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Abstract

In this thesis, we have derived differential subordination, superordination and

sandwich type results and also determined several coefficient estimates for certain

classes of analytic functions. Further, we have investigated various radius problems

associated with analytic functions with positive real part. The thesis comprises of

seven chapters, which includes a chapter on introduction. In Chapter 2, we have

obtained conditions on certain parameters so that the given differential subordination

implication holds. In Chapter 3, we have discussed the properties of a class of linear

operators which satisfy a common recurrence relation. Several sufficient conditions

for Janowski, Sokó l-Stankiewicz and strongly starlikeness are also determined. In

addition to that we have given alternate proofs of certain results proved in [17].

In Chapter 4, we have considered a class of linear operators defined in terms of

convolution which can be expressed as convex combination of two operators. For this

class of operators, we have established the differential sandwich theorems. Several

applications of these results are also discussed. In Chapter 5, we have derived estimate

on the Fekete-Szegö functional for ceratin classes of functions and various special cases

of our results are also pointed out. In Chapter 6, estimate on the initial coefficients

of certain subclasses of bi-univalent functions are established. Further some of our

results improve the known estimates, which are pointed out here along with some

special cases to our results. In Chapter 7, radius of starlikeness such as starlikeness of

order α, parabolic starlikeness and Sokó l-Stankiewicz starlikeness for functions with

fixed second coefficient are investigated when they satisfy certain conditions on the

ratio f/g, where g is either starlike or convex function with fixed second coefficient.
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Chapter 1

Introduction

The theory of univalent functions is a classical branch of complex analysis. It is

classified under Geometric Function Theory (GFT) due to the fact that from simple

geometrical considerations, many remarkable properties of univalent functions can be

found. The celebrated Reimann mapping theorem gave rise to the birth of GFT in

1951 and the genesis of univalent function theory goes back to 1907 with a paper [84]

by Koebe. The theory of univalent functions has rich and vast literature, the early

development of the theory centered around the Bieberabach conjecture [26], which

provides the coefficient estimate for univalent functions defined on the open unit disk.

Apart from the classical papers [84, 85] by Koebe, several researchers enriched this

area of research with their enormous contributions. The books by Pommerenke [138],

Goodman [62], Duren [50], Goluzin [60], Graham and Kohr [66], Littlewood [96] and

Schober [163] provide an introduction to the basics of univalent function theory. The

proceeding [49], edited by Dold and Eckmann, is very useful as it consists of the lec-

tures delivered by eminent researchers and mathematicians such as Ahlfors, Duren,

Keogh, Goodman, Miller, Rudin, Suffridge and several others. The bibliography of

schlicht functions [31] by Bernardi lists the related references of univalent functions

from 1907 to 1981. Another useful proceeding [92] edited by  Lawrynowicz contains

selected papers related to GFT from those submitted by a part of mathematicians

lecturing at the 8th conference on analytic functions held in Poland at B lażejewko in

1
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1983. The book written by Hallenbeck and MacGregor [70] covers extreme points

and support points theory. A brief literature of various books, monographs, lecture

notes, survey articles published during that time on univalent function theory can be

found at the end of the book [70]. The books written by Duren [50], Goluzin [60],

Graham and Kohr [66] and Goodman [62] also enlist useful references on univalent

function theory. Henrici [72] has also included two chapters of complex analysis in

his book with one being on univalent function theory. The books [47, 48, 169] on

complex analysis also provide some topics on univalent function theory. The book

by Hayman [71] deals with the growth of univalent and multivalent functions and

bound for the modulus and coefficients related quantities. The book [190] edited

by Srivastava and Owa provides a collection of research-and-survey articles of recen-

t times, related to the theory of analytic functions. However the book [90] edited

by Kühnau contains some special topics contributed by eminent researchers such as

Hayman (multivalent functions), Pommerenke (conformal maps), Prokhorov (bound-

ed univalent functions), Aksent’ev and Shabalin (sufficient condition for univalent

functions and quasiconformal extendibility of analytic functions). Bulboacă [38] has

also provided a chronological order of books and monographs useful in this context.

Goodman [63] has elaborated basics and a brief look into the literature (upto 1979)

of univalent function theory. For survey on radius problems one may consult the book

entitled ‘Univalent Functions–II’ by Goodman [62].

The concept of differential subordination was introduced in 1981 by Miller and

Mocanu [107]. They were first to replace the real differential inequality with a true

complex analogue. The monograph written by Miller and Mocanu [108] is a collection

of results from more than 400 papers and provides a systematic study of differential

subordination. Miller and Mocanu [108] provided very simple proofs of the various

results in GFT which were proved earlier using lengthy and tedious techniques. In

2003, Miller and Mocanu [105] introduced the notion of differential superordination as

a dual concept of differential subordination. The concepts of differential subordination

and superordination together lead to sandwich result.
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The theory of differential subordination extensively used to prove several inter-

esting results for functions defined by linear operators. Bulboacă [36–39] used the

theory of differential subordination to discuss various properties of functions defined

by linear operators. Kumar et al. [180, 181] have also done extensive study of ap-

plications of differential subordination and superordination techniques to univalent

functions and linear operators. For several other applications of differential subor-

dination techniques one can refer the works of Ali et al. [8, 20], Ravichandran et

al. [145, 146, 148, 149], Obradović et al. [124], Patel and Mishra [134], Srivastava

and Attiya [187], Nunokawa et al. [119], Jinlin [77] and Ponnusamy [139–141], see

also the references cited therein. Sokó l et al. [133,184,185] have considered several

classes of functions defined in terms of subordination and derived several properties

of functions in those classes.

Recently, Ali et al. [14] extended the concept of second order differential subordi-

nation to the analytic functions with fixed second coefficient and derived several inter-

esting results. Using the results developed in [14], Nagpal and Ravichandran [113]

obtained sufficient conditions for starlikeness, close-to-convexity and several other

interesting results. For several other applications of differential subordination for

functions with fixed second coefficient in univalent function theory, see [91].

1.1 Univalent Functions

A function f defined on the open set D ⊂ C is said to be univalent if it is one-to-one

that is if f(z1) = f(z2), then z1 = z2(z1, z2 ∈ D). It is known that analytic functions

which are univalent in the whole complex plane are of the form az + b, a 6= 0 only.

Further the Riemann mapping theorem says “every proper simply connected domain

in C is conformally equivalent to the unit disk”, which ensures that properties of

univalent functions defined on a simply connected domain correspond to properties

of univalent function defined on the unit disk. We therefore restrict our study to

analytic univalent functions defined on D := {z ∈ C : |z| < 1}.
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Suppose g is an analytic univalent function defined on D, whose Maclaurin expan-

sion is given by

g(z) = b0 + b1z + b2z
2 + b3z

3 + · · · (b1 6= 0),

then clearly the function defined by

f(z) =
g(z)− g(0)

g′(0)

is also an analytic univalent function in D. Since properties of the functions f and g

correspond to each other, we consider the functions with the normalizations

f(0) = 0 = f ′(0)− 1

and such functions are of the form

f(z) = z + a2z
2 + a3z

3 + · · · , z ∈ D. (1.1.1)

Let A denote the class of all normalized analytic functions defined on D. The

subclass of A consisting of univalent functions is denoted by S. Thus S is the class

of normalized univalent functions. The mapping k(z) = z/(1 − z)2 is called Koebe

function, which maps D onto C \ (−∞,−1/4]. It is an extremal function in S due

to the very fact that it is impossible to add to the image domain any open set of

points without affecting the univalence. There exist several sufficient conditions for

the univalence of functions belonging to A in literature. Among those, a result of

Alexander [6] proved in 1915, which states that “if Re(f ′(z)) > 0 in any convex

domain, then f is univalent” is the most simple one and it was later generalized by

Noshiro–Warschawski [62, Theorem 13, pp-88]. Thereafter several simple sufficient

conditions are derived in terms of the quantities either f ′(z) or f ′′(z), or in terms of

their ratios or involving their general higher order derivatives ( see, [54,55,196,200,

205] and the references cited therein).

For functions f ∈ S, given by (1.1.1), there are two questions that may be asked

here, one is how does a given sequence of coefficients {an} influence the geometric
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property of f? and secondly, if some property of f is known, how does this property

influences the coefficients {an} in (1.1.1)? To answer the second question, in 1916,

Bieberbach [26] proved that the second Taylor’s coefficient of each function in the

class S is bounded by 2 i.e. |a2| ≤ 2 and equality holds if and only if f is either Koebe

function k(z) = z/(1− z)2 or one of its rotations. Observing the extremal nature of

the Koebe function k(z) = z/(1− z)2 = z + 2z2 + 3z3 + · · ·+ nzn + · · · , Bieberbach

conjectured that if f ∈ S given by (1.1.1), then |an| ≤ n.. This conjecture was

unresolved for a quite long time, the reason being that the methods known at that

time were not substantial enough to show this statement in its completeness. Several

researchers tried to figure out this conjecture under certain geometrical conditions

on the image domains of normalized analytic univalent functions and some were able

to prove it for some specific values of n. Consequently, several subclasses of S came

into existence. Some of these subclasses and their properties are dealt in Section 1.1.

This conjecture was successfully verified by Rogosinski [153] in 1931 for functions

with real coefficients. The long awaited proof of the Bieberbach conjecture finally

came when de Branges [52] in 1985, proved this conjecture affirmatively. For an

insight into the concept of the proof, see [53]. An alternate but simpler proof of the

Bieberbach conjecture is available in [206]. The books by Conway [48] and Gong [61]

also contain proofs of the Bieberbach conjecture. For the historical development of

the conjecture and the main ideas that led to the proof of the Bieberbach conjecture,

one may refer to the article by Koepf [86]. The Bieberbach conjecture and its proof

made the coefficient problems in general very interesting. Finding the estimate on

coefficients is the most fascinating area of research in univalent function theory as it

provides several geometric properties of the functions under study. The Bieberbach

theorem, namely |a2| ≤ 2 for f ∈ S, immediately implies the growth and distortion

estimates respectively

|z|
(1 + |z|)2

≤ |f(z)| ≤ |z|
(1− |z|)2

and
1− |z|

(1 + |z|)3
≤ |f ′(z)| ≤ 1 + |z|

(1− |z|)3
,

with equality in case of the Koebe function or one of its rotations. Consequent upon

growth theorem, we have the Koebe one-quarter theorem [50], which says that the



6

range of every function in the class S contains the disk |w| < 1/4.

Another type of coefficient problem is to find the sharp estimate on the functional

|a22 − µa3| for functions belonging to a particular class. Bieberbach, in 1916, proved

that if f ∈ S, then |a22− a3| ≤ 1. In 1933, Fekete and Szegö [58] proved the following

inequality:

|µa3 − µa22| ≤


3− 4µ (µ ≤ 0),

1 + 2 exp (− 2µ
1−µ) (0 ≤ µ ≤ 1),

4µ− 3 (µ ≥ 1)

for functions in the class S and the result is sharp. The problem of finding sharp

bounds for the non-linear functional |a3 − µa22| for any compact family of functions

is later popularly known as the Fekete-Szegö problem. Ma and Minda [101] solved

the Fekete-Szegö problem for functions in the class S such that the quantities zf ′/f

or 1 + zf ′′/f ′ maps the unit disk D onto a region in the right half-plane lying in a

domain which is starlike with respect to 1, and symmetric with respect to the real

axis. Recently, Ali et al. [18], gave a reformulation of a result given by Ma and

Minda [101]. For more literature on Fekete-Szegö problem one can refer [18,21,25,

123,145,151,202] and the references cited therein.

The subclasses of univalent functions are closely associated with functions having

positive real part. For example, if f ∈ A satisfies Re f ′(z) > 0, then f ∈ S, which

holds for any convex domain D. This in fact, leads us to introduce now the class of

functions with positive real part.

Carathéodory Class and Subordination

Let P be the class of analytic functions p : D→ C with p(0) = 1 and Re p(z) > 0 for

z ∈ D. This class is known as the Carathéodory class or the class of functions with

positive real part [40, 41]. The function p(z) = (1 + z)/(1 − z) belongs to the class

P and plays a vital role similar to the Koebe function for the class S. Let B be the

class of Schwarz functions that is w ∈ B if and only if w is an analytic function with
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w(0) = 0 and |w(z)| < 1 on D. The following correspondence between the classes B

and P holds:

p ∈ P if and only if w(z) =
p(z)− 1

p(z) + 1
∈ B.

Thus, the properties of functions in the class P can be inferred from those of the

class B and conversely. The Herglotz’s representation formula for a function p ∈ P

is given by

p(z) =

∫ 2π

0

1 + ze−it

1− ze−it
dµ(t) (z ∈ D), (1.1.2)

where µ is a non-decreasing function on [0, 2π] with µ(2π)− µ(0) = 1. The Equation

(1.1.2) immediately gives the growth and distortion estimates respectively

1 + |z|
1− |z|

≤ Re p(z) ≤ 1 + |z|
1− |z|

and |p′(z)| ≤ 2 Re p(z)

1− |z|2
≤ 2

(1− |z|)2

with equality holds for the function p(z) = (1+z)/(1−z). We shall discuss about the

various generalizations and related results of this class in Section 1.2 and in Chapter 5.

Herglotz’s representation formula (1.1.2) immediately shows that |cn| ≤ 2 for

p(z) = 1 + c1z + c2z
2 + · · · ∈ P . Another useful coefficient inequality [66] in this

context is provided below: ∣∣∣∣c2 − c21
2

∣∣∣∣ ≤ 2− |c1|
2

2
.

Ma and Minda [101], in 1982, proved the following result:

Lemma 1.1.1. [101] If p(z) = 1 + c1z + c2z
2 + . . . ∈ P, then

|c2 − vc21| ≤


−4v + 2 (v ≤ 0),

2 (0 ≤ v ≤ 1),

4v − 2 (v ≥ 1).

When v < 0 or v > 1, equality holds if and only if p(z) is (1 + z)/(1 − z) or one of

its rotations. If 0 < v < 1, then equality holds if and only if p(z) is (1 + z2)/(1− z2)

or one of its rotations. If v = 0, equality holds if and only if

p(z) =

(
1 + γ

2

)
1 + z

1− z
+

(
1− γ

2

)
1− z
1 + z

(0 ≤ γ ≤ 1, z ∈ D) (1.1.3)
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or one of its rotations. For v = 1, equality holds if and only if p(z) is the reciprocal

of one of the functions such that equality holds in case of v = 0. Also for 0 < v < 1,

the following improved estimate holds:

|c2 − vc21|+ v|c1|2 ≤ 2 (0 < v ≤ 1/2)

and

|c2 − vc21|+ (1− v)|c1|2 ≤ 2 (1/2 ≤ v < 1).

