

Now, using Lemma( 4.3.2), completes the proof.

Theorem 4.3.4. Let g (x, y) = f (x2, y2). Let

g ∈ LipM (α) := {g ∈ CB ([0,∞)× [0,∞)) : |g (t)− g (x)| ≤M‖t− x‖α; t, s;x, y ∈ (0,∞)} ,
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where t = (t, s) ,x = (x, y) and M is any positive constant and 0 < α ≤ 1.

Then,

|V ∗∗n (f ;x, y)− f (x, y)| ≤Mδαn (x, y) , (4.3.3)

where δn (x, y) is the same as in Theorem ( 4.3.3).

Proof. We have

|V ∗∗n (f ;x, y)− f (x, y)| ≤ V ∗∗n (|f (t, s)− f (x, y)| ;x, y)

= V ∗∗n

(∣∣∣g (√t,√s)− g (√x,√y)∣∣∣ ;x, y)
≤MV ∗∗n

(((√
t−
√
x
)2

+
(√

s−√y
)2)α/2

;x, y

)

= M
∞∑

k,l=0

 n+ k − 1

k

 n+ l − 1

l

(√k

n
−
√
x

)2

+

(√
l

n
−√y

)2
α/2

(un (x))k(1 + un (x))−(n+k)(vn (y))l(1 + vn (y))−(n+l).

For Hölder inequality with p = 2
α

and q = 2
2−α , we have

|V ∗∗n (f ;x, y)− f (x, y)| ≤M

[
V ∗∗n

(√(√
t−
√
x
)2

+
(√

s−√y
)2

;x, y

)]α
.

By using Lemma( 4.3.2), completes the proof.



Chapter 5

Direct and Inverse Theorems for

Beta Durrmeyer Operators

5.1 Introduction and Definitions

Gupta and Ahmad [69] defined the Beta operators as:

Fn (f, x) =
1

n

∞∑
k=0

ln,k(x)f

(
k

n+ 1

)
, x ∈ [0,∞) (5.1.1)

where

ln,k(x) =
(n+ k)!

k!(n− 1)!

xk

(1 + x)n+k+1
,

and Durrmeyer variant

Jn(f(t);x) =
1

n

∞∑
k=0

ln,k(x)

∫ ∞
0

ln,k(t)f(t)dt =

∫ ∞
0

Wn(t, x)f(t)dt, (5.1.2)

of these operators is studied by Deo [32].

The norm || • ||α on the space Cα [0,∞) denotes the class of continuous functions

on [0,∞) satisfying growth condition |f(t)| ≤Mtα, M > 0, α > 0 with the norm

∥∥f∥∥
α

= sup
0≤t<∞

∣∣f(t)
∣∣t−α.

75
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To improve the saturation order O(n−1) for the operator (5.1.2), we use the

technique of linear combination as described by May [99] for a sequence of positive

linear operators. We consider the linear combination of the operators (5.1.2) as

described below:

The linear combination Jn (f, (d0, d1, d2, ..., dk) , x) of Jdjn(f, x), j = 0, 1, 2, ..., k

are defined by

Jn (f, (d0, d1, d2, ..., dk) , x) =
k∑
j=0

C(j, k)Jdjn(f, x),

where d0, d1, d2, ..., dk are arbitrary but fixed distinct positive integers and

C(j, k) =
k∏
i=0
i 6=j

dj
dj − di

for k 6= 0 & C(0, 0) = 1.

In this chapter we obtain direct theorem in terms of higher order modulus of conti-

nuity in simultaneous approximation with the help of properties of Steklov means and

in the last section of this chapter we give inverse theorem for these linear combination

of the operators Jn in ordinary approximation.

5.2 Preliminary Results

In order to prove the Theorem, we shall require the following results:

Lemma 5.2.1. [31] Let m ∈ N0 (the set of nonnegative integers) and the m−th

moment for the operators (5.1.1) be defined by:

Un,m(x) =
∞∑
k=0

(
k

n+ 1
− x
)m

ln,k(x),

then

(n+ 1)Un,m+1(x) = x (1 + x)
[
U ′n,m(x) +mUn,m−1(x)

]
, (x ≥ 0) .

Consequently
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(i) Un,m(x) is a polynomial in x of degree ≤ m,

(ii) Un,m(x) = O
(
n−[(m+1)/2]

)
where [β] denotes the integer part of β.

Lemma 5.2.2. [32] Let m ∈ N0, we define the function Tn,m(x) as:

Tn,m(x) =
1

(n+ r)

∞∑
k=0

pn+r,k(x)

∫ ∞
0

pn−r,k+r(t)(t− x)mdt

then Tn,0(x) = 1, Tn,1(x) = (1+2x)(1+r)
n−r−1 and

(n−m− r − 1)Tn,m+1(x) = x(1 + x)
[
T ′n,m(x) + 2mTn,m−1(x)

+ (1 + 2x)(r +m+ 1)Tn,m(x)
]
.

Further, for all x ∈ [0,∞)

Tn,m(x) = O
(
n−[(m+1)/2]

)
.

Lemma 5.2.3. [32] If f is r times (r = 1, 2, 3, ...) differentiable on [0,∞) such that

f (r−1) is absolutely continuous with f (r−1)(t) = O(tα) for some α > 0 as t → ∞ and

n > α + r, then we have

J (r)
n (f, x) =

(n− r − 1)!(n+ r − 1)!

n!(n− 1)!

∞∑
k=0

pn+r,k(x)

∫ ∞
0

pn−r,k+r(t)f
(r)(t)dt. (5.2.1)

Lemma 5.2.4. [96] There exist polynomials qi,j,r(x) independent of n and k such that

{x(1 + x)}r d
r

dxr
[ln,k(x)] =

∑
2i+j≤r
i,j≥0

(n+ 1)i
∣∣k − (n+ 1)x

∣∣jqi,j,r(x)ln,k(x).

Lemma 5.2.5. Let f ∈ Cα [0,∞), if f (2k+r+2) exists at a point x ∈ (0,∞), then

lim
n→∞

nk+1
{
J (r)
n (f, (d0, d1, d2, ..., dk) , x)− f (r)(x)

}
=

2k+r+2∑
i=r

Q(i, k, r, x)f (i)(x),

where Q(i, k, r, x) are certain polynomial in x of degree i.

The proof of Lemma 5.2.5 follows along the lines of [72].
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Lemma 5.2.6. Let δ and γ be any two positive numbers and [a, b] ⊂ [0,∞). Then,

for any m > 0 there exists a constant Mm such that∥∥∥∥∥
∫∣∣t−x∣∣≥δWn(t, x)tγdt

∥∥∥∥∥
C[a,b]

≤Mmn
−m.

The proof of this result follows easily by using Schwarz inequality and Lemma 2.7

from [11].

5.3 Direct Theorem

In this section we study direct result in terms of higher order modulus of continuity

in simultaneous approximation for the operators (5.1.2).

Theorem 5.3.1. Let f (r) ∈ Cα [0,∞) and 0 < a < a1 < b1 < b <∞. Then for all n

sufficiently large, we have

∥∥J (r)
n (f, (d0, d1, d2, ..., dk) , •)− f (r)

∥∥
C[a1,b1]

≤Max
{
C1ω2k+2(f

(r);n−1/2, a, b) + C2n
−(k+1)

∥∥f∥∥
α

}
,

where C1 = C1(k, r) and C2 = C2(k, r, f).

Proof. Using linearity property

∥∥J (r)
n (f, (d0, d1, d2, ..., dk) , •)− f (r)

∥∥
C[a1,b1]

≤
∥∥J (r)

n ((f − f2k+2,η) , (d0, d1, d2, ..., dk) , •)
∥∥
C[a1,b1]

+
∥∥J (r)

n (f2k+2,η, (d0, d1, d2, ..., dk) , •)− f (r)
2k+2,η

∥∥
C[a1,b1]

+
∥∥f (r) − f (r)

2k+2,η

∥∥
C[a1,b1]

:= E1 + E2 + E3.
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Since, f
(r)
2k+2,η(t) =

(
f (r)
)
2k+2,η

(t), by property (iii) of Steklov mean, we obtain

E3 ≤ C1ω2k+2(f
(r), η, a, b).

By Lemma 5.2.5, we get

E2 ≤ C2n
−(k+1)

2k+r+2∑
j=r

∥∥f (j)
2k+2,η

∥∥
C[a,b]

.

Using the interpolation property due to Goldberg and Meir [60] for each j = r, r +

1, ..., 2k + r + 2, we get

∥∥∥f (r)
2k+2,η

∥∥∥
C[a,b]

≤ C3

{
‖f2k+2,η‖C[a,b] +

∥∥∥f (2k+r+2)
2k+2,η

∥∥∥
C[a,b]

}
.

Now using properties (ii) and (iv) of Steklov mean, we obtain

E2 ≤ C4n
−(k+1)

{∥∥f∥∥
α

+ η−(2k+2)ω2k+2(f
(r), η)

}
.

To estimate E1, choosing a
′
, b
′

such that

0 < a < a′ < a1 < b1 < b′ < b <∞.

Also let ψ(t) be the characteristic function of the interval [a
′
, b
′
], then

E1 ≤
∥∥J (r)

n (ψ(t) (f(t)− f2k+2,η(t)) (d0, d1, d2, ..., dk) , •)
∥∥
C[a1,b1]

+
∥∥J (r)

n ((1− ψ(t)) (f(t)− f2k+2,η(t)) (d0, d1, d2, ..., dk) , •)
∥∥
C[a1,b1]

:= E4 + E5.

We note that in order to estimate E4 and E5, it is sufficient to consider their

expressions without the linear combination. It is clear that by Lemma 5.2.3, we
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obtain

J (r)
n (ψ(t) (f(t)− f2k+2,η(t)) , x)

=
(n− r − 1)!(n+ r − 1)!

n!(n− 1)!

∞∑
k=0

pn+r,k(x)

∫ ∞
0

pn−r,k+r(t)ψ(t)
(
f (r)(t)− f (r)

2k+2,η(t)
)
dt.

Hence

∥∥J (r)
n (ψ(t) (f(t)− f2k+2,η(t)) , •)

∥∥
C[a,b]

≤ C5

∥∥f (r) − f (r)
2k+2,η

∥∥
C[a′ ,b′ ]

.

Now for x ∈ [a1, b1] and t ∈ [0,∞) /
[
a
′
, b
′]

we can choose an η1 satisfying
∣∣t−x∣∣ ≥ η1.

Therefore by Lemma 5.2.4 and Schwarz inequality, we obtain

I ≡
∣∣J (r)
n ((1− ψ(t)) (f(t)− f2k+2,η(t)) , x)

∣∣
≤ 1

n

∑
2i+j≤r
i,j≥0

ni
∣∣qi,j,r(x)

∣∣
xr

∞∑
k=0

ln,k(x)
∣∣k − (n+ 1)x

∣∣j ∫ ∞
0

ln,k(t) (1− ψ(t))
∣∣f(t)− f2k+2,η(t)

∣∣dt
≤ C6

∥∥f∥∥
α

∑
2i+j≤r
i,j≥0

ni−1
∞∑
k=0

ln,k(x)
∣∣k − (n+ 1)x

∣∣j ∫∣∣t−x∣∣≥η1 ln,k(t)dt
≤ C6

∥∥f∥∥
α
η−2s1

∑
2i+j≤r
i,j≥0

ni−1
∞∑
k=0

ln,k(x)
∣∣k − (n+ 1)x

∣∣j (∫ ∞
0

ln,k(t)dt

)1/2

(∫ ∞
0

ln,k(t)(t− x)4sdt

)1/2

≤ C6

∥∥f∥∥
α
η−2s1

∑
2i+j≤r
i,j≥0

ni
(

1

n

∞∑
k=0

ln,k(x)(k − (n+ 1)x)2j
)1/2

(
1

n

∞∑
k=0

ln,k(x)

∫ ∞
0

ln,k(t)(t− x)4sdt

)1/2

.

Hence by Lemma 5.2.1 and Lemma 5.2.2, we have

I ≤ C7

∥∥f∥∥
α

∑
n(i+ j

2
−s) ≤ C7n

−q∥∥f∥∥
α
,

where q = (s− r/2). Now choose s > 0 such that q ≥ k+ 1, then I ≤ C7n
−(k+1)

∥∥f∥∥
α
.
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So by property (iii) of Steklov mean, we have

E1 ≤ C8

∥∥f (r) − f (r)
2k+2,η

∥∥
C[a′ ,b′ ]

+ C7n
−(k+1)

∥∥f∥∥
α

≤ C9ω2k+2(f
(r), η, a, b) + C7n

−(k+1)
∥∥f∥∥

α
.

Hence with η = n−1/2, the theorem follows.

5.4 Inverse Theorem

In this section we shall prove the following inverse result.

Theorem 5.4.1. If 0 < α < 2, 0 < a1 < a2 < b2 < b1 < ∞ and suppose f ∈

Cα [0,∞), then in the following statements (i)⇒ (ii)

(i)
∥∥Jn(f, (d0, d1, d2, ..., dk) , •)− f

∥∥
C[a1,b1]

= O
(
n−α(k+1)/2

)
, where f ∈ Cα[a, b],

(ii) f ∈ Lip(α, k + 1, a2, b2),

where Lip∗(α, a2, b2) denotes the Zygmund class satisfying ω2(f, η, a2, b2) ≤Mηα.