For a complex number v, the above inequality was proved by Koegh and Merkes [83]:

Lemma 1.1.2. [83](see also [149]) If p(z) = 1 + c1z + c2z
2 + . . . ∈ P, then, for any

complex number v,

|c2 − vc21| ≤ 2 max{1; |2v − 1|}

and the equality holds for the functions given by

p(z) =
1 + z2

1− z2
and p(z) =

1 + z

1− z
.

The Lemmas 1.1.1 and 1.1.2 have been extensively used by several researchers to

solve the Fekete-Szegö problem and several other coefficient problems. In Chapter 5

we shall provide an elaborated detail on this topic.

In general we express the analytic conditions associated with various subclasses

of S either in terms of functions with positive real part or subordination. For two

analytic functions f and g, we say that f is subordinate to g or g is superordinate to

f , denoted by f ≺ g, if there is an analytic function w ∈ B such that f(z) = g(w(z)).

If g is univalent, then f ≺ g if and only if f(0) = g(0) and f(D) ⊆ g(D). By

Schwarz lemma [62], it follows that |f ′(0)| ≤ |g′(0)| and the image of each disk

Dr := {z ∈ C : |z| < r, 0 ≤ r < 1} under g contains the image of the same disk under

f , i.e. f(Dr) ⊂ g(Dr). This fact is known as subordination principle or Lindelöf

principle. The concept of subordination was given by Lindelöf [63], while Littlewood

[95,96] and Rogosinski [154,155] investigated it further. In terms of subordination,

p ∈ P if and only if p(z) ≺ (1 + z)/(1 − z). Consequently if f ≺ g in Dr, we have

max|z|≤r |f(z)| ≤ max|z|≤r |g(z)|. For some other direct implications one may refer

[138,138].
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1.2 Subclasses of Univalent Functions

If a function f ∈ A satisfies Re f ′(z) > 0 in D, then the estimate |cn| ≤ 2 for functions

p(z) = 1 +
∑∞

n=1 cnz
n ∈ P immediately yields |an| ≤ 2/n, n ≥ 1. Therefore one can

expect an easy proof of the coefficient estimate by imposing additional geometric

conditions on functions belonging to S. For this purpose we shall here define certain

geometric domains and the related classes. A domain D ⊂ C is said to be starlike

with respect to a point z0 ∈ D if the line segments joining z0 to other points w ∈ D

lie entirely in D. The domain D is said to be convex if it is starlike with respect

to all its points; that is the line segment joining any two points of D lies entirely in

D. A domain which is starlike with respect to the origin is called starlike domain. A

function is said to be starlike if it maps D onto a starlike domain whereas a convex

function is one which maps D onto a convex domain. The subclasses of S consisting

of starlike and convex functions are denoted by S∗ and K respectively. Obviously,

each convex function is starlike but not conversely and the inclusion K ⊂ S∗ ⊂ S

holds. For example, the Koebe function k(z) = z(1− z)−2 is starlike but not convex.

Thus, the problem of computing the radius of convexity of starlike functions arises

here, which is to find the largest disk Dr ⊂ D such that f(Dr) is convex whenever f

is starlike on the unit disk D. In general, for two sub-families T1 and T2 of A, the

T1−radius of T2 is the largest number ρ such that r−1f(rz) ∈ T1 for all f ∈ T2 and

0 < r ≤ ρ. The number ρ is called the T1 radius of the class T2. Results related to

radius problems are provided in [62].

Analytically, f ∈ S∗ iff zf ′/f ∈ P and f ∈ K iff 1 + zf ′′/f ′ ∈ P . In terms of

subordination, the conditions for starlikeness and convexity of functions in S can be

written as

zf ′(z)

f(z)
≺ 1 + z

1− z
and 1 +

zf ′′(z)

f ′(z)
≺ 1 + z

1− z

respectively. The classes of starlike and convex functions were generalized by Robert-

son [152] in 1936. The classes of starlike and convex functions of order α (0 ≤ α < 1)
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are defined by the following expressions respectively:

S∗(α) :=

{
f ∈ S :

zf ′(z)

f(z)
≺ 1 + (1− 2α)z

1− z

}
or equivalently

S∗(α) :=

{
f ∈ S : Re

(
zf ′(z)

f(z)

)
> α

}
and

K(α) :=

{
f ∈ S : 1 +

zf ′′(z)

f ′(z)
≺ 1 + (1− 2α)z

1− z

}
or equivalently

K(α) :=

{
f ∈ S : Re

(
1 +

zf ′′(z)

f ′(z)

)
> α

}
.

The functions f(z) = z/(1− z)2−2α and

f(z) =


1−(1−z)2α−1

2α−1 , α 6= 1/2;

− log(1− z), α = 1/2

play the role of extremal functions for the classes S∗(α) and K(α) respectively. The

class of strongly starlike functions of order η (0 < η ≤ 1) is defined by

SS∗(η) :=

{
f ∈ S :

zf ′(z)

f(z)
≺
(

1 + z

1− z

)η}
=

{
f ∈ S :

∣∣∣∣arg
zf ′(z)

f(z)

∣∣∣∣ ≤ ηπ

2

}
.

This class was introduced by Brannan and Kirwan [28] and Stankiewicz [191]. Janows-

ki [76] (see also [137]) generalized the classes of starlike and convex functions of order

α by replacing the superordinate function (1 + z)/(1 − z) with (1 + Az)/(1 + Bz).

For −1 ≤ B < A ≤ 1, the class S∗[A,B] of Janowski starlike functions and the class

K[A,B] of Janowski convex functions are defined respectively by

S∗[A,B] :=

{
f ∈ S :

zf ′(z)

f(z)
≺ 1 + Az

1 +Bz

}
and

K[A,B] :=

{
f ∈ S : 1 +

zf ′′(z)

f ′(z)
≺ 1 + Az

1 +Bz

}
.

In all the classes defined above, functions are characterized by the quantity either

zf ′(z)/f(z) or 1 + (zf ′′(z)/f ′(z)) lying in a convex region on the right half-plane
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and this motivated Ma and Minda [101] to give a general and unified presentation

of various subclasses of starlike and convex functions. For this purpose, they have

considered the function ϕ ∈ P such that ϕ′(0) > 0 and ϕ(D) is starlike with respect to

ϕ(0) = 1, which is symmetric with respect to the real axis. The class S∗(ϕ) consists

of functions f ∈ S such that zf ′(z)/f(z) ≺ ϕ(z) and K(ϕ) be the class of functions

f ∈ S such that 1+zf ′′(z)/f ′(z) ≺ ϕ(z). Ma and Minda [101] proved growth, distor-

tion, covering and coefficient estimates for functions in these classes. The Hadamard

product (or convolution), which is defined by (f ∗g)(z) = z+
∑∞

n=2 anbnz
n for analytic

functions f(z) = z+
∑∞

n=2 anz
n and g(z) = z+

∑∞
n=2 bnz

n, is an important tool used

to generalize and unify results in univalent function theory. Padmanabhan [132]

used convolution and subordination to unify these classes and proved convolution

theorems. Another generalization of starlike and convex functions was considered by

Mocanu [110]. The notion of α−convex functions was introduced by Mocanu [110],

in 1963, with the aim to construct one parameter family of subclasses of S which

provides a continuous passage from the starlike functions to convex functions. A

function f ∈ A is said to be α−convex if

Re

(
(1− α)

(
zf ′(z)

f(z)

)
+ α

(
1 +

zf ′′(z)

f ′(z)

))
> 0.

The class of all such functions is denoted byM(α). Miller et al. [106], in 1973, proved

that functions belonging toM(α) are starlike for all real α and convex for α ≥ 1. For

more detail, about this class, see [62,66]. The classM(α) was further generalized by

Ali et al. [21], by introducing the class M(α, ϕ) of α-convex functions with respect

to ϕ consisting of functions f ∈ A satisfying

(1− α)
zf ′(z)

f(z)
+ α

(
1 +

zf ′′(z)

f ′(z)

)
≺ ϕ(z).

The classM(α, ϕ) includes the classesM(α) :=M(α, (1+(1−2α)z)/(1−z)), S∗(ϕ)

and K(ϕ).

There is a two way bridge between the class of starlike functions and the class of

convex functions, namely f ∈ K if and only if zf ′ ∈ S∗, which is known as Alexander

theorem [6]. Since zf ′(z) = f(z) ∗ z/(1− z)2, it follows that f is convex if and only
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if f(z) ∗ z/(1− z)2 is starlike. Further if take g(z) = z/(1− z)2 and h(z) = z/(1− z),

then (f ∗ g)(z)/(f ∗ h)(z) = zf ′(z)/f(z). For the functions g(z) = (z + z2)/(1 − z)3

and h(z) = z/(1− z)2, it can be easily verified that

(f ∗ g)(z)

(f ∗ h)(z)
= 1 +

zf ′′(z)

f ′(z)
.

This very idea paved the path for researchers to consider the subordinations of the

form either (f ∗g)(z)/(f ∗h)(z) ≺ (1+z)/(1+z) or even a more general representation

(f ∗ g)(z)/(f ∗ h)(z) ≺ ϕ(z), where ϕ ∈ P is an analytic function in D. For a given

function g ∈ A, Shanmugam [164] introduced the class Kαg (h) consisting of functions

f ∈ A such that

α

(
1 +

z(g ∗ f)′′(z)

(g ∗ f)′(z)

)
+ (1− α)

z(g ∗ f)′(z)

(g ∗ f)(z)
≺ h(z),

where h(0) = 1 and h is a convex univalent function with positive real part and

the definition explicitly assumes that (g ∗ f)(z)/z 6= 0 6= (g ∗ f)′(z) in D. The

class M(α, ϕ), introduced by Ali et al. [21], is more general than the class Kαg (h) in

the sense that ϕ is starlike whereas h is convex. Shanmugam [164] also introduced

some more classes and discussed convolution and inclusion properties of all those

classes. Supramaniam et al. [194], in 2009, generalized the classes introduced by

Shanmugam [164] and obtained the inclusion and convolution properties using the

methods of convex hull and subordination. Note that starlikeness of ϕ, in the classes

defined above, is required to prove the distortion and growth estimates whereas ϕ

need to be convex in order to get the convolution theorem. Furthermore there is no

such requirement if one is interested to obtain the coefficient estimate, see [18]. We

shall use this fact in Chapter 5 to derive estimate on Fekete-Szegö functional. For

several applications and open questions related to convolution one may refer [75,159].

Apart from the above stated classes, the other prominent subclasses of S include

the class of close-to-convex functions introduced by Kaplan [80] and the class of

φ-like functions introduced by Brickman [33]. A function f ∈ A is said to be close-

to-convex if there exists a convex function g (not necessarily normalized) such that

Re(f ′(z)/g′(z)) > 0. The class of such functions is denoted by CC. In view of the
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Alexander theorem [6], the function F (z) = zg′(z) is starlike, it follows that the

condition in the definition of the class CC becomes Re(zf ′(z)/F (z)) > 0. Thus every

starlike function is close-to-convex and the inclusion relation K ⊂ S∗ ⊂ CC ⊂ S

holds. The class of φ-like functions is a generalization of the class of close-to-convex

and starlike functions. Let φ be an analytic function in a domain containing f(D)

such that φ(0) = 0 and φ(w) 6= 0 for w ∈ f(D) \ {0}. Then the function f ∈ A

is said be φ−like function if Re(zf ′(z)/φ(f(z))) > 0. The class of φ−like function

was further generalized by Ruscheweyh [161]. For a given univalent function q with

q(0) = 1, a function f ∈ A is said to be φ−like with respect to q, if the subordination

zf ′(z)/φ(f(z)) ≺ q(z) holds. The class of φ−like functions is extensively studied by

several researchers including [68,148,166]. Inspired by several geometrically defined

classes of functions in the univalent function theory, Sokó l and Stankiewicz [185]

introduced the class of functions f ∈ A such that zf ′(z)/f(z) lies in the region

bounded by the right-half of the lemniscate of Bernoulli given by |w2 − 1| < 1. This

class is denoted by S∗L = {f ∈ A : |(zf ′(z)/f(z))2 − 1| < 1}. Functions in the class S∗L
are called Sokó l-Stankiewicz starlike functions. Rønning [156] introduced the class

S∗P of parabolic starlike functions which is given by

S∗P :=

{
f ∈ A : Re

(
zf ′(z)

f(z)

)
>

∣∣∣∣zf ′(z)

f(z)
− 1

∣∣∣∣} .
Obviously S∗P = S∗(ϕ) when ϕ(z) = 1 + (2/π2)(log(1 −

√
z)/(1 +

√
z))2. For more

insight into the results related to parabolic starlike functions one may refer to [16,

64,157].

Bi–Univalent Functions

Since univalent functions are one-to-one, they are invertible but their inverse functions

need not be defined on the entire unit disk D. However, the famous Koebe’s one-

quarter theorem ensures that the image of D under every function f ∈ S contains a

disk of radius 1/4. Thus the inverse of every function f ∈ S will be defined on the
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disk |z| < 1/4. It can be easily verified that

f−1(w) = w − a2w2 + (2a22 − a3)w3 − (5a22 − 5a2a3 + a4)w
4 + · · · (1.2.1)

is defined on the disk |w| < 1/4. A bi-univalent function is a univalent function

defined on the unit disk D for which the inverse function has a univalent extension to

the unit disk D.

A function in S is said to be in σ, the class of bi-univalent functions iff its inverse

has a unique extension to the unit disk D i.e. if f ∈ S is said to be in σ if and

only if f−1 ∈ S. In 1967, Lewin [93] introduced the class σ of bi-univalent functions

and showed that the second coefficient of every function f ∈ σ satisfies the non-

sharp inequality |a2| ≤ 1.51. Some examples of functions which belong to the class

σ are z/(1 − z), − log(1 − z), and (1/2)(log(1 + z)/(1 − z)). However the functions

k(z) = z/(1 − z)2, z − z2/2 and z/(1 − z2) are not members of the class σ. We now

enlist a few subclasses of σ. For 0 ≤ β < 1, a function f ∈ σ is said to be respectively

in the class S∗σ(β) of bi-starlike functions of order β and Kσ(β) of bi-convex functions

of order β whenever both f and f−1 are respectively starlike and convex functions of

order β. For 0 < α ≤ 1, the function f ∈ σ is strongly bi-starlike function of order α

if both the functions f and f−1 are strongly starlike functions of order α, the class

of all such functions is denoted by SS∗σ(α). The classes S∗σ(β), Kσ(β) and SS∗σ(α)

were introduced by Brannan and Taha [30] in 1985 (see also [29]), they obtained

estimate on the initial coefficients a2 and a3 for functions belong to these classes.