Proof. Let us choose points a′, a′′, b′, b′′ in such a way that a1 < a′ < a′′ < a2 < b2 <

b′′ < b′ < b1. Also suppose g ∈ C∞0 with supp g ⊂ (a′′, b′′) and g(x) = 1 on the interval

x ∈ [a2, b2]. To prove the assertion, it is sufficient to show that

∥∥Jn(fg, (d0, d1, d2, ..., dk) , •)− (fg)
∥∥
C[a′,b′]

= O
(
n−α(k+1)/2

)
⇒ (ii). (5.4.1)

Using F in place of fg for all the values of h > 0, we get

∥∥42k+2
h F

∥∥
C[a′′,b′′]

≤
∥∥42k+2

h (F − Jn(F, (d0, d1, d2, ..., dk) , •))
∥∥
C[a′′,b′′]

+
∥∥42k+2

h Jn(F, (d0, d1, d2, ..., dk) , •)
∥∥
C[a′′,b′′]

. (5.4.2)

Therefore, by definition of 42k+2
h ,

∥∥42k+2
h Jn (F, (d0, d1, d2, ..., dk) , •)

∥∥
C[a′′,b′′]
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=

∥∥∥∥∫ h

0

...

∫ h

0

Jn

(
F, (d0, d1, d2, ..., dk) , •+

2k+2∑
i=1

xi

)
dx1...dx2k+2

∥∥∥∥
C[a′′,b′′]

≤ h2k+2
∥∥J (2k+2)

n (F, (d0, d1, d2, ..., dk) , •)
∥∥
C[a′′,b′′+(2k+2)h]

≤ h2k+2
{∥∥J (2k+2)

n (F − Fη,2k+2, (d0, d1, d2, ..., dk) , •)
∥∥
C[a′′,b′′+(2k+2)h]

+
∥∥J (2k+2)

n (Fη,2k+2, (d0, d1, d2, ..., dk) , •)
∥∥
C[a′′,b′′+(2k+2)h]

}
, (5.4.3)

where Fη,2k+2 is the Steklov mean of (2k + 2)− th order corresponding to F. By

Lemma 3 from [11], we get

∫ ∞
0

∣∣∣∣ ∂2k+2

∂x2k+2
Wn(t, x)dt

∣∣∣∣ ≤ ∑
2i+j≤2k+2

i,j≥0

1

n

∞∑
k=0

(n+ 1)i
∣∣k − (n+ 1)x

∣∣j
∣∣qi,j,2k+2(x)

∣∣
{x(1 + x)}2k+2

ln,k(x)

∫ ∞
0

ln,k(t)dt.

Since
∫∞
0
ln,k(t)dt = 1. By Lemma 5.2.1, we have

∞∑
k=0

ln,k(x)
(
k − (n+ 1)x

)2j
= (n+ 1)2j

∞∑
k=0

ln,k(x)

(
k

n+ 1
− x
)2j

= O(nj). (5.4.4)

Using Schwarz inequality, we obtain

∥∥J (2k+2)
n (F − Fη,2k+2, (d0, d1, d2, ..., dk) , •)

∥∥
C[a′′,b′′+(2k+2)h]

≤ K1n
k+1
∥∥F − Fη,2k+2

∥∥
C[a′′,b′′]

. (5.4.5)

By Lemma 2 from [11], we get

∫ ∞
0

[
∂k

∂xk
Wn(t, x)

]
(t− x)idt = 0, for k > i. (5.4.6)

By Taylor’s expansion, we obtain

Fη,2k+2(t) =
2k+1∑
i=0

F
(i)
η,2k+2(x)

i!
(t− x)i + F

(2k+2)
η,2k+2 (ξ)

(t− x)2k+2

(2k + 2)!
, (5.4.7)
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where t < ξ < x. By (5.4.6) and (5.4.7), we get

∥∥∥ ∂2k+2

∂x2k+2
Jn (Fη,2k+2, (d0, d1, d2, ..., dk) , •)

∥∥∥
C[a′′,b′′+(2k+2)h]

≤
k∑
j=0

∣∣C(j, k)
∣∣

(2k + 2)!

∥∥∥F (2k+2)
η,2k+2

∥∥∥
C[a′′,b′′]

∥∥∥∫ ∞
0

[
∂2k+2

∂x2k+2
Wdjn(t, x)

]
(t− x)2k+2dt

∥∥∥
C[a′′,b′′]

.

Again applying Schwarz inequality for integration and summation and Lemma 3

from [11], we obtain

I ≡
∫ ∞
0

∣∣∣∣ ∂2k+2

∂x2k+2
Wn(t, x)

∣∣∣∣(t, x)2k+2dt

≤ 1

n

∑
2i+j≤2k+2

i,j≥0

∞∑
k=0

(n+ 1)iln,k(x)
∣∣k − (n+ 1)x

∣∣j ∣∣qi,j,2k+2(x)
∣∣

{x(1 + x)}2k+2

∫ ∞
0

ln,k(t)(t− x)2k+2dt

≤
∑

2i+j≤2k+2
i,j≥0

(n+ 1)i
∣∣qi,j,2k+2(x)

∣∣
{x(1 + x)}2k+2

{ ∞∑
k=0

ln,k(x)(k − (n+ 1)x)2j
}1/2

×
{

1

n

∞∑
k=0

ln,k(x)

∫ ∞
0

ln,k(t)(t− x)4k+4dt

}1/2

. (5.4.8)

Using Lemma 2 from [11]

1

n

∞∑
k=0

ln,k(x)

∫ ∞
0

ln,k(t)(t− x)4k+4dt = Tn,4k+4(x) = O
(
n−(2k+2)

)
. (5.4.9)

Using (5.4.4) and (5.4.9) in (5.4.8), we obtain

I ≤
∑

2i+j≤2k+2
i,j≥0

(n+ 1)i
∣∣qi,j,2k+2(x)

∣∣
{x(1 + x)}k+1

O(nj/2)O
(
n−(k+1)

)
= O(1).

Hence

∥∥W (2k+2)
n (Fη,2k+2, (d0, d1, d2, ..., dk) , •)

∥∥
C[a′′,b′′+(2k+2)h]

≤ K2

∥∥∥F (2k+2)
η,2k+2

∥∥∥
C[a′′,b′′]

. (5.4.10)
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On combining (5.4.2), (5.4.3), (5.4.5) and (5.4.10) it follows

∥∥42k+2
h F

∥∥
C[a′′,b′′]

≤
∥∥42k+2

h (F − Jn(F, (d0, d1, d2, ..., dk) , •))
∥∥
C[a′′,b′′]

+K3h
2k+2

(
nk+1

∥∥F − Fη,2k+2

∥∥
C[a′′,b′′]

+
∥∥F (2k+2)

η,(2k+2)

∥∥
C[a′′,b′′]

)
.

For small value of h, the above relation holds, it follows from the properties of

Fη,2k+2 and (5.4.1) that

ω2k+2(F, l, [a
′′, b′′]) ≤ K4

{
n−α(k+1)/2 + l2k+2

(
nk+1 + η−2k+2

)
ω2k+2

(F, η, [a′′, b′′])
}
.

Choosing η is such a way that n < η−2 < 2h and following Berens and Lorentz [21],

we obtain

w2k+2(F, l, [a
′′, b′′]) = O(lα(k+1)). (5.4.11)

Since F (x) = f(x) in [a2, b2], from (5.4.11) we have

w2k+2(f, l, [a2, b2]) = O(lα(k+1)), i.e., f ∈ Liz(α, k + 1, a2, b2).