Smith [182] proved that if f(z) = z + a2z
2 + a3z

2 with a2, a3 ∈ R, is bi-univalent,

then |a2| ≤ 2/
√

27 and |a3| ≤ 4/27. He also conjectured that for Vn, the set of all

bi-univalent polynomials of the form f(z) = z+a2z
2 +a3z

2 + · · ·+anz
n, the following

estimate must hold:

max
Vn
|an| ≤

(n− 1)n−1

nn
.

Kedzierawski and Waniurski [82] validated this conjecture for n = 3, 4. Kedzieraws-

ki [81] considered the cases when f and f−1 belong to different subclasses of univalent

functions, and determined the estimates on a2 and a3. Similar problems for functions

in certain classes defined by subordination are studied in Chapter 6.
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Functions with Fixed Second Coefficient

In GFT, finding the estimate for coefficients of functions in a specific class plays an

important role, as it reveals the geometric nature of the function. For example, the

bound for second coefficient of functions in the class S gives the growth, distortion

and covering theorems. These applications of estimate on second coefficient in case of

univalent functions attracted several researcher to explore the properties of functions

with fixed second coefficient. Here below we shall give some classes of functions

with fixed second coefficient. It is well known that if p(z) = 1 + b1z + · · · ∈ P ,

then |b1| ≤ 2. Further if τ = e−i arg b1 , then p(τz) = 1 + |b1|z + · · · ∈ P . Thus,

there is no loss of generality in taking b1 to be non-negative, see [103, 104]. The

class of univalent functions of the form f(z) = z + a2z
2 + · · · with fixed second

coefficient a2 = 2b (|b| ≤ 1) is denoted by Sb. The investigation of properties of

functions with fixed second coefficients started in 1920 with Gronwall’s [67] growth

and distortion theorems for functions in Sb. The class Pb(α) is the collection of

functions p(z) = 1 + 2b(1 − α)z + · · · (|b| ≤ 1), which are analytic and satisfying

Re(p(z)) > α (|b| ≤ 1) for z ∈ D. Assume Pb := Pb(0). Tepper [197] obtained the

sharp estimate on |p(z)| and sharp lower bound on Re(p(z)) for the class Pb. These

results were further generalized by McCarty [103] in 1972, for functions in the class

Pb(α). For p ∈ Pb(α) the sharp lower bound on Re(zp′(z)/p(z)) was obtained by

McCarty [104]. For −1 ≤ B < A ≤ 1 and |b| ≤ 1, let Pb,n[A,B] denote the class of

functions defined by

Pb,n[A,B] :=

{
p : p(z) = 1 + b(A−B)zn + · · · ≺ 1 + Az

1 +Bz

}
.

For functions p ∈ Pb,n[A,B], Padmanabhan and Ganesan [131] obtained the sharp

estimates for |p(z)|, |p′(z)| and |zp′(z)/p(z)| under the conditions A + B ≥ 0 and

AB < 0. Further they utilized these results to obtain the sharp radius of convexity

for starlike functions of the form f(z) = z + an+1z
n+1 + · · · . For the functions

p ∈ Pb[A,B] := Pb,1[A,B], Tuan and Anh [198] obtained a sharp lower bound for

Re (µp(z) + νzp′(z)/p(z)) (µ, ν ≥ 0) and also obtained the radius of convexity for

functions in the class defined in terms of the ratio of normalized analytic functions
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satisfying certain geometric conditions, see [199].

For |b| ≤ 1, the classes defined by

S∗b (α) :=

{
f(z) = z + 2b(1− α)z2 + · · · : zf

′(z)

f(z)
∈ Pb(α)

}
and

Kb(α) :=

{
f(z) = z + b(1− α)z2 + · · · : 1 +

zf ′′(z)

f ′(z)
∈ Pb(α)

}
are called the classes of starlike and convex functions of order α (0 ≤ α < 1) with

fixed second coefficient respectively. For |b| ≤ 1, Tuan and Anh [198] also considered

more general classes

S∗b [A,B] =

{
f(z) = z + b(A−B)z2 + · · · : zf

′(z)

f(z)
∈ Pb

}
and

Kb[A,B] =

{
f(z) = z +

b(A−B)

2
z2 + · · · : 1 +

zf ′′(z)

f ′(z)
∈ Pb

}
and obtained the growth and distortion estimates for functions in these classes, in

fact these results generalize the results (growth and distortion estimates) of Tepper

[197]. Further contents related to this topic will be covered in Chapter 7.

1.3 Differential Subordination

The concept of differential subordination in the complex-plane is a generalization of

differential inequality on the real line. In fact a differential inequality or a set of

differential inequalities of a real function depicts the characterization or bound for

a real function. In GFT, there are several differential subordination implications,

which lead to the characterization of a function under consideration. The notations

and definitions related to differential subordination and differential superordination

are provided below:

Let ψ : C2×D→ C be analytic and φ be univalent in D. If p is analytic in D and

satisfies the first-order differential subordination

ψ(p(z), zp′(z); z) ≺ φ(z), (1.3.1)
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then p is called a solution of the differential subordination. The univalent function q

is called a dominant of the solutions of the differential subordination, or more simply

a dominant, if p ≺ q for all p satisfying (1.3.1). A dominant q̃ that satisfies q̃ ≺ q for

all dominants q of (1.3.1), is called the best dominant of (1.3.1). The best dominant

is unique up to a rotation of D.

Let ψ : C2×D→ C and φ be analytic in D. If p and ψ(p(z), zp′(z); z) are univalent

in D and satisfy the first-order differential superordination

φ(z) ≺ ψ(p(z), zp′(z); z). (1.3.2)

Then p is called a solution of the differential superordination. An analytic function

q is called a subordinant of the solutions of the differential superordination, or more

simply subordinant if q ≺ p for all p satisfying (1.3.2). A univalent subordinant q̃

that satisfies q ≺ q̃ for all subordinants q of (1.3.2) is said to be the best subordinant

of (1.3.2). The best subordinant is unique up to a rotation of D.

Definition 1.3.1. [105, Definition 2, p. 817] Denote by Q, the set of all functions f

that are analytic and injective on D \ E(f), where

E(f) = {ζ ∈ ∂D : lim
z→ζ

f(z) =∞},

and are such that f ′(ζ) 6= 0 for ζ ∈ ∂D \ E(f).

Lemma 1.3.1. [108, Theorem 3.4h, p. 132] Let q be univalent in D and let θ and φ

be analytic in a domain D ⊃ q(D) with φ(z) 6= 0, when z ∈ q(D).

Set Q(z) := zq′(z)φ(q(z)), h(z) := θ(q(z)) +Q(z) and suppose that either

(i) h is convex or Q is starlike univalent in D.

In addition, assume that

(ii) Re
(
zh′(z)
Q(z)

)
= Re

(
θ′(q(z))
φ(q(z))

+ zQ′(z)
Q(z)

)
> 0 for z ∈ D.

If p is analytic in D, with p(0) = q(0), p(D) ⊂ D and

θ(p(z)) + zp′(z)φ(p(z)) ≺ θ(q(z)) + zq′(z)φ(q(z)) = h(z), (1.3.3)

then p ≺ q and q is the best dominant.
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Lemma 1.3.2. [37, Corollary 3.2, p. 289] Let q be univalent in the unit disk D and

θ and q be analytic in a domain D ⊃ q(D). Suppose that Re(θ′(q(z))/φ(q(z))) > 0,

and Q(z) := zq′(z)φ(q(z)) is starlike univalent in D.

If p ∈ H[q(0), 1] ∩ Q, with p(D) ⊆ D, and θ(p(z)) + zp′(z)φ(p(z)) is univalent in

D, then

θ(q(z)) + zq′(z)φ(q(z)) ≺ θ(p(z)) + zp′(z)φ(p(z)), (1.3.4)

implies q ≺ p and q is the best subordinant.

The above mentioned results are required to obtain several sandwich theorems.

1.4 Linear Operators

Let us recall some definitions that are needed in sequel. A function f is called p-

valent (or multivalent of order p) in D if the equation f(z) = w0 has at most p

roots in D where the roots are counted with their multiplicities and for some w1

the equation f(z) = w1 has exactly p roots in D. Let H be the class of analytic

functions in D and H[a, n] be the subclass of H, consisting of functions of the form

f(z) = a + anz
n + an+1z

n+1 + · · · . Let A(p, n) be the class of analytic functions of

the form

f(z) = zp +
∞∑

k=n+p

akz
k (z ∈ D;n, p ∈ {1, 2, 3, . . .}). (1.4.1)

Clearly A(1, 1) =: A and let Ap := A(p, 1). Recall that the symbol ∗ denotes the

Hadamard product (or convolution), the convolution of two p-valent functions f(z) =

zp +
∑∞

k=p+1 akz
k and g(z) = zp +

∑∞
k=p+1 bkz

k is given by

(f ∗ g)(z) = zp +
∞∑

k=p+1

akbkz
k.

For complex numbers a and c (c 6= 0,−1,−2, . . .), the confluent (or Kummer)

hypergeometric function 1F1(a, c; z) is defined by

1F1(a, c; z) = 1 +
a

c

z

1!
+
a(a+ 1)

c(c+ 1)

z2

2!
+
a(a+ 1)(a+ 2)

c(c+ 1)(c+ 2)

z3

3!
+ · · · (z ∈ D). (1.4.2)



19

In terms of the Pochhammer symbol (a)n, which is defined by

(a)n :=
Γ(a+ n)

Γ(a)
=

 1, (n = 0);

a(a+ 1)(a+ 2) . . . (a+ n− 1), (n ∈ N := {1, 2, 3 . . .}),

the function defined in (1.4.2) can be written as

1F1(a, c; z) =
∞∑
k=0

(a)k
(b)k

zk

k!
. (1.4.3)

Let a, b and c (c 6= 0,−1,−2, . . .) are any complex numbers. Then the function

defined by the following series

2F1(a, b, c; z) =
∞∑
k=0

(a)k(b)k
(c)k

zk

k!
, (z ∈ D) (1.4.4)

is called the Gaussian hypergeometric function and it satisfies the hypergeometric

differential equation z(1− z)w′′(z) + (c− (a+ b+ 1))w′(z)− abw(z) = 0.

For αj ∈ C (j = 1, 2, . . . , l), βj ∈ C \ {0,−1,−2, . . .} (j = 1, 2, . . .m) and l ≤

m+ 1; l,m ∈ N0 := {0, 1, 2, . . .} the generalized hypergeometric function is defined by

the infinite series

lFm(α1, . . . , αl; β1, . . . , βm; z) :=
∞∑
n=0

(α1)n . . . (αl)n
(β1)n . . . (βm)n

zn

n!
.

Corresponding to the function

hp(α1, . . . , αl; β1, . . . , βm; z) := zp lFm(α1, . . . , αl; β1, . . . , βm; z), (1.4.5)

the Dziok-Srivastava operator [51] (see also [186]) H
(l,m)
p (α1, . . . , αl; β1, . . . , βm) is

defined by the Hadamard product as follows:

H(l,m)
p (α1, . . . , αl; β1, . . . , βm)f(z) := hp(α1, . . . , αl; β1, . . . , βm; z) ∗ f(z)

= zp +
∞∑

n=p+1

(α1)n−p . . . (αl)n−p
(β1)n−p . . . (βm)n−p

anz
n

(n− p)!
.

For brevity, we let H l,m
p [α1] = H

(l,m)
p (α1, . . . , αl; β1, . . . , βm). The Dziok-Srivastava

operator satisfies the following recurrence relation:

z(H l,m
p [α1]f(z))′ = α1H

l,m
p [α1 + 1]f(z)− (α1 − p)H l,m

p [α1]f(z).
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The operator H l,m
p [α1] generalizes several known operators. A few of them are listed

below:

1. The Hohlov operator [74] F(α, β, γ)f(z) := H2,1
1 (α, β; γ)f(z).

2. The Carlson-Shaffer linear operator [42]

L(α, γ)f(z) := H2,1
1 (α, 1; γ)f(z) =: F(α, 1, γ)f(z).

3. The Ruscheweyh operator [160]

Dλf(z) :=
z

(1− z)λ+1
∗ f(z) = H2,1

1 (λ+ 1, 1; 1)f(z) (λ ≥ 1).

4. The operator

F (z) =
c+ 1

zc

∫ z

0

tc−1f(t)dt

is called the generalized Bernardi-Libera-Livingston linear integral operator

(see [32,94,100]). For c = 1 this operator reduces to the operator

F (z) =
2

z

∫ z

0

f(t)dt,

introduced by Libera [94]. Clearly the generalized Bernardi-Libera-Livingston

operator can be written as F (z) = H2,1
1 (c+1, 1; c+2)f(z). Note that the classes

of starlike, convex and close-to-convex functions are closed under the generalized

Bernardi-Libera-Livingston operator [108].

5. The Srivastava-Owa fractional derivative operator (cf. [126], [130]) defined by

Ωλf(z) = Γ(2− λ)zλDλ
z f(z) = H

(2,1)
1 (2, 1; 2− λ)f(z),

where Dλ
z is defined by

Dλ
z f(z) =

1

Γ(2− λ)

d

dz

∫ z

0

f(ζ)

(z − ζ)λ
dζ.

Here f is an analytic function defined on a simply connected domain of the

complex plane containing the origin and the multiplicity of (z−ζ)1−λ is removed

by requiring log(z − ζ) to be real when z − ζ > 0. The operator Dλ
z is called

fractional derivative operator of order λ, 0 ≤ λ < 1.
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Prompted by the Komatu integral operator [87] and the differential and integral

operators defined by Sǎlǎgean [162], recently Cho and Kim [45] introduced a more

general linear operator called the multiplier transform defined as follows: For λ ≥ 0

and any integer n, the multiplier transform Inλ : A → A is defined by

Irλf(z) = z +
∞∑
k=2

(
k + λ

1 + λ

)r
akz

k.

The operator In1 was studied by Uralegaddi and Somantha [204]. The p−valent

analogue of multiplier transform defined by Cho and Kim [45], was given by Kumar

et al. [181] as follows:

Ip(r, λ)f(z) = zp +
∞∑

k=p+1

(
k + λ

p+ λ

)r
akz

k (λ ≥ 0, r ∈ Z).

The following recurrence relation satisfied by multiplier transform:

z(Ip(r, λ)f(z))′ = (p+ λ)Ip(r + 1, λ)f(z)− λIp(r, λ)f(z).

The operator

Irλ := I1(r, λ) = z +
∞∑
k=2

(
k + λ

1 + λ

)n
akz

k (λ ≥ 0, r ∈ Z)

was studied by Cho and Srivastava [46] and Cho and Kim [45]. Uralegaddi and So-

manatha [204] studied the operator Ir := I1(r, 1). Another special case of this is the

multiplier transform introduced by Al-Kharasani and Al-Areefi [23] which includes

operators defined in [89, 118] and [117] as well as the Jung-Kim-Srivastava opera-

tor [79] and its p-valent analogue of Liu [97]. The book written by Bulboacă [39]

offers an extensive collection of various results involving linear operators. For a survey

on linear operators, see [167]. In Chapter 3, we discuss the properties of functions

defined by certain linear operators.