Let us assume (i). Putting τ = α(k + 1), we first consider the case 0 < τ ≤ 1.

For x ∈ [a′, b′], we get

Jn(fg, (d0, d1, d2, ..., dk) , x)− f(x)g(x) = g(x)Jn ((f(t)− f(x)) , (d0, d1, d2, ..., dk) , x)

+
k∑
j=0

C (j, k)

∫ b1

a1

Wdj ,n(t, x)f(x) (g(t)− g(x)) dt+O
(
n−k+1)

)
= I1 + I2 +O

(
n−(k+1)

)
, (5.4.12)

where the O − term holds uniformly for x ∈ [a′, b′]. Now by assumption

∥∥Jn(f, (d0, d1, d2, ..., dk) , •)− f
∥∥
C[a1,b1]

= O
(
n−τ/2

)
,
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we have

∥∥I1∥∥C[a′,b′]
≤
∥∥g∥∥

C[a′,b′]

∥∥Jn(f, (d0, d1, d2, ..., dk) , •)− f
∥∥
C[a′,b′]

≤ K5n
−τ/2. (5.4.13)

By mean value theorem, we get

I2 =
k∑
j=0

C(j, k)

∫ b1

a1

Wdj ,n(t, x)f(t) {g′(ξ)(t− x)} dt.

Again applying Cauchy-Schwarz inequality and Lemma 2 from [11], we get

∥∥I2∥∥C[a′,b′]

∥∥f∥∥
C[a1,b1]

∥∥g′∥∥∥
C[a′,b′]

( k∑
j=0

|C(j, k)|
)

max
0≤j≤k

∥∥∥∥∫ ∞
0

Wdj ,n(t, x)(t− x)2dt

∥∥∥∥1/2
C[a′,b′]

= O
(
n−τ/2

)
. (5.4.14)

Combining (5.4.12)-(5.4.14), we obtain

∥∥Jn(fg, (d0, d1, d2, ..., dk) , •)− fg
∥∥
C[a′,b′]

= O
(
n−τ/2

)
, for 0 < τ ≤ 1.

Now to prove the implication for 0 < τ < 2k + 2, it is sufficient to assume it

for τ ∈ (m − 1,m) and prove it for τ ∈ (m,m + 1), (m = 1, 2, 3, ..., 2k + 1). Since

the result holds for τ ∈ (m − 1,m), we choose two points x1, y1 in such a way that

a1 < x1 < a′ < b′ < y1 < b1. Then in view of assumption (i) ⇒ (ii) for the interval

(m − 1,m) and equivalence of (ii) it follows that f (m−1) exists and belongs to the

class Lip(1−δ, x1, y1) for any δ > 0. Let g ∈ C∞0 be such that g(x) = 1 on [a′′, b′′] and

supp g ⊂ [a′′, b′′]. Then with χ(t) denoting the characteristic function of the interval

[x1, y1], we have

∥∥Jn(f, g, (d0, d1, d2, ..., dk) , •)− fg
∥∥
C[a′,b′]

≤
∥∥Jn(g(x)f(t)− f(x)), (d0, d1, d2, ..., dk) , •)

∥∥
C[a′,b′]

+
∥∥Jn(f(t)(g(t)− g(x))χ(t), (d0, d1, d2, ..., dk) , •)

∥∥
C[a′,b′]

+O
(
n−(k+1)

)
. (5.4.15)
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Now

∥∥Jn(g(x)(f(t)− f(x)), (d0, d1, d2, ..., dk) , •)
∥∥
C[a′,b′]

≤
∥∥g∥∥

C[a′′,b′′]

∥∥Jn(f, (d0, d1, d2, ..., dk) , •)− f
∥∥
C[a1,b1]

= O
(
n−τ/2

)
. (5.4.16)

Applying Taylor’s expansion of f, we have

I3 ≡
∥∥Jn(f(t)g(t)− g(x))χ(t), (d0, d1, d2, ..., dk) , •)

∥∥
C[a′,b′]

=

∥∥∥∥Jn([m−1∑
i=0

f (i)(x)

i!
(t− x)i +

{
f (m−1)(ξ)− f (m−1)(x)

}
(m− 1)!

]
× (g(t)− g(x))χ(t), (d0, d1, d2, ..., dk) , •

)∥∥∥∥
C[a′,b′]

,

where t < ξ < x. Since f (m−1) ∈ Lip(1− δ, x1, y1),

∣∣f (m−1)(ξ)− f (m−1)(x)
∣∣ ≤ K6

∣∣ξ − x∣∣1−δ ≤ K6

∣∣t− x∣∣1−δ,
where K6 is the Lip(1− δ, x1, y1) constant for f (m−1), we have

I3 ≤
∥∥∥∥Jn(m−1∑

i=0

f (i)(x)

i!
(t− x)i(g(t)− g(x))χ(t), (d0, d1, d2, ..., dk) , •

)∥∥∥∥
C[a′,b′]

+
K6

(m− 1)!

∥∥g′∥∥
C[a′′,b′′]

( k∑
j=0

∣∣C(j, k)
∣∣)∥∥Ldj ,n(

∣∣t− x∣∣m+1−δ
χ(t), •)

∥∥
C[a′,b′]

= I4 + I5 (say). (5.4.17)

By Taylor’s expansion of g and Lemma 5.2.5, we have

I4 = O
(
n−(k+1)

)
. (5.4.18)
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Also, by Hölder’s expansion of g and Lemma 2 from [11], we have

I5 ≤
K6

(m− 1)!

∥∥g′∥∥
C[a′′,b′′]

( k∑
j=0

∣∣C(j, k)
∣∣)

max
0≤j≤k

∥∥∥∥∫ y1

x1

Wdj ,n(t− x)
∣∣t− x∣∣m+1−δ

dt
∥∥∥
C[a′,b′]

≤ K7 max
0≤j≤k

∥∥∥∥∫ y1

x1

Wdj ,n(t− x)(t− x)2(m+1)dt

∥∥∥∥
(m+1−δ)
2(m+1)

C[a′,b′]

= O
(
n−(m+1−δ)/2) = O

(
nτ/2

)
, (5.4.19)

by choosing such that 0 < δ < m+ 1− δ. Combining the estimate (5.4.15-5.4.19), we

get ∥∥Jn(fg, (d0, d1, d2, ..., dk) , •)− fg
∥∥
C[a′,b′]

= O
(
nτ/2

)
.

This completes the proof of the Theorem 5.4.1.





Chapter 6

Approximation by Statistical

Convergence

6.1 Statistical Convergence

In this chapter, we use concept of statistical convergence and study the Korovkin type

approximation theorem for the first kind Beta operators β̂n and Jain operators P
[β]
n .

Before we present the main results, we shall recall some notations and properties on

the statistical and A-statistical convergence.