1.5 Synopsis of the Thesis

The thesis is comprised of 7 chapters. It begins with an introductory chapter which

incorporates the basic definitions, terminologies and concepts that are required in
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the sequel. The next three chapters focus on subordination theorems, the subsequent

couple of chapters deals with coefficient estimates and the concluding chapter handles

radius problems for analytic functions with fixed second coefficient. We now enlist

below a chapter wise brief of the research study:

In Chapter 2, motivated by the works in [7, 9, 11, 133, 184], we shall establish

certain differential subordination implications. For analytic function p : D→ C with

p(0) = 1, the conditions on β 6= 0, A and B are determined in the following cases:

1. 1 + β zp
′(z)

pk(z)
≺ 1+Az

1+Bz
implies p(z) ≺

√
1 + z (−1 < k ≤ 3)

2. 1 + β zp
′(z)

pn(z)
≺
√

1 + z implies p(z) ≺ 1+Az
1+Bz

(n = 0, 1, 2)

3. p(z) + β zp
′(z)

pn(z)
≺
√

1 + z implies p(z) ≺
√

1 + z (n = 0, 1, 2)

4. p(z) + β zp
′(z)
p(z)
≺
√

1 + z implies p(z) ≺ 1+Az
1+Bz

(−1 ≤ B < A ≤ 1).

Recently Ali et al. [17] obtained condition on the constants A,B,D,E ∈ [−1, 1] and

β so that

1 + β
zp′(z)

pn(z)
≺ 1 +Dz

1 + Ez
⇒ p(z) ≺ 1 + Az

1 +Bz
(n = 0, 1).

Alternate proofs of these results are also provided in this chapter. Further we con-

cluded with the condition on A,B,D,E ∈ [−1, 1] and β such that

1 + β
zp′(z)

p2(z)
≺ 1 +Dz

1 + Ez
⇒ p(z) ≺ 1 + Az

1 +Bz
.

In recent times, numerous linear operators were introduced in GFT, many of

these linear operators are unified in this chapter by defining the class Op of all linear

operators which satisfy either of the recurrence relation

z[Lapf(z)]′ = αaL
a+1
p f(z)− (αa − p)Lapf(z)

or

z[Lbpf(z)]′ = αbL
b−1
p f(z)− (αb − p)Lbpf(z).
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In Chapter 3, the differential subordination, superordination and corresponding

sandwich results of p-valent analytic functions defined using the general linear op-

erator as well as a related integral transform are investigated. Further, these re-

sults are applied to obtain sufficient conditions for functions f ∈ A to be Janowski

starlike, strongly starlike of order η and lemniscate starlike. In addition to that

several other interesting applications are given. Our main results generalize several

existing known results in the literature. For example, Obradović [121, Theorem 2],

in 1997, proved that if f ∈ A satisfies Re f ′(z) > 0, then Re(f(z)/z) > 0. This

result was generalized as an application of our results. We have shown that: If

Re f ′(z) > (3α − 1)/2 (0 ≤ α < 1), then Re(f(z)/z) > α. This result reduces

to [121, Theorem 2] when α = 1/3. In addition to that several other interesting

applications are given which deal with the sufficient conditions for starlikeness.

Lupaş in two separate papers [4] and [5], introduced a new operator RIα(n, λ, l)

for functions f ∈ A and f ∈ An respectively as follows:

RIα(n, λ, l)f(z) = (1− α)Rnf(z) + αI(n, λ, l)f(z) (α ≥ 0),

where Rnf(z) and I(n, λ, l)f(z) are respectively the Ruscheweyh derivative and the

generalized multiplier transform. In Chapter 4, inspired by the operators considered

by Lupaş [2,4, 5], a generalized linear operator

Og,h(α)f(z) = (1− α)(f ∗ g)(z) + α(f ∗ h)(z) (α ∈ C)

is defined on the space of normalized analytic functions for each pair (g, h) of nor-

malized analytic functions. In this chapter differential subordination, differential

superordination and corresponding sandwich results involving the generalized linear

operator Og,h(α) are obtained. Some relevant connections of our results with earlier

work are also pointed out. Some special cases of our main results are:

a.) Let f ∈ A and F be defined by

F (z) =
c+ 1

zc

∫ z

0

tc−1f(t)dt.
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If Re c > −1 and

f ′(z) + (1− α)zf ′′(z) ≺ 1− (1− 2β)z

1− z
(β < 1),

then

F ′(z) + (1− α)zF ′′(z) ≺ 2(1− β) 2F1(1, c+ 1; c+ 2;−z) + 2β − 1. (1.5.1)

The function on the right of (1.5.1) is convex and is the best dominant. When

c = 0 and α = 1 the above result reduces to the result [108, Lemma 5.5k ] of

Miller and Mocanu.

b.) Let f ∈ A. If Re(f ′(z) + (1− α)zf ′′(z)) > β, then

Re

(
αf(z) + (1− α)zf ′(z)

z

)
> 2(β − 1) ln 2 + 2β − 1.

The above result generalizes the result of Owa et al. [99, Corollary 1] and for

α = 0, the result reduces to the result [69, Theorem 6] of Hallenbeck.

c.) If f ∈ A satisfies the inequality

Re(f ′(z) + (1− α)zf ′′(z)) >
3β − 1

2
(0 ≤ β < 1),

then

Re

(
αf(z) + (1− α)zf ′(z)

z

)
> β.

The later result coincides with the results [174, Example 3.5] of Kumar et al.

and [121, Theorem 2] of Obradović, for the choice of α = 0 and 1 respectively.

In the preceding chapters, we have discussed various differential subordination theo-

rems and derived several sufficient conditions for starlikeness and convexity. In the

subsequent couple of chapters, we shall discuss the problems related to the coefficient

estimates. In general this problem can be stated as “if a function f ∈ A satisfies

certain geometric property, then how does this fact affects its initial coefficients?”

In Chapter 5, estimate on the Fekete-Szegö functional |a3 − µa22| for normalized

analytic function f ∈ Mα,β
g,h (ϕ) is obtained. As a special case an alternate and com-

paratively easy proof of result [202, Theorem 1] proved by Tuneski and Darus is also

provided. Using our main results we have proved the following:
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Let f ∈ A and satisfies

f ′(z)

(
z

f(z)

)λ+1

≺ 1 + Cz

1 +Dz
,

then, for any complex number µ, we have

|a3 − µa22| ≤
C −D
2− λ

max

{
1;

∣∣∣∣D +
(1 + λ− 2µ)(λ− 2)(C −D)

(1− λ)2

∣∣∣∣} .
For C = 1 − 2a, 0 ≤ a < 1, 0 < λ < 1 and D = −1, this result reduces to [202,

Theorem 1] of Tuneski and Darus. Note that our proof is quite different from that

one given by Tuneski and Darus [202]. For a = 0, the above result reduces to [202,

Corollary 1] due to Tuneski and Darus. Setting C = k (0 < k ≤ 1) and D = 0 in the

above result, we obtain the result [202, Theorem 2] of Tuneski and Darus.

Similarly the Fekete-Szegö problems for two more classes Ng,h(α, ϕ) and Sαg (ϕ)

defined using Hadamard product and subordination are determined. Further, some

special cases of the main results are also discussed. Our result generalize several

results proved in [83,102,112,151,188,202].

For example, let α ≥ 0 and g(z) = z+
∑∞

n=2 gnz
n with g2, g3 non zero real numbers.

If f ∈ Sαg ((1 + z)/(1− z)), then, for any real number µ,

|a3 − µa22| ≤


1

(1+α)2|g3|

(
3+10α−α2

2α+1
− 4µg3

g22

)
if µ ≤ σ1;

1
(2α+1)|g3| if σ1 ≤ µ ≤ σ2;

1
(1+α)2|g3|

(
α2−10α−3

2α+1
+ 4µg3

g22

)
if µ ≥ σ2,

where

σ1 :=
(1 + 4α− α2)g22

2(2α + 1)g3
and σ2 :=

(3α + 1)g22
(2α + 1)g3

.

If we take g(z) = z +
∑∞

n=2 n
mzn,m = 0, 1, 2, 3, . . ., then this result reduces to [151,

Theorem 2] of Răducanu.

Chapter 6 deals with the estimates on the initial coefficients of bi-univalent func-

tions belonging to certain classes defined by subordination. We obtained the estimate

on initial coefficient a2 of bi-univalent functions belonging to the class Rσ(λ, ϕ) as

well as estimates on a2 and a3 for functions in the classes S∗σ(ϕ), the class of bi-starlike
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functions and Kσ(ϕ), the class of bi-convex functions. Some special cases of our main

results are also provided, which in fact reveals that our estimates are better than the

earlier existing estimates. For example, Brannan and Taha [29, Theorem 4.1] proved

the estimates |a2| ≤
√

1− β (0 ≤ β < 1) and |a3| ≤ 1 − β for functions f ∈ Kσ(β).

This result is improved in the following results:

a.) If f ∈ Kσ[β] (0 ≤ β < 1), then

|a2| ≤ 1− β and |a3| ≤
(1− β)(3− 2β)

3
.

b.) If f ∈ S∗σ[β] (0 ≤ β < 1), then

|a2| ≤


√

2(1− β), 0 ≤ β ≤ 1/2;√
(1− β)(3− 2β), 1/2 ≤ β < 1.

(1.5.2)

For functions in the class S∗σ(β) Brannan and Taha [29, Theorem 3.1] proved that

|a2| ≤
√

2(1− β). If we compare the result [29, Theorem 3.1] with the result |a2| ≤

2(1− β) for function f ∈ S∗(β), given by Robertson [152], we see that Brannan and

Taha’s estimate is better over the Robertson’s result only when 0 ≤ β ≤ 1/2. Also it

may be noted that our estimate for a2 given in (1.5.2) improves the estimate given by

Brannan and Taha [29, Theorem 3.1]. Further actuated by the work of Kedzierawski

[81], we obtained the estimates on initial coefficients a2 and a3, when f and f−1

belong to different subclasses of univalent functions. For example, if function f is

ϕ−starlike (ϕ−convex) and f−1 is ϕ−convex (ϕ−starlike), the estimates on a2 and

a3 are obtained.

Chapter 7 handles the radius problems for analytic functions with fixed second

coefficient. Motivated by the works in [10, 59, 131, 172, 197, 199], in this chapter,

we consider the functions with fixed second coefficient in the following cases:

1. Re(f(z)/g(z)) > 0, where Re(g(z)/z) > 0.

2. Re(f(z)/g(z)) > 0, where Re(g(z)/z) > 1/2.
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3. |f(z)/g(z)− 1| < 1, where Re(g(z)/z) > 0 or g is convex.

4. |f ′(z)/g′(z)− 1| < 1, where g is univalent or starlike or convex.

We generalize the results proved by Ali et al. [10]. We have obtained the sharp radii

of starlikeness of order α, parabolic starlikeness and Sokó l-Stankiewicz starlikeness

for functions with fixed second coefficient.





Chapter 2

Sufficient Conditions for Starlike

Functions Associated with the

Lemniscate of Bernoulli

2.1 Introduction

Motivated by the fact that each convex function is starlike of order half, in 1969, Mo-

canu [63] introduced the concept of α-convex function, which provides a continuous

passage from the starlike functions to convex functions. In 1973, Miller et al. [106]

proved that α–convex functions are starlike for all real α and convex for α ≥ 1. In-

spired by the paper [106], in 1999, Silverman [170] considered a class of normalized

analytic functions involving an expression which is the quotient of the analytic rep-

resentations of convex and starlike functions. For 0 < b ≤ 1, he introduced the class

Gb defined by

Gb :=

{
f ∈ A :

∣∣∣∣zf ′′(z)/f ′(z)

zf ′(z)/f(z)
− 1

∣∣∣∣ < b

}
and proved that the functions in the class Gb are starlike of order 2/(1+

√
1 + 8b), that

is the inclusion Gb ⊂ S∗(2/(1+
√

1 + 8b) holds. Further, Obradović and Tuneski [125]

The contents of this chapter appeared in [173].

29
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improved this result by proving Gb ⊂ S∗[0,−b] ⊂ S∗(2/(1 +
√

1 + 8b). Silverman

proved that G1 6⊂ K, G1 ⊂ S∗(1/2) \ K and Gb ⊂ K (b ≤
√

2/2). Further he discussed

the radius of convexity problem for the class Gb. Tuneski [201] obtained conditions on

A,B and b so that Gb ⊂ S∗[A,B] (−1 ≤ B < A ≤ 1) holds. Earlier, in 1999, inspired

by the work of Silverman [170], Nunokawa et al. [120] obtained sufficient conditions

for functions in the class Gb to be strongly starlike, strongly convex and starlike. We

notice that by setting p(z) = zf ′(z)/f(z) (f ∈ A), the inclusion Gb ⊂ S∗[A,B] can

be written as

1 +
zp′(z)

p2(z)
≺ 1 + bz ⇒ p(z) ≺ 1 + Az

1 +Bz
.

Indeed, the above implication is a special case of the following

1 +
zp′(z)

p2(z)
≺ 1 +Dz

1 + Ez
⇒ p(z) ≺ 1 + Az

1 +Bz
.

Consider another result proved by Frasin and Darus [57]

(zf(z))′′

f ′(z)
− 2zf ′(z)

f(z)
≺ (1− α)z

2− α
⇒
∣∣∣∣z2f ′(z)

f 2(z)
− 1

∣∣∣∣ < 1− α (f ∈ A, 0 ≤ α < 1).

By setting p(z) = z2f ′(z)/(f(z))2 (f ∈ A), it can be easily seen that the above result

is a particular case of the implication

1 +
zp′(z)

p(z)
≺ 1 +Dz

1 + Ez
⇒ p(z) ≺ 1 + Az

1 +Bz
.

The above results motivated Ali et al. [17] to formulate a general approach to discuss

differential subordination results. For a function p analytic in D with p(0) = 1, they

obtained the conditions on A,B,D,E ∈ [−1, 1] and β so that

1 + β
zp′(z)

pn(z)
≺ 1 +Dz

1 + Ez
⇒ p(z) ≺ 1 + Az

1 +Bz
(n = 0, 1).

In the similar direction, in 2012, Ali et al. [9] determined sufficient conditions for

p(z) ≺
√

1 + z, whenever either the following

1 + β
zp′(z)

pn(z)
≺
√

1 + z (n = 0, 1, 2) or (1− β)p(z) + βp2(z) + βzp′(z) ≺
√

1 + z

holds.
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Motivated by the works in [7,9,11,133,184], in Section 2.2, we have determined

condition on β so that p(z) ≺
√

1 + z, whenever either of the following subordinations

1 + β
zp′(z)

pk(z)
≺ 1 + Az

1 +Bz
(−1 < k ≤ 3) and p(z) + β

zp′(z)

pn(z)
≺
√

1 + z (n = 0, 1, 2)

hold. Similarly, condition on β is determined so that p(z) ≺ (1 + Az)/(1 + Bz),

whenever 1 + βzp′(z)/pn(z) ≺
√

1 + z (n = 0, 1, 2). At the end of Section 2.2 the

implication p(z) + βzp′(z)/p(z) ≺
√

1 + z implies p(z) ≺ (1 + Az)/(1 + Bz) is also

considered. In Section 2.3, we have given alternative proofs of the results [17, Lemma

2.1, 2.10]. Further, this section is concluded with some conditions on the parameters

A,B,D,E ∈ [−1, 1] and β such that

1 + β
zp′(z)

p2(z)
≺ 1 +Dz

1 + Ez
⇒ p(z) ≺ 1 + Az

1 +Bz
.

To prove our main results of this chapter, we require the following results in

addition to Lemma 1.3.1.

Lemma 2.1.1. [108, Corollary 3.4h1, p. 135] Let q be univalent in D, and let φ be

analytic in a domain D containing q(D). Let zq′(z)φ(q(z)) be starlike in D. If p is

analytic in D, p(0) = q(0) and satisfies zp′(z)φ(p(z)) ≺ zq′(z)φ(q(z)), then p ≺ q and

q is the best dominant.

Lemma 2.1.2. [108, Corollary 3.4a, p. 120] Let q be analytic in D, and let φ be

analytic in a domain D containing q(D) and suppose Reφ(q(z)) > 0 and either q

is convex, or Q(z) = zq′(z)φ(q(z)) is starlike in D. If p is analytic in D, with

p(0) = q(0), p(D) ⊂ D and p(z) + zp′(z)φ(p(z)) ≺ q(z), then p ≺ q.

2.2 Conditions for Sokó l-Stankiewicz Starlikeness

Throughout this chapter, we shall assume that β is a non-zero real number until fur-

ther specified. In the first result, condition on β is obtained so that the subordination

1 + β
zp′(z)

pk(z)
≺ 1 + Az

1 +Bz
implies p(z) ≺

√
1 + z (−1 < B < A ≤ 1).
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Theorem 2.2.1. Assume that −1 < B < A ≤ 1, |β| ≥ 2(k+3)/2(A − B) + |Bβ| and

−1 < k ≤ 3. If p is an analytic function defined on D with p(0) = 1, and satisfying

the subordination

1 + β
zp′(z)

pk(z)
≺ 1 + Az

1 +Bz
, (2.2.1)

then p(z) ≺
√

1 + z.

Proof. Let q(z) =
√

1 + z, and consider the function Q : D→ C defined by

Q(z) := β
zq′(z)

qk(z)
=

βz

2(1 + z)(k+1)/2
.

From the definition of Q, we have

zQ′(z)

Q(z)
:= 1− k + 1

2

z

1 + z
.

Since the function z/(1 + z) maps the unit disk onto the plane Rew < 1/2, it follows

that

Re

(
zQ′(z)

Q(z)

)
> 1− k + 1

4
≥ 0,

for −1 < k ≤ 3, and hence Q is starlike in D. Consider the subordination

1 + β
zp′(z)

pk(z)
≺ 1 + β

zq′(z)

qk(z)
.

The above subordination can be written as 1 + zp′(z)φ(p(z)) ≺ 1 + zq′(z)φ(q(z)) by

defining φ(w) = β/wk. Thus all conditions of Lemma 2.1.1 are satisfied and hence

p(z) ≺ q(z). In order to prove our result, we need to show the following:

1 + Az

1 +Bz
≺ 1 +

βzq′(z)

qk(z)
= 1 +

βz

2(1 + z)(k+1)/2
:= h(z).

To prove this, let us consider the function

w = Φ(z) =
1 + Az

1 +Bz
.

Then, we have

Φ−1(w) =
w − 1

A−Bw
.

Since the subordination Φ(z) ≺ h(z) is equivalent to z ≺ Φ−1(h(z)), now it is enough

to show that |Φ−1(h(eit))| ≥ 1,−π ≤ t ≤ π.
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Note that

Φ−1(h(z)) =
h(z)− 1

A−Bh(z)

=
βz

2(A−B)(1 + z)(k+1)/2 − βBz
.

For z = eit,−π ≤ t ≤ π, we have

|Φ−1(h(eit))| ≥ |β|
2(A−B)(2 cos(t/2))(k+1)/2 + |Bβ|

=: g(t).

Now g′(t) = 0 implies t = 0. Since

g′′(0) =
2
k−5
2 (A−B)(1 + k)|β|

(
2

5+k
2 (A−B) + 2|βB|

)
(

2
k+3
2 (A−B) + |βB|

)3 > 0,

it follows by second derivative test that g(t) attains its minimum at t = 0 and

g(0) =
|β|

2(k+3)/2(A−B) + |Bβ|
.

Also g(π) = g(−π) = 1/|B|. Now it is easy to see that

min
|t|≤π

g(t) = {g(π), g(−π), g(0)} = g(0),

and g(0) ≥ 1 for |β| ≥ 2(k+3)/2(A−B) + |Bβ|. This completes the proof.

Theorem 2.2.2. Assume that (A−B)β ≥
√

2(1+ |B|)2+(1−B)2. If p is an analytic

function defined on D with p(0) = 1, and satisfying the subordination

1 + βzp′(z) ≺
√

1 + z,

then

p(z) ≺ 1 + Az

1 +Bz
(−1 ≤ B < A ≤ 1).

Proof. Let q : D→ C be defined by

q(z) =
1 + Az

1 +Bz
(−1 ≤ B < A ≤ 1),

and consider the function

Q(z) = βzq′(z) =
β(A−B)z

(1 +Bz)2
.
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Then the function q is univalent in the unit disk D and from the definition of Q, we

have
zQ′(z)

Q(z)
=

1−Bz
1 +Bz

.

Since

Re

(
zQ′(z)

Q(z)

)
= Re

(
(1−Bz)(1 +Bz̄)

|1 +Bz|2

)
=

1−B2|z|2

|1 +Bz|2
> 0 (−1 ≤ B < 1, z ∈ D),

it follows that the function Q is starlike in D. Now it is easy to see that the subordina-

tion 1 +βzp′(z) ≺ 1 +βzq′(z) can be written as 1 + zp′(z)φ(p(z)) ≺ 1 + zq′(z)φ(q(z))

by defining φ(w) = β. Thus all conditions of Lemma 2.1.1 are fulfilled, and that the

subordination

1 + βzp′(z) ≺ 1 + βzq′(z)

implies p(z) ≺ q(z). Now in order to prove our theorem we need to show that the

following subordination must holds:

√
1 + z ≺ 1 + βzq′(z) = 1 + β

(A−B)z

(1 +Bz)2
=: h(z).

For this purpose, let w = Φ(z) =
√

1 + z. Then Φ−1(w) = w2 − 1. Since the sub-

ordination Φ(z) ≺ h(z) is equivalent to the subordination z ≺ Φ−1(h(z)), it fol-

lows that in order to prove the result, it is enough to show that the inequality

|Φ−1(h(eit))| ≥ 1,−π ≤ t ≤ π holds.

For z = eit (−π ≤ t ≤ π), we have

|Φ−1(h(eit))| =

∣∣∣∣∣
(

1 + β
(A−B)eit

(1 +Beit)2

)2

− 1

∣∣∣∣∣
≥

∣∣∣∣1 + β
(A−B)eit

(1 +Beit)2

∣∣∣∣2 − 1 ≥ 1

provided the following inequality holds:∣∣∣∣1 + β
(A−B)eit

(1 +Beit)2

∣∣∣∣ ≥ √2. (2.2.2)

For the above inequality to hold we should show that the minimum of the left side

expression of the above inequality must be greater than or equal to
√

2, and for this
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we consider the expression∣∣∣∣1 + β
(A−B)eit

(1 +Beit)2

∣∣∣∣ =
|1 + (2B + β(A−B))eit +B2e2it|

|1 + 2Beit +B2e2it|

≥Re(2B + β(A−B) +B2eit + e−it)

1 + 2|B|+B2

=
2B + β(A−B) + (1 +B2)x

(1 + |B|)2
= g(x),

where x = cos t,−1 ≤ x ≤ 1. It is easy to verify that g(x) ≥ g(−1) for −1 ≤ x ≤ 1.

Thus the inequality in (2.2.2) holds if g(−1) ≥
√

2, that is, if the following inequality

holds:
2B + β(A−B)− (1 +B2)

(1 + |B|)2
≥
√

2

or equivalently, if the inequality (A − B)β ≥
√

2(1 + |B|)2 + (1 − B)2 holds. This

establishes the theorem.

Theorem 2.2.3. Let p be an analytic function defined on D with p(0) = 1, and

satisfying the subordination

1 + β
zp′(z)

p(z)
≺
√

1 + z. (2.2.3)

If the conditions 0 ≤ B < A < 1 and β ≤ (1−
√

2)(1− A)(1−B) hold, then

p(z) ≺ 1 + Az

1 +Bz
.

Proof. Define the function q : D→ C by q(z) = (1 +Az)/(1 +Bz), and consider the

function

Q(z) :=
βzq′(z)

q(z)
=

β(A−B)z

(1 + Az)(1 +Bz)
.

From the definition of Q, differentiating logarithmically, we have

zQ′(z)

Q(z)
=

1− ABz2

(1 + Az)(1 +Bz)
.

Now in order to prove that Q is starlike, we have to show that Re(zQ′(z)/Q(z)) > 0

in the unit disk D. For this, we consider

Re

(
1− ABz2

(1 + Az)(1 +Bz)

)
= Re

(
(1− ABz2)(1 + Az̄)(1 +Bz̄)

|(1 + Az)(1 +Bz)|2

)
.
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Since denominator of the expression in the right hand side is always positive, it

remains only to show that Re((1− ABz2)(1 + Az̄)(1 +Bz̄)) > 0, and this is evident

from

Re(1− ABz2)(1 + Az̄)(1 +Bz̄) = 1− A2B2|z|4 + (A+B)(1− AB|z|2) Re z)

= (1− AB|z|2)(1 + AB|z|2 + (A+B) Re z)

≥ (1− AB|z|2)(1 + AB|z|2 − |A+B||z|).

Since (1 − AB|z|2)(1 + AB|z|2 − |A + B||z|) > 0 in all the cases whether A + B is

positive or negative or zero, it follows that Q is starlike in D. Since the subordination

1 + β
zp′(z)

p(z)
≺ 1 + β

zq′(z)

q(z)

can be written as 1 + zp′(z)φ(p(z)) ≺ 1 + zq′(z)φ(q(z)) by defining φ(w) = β/w, and

Q(z) = zq′(z)/q(z) is starlike in D, it follows from Lemma 2.1.1 that p(z) ≺ q(z).

Now in order to prove our theorem we need to show the following subordination:

√
1 + z ≺ 1 + β

zq′(z)

q(z)
= 1 +

β(A−B)z

(1 + Az)(1 +Bz)
=: h(z).

For this purpose, let w = Φ(z) =
√

1 + z. Then Φ−1(w) = w2 − 1. Since the subordi-

nation Φ(z) ≺ h(z) is equivalent to the subordination z ≺ Φ−1(h(z)), it is enough to

show |Φ−1(h(eit))| ≥ 1, −π ≤ t ≤ π.

For z = eit,−π ≤ t ≤ π, we have

∣∣Φ−1(h(eit))
∣∣ =

∣∣∣∣∣
(

1 +
β(A−B)eit

(1 + Aeit)(1 +Beit)

)2

− 1

∣∣∣∣∣ ≥ 1

provided that the following inequality holds:∣∣∣∣1 +
β(A−B)eit

(1 + Aeit)(1 +Beit)

∣∣∣∣ ≥ √2.

Now consider the expression in the left hand side of the above inequality∣∣∣∣1 +
β(A−B)eit

(1 + Aeit)(1 +Beit)

∣∣∣∣ ≥1 + (A−B)β Re

(
eit

(1 + Aeit)(1 +Beit)

)
=1 + (A−B)β

A+B + (1 + AB)x

(1 + A2 + 2Ax)(1 +B2 + 2Bx)
= g(x),
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where x = cos t. Since −1 ≤ x ≤ 1, it follows that g(x) ≥ g(−1) for 0 ≤ B < A < 1.

Now by a simple computation, we obtain g(−1) ≥
√

2 for β ≤ (1−
√

2)(1−A)(1−B).

Thus Φ(z) ≺ h(z) and this completes the proof.

Theorem 2.2.4. Assume that −1 ≤ B < A ≤ 1 and

(A−B)β ≥ (
√

2− 1)(1 + |A|)2 + (1− A)2.

If p is an analytic function defined on D with p(0) = 1, and satisfying the subordina-

tion

1 + β
zp′(z)

p2(z)
≺
√

1 + z,

then

p(z) ≺ 1 + Az

1 +Bz
.

Proof. Define the function q : D→ C by

q(z) =
1 + Az

1 +Bz
(−1 ≤ B < A ≤ 1),

and consider the function

Q(z) =
βzq′(z)

q2(z)
=
β(A−B)z

(1 + Az)2
.

By a logarithmic differentiation of Q, we have

zQ′(z)

Q(z)
=

1− Az
1 + Az

.

Since

Re

(
1− Az
1 + Az

)
=

1− A2|z|2

|1 + Az|2
> 0 (−1 < A ≤ 1 and z ∈ D),

it follows that Re(zQ′(z))/Q(z) > 0 in D and hence Q is starlike therein. Now it is

easy to see that the subordination

1 + β
zp′(z)

p2(z)
≺ 1 + β

zq′(z)

q2(z)

can be written as 1 + zp′(z)φ(p(z)) ≺ 1 + zq′(z)φ(q(z)) by defining φ(w) = β/w2.

Thus all the conditions of Lemma 2.1.1 are satisfied and an application of the same

leads to

1 + β
zp′(z)

p2(z)
≺ 1 + β

zq′(z)

q2(z)
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implies p(z) ≺ q(z). Now in order to prove our theorem we need to show the following:

√
1 + z ≺ 1 + β

zq′(z)

q2(z)
= 1 + β

(A−B)z

(1 + Az)2
=: h(z).