Let (xn) be a sequence of numbers. Then (xn) is called statistically convergent

to L if, for every ε > 0,

lim
j

Θ {n ≤ j : |xn − L| ≥ ε}
j

= 0,

where ΘD denotes the cardinality of the subset D (see [55], also [59]). We denote

this statistical limit by st − limnxn = L. Now, let A = (ajn) be an infinite summa-

bility matrix. Then, the A-transform of x, denoted by Ax = ((Ax)j), is given by

(Ax)j =
∑∞

n=1 ajnxn, provided the series converges for each j. We say that A is

regular if limj(Ax)j = L whenever limjxj = L [75]. Assume now that A is a nonneg-

ative regular summability matrix. Then, a sequence (xn) is said to be A-statistically

89
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convergent to L if, for every ε > 0,

lim
j

∑
n:|xn−L|≥ε

ajn = 0 (6.1.1)

holds (see [57]). It is denoted by stA − limnxn = L. Now we recall some basic prop-

erties of A-statistical convergence as follows:

• A-statistical convergence method is mainly based on the concept of A-density.

Recall that the A− density of a subset K ⊂ N, denoted by δA(K), is given by

δA (K) = lim
j

∞∑
n=1

ajnχK (n) ,

provided that the limit exists, where χK is the characteristic function of K; or

equivalently,

δA (K) = lim
j

∑
n∈K

ajn.

So, by ( 6.1.1), we easily see that stA − limx = L if and only if

δA ({n : |xn − L| ≥ ε}) = 0

for every ε > 0.

• If we take A = C1 = [cjn], where the Cesáro matrix is given by

cjn =


1
j
, if 1 ≤ n ≤ j

0, otherwise,

then A-statistical convergence reduces to statistical convergence, i.e., stc1 −

limn xn = st− limn xn = L.

• Taking A = I, the identity matrix, A-statistical convergence coincides with the

ordinary convergence, i.e.,stI − lim x = lim x = L.
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• Observe that every convergent sequence(in the usual sense) is A-statistically

convergent to the same value for any non-negative regular matrix A, but its

converse is not always true. Actually, in [92], Kölk proved that A-statistical

convergence is stronger than convergence when A = [ajn] is a non-negative

regular summability matrix such that limj maxnajn = 0. So, one can construct

a sequence that is A-statistically convergent but non-convergent.

• Not all the properties of convergent sequences are true for A-statistical conver-

gence (or statistical convergence). For instance, although it is well known that a

subsequence of a convergent sequence is convergent, that is not always true for

A-statistical convergence. Another example is that every convergent sequence

must be bounded, however an A-statistical convergent sequence does not need

to be bounded.

• A characterization for statistical convergence, i.e., the case of A = C1, was

proved by Connor [30]: st− lim x = L if and only if there exists a subsequence

xnk of x such that δ(n1, n2, ...) = 1 and limk xnk = L. It is easy to check that

a similar characterization is also valid for A-statistical convergence when A is

any non-negative regular summability matrix.

6.2 Statistical Convergence for General Beta Op-

erators

Beta operators were introduced by Lupaş [97] and further modified and studied by

Khan [90], Upreti [129], Divis [47] and others.

The Beta approximation βn(f) to a function f : [0, 1]→ R is the operator:

βn (f ;x) =
1

B (nx, n(1− x))

∫ 1

0

tnx−1(1− t)n(1−x)−1f(t)dt, (6.2.1)
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where B(u, v) is the well-known beta probability density function

B(u, v) =

∫ 1

0

tu−1(1− t)v−1dt; u, v > 0,

with the support (0, 1) such that t denotes a value of the random variable T , where

n ∈ N, x ∈ (0, 1) and f is any real measurable, Lebesgue integrable function defined

on [0, 1]. When x = 0 or x = 1, then βn (f, x) = f(x) for all n.

Now the following Lemmas follow from [127], for the operators βn mentioned

by (6.2.1).

Lemma 6.2.1 ([127]). Let ei(x) = xi, i = 0, 1, 2. Then, for each 0 < x < 1 and

n ∈ N, we have

(i) βn(e0;x) = 1,

(ii) βn(e1;x) = x,

(iii) βn(e2;x) = x(1+nx)
n+1

.

Lemma 6.2.2 ([47]). For each each 0 < x < 1 and n ∈ N and ϕx(t) = t−x, we have

βn(ϕ2
x;x) = x(1−x)

n+1
.

The aim of this section is to construct a general Beta type operators includ-

ing the King type Beta operators which preserves the third test function x2. We

study some approximation properties, which include rate of convergence and statis-

tical convergence. Finally, we show how to reach best estimation by these operators

than the original Beta operators βn (f, x). Note that rate of convergence and sta-

tistical convergence of many other approximation operators are available in litera-

tures(See [35], [36], [43], [50], [70], [79], [106], [110], [111]).

6.2.1 Modified First Kind Beta Operators

Let {αn(x)} be a sequence of real-valued continuous functions defined on [0, 1] with

0 < αn(x) < 1. Now consider a sequence of positive linear operators:

β̂n (f, x) =
1

B (nαn(x), n(1− αn(x)))

∫ 1

0

tnαn(x)−1(1− t)n(1−αn(x))−1f(t)dt, (6.2.2)
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where x ∈ [0, 1], f ∈ [0, 1] and n ∈ N(set of natural numbers). If αn(x) replaced by

e1, then we obtain original beta operators (6.2.1). Note that

Lemma 6.2.3. For each 0 ≤ x ≤ 1 and n ∈ N and ϕx(t) = t− x, we have

(i) β̂n(e0;x) = 1,

(ii) β̂n(e1;x) = αn(x),

(iii) β̂n(e2;x) =
αn(x)(1 + nαn(x))

n+ 1
,

(iv) β̂n(ϕ2
x;x) = (αn(x)− x)2 +

αn(x)(1− αn(x))

n+ 1
.

Now, if we replace αn(x) by

α∗n(x) =
−1 +

√
1 + 4n(n+ 1)x2

2n
, x ∈ [0, 1] and n ∈ N,

then the operators β̂n defined in (6.2.2) reduce to the operators

β∗n (f ;x) =
1

B (nα∗n(x), n(1− α∗n(x)))

∫ 1

0

tnα
∗
n(x)−1(1− t)n(1−α

∗
n(x))−1f(t)dt. (6.2.3)

These operators are the King type Beta operators. Furthermore, the following Lemma

hold:

Lemma 6.2.4. The operators defined by (6.2.3) verify the following identities

(i) β∗n(e0;x) = 1,

(ii) β∗n(e1;x) =
−1+
√

1+4n(n+1)x2

2n
,

(iii) β∗n(e2;x) = x2.

Lemma 6.2.5. For each 0 ≤ x ≤ 1 and n ∈ N and ϕx(t) = t− x, we have

(i) β∗n(ϕx;x) =

√
1+4n(n+1)x2−(1+2nx)

2n
,

(ii) β∗n(ϕ2
x;x) =

(1+2nx)x−x
√

1+4n(n+1)x2

n
.

6.2.2 Rate of Convergence

In this section we study the rate of convergence of the operators β̂n (f ;x) to f(x) by

means of the modulus of continuity (0.2.1) and Peetre’s K-functional (0.2.2). It is
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known that for any δ > 0 and x, y ∈ [a, b], we have

|f(y)− f(x)| ≤ ω (f ; δ)

(
|y − x|
δ

+ 1

)
.

Theorem 6.2.6. For every f ∈ C[0, 1] and 0 ≤ x ≤ 1, we have

∣∣∣β̂n (f ;x)− f(x)
∣∣∣ ≤ 2ω (f, δn,x) ,

where δn,x =

√
(αn(x)− x)2 +

αn(x)(1− αn(x))

n+ 1
and ω (f, δn,x) is the modulus of

continuity of f .

Proof. Let f ∈ C[0, 1] and x ∈ [0, 1]. Since β̂n(e0, x) = e0(x), from Cauchy-Schwarz

inequality for linear positive operators, we obtain for every δ > 0 and n ∈ N, that

∣∣∣β̂n(f ;x)− f(x)
∣∣∣ ≤ [β̂n(e0;x) +

1

δn,x

(
β̂n
(
(e1 − x)2;x

))1/2]
ω (f, δn,x) .

Choosing δn,x =
√
β̂n
(
(e1 − x)2;x

)
=

√
(αn(x)− x)2 +

αn(x)(1− αn(x))

n+ 1
, we obtain

∣∣∣β̂n(f ;x)− f(x)
∣∣∣ ≤ 2ω (f, δn,x) .

For the King type Beta operators we have the following Corollary at once:

Corollary 6.2.7. For every f ∈ C[0, 1] and 0 ≤ x ≤ 1, we have

|β∗n (f ;x)− f(x)| ≤ 2ω (f, δn,x) ,

where δn,x =

√
(1+2nx)x−x

√
1+4n(n+1)x2

n
.

Now we give the rate of convergence for the operators β̂n (f ;x) by using the

Peetre’s K-functional in the space C2[0, 1]. The classical Peetre’s K−functional of a

function f ∈ C[0, 1] is defined by (0.2.2) and the norm

‖f‖C2[0,1] = ‖f‖C[0,1] + ‖f ′‖C[0,1] + ‖f ′′‖C[0,1].
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Theorem 6.2.8. For each f ∈ C[0, 1]

∣∣∣β̂n (f ;x)− f(x)
∣∣∣ ≤ K

(
f ;

(
|αn(x)− x|+

∣∣∣∣(αn(x)− x)2 +
αn(x)(1− αn(x))

n+ 1

∣∣∣∣)) .
Proof. Applying Taylor expansion to the function g ∈ C2[0, 1], we get

β̂n(g, x)− g(x) = g′(x)β̂n((e1 − x), x) +
1

2
β̂n
(
g′′(ξ)(e1 − x)2, x

)
; ξ ∈ (t, x).

Hence

∣∣∣β̂n (g;x)− g(x)
∣∣∣

≤ ‖g′‖C[0,1]

∣∣∣β̂n((e1 − x), x)
∣∣∣+ ‖g′′‖C[0,1]

∣∣∣β̂n((e1 − x)2, x)
∣∣∣

= ‖g′‖C[0,1] |αn(x)− x|+ ‖g′′‖C[0,1]

∣∣∣∣(αn(x)− x)2 +
αn(x)(1− αn(x))

n+ 1

∣∣∣∣ .
For each f ∈ C[0, 1], we can write

∣∣∣β̂n(f, x)− f(x)
∣∣∣

≤
∣∣∣β̂n (f, x)− β̂n (g, x)

∣∣∣+
∣∣∣β̂n(g, x)− g(x)

∣∣∣+ |g − f |

≤ 2 ‖g − f‖C[0,1] +
∣∣∣β̂n (g;x)− g(x)

∣∣∣
≤ 2‖g − f‖C[0,1] +

(
|αn(x)− x|+

∣∣∣∣(αn(x)− x)2 +
αn(x)(1− αn(x))

n+ 1

∣∣∣∣) ‖g‖C[0,1]

≤ 2

(
‖g − f‖C[0,1]+ |αn(x)− x|+

∣∣∣∣(αn(x)− x)2 +
αn(x)(1− αn(x))

n+ 1

∣∣∣∣ ‖g‖
C[0,1]

)
.

Taking infimum over g ∈ C2[0, 1], we get

∣∣∣β̂n(f, x)− f(x)
∣∣∣ ≤ K

(
f ;

(
|αn(x)− x|+

∣∣∣∣(αn(x)− x)2 +
αn(x)(1− αn(x))

n+ 1

∣∣∣∣)) .
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For the King type Beta operators we immediately have the following Corollary:

Corollary 6.2.9. For each f ∈ C[0, 1]

∣∣∣β̂n (f ;x)− f(x)
∣∣∣ ≤ K

(
f ; γn,x

)
,

where γn,x = 1
2n

(2x− 1)
(
2nx−

√
4n2x2 + 4nx2 + 1 + 1

)
.

Assume that for each x ∈ [0, 1],(αn(x))n∈N is a sequence in (0, 1) satisfying

st− lim
n
αn(x) = x. (6.2.4)

Then we have

st− lim
n
|x− αn(x)| = 0 and (6.2.5)

st− lim
n

∣∣∣∣αn(x)(1− αn(x))

n+ 1

∣∣∣∣ = 0. (6.2.6)

Such a sequence (αn(x))n∈N can be constructed as follows. Choose

αn(x) =

 2 , if n = m2 (m ∈ N)

α∗n(x) , otherwise

where

α∗n(x) =
−1 +

√
1 + 4n(n+ 1)x2

2n
, x ∈ [0, 1] and n ∈ N.

It is clear that ( 6.2.4) is satisfied.

Theorem 6.2.10. For each x ∈ [0, 1] and for every f ∈ C[0, 1], we have

st− lim
n

∣∣∣β̂n (f ;x)− f(x)
∣∣∣ = 0.
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Proof. For a given r > 0 choose ε > 0 such that ε < r. Now define the sets:

U =
{
n : δ2n,x ≥ r

}
,

U1 =

{
n : |x− αn(x)| ≥

√
r − ε

2

}
,

U2 =

{
n :

∣∣∣∣αn(x)(1− αn(x))

n+ 1

∣∣∣∣ ≥ r − ε
2

}
,

where δn,x =

√
(αn(x)− x)2 +

αn(x)(1− αn(x))

n+ 1
. Then it follows that U ⊆ U1 ∪ U2,

which gives
n∑
j=1

χU(j) ≤
n∑
j=1

χU1(j)+
n∑
j=1

χU2(j). (6.2.7)

Multiplying both sides of ( 6.2.7) by
1

n
and letting n→∞, we get using ( 6.2.5) and

( 6.2.6) that

lim
n→∞

n∑
j=1

χU(j) = 0.

This guarantees that st − limn δ
2
n,x = 0 which implies st − limn ω(f, δn,x) = 0 .Using

Theorem 6.2.6 completes the proof.

Remark 6.2.11. If we choose the sequence (αn(x))n∈N as in ( 6.2.4), then our sta-

tistical approximation result Theorem 6.2.10 works; however its classical version does

not work since

αn(x) 9 x

in the usual sense.