For this, let w = Φ(z) =
√

1 + z, and so Φ−1(w) = w2−1. Since the subordination

Φ(z) ≺ h(z) is equivalent to the subordination z ≺ Φ−1(h(z)), it is enough to show

|Φ−1(h(eit))| ≥ 1, −π ≤ t ≤ π. Now, we have

|Φ−1(h(eit))| =

∣∣∣∣∣
(

1 + β
(A−B)eit

(1 + Aeit)2

)2

− 1

∣∣∣∣∣ ≥ 1

provided the following inequality holds:∣∣∣∣1 + β
(A−B)eit

(1 + Aeit)2

∣∣∣∣ ≥ √2. (2.2.4)

Consider the left hand side of the above inequality∣∣∣∣1 + β
(A−B)eit

(1 + Aeit)2

∣∣∣∣ =
|1 + (2A+ β(A−B))eit + A2e2it|

|1 + 2Aeit + A2e2it|

≥Re(2A+ β(A−B) + A2eit + e−it)

1 + 2|A|+ A2

=
2A+ β(A−B) + (1 + A2)x

(1 + |A|)2
= g(x),

where x = cos t,−1 ≤ x ≤ 1, and of course g(x) ≥ g(−1). The inequality in (2.2.4)

holds if g(−1) ≥
√

2, that is if

2B + β(A−B)− (1 + A2)

(1 + |A|)2
≥
√

2

or equivalently if (A−B)β ≥ (
√

2− 1)(1 + |A|)2 + (1−A)2 holds. Thus Φ(z) ≺ h(z),

and now the theorem follows at once.

Theorem 2.2.5. Let p be an analytic function defined on D with p(0) = 1, and

satisfying the subordination p(z) + βzp′(z) ≺
√

1 + z (β > 0). Then p(z) ≺
√

1 + z.

Proof. Define the function q : D → C by q(z) =
√

1 + z with q(0) = 1. Since

q(D) = {w : |w2 − 1| < 1} is the right-half of the lemniscate of Bernoulli, q(D) is a

convex domain, and hence q is a convex function. Consider the function φ defined by

φ(w) = β. Since by assumption β > 0, it follows that

Reφ(q(z)) = Reφ(
√

1 + z) = β > 0.
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Consider the function Q defined by

Q(z) := zq′(z)φ(q(z)) = β
z

2
√

1 + z
.

From the definition of Q, we have

Re

(
zQ′(z)

Q(z)

)
= 1− Re

(
z

2(1 + z)

)
.

Since the function z/(1 + z) maps the unit disk D on to the region Rew < 1/2, it

follows that

Re

(
zQ′(z)

Q(z)

)
≥ 3

4
> 0

and hence the function Q is starlike. Thus all the conditions of Lemma 2.1.2 are

fulfilled and hence the result follows at once.

Theorem 2.2.6. Let p be an analytic function defined on D with p(0) = 1, and

satisfying

p(z) + β
zp′(z)

p(z)
≺
√

1 + z, β > 0.

Then p(z) ≺
√

1 + z.

Proof. Let q be given by q(z) =
√

1 + z. Then as before in the proof of Theorem 2.2.5,

the function is convex in the unit disk D. Define the function φ(w) = β/w. Since q

maps the unit disk D onto q(D) = {w : |w2− 1| < 1}, the right half of the lemniscate

of Bernoulli and by assumption β > 0, it follows that

Reφ(q(z)) =
β

|
√

1 + z|2
Re
(√

1 + z
)
> 0.

Consider the function Q defined by

Q(z) := β
zq′(z)

q(z)
=

βz

2(1 + z)
.

From the definition of Q, we have

Re

(
zQ′(z)

Q(z)

)
= 1− Re

(
z

1 + z

)
.

Since the function z/(1 + z) maps the unit disk D onto the region Rew < 1/2, it

follows that

Re

(
zQ′(z)

Q(z)

)
≥ 1

2
> 0
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and hence the function Q is starlike in the unit disk D, and hence the result follows

from Lemma 2.1.2.

Theorem 2.2.7. Let p be an analytic function defined on D with p(0) = 1 satisfying

p(z) + β
zp′(z)

p2(z)
≺
√

1 + z, β > 0.

Then p(z) ≺
√

1 + z.

Proof. Let q be given by q(z) =
√

1 + z. Then, as before, q is a convex function in

the unit disk D. Let us define φ(w) = β/w2 and therefore

Reφ(q(z)) = Re

(
β

1 + z

)
.

Since the function 1/(1 + z) maps the unit disk D onto the region Rew > 1/2, and

by assumption β > 0, it follows that Reφ(q(z)) > β/2 > 0. Consider the function Q

defined by

Q(z) = β
zq′(z)

q2(z)
= β

z

2(1 + z)
3
2

.

From the definition of Q, by logarithmic differentiation, we have

Re

(
zQ′(z)

Q(z)

)
= 1− 3

2
Re

(
z

1 + z

)
.

Since the function w = z/(1 + z) maps the unit disk D onto the region Rew < 1/2,

it follows that

Re

(
zQ′(z)

Q(z)

)
>

1

4
> 0

and hence the function Q is starlike and the result now follows by an application of

Lemma 2.1.2.

Theorem 2.2.8. Let p be an analytic function defined on D with p(0) = 1, and

satisfying the subordination

p(z) + β
zp′(z)

p(z)
≺
√

1 + z.

If −1 < B < A < 1 and the inequalities

(1 + |B|)(A−B)β ≤ (1− |A|)(1− |B|)(1 + |A| −
√

2(1 + |B|))
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and

β > max

{
0;

(1− |A| − |B|)(1 + |A|)(1− |B|)
(2|A|+B2 + 1)

}
(2.2.5)

hold, then

p(z) ≺ 1 + Az

1 +Bz
.

Proof. Define the function q : D→ C by q(z) = (1 + Az)/(1 + Bz) and consider the

functions Q and h given as follows:

Q(z) := zq′(z)φ(q(z)) = β
zq′(z)

q(z)

and

h(z) := θ(q(z)) +Q(z) = q(z) + β
zq′(z)

q(z)

and
zh′(z)

Q(z)
=
q(z)

β
+ 1 +

zq′′(z)

q′(z)
− zq′(z)

q(z)
.

From the definition of Q and q, we have

zQ′(z)

Q(z)
=

1− ABz2

(1 + Az)(1 +Bz)
.

Now in order to prove that Q is starlike we have to show that Re(zQ′(z)/Q(z)) > 0

in the unit disk D. For this, we consider

Re

(
1− ABz2

(1 + Az)(1 +Bz)

)
= Re

(
(1− ABz2)(1 + Az̄)(1 +Bz̄)

|(1 + Az)(1 +Bz)|2

)
.

Since denominator of the expression in the right hand side is always positive, it

remains only to show that Re((1− ABz2)(1 + Az̄)(1 +Bz̄)) > 0, and this is evident

from the following

Re(1− ABz2)(1 + Az̄)(1 +Bz̄) = 1− A2B2|z|4 + (A+B)(1− AB|z|2) Re z

= (1− AB|z|2)(1 + AB|z|2 + (A+B) Re z)

≥ (1− AB|z|2)(1 + AB|z|2 − |A+B||z|).

Since (1− AB|z|2)(1 + AB|z|2 − |A + B||z|) > 0, for both the cases whether A + B

is positive or negative or zero, it follows that Q is starlike in D.



42

Now we shall show that Re (zh′(z)/Q(z)) > 0 (z ∈ D). For this purpose, let us

consider

Re

(
zh′(z)

Q(z)

)
=

1

β
Re

(
1 + Az

1 +Bz

)
+ Re

(
1−Bz
1 +Bz

− (A−B)z

(1 + Az)(1 +Bz)

)
=

1

β
Re

(
1 + Az

1 +Bz

)
+ Re

(
1−Bz
1 +Bz

)
+ Re

(
1

1 + Az

)
− Re

(
1

1 +Bz

)
.

In view of the inequalities:

1− |B|
1 + |B|

≤ Re

(
1−Bz
1 +Bz

)
≤ 1 + |B|

1− |B|
,

1

1 + |A|
≤ Re

(
1

1 + Az

)
≤ 1

1− |A|
,

we have the following inequality

1

β
Re

(
1 + Az

1 +Bz

)
+ Re

(
1−Bz
1 +Bz

)
+ Re

(
1

1 + Az

)
− Re

(
1

1 +Bz

)
≥ 1− |A|

(1 + |B|)β
+

1− |B|
1 + |B|

+
|A|+ |B|

(1 + |A|)(1− |B|)

=
1 + β − (|A|+ |B|)

(1 + |B|)β
+

|A|+ |B|
(1 + |A|)(1− |B|)

.

Thus in view of the assumption (2.2.5) of theorem, we have Re (zh′(z)/Q(z)) > 0.

The subordination

p(z) + β
zp′(z)

p(z)
≺ q(z) + β

zq′(z)

q(z)

can be written as (1.3.3) by defining θ(w) := w and φ(w) := β/w (β 6= 0). Clearly

the functions θ and φ are analytic in C and φ(w) 6= 0. Thus all the conditions of

Lemma 1.3.1 are fulfilled and hence it follows that p(z) ≺ q(z).

In order to prove our result, we need to show

Φ(z) :=
√

1 + z ≺ q(z) + β
zq′(z)

q(z)
=

1 + Az

1 +Bz
+

β(A−B)z

(1 + Az)(1 +Bz)
:= h(z).

Since the subordination Φ(z) ≺ h(z) is equivalent to the subordination z ≺ Φ−1(h(z))

it is sufficient to show |Φ−1(h(z))| ≥ 1 on |z| = 1. Now the inequality

∣∣Φ−1(h(z))
∣∣ =

∣∣∣∣∣
(

1 + Az

1 +Bz
+

β(A−B)z

(1 + Az)(1 +Bz)

)2

− 1

∣∣∣∣∣ ≥ 1

holds provided ∣∣∣∣1 + Az

1 +Bz
+

β(A−B)z

(1 + Az)(1 +Bz)

∣∣∣∣ ≥ √2. (2.2.6)
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Further when |z| = 1, we have∣∣∣∣1 + Az

1 +Bz
+

β(A−B)z

(1 + Az)(1 +Bz)

∣∣∣∣ ≥ Re

(
1 + Az

1 +Bz
+

β(A−B)z

(1 + Az)(1 +Bz)

)
≥ Re

(
1 + Az

1 +Bz

)
−
∣∣∣∣ β(A−B)z

(1 + Az)(1 +Bz)

∣∣∣∣
≥ 1− |A|

1 + |B|
− (A−B)β

(1− |A|)(1− |B|)
.

Thus the inequality in (2.2.6) holds if the quantity in the right side of the above

inequality is greater than or equal to
√

2, that is when

(1 + |B|)(A−B)β ≤ (1− |A|)(1− |B|)(1 + |A| −
√

2(1 + |B|))

holds. This completes the proof.

2.3 Conditions for Janowski Starlikeness

We shall begin with Theorems 2.3.1, 2.3.2 in which we have given alternate proofs of

the results [17, Lemma 2.1, 2.10] due to Ali et al.

Theorem 2.3.1. Assume that −1 ≤ B < A ≤ 1, −1 ≤ E < D ≤ 1 and let

|β|(A−B) ≥ (D − E)(1 +B2) + |2B(D − E)− Eβ(A−B)|.

Let p be an analytic function defined on D with p(0) = 1, and satisfying

1 + βzp′(z) ≺ 1 +Dz

1 + Ez
.

Then

p(z) ≺ 1 + Az

1 +Bz
.

Proof. Define the function q : D→ C by

q(z) =
1 + Az

1 +Bz
(−1 ≤ B < A ≤ 1).

Then q is convex in D with q(0) = 1, and let us consider the function Q given by

Q(z) = βzq′(z) =
β(A−B)z

(1 +Bz)2
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and, as shown in the proof of Theorem 2.2.2, it follows that Q is starlike in the unit

disk D. Now it is easy to see that the subordination 1 + βzp′(z) ≺ 1 + βzq′(z) can

be written as 1 + zp′(z)φ(p(z)) ≺ 1 + zq′(z)φ(q(z)) by defining φ(w) = β. Thus all

conditions of Lemma 2.1.1 are fulfilled, and that the subordination

1 + βzp′(z) ≺ 1 + βzq′(z) implies p(z) ≺ q(z).

In view of the above implication, we need to show

1 +Dz

1 + Ez
≺ 1 + βzq′(z) = 1 + β

(A−B)z

(1 +Bz)2
= h(z).

For this purpose let us define w = Φ(z) = (1 + Dz)/(1 + Ez), and therefore its

inverse function is given by Φ−1(w) = (w − 1)/(D − Ew). Since the subordination

Φ(z) ≺ h(z) is equivalent to the subordination z ≺ Φ−1(h(z)), it follows that to prove

the result it is sufficient to show |Φ−1(h(z))| ≥ 1 on |z| = 1. Since the inequality

|Φ−1(h(z))| =

∣∣∣∣ β(A−B)z

(D − E)(1 +B2z2) + (2B(D − E)− βE(A−B))z

∣∣∣∣
≥ (A−B)|β||z|

((D − E)(1 +B2|z|2) + |(2B(D − E)− βE(A−B))|)|z|

≥ (A−B)|β|
((D − E)(1 +B2) + |(2B(D − E)− βE(A−B))|)

≥ 1

holds on |z| = 1, for |β|(A− B) ≥ (D − E)(1 + B2) + |(2B(D − E)− Eβ(A− B))|,

it follows that q(D) ⊂ h(D), that is, q(z) ≺ h(z), and this completes the proof.

It should be noted that Ali et al. [17] made the assumption AB > 0 in order to

prove their result [17, Lemma 2.10], whereas in our proof (of the same result) this

assumption is not required.

Theorem 2.3.2. Assume that −1 ≤ B < A ≤ 1, −1 ≤ E < D ≤ 1 and let

|β|(A−B) ≥ (D − E)(1 + |AB|) + |(A+B)(D − E)− Eβ(A−B)|.

Let p be an analytic function defined on D with p(0) = 1, and satisfying

1 + β
zp′(z)

p(z)
≺ 1 +Dz

1 + Ez
.

Then

p(z) ≺ 1 + Az

1 +Bz
.
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Proof. Define the function q : D→ C by

q(z) =
1 + Az

1 +Bz
(−1 ≤ B < A ≤ 1).

Consider the function Q given by

Q(z) =
βzq′(z)

q(z)
=

β(A−B)z

(1 + Az)(1 +Bz)

and, as shown in the proof of Theorem 2.2.3, it follows that Q is starlike in the unit

disk D. The subordination 1 + βzp′(z)/q(z) ≺ 1 + βzq′(z)/q(z) can be written as

1 + zp′(z)φ(p(z)) ≺ 1 + zq′(z)φ(q(z)) by defining φ(w) = β/w. Thus all conditions of

Lemma 2.1.1 are satisfied, and hence the subordination

1 + β
zp′(z)

p(z)
≺ 1 + β

zq′(z)

q(z)
implies p(z) ≺ q(z).

It follows from Lemma 2.1.1 that the subordination

1 + β
zp′(z)

p(z)
≺ 1 + β

zq′(z)

q(z)

implies p(z) ≺ q(z). In view of the above implication, to prove the result, we need to

show
1 +Dz

1 + Ez
≺ 1 + β

zq′(z)

q(z)
= 1 + β

(A−B)z

(1 +Bz)2
= h(z).

For this purpose let us define w = Φ(z) = (1 + Dz)/(1 + Ez), and therefore its

inverse function is given by Φ−1(w) = (w − 1)/(D − Ew). Since the subordination

Φ(z) ≺ h(z) is equivalent to the subordination z ≺ Φ−1(h(z)), it is sufficient to show

|Φ−1(h(z))| ≥ 1 on |z| = 1. Now the function Φ−1(h(z)) is given by

Φ−1(h(z)) =
β(A−B)z

(D − E)(1 + Az)(1 +Bz)− βE(A−B)z

=
β(A−B)z

(D − E)(1 + ABz2) + ((A+B)(D − E)− βE(A−B))z
.

For |z| = 1, we have

|Φ−1(h(z))| ≥ |β|(A−B)

(D − E)(1 + |AB|) + |(A+B)(D − E)− βE(A−B)|
≥ 1,

whenever the inequality |β|(A−B) ≥ (D−E)(1+|AB|)+|(A+B)(D−E)−Eβ(A−B)|

holds, and hence q(D) ⊂ h(D) or equivalently q ≺ h, this completes the proof.
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Theorem 2.3.3. Assume that −1 ≤ B < A ≤ 1, −1 ≤ E < D ≤ 1 and let

|β|(A−B) ≥ (D − E)(1 + A2) + |2A(D − E)− Eβ(A−B)|.

Let p be an analytic function defined on D with p(0) = 1, and satisfying the subordi-

nation

1 + β
zp′(z)

p2(z)
≺ 1 +Dz

1 + Ez
.

Then

p(z) ≺ 1 + Az

1 +Bz
.

Proof. Define the function q : D→ C by q(z) = (1+Az)/(1+Bz) (−1 ≤ B < A ≤ 1),

and consider the function Q defined by

Q(z) =
βzq′(z)

q2(z)
=
β(A−B)z

(1 + Az)2

and
zQ′(z)

Q(z)
=

1− Az
1 + Az

.

As before, a computation shows Q is starlike in D. It follows from Lemma 2.1.1, that

the subordination

1 + β
zp′(z)

p2(z)
≺ 1 + β

zq′(z)

q2(z)

implies p(z) ≺ q(z). To prove the result, it is enough to show that

1 +Dz

1 + Ez
≺ 1 + β

zq′(z)

q2(z)
= 1 + β

(A−B)z

(1 + Az)2
= h(z).

For this purpose let us define w = Φ(z) = (1 + Dz)/(1 + Ez) its inverse function

is given by Φ−1(w) = (w − 1)/(D − Ew). Since the subordination Φ(z) ≺ h(z)

is equivalent to the subordination z ≺ Φ−1(h(z)) in order to prove the result, it is

sufficient to show |Φ−1(h(z))| ≥ 1 on |z| = 1. Since the inequality

|Φ−1(h(z))| =

∣∣∣∣ β(A−B)z

(D − E)(1 + A2z2) + (2A(D − E)− βE(A−B))z

∣∣∣∣
≥ (A−B)|β||z|

(D − E)(1 + A2|z|2) + |2A(D − E)− βE(A−B)||z|

≥ (A−B)|β|
(D − E)(1 + A2) + |2A(D − E)− βE(A−B)|

≥ 1,
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holds on |z| = 1, for |β|(A− B) ≥ (D − E)(1 + A2) + |2A(D − E)− Eβ(A− B)|, it

follows that q(D) ⊂ h(D) or q ≺ h, and this completes the proof.

For β = 1, Theorem 2.3.3 reduces to the result [17, Lemma 2.6] of Ali et al.

Theorem 2.3.4. [17, Lemma 2.6] Assume that −1 ≤ B < A ≤ 1, −1 ≤ E < D ≤ 1

and (A − B) ≥ (D − E)(1 + A2) + |2A(D − E) − E(A − B)|. Let p be an analytic

function defined on D with p(0) = 1 satisfying the subordination

1 +
zp′(z)

p2(z)
≺ 1 +Dz

1 + Ez
.

Then

p(z) ≺ 1 + Az

1 +Bz
.

2.4 Applications

In this section, we shall discuss some applications of the results obtained in previ-

ous sections. These results provide sufficient conditions for functions to be Sokó l-

Stankiewicz and Janowski starlike.

Corollary 2.4.1. Let f ∈ A satisfies the subordination

1 + β
zf ′(z)

f(z)

(
1 +

zf ′′(z)

f ′(z)
− zf ′(z)

f(z)

)
≺ 1 + Az

1 +Bz
(−1 < B < A ≤ 1).

Further if the inequality (1− |B|)|β| ≥ 2
√

2(A−B) holds, then f ∈ S∗L.

Proof. For a function f ∈ A, define a function p : D → C by p(z) = zf ′(z)/f(z).

Then p is analytic on D and p(0) = 1. From the definition of p, we have

1 + βzp′(z) = 1 + β
zf ′(z)

f(z)

(
1 +

zf ′′(z)

f ′(z)
− zf ′(z)

f(z)

)
.

The result follows from Theorem 2.2.1.

Taking A = 1, B = 0 and β = 2
√

2 in Corollary 2.4.1, we have the following result

which provides a sufficient condition for Sokó l-Stankiewicz starlikeness:
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Corollary 2.4.2. Let f ∈ A and satisfies∣∣∣∣zf ′(z)

f(z)

(
1 +

zf ′′(z)

f ′(z)
− zf ′(z)

f(z)

)∣∣∣∣ < 1

2
√

2
.

Then f ∈ S∗L.

The following corollary provides a sufficient condition for Janowski starlike func-

tion:

Corollary 2.4.3. Assume that −1 ≤ B < A ≤ 1 and

(A−B)β ≥
√

2(1 + |B|)2 + (1−B)2.

If f ∈ A and satisfies

1 + β
zf ′(z)

f(z)

(
1 +

zf ′′(z)

f ′(z)
− zf ′(z)

f(z)

)
≺
√

1 + z,

then f ∈ S∗[A,B].

Proof. Let p(z) = zf ′(z)/f(z), f ∈ A. Then p is analytic in D and p(0) = 1. Using

the definition of function p, we have

zp′(z) =
zf ′(z)

f(z)

(
1 +

zf ′′(z)

f ′(z)
− zf ′(z)

f(z)

)
.

Now the result follows from Theorem 2.2.2.

Now taking A = 1 and B = −1 in Corollary 2.4.3, we have the following sufficient

condition for starlike functions.

Corollary 2.4.4. Let β ≥ 2(
√

2 + 1). If f ∈ A and satisfies∣∣∣∣1 + β
zf ′(z)

f(z)

(
1 +

zf ′′(z)

f ′(z)
− zf ′(z)

f(z)

)∣∣∣∣ < √2,

then f ∈ S∗.

Corollary 2.4.5. Let 0 ≤ B < A < 1 and 0 6= β ≤ (1−
√

2)(1−A)(1−B). If f ∈ A

and satisfies the following subordination

1 + β

(
1 +

zf ′′(z)

f ′(z)
− zf ′(z)

f(z)

)
≺
√

1 + z,

then f ∈ S∗[A,B].
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Proof. Let p(z) = zf ′(z)/f(z). Then p is analytic in D and p(0) = 1. Further a

computation gives
zp′(z)

p(z)
= 1 +

zf ′′(z)

f ′(z)
− zf ′(z)

f(z)
.

In view of the subordination (2.2.3) of Theorem 2.2.3, we get the required result.

Corollary 2.4.6. Let −1 ≤ B < A ≤ 1 and (A−B)β ≥ (
√

2−1)(1+ |A|)2+(1−A)2.

If f ∈ A and satisfies

1 + β
f(z)

zf ′(z)

(
1 +

zf ′′(z)

f ′(z)
− zf ′(z)

f(z)

)
≺
√

1 + z,

then f ∈ S∗[A,B].

Proof. Let p(z) = zf ′(z)/f(z). Then p is analytic in D and p(0) = 1. Further

computation gives

1 + β
zp′(z)

p2(z)
= 1 + β

f(z)

zf ′(z)

(
1 +

zf ′′(z)

f ′(z)
− zf ′(z)

f(z)

)
.

Now from Theorem 2.2.4, the required result.

Corollary 2.4.7. If f ∈ A and satisfies

(1− β)
zf ′(z)

f(z)
+ β

(
1 +

zf ′′(z)

f ′(z)

)
≺
√

1 + z, β > 0,

then f ∈ S∗L.

Proof. Let p(z) = zf ′(z)/f(z). Then we have

p(z) + β
zp′(z)

p(z)
=

zf ′(z)

f(z)
+ β

(
1 +

zf ′′(z)

f ′(z)
− zf ′(z)

f(z)

)
= (1− β)

zf ′(z)

f(z)
+ β

(
1 +

zf ′′(z)

f ′(z)

)
.

Now from Theorem 2.2.6, we obtain the desired result.

Corollary 2.4.8. If f ∈ A and satisfies the subordination

zf ′(z)

f(z)
+ β

f(z)

zf ′(z)

(
1 +

zf ′′(z)

f ′(z)
− zf ′(z)

f(z)

)
≺
√

1 + z (β > 0),

then f ∈ S∗L.
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Proof. Taking p(z) = zf ′(z)/f(z) in Theorem 2.2.7, we have

p(z) + β
zp′(z)

p2(z)
=
zf ′(z)

f(z)
+ β

f(z)

zf ′(z)

(
1 +

zf ′′(z)

f ′(z)
− zf ′(z)

f(z)

)
.

Thus in view of Theorem 2.2.7, the result follows immediately.

Corollary 2.4.9. Let |β|(A − B) ≥ 2(1 − α)(1 + B2) + |4B(1 − α) + β(A − B)|. If

f ∈ A and satisfies the subordination

1 + β
zf ′(z)

f(z)

(
1 +

zf ′′(z)

f ′(z)
− zf ′(z)

f(z)

)
≺ 1 + (1− 2α)z

1− z
(0 ≤ α < 1),

then f ∈ S∗[A,B].

Proof. Taking p(z) = zf ′(z)/f(z), we have

1 + βzp′(z) = 1 + β
zf ′(z)

f(z)

(
1 +

zf ′′(z)

f ′(z)
− zf ′(z)

f(z)

)
.

Now setting E = −1 and D = 1− 2α in Theorem 2.3.1, we have

1 + β
zf ′(z)

f(z)

(
1 +

zf ′′(z)

f ′(z)
− zf ′(z)

f(z)

)
≺ 1 + (1− 2α)z

1− z
.

Thus the result follows at once from Theorem 2.3.1.

By taking A = 1, B = −1 and α = 0 the condition

|β|(A−B) ≥ 2(1− α)(1 +B2) + |4B(1− α) + β(A−B)|

reduces to |β| ≥ 2 + |β − 2|. It is easy to verify that this condition is true for β ≥ 2.

Thus we have the following sufficient condition for starlikeness from Corollary 2.4.9.

Corollary 2.4.10. If f ∈ A and satisfies

1 + β Re

(
zf ′(z)

f(z)

(
1 +

zf ′′(z)

f ′(z)
− zf ′(z)

f(z)

))
> 0 (β ≥ 2),

then f ∈ S∗.



Chapter 3

Sandwich Theorems for

Multivalent Functions Involving a

Unified Linear Operator

3.1 Introduction

In the literature, the properties of functions defined by special cases of convolution

operators have widely been studied using a recurrence relation satisfied by them, see

[32,42,45,51,74,79,87,94,97,100,130,159,167,204]. The Dziok-Srivastava oper-

ator (see page 19) is one among the special cases of the convolution operator. Several

interesting properties such as inclusion relationship, subordination properties, differ-

ential sandwich results etc. of the classes of functions defined by Dziok-Srivastava

operator or its special cases including the Hohlov operator [74], the Carlson-Shaffer

operator [42,99], the Ruscheweyh derivatives [160], the generalized Bernardi-Libera-

Livingston integral operator [32,94,100] and the Srivastava-Owa fractional derivative

operators [126,130], rests on the following identity:

z(H l,m
p [α1]f(z))′ = α1H

l,m
p [α1 + 1]f(z)− (α1 − p)H l,m

p [α1]f(z). (3.1.1)

Most of the results of this chapter appeared in [174].

51
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The multiplier transform Ip(r, λ) on Ap, which is also a special case of convolution

operator, introduced by Kumar et al. [180] and investigated in [1, 23, 181] satisfies

the following identity:

z(Ip(r, λ)f(z))′ = (p+ λ)Ip(r + 1, λ)f(z)− λIp(r, λ)f(z). (3.1.2)

The operator Ip(r, λ) is closely related to the Sǎlǎgean operator [162]. The operator

Irλ := I1(r, λ) was studied by Cho and Srivastava [46] and Cho and Kim [45]. For

many special cases of this operator we refer to Section 1.4. There are enough literature

in which the properties of functions/class of functions defined by linear operators were

investigated using a recurrence relation satisfied by operators under consideration.

The recent work (among others) of Ravichandran et al. [146], Kumar et al. [180,181],

Al-Kharsani and Al-Areefi [23], Ali et al. [15], Cho and Kim [45] and Kwon and

Cho [89] and the references given therein may also be cited in this connection.

Recently Kumar et al. [180, 181] derived differential sandwich results for Dziok-

Srivastava operator and multiplier transform. They also discussed some inclusion

relations using the theory of differential subordination. Inspired by these, in 2008,

Al-Kharsani and Al-Areefi [23] also established differential sandwich results for Dziok-

Srivastava operator and multiplier transform. These results were established using a

recurrence relation satisfied by Dziok-Srivastava operator and multiplier transform.

In 2011, Ali et al. [15] defined a class of operators which satisfy a common recurrence

relation and they derived several differential subordination results. In the following

definition, all the operators which satisfy a common recurrence relation are unified.