6.2.3 Best Error Estimation

Let ψx be the first central moment function defined by ψx(y) = y−x. In order to get

a better error estimation on a subinterval I of [0, 1], in the approximation by means

of the operators βn , we are aimed to find a functional sequence (sn), sn : I → A,

satisfying

δ∗n,x =

√
β̂n(ψ2

x; sn(x)) ≤
√
βn(ψ2

x;x) = δn,x for x ∈ I. (6.2.8)
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By Lemmas 6.3.2 and 6.2.3(iv), 6.2.8 takes the form

n

n+ 1
s2n(x) +

(
1

n+ 1
− 2x

)
sn(x)− (

n

n+ 1
− 2)x2 − 2

n+ 1
x ≤ 0. (6.2.9)

Let

∆n(x) :=

(
1

n+ 1
− 2x

)2

+ 4
n

n+ 1

{
(

n

n+ 1
− 2)x2 +

2

n+ 1
x

}
.

Then it is clear that

∆n(x) ≥ 0 (6.2.10)

and

x+
x

n
− 1

2n
∈ [0, 1] (6.2.11)

hold for every x ∈ I = [1
4
, 3
4
] and for every n ≥ 1. Therefore, from ( 6.2.9), ( 6.2.10)

and ( 6.2.11), we get

2x− 1
n+1
−
√

∆n(x)

2 n
n+1

≤ sn(x) ≤
2x− 1

n+1
+
√

∆n(x)

2 n
n+1

.

Then sn(x) takes its minimum when

sn(x) = x+
x

n
− 1

2n
.

Therefore, for all x ∈ [1
4
, 3
4
], we define a new Beta type operator by

βsn(f ;x) = βn(f ; sn(x)) =
1

B (nsn(x), n(1− sn(x)))

∫ 1

0

tnsn(x)−1(1− t)n(1−sn(x))−1f(t)dt.

Then, for all x ∈ [1
4
, 3
4
] and n ≥ 1, we have

βsn(ψ2
x;x) =

x(1− x)

n
− 1

4n(n+ 1)
≤ x(1− x)

n+ 1
= βn(ψ2

x;x)

which shows that the operators βsn(f ;x) provides the better estimation than the

operators βn(f ;x).
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6.3 Approximation of Jain Operators

Several extension and generalization of Bernstein polynomials have been given by

various mathematician like Szâsz [124], Meyer-König and Zeller [102], Meir and

Sharma [101], Stancu [123] and Balázs [17]. Mirakyan [104] has also given another

modification with the help of the Poisson distribution. Recently, Acar, Gupta &

Aral [3] and Aral & Gupta [16] have investigated the generalized Szâsz operators and

its Durrmeyer form, respectively.

Later on in the same way with the help of a Poisson type distribution,

wβ (k, α) =
α

k!
(α + kβ)k−1e−(α+kβ), k ∈ N0 = {0} ∪ N,

for 0 < α < ∞ and |β| < 1, Jain [83] defined the following class of positive linear

operators,

P [β]
n (f, x) =

∞∑
k=0

wβ (k;nx) f

(
k

n

)
, x ≥ 0, (6.3.1)

where β ∈ [0, 1] and f ∈ C(R+), the space of all real valued continuous functions

defined on R+. Original Szâsz-Mirakyan operator can easily be obtained for β = 0.

Recently Deo et al. [37, 39] studied another modification of Bernstein operators and

Gupta [68] introduced q analogue of Bernstein operator. Now the following lemmas

follow from [83], for the operators P
[β]
n mentioned by (6.3.1).

Lemma 6.3.1. [83] Let ei(x) = xi, i = 0, 1, 2, then for x ∈ [0,∞), n ∈ N and β 6= 1,

we have

(i) P
[β]
n (e0;x) = 1,

(ii) P
[β]
n (e1;x) = 1

1−βx,

(iii) P
[β]
n (e2;x) = 1

(1−β)2x
2 + 1

n(1−β)3x.

Lemma 6.3.2. For x ∈ [0,∞) , n ∈ N, β 6= 1 and ϕx(t) = t− x, we have

(i) P
[β]
n (ϕx;x) = β

1−βx,

(ii) P
[β]
n (ϕ2

x;x) = β2

(1−β)2x
2 + 1

n(1−β)3x.
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6.3.1 Voronovskaya Type Results & Error Estimation

In this section we compute the Voronovskaya type results of these operators P
[β]
n given

by (6.3.1).

Let f ∈ CB[0,∞) be the space of all real valued continuous bounded functions

on [0,∞), equipped with the norm ‖f‖ = sup
t∈[0,∞)

|f(t)| . The Peetre’s K2−functional

is defined by (0.2.2) and modulus of continuity by (0.2.1) with norm

‖f‖C2
B

= ‖f‖CB + ‖f ′‖CB + ‖f ′′‖CB . (6.3.2)

From [42], there exists a positive constant C such that

K2(f, δ) ≤ Cω2

(
f,
√
δ
)

(6.3.3)

and

ω2(f,
√
δ) = sup

0<h≤δ
sup

x∈[0,∞)

|f(x+ 2h)− 2f(x+ h) + f(x)| .

Theorem 6.3.3. Let f ∈ CB[0,∞), then for every x ∈ [0,∞) and for C > 0, we

have

∣∣(P [β]
n f

)
(x)− f(x)

∣∣ ≤ Cω2

(
f,

√
β

1− β
x

)
, β 6= 1. (6.3.4)

Proof. Let g ∈ W 2
∞. Using Taylor’s expansion

g(t) = g(x) + g′(x)(t− x) +

∫ t

x

(t− u)g′′(u)du.

From Lemma 6.3.2, we have

(
P [β]
n g
)

(x)− g(x) =
(
P [β]
n g′ (x) (t− x)

)
(x) +

(
P [β]
n

∫ t

x

(t− u)g′′(u)du

)
(x).

We know that ∣∣∣∣∫ t

x

(t− u)g′′(u)du

∣∣∣∣ ≤ (t− u)2 ‖g′′‖ .
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Therefore

∣∣(P [β]
n g
)

(x)− g(x)
∣∣ ≤ (P [β]

n (t− x)
)

(x) ‖g′‖+
(
P [β]
n (t− u)2

)
(x) ‖g′′‖

=
β

1− β
x ‖g′‖+

(
β2x2

(1− β)2
+

x

n(1− β)3

)
‖g′′‖

≤ β

1− β
x {‖g′‖+ ‖g′′‖}

≤ β

1− β
x ‖g′′‖ .

By Lemma 6.3.1, we have

∣∣(P [β]
n g
)

(x)
∣∣ ≤ ∞∑

k=0

α

k!
(α + kβ)k−1e−(α+kβ)g

(
k

n

)
≤ ‖g‖ .

Hence

∣∣(P [β]
n g
)

(x)− g(x)
∣∣ ≤ ∣∣(P [β]

n (g − f)
)

(x)− (g − f)(x)
∣∣+
∣∣(P [β]

n g
)

(x)− g(x)
∣∣

≤ 2 ‖g − f‖+

(
β

1− β
x

)
‖g′′‖ .

Taking the infimum on the right side over all g ∈ W 2
∞ and using (6.3.3), we get the

required result.

6.3.2 A-statistical Convergence

In this section of the chapter, we use concept of A-statistical convergence and study

the Korovkin type approximation theorem for the the operators P
[β]
n .

Now let A = [ajn] (j, n ∈ N) be a non-negative regular summability matrix.

Assume that for each t ∈ [0,∞),(α∗n(t))n∈N is a sequence in [0,∞) satisfying

stA − lim
n
α∗n(t) = t,

then we have

stA − lim
n

(t− α∗n(t)) = 0. (6.3.5)
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Theorem 6.3.4. A = [ajn] is a non-negative regular summability matrix. Then, for

each x ∈ [0,∞) and for every f ∈ C[0,∞), we have

stA − lim
n

∣∣P [β]
n (ei;x)− ei

∣∣ = 0; ei(t) = ti, i = 0, 1, 2.

Proof. From Lemma 6.3.1, obviously stA − lim
n

∣∣∣P [β]
n (e0;x)− 1

∣∣∣ = 0.

∣∣P [β]
n (e1;x)− x

∣∣ ≤ ∣∣∣∣ βx

1− β

∣∣∣∣ = S(n, x), x ∈ [0,∞), (6.3.6)

where S(n, x) =
∣∣∣ βx1−β

∣∣∣.
Now, for a given ε > 0, we define

V = {n : S(n, x) ≥ ε} .

Therefore, by ( 6.3.6), we obtain

∑
n:
∣∣∣P [β]
n (e1,x)−x

∣∣∣≥ε
ajn ≤

∑
n∈V

ajn.

Taking limit as j →∞ and from Lemma 6.3.1 and (6.3.5) we get the result.

Similarly,

∣∣P [β]
n (e2;x)− x2

∣∣ =

∣∣∣∣ x2

(1− β)2
+

x

n(1− β)3
− x2

∣∣∣∣ (6.3.7)

=

∣∣∣∣x2β (2− β)

(1− β)2
+

x

n(1− β)3

∣∣∣∣ (6.3.8)

= S1(n, x) + S2(n, x), x ∈ [0,∞). (6.3.9)

T = {n : S1(n, x) + S2(n, x) ≥ ε} ,

T1 =
{
n : S1(n, x) ≥ ε

2

}
T2 =

{
n : S2(n, x) ≥ ε

2

}
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Now, we have T ⊆ T1 ∪ T2. Therefore by (6.3.9), we obtain

∑
n:
∣∣∣P [β]
n (e2,x)−x2

∣∣∣≥ε
ajn ≤

∑
n∈T

ajn ≤
∑
n∈T1

ajn +
∑
n∈T2

ajn.

Taking limit as j →∞ and (6.3.5) gives the result.

Similarly, we have

stA − lim
n

∥∥∥P [β]
n (e1 − xe0)j

∥∥∥
C[0,∞)

= 0, j = 1, 2. (6.3.10)

Now we give a Korovkin type theorem for the operators P
[β]
n (f ;x) via A-statistical

convergence.

Theorem 6.3.5. Let A = [ajn] (j, n ∈ N) is a non-negative regular summability

matrix. Then, for each x ∈ [0,∞) and for every f ∈ C[0,∞), we have

stA − lim
n

∣∣P [β]
n (f ;x)− f(x)

∣∣ = 0.

Proof. For a given ε > 0, define the following sets,

R =
{
n : δ2n,x ≥ ε

}
,

R1 = {n : (x− α∗n(x)) ≥ ε} ,

where δn,x =
√

β
1−βx. Now it is easy to see that R ⊆ R1, which gives

∑
n∈R

aj,n ≤
∑
n∈R1

aj,n.

Taking limit as j → ∞ and using (6.3.5), we have limj

∑
n∈R

ajn = 0. This gives that

stA − lim
n
δ2n,x = 0 which follows stA − lim

n
ω (f, δn,x) = 0. Using Theorem 6.3.3

completes the proof.

Now we give the rate of A-statistical convergence for the operators P
[β]
n (f ;x) by

using the Peetre’s K-functional in the space C2
B[0,∞).
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Theorem 6.3.6. For each f ∈ CB[0,∞)

∥∥P [β]
n (f, x)− f(x)

∥∥
CB
≤ κ (f ; γn,x) ,

where κ (f ; γn,x) is the sequence of Peetre’s K-functional and

γn,x =
∥∥P [β]

n ((e1 − x), x)
∥∥
CB

+
∥∥P [β]

n ((e1 − x)2, x)
∥∥
CB

and stA − lim
n
γn,x = 0 for each fixed x ∈ [0,∞).

Proof. Applying Taylor expansion to the function f ∈ C2
B[0,∞), we get

P [β]
n (f, x)− f(x) = f ′(x)P [β]

n ((e1 − x), x) +
1

2
f ′′(ξ)P [β]

n ((e1 − x)2, x), ξ ∈ (t, x).

Hence

∥∥P [β]
n (f, x)− f(x)

∥∥
CB

≤ ‖f ′‖CB
∥∥P [β]

n ((e1 − x), x)
∥∥
C[0,∞)

+ ‖f ′′‖CB
∥∥P [β]

n ((e1 − x)2, x)
∥∥
C[0,∞)

. (6.3.11)

Using ( 6.3.2) and ( 6.3.11), for each g ∈ C2
B[0,∞),

∥∥P [β]
n (g, x)− g(x)

∥∥
C2
B

=
(∥∥P [β]

n ((e1 − x), x)
∥∥
C[0,∞)

+
∥∥P [β]

n ((e1 − x)2, x)
∥∥
C[0,∞)

)
‖g‖C2

B

= γn,x‖g‖C2
B
.

For each f ∈ CB[0,∞) and g ∈ C2
B[0,∞),

∥∥P [β]
n (f, x)− f(x)

∥∥
C2
B
≤
∥∥P [β]

n (f, x)− P [β]
n (g, x)

∥∥
CB

+
∥∥P [β]

n (g, x)− g(x)
∥∥
C2
B

+ ‖g − f‖CB

≤ 2‖g − f‖CB +
∥∥P [β]

n (g, x)− g(x)
∥∥
C2
B

≤ 2‖g − f‖CB + γn,x‖g‖C2
B
≤ 2

(
‖g − f‖CB + γn,x‖g‖C2

B

)
.

Taking infimum over g ∈ C2
B[0,∞), we get

∥∥P [β]
n (f, x)− f(x)

∥∥
C2
B
≤ κ (f ; γn,x) .
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From Theorem 6.3.5, we get stA− lim
n
γn,x = 0, therefore stA− lim

n
κ (f ; γn,x) = 0.
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[105] M.A. Özarslan and H. Aktuǵlu. Quantitative global estimates for generalized

double szasz-mirakjan operators. Journal of Applied Mathematics, 13:8 pages,

2013.
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