Definition 3.1.1. [15] Let Op be the class of all linear operators Lap defined on Ap
satisfying

z[Lapf(z)]′ = αaL
a+1
p f(z)− (αa − p)Lapf(z). (3.1.3)

One may also consider the operators satisfying the following recurrence relation

z[Lbpf(z)]′ = αbL
b−1
p f(z)− (αb − p)Lbpf(z)

but their properties are very similar to the operators satisfying the recurrence relation

in (3.1.3). In fact our results are motivated by Ali [15, 23, 180, 181] and the recent
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results of Miller and Mocanu [105] on differential superordination. The results of

Miller and Mocanu were later used extensively by Bulboacă [36, 37] to investigate

superordination-preserving integral operators as well as by several others [1, 23, 51,

136,150,180,181,186].

In the following sections, several subordination and superordination theorems and

their corresponding sandwich theorems are obtained. Further several sufficient con-

ditions for normalized analytic functions to be in the classes S, S∗(α), SS∗(η) and

S∗L are established. In this chapter many existing results are generalized. For exam-

ple, the results of Kumar et al. [181] are special cases of our results for the choice

of µ = 1 = ν and L is the Dziok-Srivastava operator and the multiplier transform.

Similarly when µ = 1, ν = 0 and L is the Dziok-Srivastava operator and the multiplier

transform our results reduce to the results proved by Al-Kharsani and Al-Areefi [23].

Some results proved by Obradović [121], Chichra [43], Owa and Obradović [127] are

also shown to the special cases of our results.

We shall use the Definition 1.3.1 and Lemmas 1.3.1 and 1.3.2 to establish our

main results.

3.2 Sandwich Theorems

In this section, we shall discuss some differential subordination, superordination and

corresponding sandwich results. For brevity, we shall use the following notations:

Ωa
L,µ,ν(f(z)) :=

(
La+1
p f(z)

zp

)µ(
zp

Lapf(z)

)ν
and Ωa

L,µ,ν(f(z), F (z)) :=
Ωa
L,µ,ν(f(z))

Ωa
L,µ,ν(F (z))

,

where f, F ∈ Ap and the powers are principal one, µ and ν are chosen to be real

numbers such that they do not assume the value zero simultaneously.

Theorem 3.2.1. Let q be convex univalent in D with q(0) = 1 and f ∈ Ap. Let

αa+1 6= 0, Re(αa+1µ− αaν) ≥ 0. Assume that χ and Φ are respectively defined by

χ(z) :=
1

αa+1

[(αa+1µ− αaν)q(z) + zq′(z)] (3.2.1)
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and

Φ(z) := Ωa
L,µ,ν(f(z))ΥL(z), (3.2.2)

where

ΥL(z) := µΩa+1
L,1,1(f(z))− αaν

αa+1

Ωa
L,1,1(f(z)).

1. If Φ(z) ≺ χ(z), then

Ωa
L,µ,ν(f(z)) ≺ q(z)

and q is the best dominant.

2. If χ(z) ≺ Φ(z),

0 6= Ωa
L,µ,ν(f(z)) ∈ H[1, 1] ∩Q and Φ(z) is univalent in D, (3.2.3)

then

q(z) ≺ Ωa
L,µ,ν(f(z))

and q is the best subordinant.

Proof. Define the function P : D→ C by

P (z) = Ωa
L,µ,ν(f(z)), (3.2.4)

where the branch of P is so chosen such that P (0) = 1. Then P is analytic in D.

From the definition of P , from (3.2.4), we have

zP ′(z)

P (z)
=

z[Ωa
L,µ,ν(f(z))]′

Ωa
L,µ,ν(f(z))

= µ
z(La+1

p f(z))′

La+1
p f(z)

− ν
z(Lapf(z))′

Lapf(z)
+ p(ν − µ). (3.2.5)

Using the identity

z(Lapf(z))′ = αaL
a+1
p f(z)− (αa − p)Lapf(z), (3.2.6)

in (3.2.5), we have

Ωa
L,µ,ν(f(z))

(
µΩa+1

L,1,1(f(z))− αaν

αa+1

Ωa
L,1,1(f(z))

)
=

1

αa+1

[(αa+1µ− αaν)P (z) + zP ′(z)]. (3.2.7)



55

In view of (3.2.7), the subordination Φ(z) ≺ χ(z) becomes

(αa+1µ− αaν)P (z) + zP ′(z) ≺ (αa+1µ− αaν)q(z) + zq′(z)

and this can be written as (1.3.3), by defining

θ(w) = (αa+1µ− αaν)w and φ(w) = 1.

Note that 0 6= φ(w) and θ(w) are analytic in C \ {0}. Setting

Q(z) := zq′(z) and h(z) := θ(q(z)) +Q(z) = (αa+1µ− αaν)q(z) + zq′(z).

Since q is convex, it follows that Q(z) = zq′(z) is starlike and in light of the hypothesis

of Theorem 3.2.1, we see that

Re

(
zh′(z)

Q(z)

)
= Re

(
θ′(q(z))

φ(q(z))
+
zQ′(z)

Q(z)

)
= Re

(
αa+1µ− αaν + 1 +

zq′′(z)

q′(z)

)
> 0.

By an application of Lemma 1.3.1, we obtain that P ≺ q or equivalently we can write

Ωa
L,µ,ν(f(z)) ≺ q(z). The second half of Theorem 3.2.1 follows by a similar application

of Lemma 1.3.2.

Using Theorem 3.2.1, we obtain the following “sandwich result”.

Corollary 3.2.2. Let qj (j = 1, 2) be convex univalent in D with qj(0) = 1. Assume

that Re(αa+1µ− αaν) ≥ 0 and Φ be as defined in (3.2.2). Further assume that

χj(z) :=
1

αa+1

[
(αa+1µ− αaν)qj(z) + zq′j(z)

]
.

If (3.2.3) holds and χ1(z) ≺ Φ(z) ≺ χ2(z), then q1(z) ≺ Ωa
L,µ,ν(f(z)) ≺ q2(z).

Theorem 3.2.3. Let q be convex univalent in D with q(0) = 1 and αa be a complex

number. Assume that Re(µαa+1 − ναa) ≥ 0 and f ∈ Ap. Define the functions F , χ

and Ψ respectively by

F (z) :=
αa
zαa−p

∫ z

0

tαa−p−1f(t)dt, (3.2.8)

χ(z) := (µαa+1 − ναa)q(z) + zq′(z) (3.2.9)

and

Ψ(z) := Ωa
L,µ,ν(F (z))

[
µαa+1Ω

a
L,1,0(f(z), F (z))− ναaΩa

L,0,−1(f(z), F (z))
]
. (3.2.10)



56

1. If Ψ(z) ≺ χ(z), then Ωa
L,µ,ν(F (z)) ≺ q(z) and q is the best dominant.

2. If χ(z) ≺ Ψ(z),

0 6= Ωa
L,µ,ν(F (z)) ∈ H[1, 1] ∩Q and Ψ(z) is univalent in D, (3.2.11)

then q(z) ≺ Ωa
L,µ,ν(F (z)) and q is the best subordinant.

Proof. From the definition of F , given in (3.2.8), we obtain that

αaf(z) = (αa − p)F (z) + zF ′(z). (3.2.12)

By convoluting (3.2.12) with La(z) ∈ Ap, where Lap(f(z)) = La(z) ∗ f(z) and using

the fact that z(f ∗ g)′(z) = f(z) ∗ zg′(z), we obtain

αaL
a
p(f(z)) = (αa − p)Lap(F (z)) + z(Lap(F (z)))′. (3.2.13)

Define the function P : D→ C by

P (z) = Ωa
L,µ,ν(F (z)), (3.2.14)

where the branch of P is so chosen such that P (0) = 1. Clearly P is analytic in D.

Using (3.2.13) and (3.2.14), we have

Ωa
L,µ,ν(F (z))

(
µαa+1Ω

a
L,1,0(f(z), F (z))− ναaΩa

L,0,−1(f(z), F (z))
)

= (µαa+1 − ναa)P (z) + zP ′(z). (3.2.15)

Using (3.2.15), the subordination Ψ(z) ≺ χ(z) becomes

(µαa+1 − ναa)P (z) + zP ′(z) ≺ (µαa+1 − ναa)q(z) + zq′(z)

and this can be written as (1.3.3), by defining the functions θ and φ as follows:

θ(w) = (µαa+1 − ναa)q(z) and φ(w) = 1.

Note that 0 6= φ(w) and θ(w) are analytic in C \ {0}. Setting

Q(z) := zq′(z) and h(z) := θ(q(z)) +Q(z) = (µαa+1 − ναa)q(z) + zq′(z).
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In light of the assumption of our Theorem 3.2.3, we see that Q is starlike and

Re

(
zh′(z)

Q(z)

)
= Re

(
µαa+1 − ναa + 1 +

zq′′(z)

q′(z)

)
> 0.

An application of Lemma 1.3.1, gives P ≺ q or Ωa
L,µ,ν(F (z)) ≺ q(z). By an application

of Lemma 1.3.2 the proof of the second half of Theorem 3.2.3 follows at once.

Corollary 3.2.4. Let qj (j = 1, 2) be convex univalent in D with qj(0) = 1 and αa

be a complex number. Further assume that Re(µαa+1− ναa) ≥ 0 and Ψ be as defined

in (3.2.10). If (3.2.11) holds and χ1(z) ≺ Ψ(z) ≺ χ2(z), then

q1(z) ≺ Ωa
L,µ,ν(F (z)) ≺ q2(z),

where χj(z) := (µαa+1 − ναa)qj(z) + zq′j(z) (j = 1, 2) and F is defined by (3.2.8).

Theorem 3.2.5. Let q be analytic in D with q(0) = 1 and αa+1 = αa. If f ∈ Ap,

then

Ωa
L,µ,ν(f(z)) ≺ q(z)⇔ Ωa+1

L,µ,ν(F (z)) ≺ q(z).

Further

q(z) ≺ Ωa
L,µ,ν(f(z))⇔ q(z) ≺ Ωa+1

L,µ,ν(F (z)),

where F is defined by (3.2.8).

Proof. Using the identity

z[Lap(f(z))]′ = αaL
a+1
p (f(z))− (αa − p)Lap(f(z))

in (3.2.13), we get

Lap(f(z)) = La+1
p (F (z)). (3.2.16)

Since αa+1 = αa, we have

αaL
a+1
p (f(z)) = z(Lap(f(z)))′ + (αa − p)Lap(f(z))

= z(La+1
p (F (z)))′ + (αa − p)La+1

p (F (z))

= αa+1L
a+2
p (F (z)). (3.2.17)

Therefore, from (3.2.16) and (3.2.17), we have Ωa+1
L,µ,ν(F (z)) = Ωa

L,µ,ν(f(z)) and hence

the result follows at once.
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Now we will use Theorem 3.2.5 to state the following “sandwich result”.

Corollary 3.2.6. Let f ∈ Ap and αa is independent of a. Let φi (i = 1, 2) be analytic

in D with φi(0) = 1 and F is defined by (3.2.8). Then

φ1(z) ≺ Ωa
L,µ,ν(f(z)) ≺ φ2(z)

if and only if

φ1(z) ≺ Ωa+1
L,µ,ν(F (z)) ≺ φ2(z).

3.3 Applications

Several applications of the results proved in Section 3.2 are discussed in this section.

Mainly the results are applied to the Dziok-Srivastava operator and the Multiplier

transform. Further, using these results, sufficient conditions for Janowski, strongly

and Sokó l-Stankiewicz starlikeness are derived.

Applications Involving the Dziok-Srivastava Operator

We begin with some interesting applications of Theorem 3.2.1 for the Dziok-Srivastava

operator. Note that the first part of Theorem 3.2.1 holds even if we assume

Re

{
1 +

zq′′(z)

q′(z)

}
> max{0,Re(α1(ν − µ)− µ)}

instead of “q is convex and Re(α1(µ−ν)+µ) ≥ 0” and leads to the following corollary.

Corollary 3.3.1. Let Re(u − vB) ≥ |v − ūB| where u = α1(µ − ν) + µ + 1 and

v = [α1(µ− ν) + µ− 1]B. If f ∈ Ap satisfies the subordination

Ωα1
H,µ,ν(f(z))

(
µΩα1+1

H,1,1(f(z))− α1ν

α1 + 1
Ωα1
H,1,1(f(z))

)
≺ 1

α1 + 1

(
[α1(µ− ν) + µ]

1 + Az

1 +Bz
+

(A−B)z

(1 +Bz)2

)
(α1 6= −1),

then

Ωα1
H,µ,ν(f(z)) ≺ 1 + Az

1 +Bz
(−1 < B < A ≤ 1)

and (1 + Az)/(1 +Bz) is the best dominant.
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Proof. Let us define the function q : D→ C by

q(z) =
1 + Az

1 +Bz
(−1 < B < A ≤ 1). (3.3.1)

Then q is univalent with q(0) = 1 and for z = reiθ, 0 ≤ r < 1, it is easy to see that

Re

(
1 +

zq′′(z)

q′(z)

)
=

1−B2r2

1 +B2r2 + 2Br cos θ
> 0.

Hence q is convex in D. Setting u = α1(µ− ν) +µ+ 1 and v = [α1(µ− ν) + µ− 1]B,

we have

α1(µ− ν) + µ+ 1 +
zq′′(z)

q′(z)
=

[α1(µ− ν) + µ+ 1] + [α1(µ− ν) + µ− 1]Bz

1 +Bz

=
u+ vz

1 +Bz
=: w(z).

The function w maps D into the disk∣∣∣∣w − ū− v̄B
1−B2

∣∣∣∣ ≤ |v − ūB|1−B2
.

From this we see that

Re

(
α1(µ− ν) + µ+ 1 +

zq′′(z)

q′(z)

)
≥ Re(ū− v̄B)− |v − ūB|

1−B2
≥ 0

provided Re(ū− v̄B) ≥ |v − ūB| or Re(u− vB) ≥ |v − ūB|. Thus the result follows

at once by an application of Theorem 3.2.1.

The Dominant: q(z) = 1+(1−2α)z
1−z (0 ≤ α < 1).

The function q is convex univalent and maps the unit disk D onto a domain

Re q(z) > α. In view of the subordination part of Theorem 3.2.1, for the Dziok-

Srivastava operator, we have the following result:

Corollary 3.3.2. Let 0 ≤ α < 1 and Re(α1(µ− ν) + µ) ≥ 0. If

Ωα1
H,µ,ν(f(z))

(
µΩα1+1

H,1,1(f(z))− α1ν

α1 + 1
Ωα1
H,1,1(f(z))

)
≺ 1

α1 + 1

(
(α1(µ− ν) + µ)

1 + (1− 2α)z

1− z
+

2(1− α)z

(1− z)2

)
(α1 6= −1),

then Re Ωα1
H,µ,ν(f(z)) > α.
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Proof. The function q : D→ C defined by

q(z) =
1 + (1− 2α)z

1− z
(0 ≤ α < 1).

Let us denote β = α1(µ− ν) + µ. Then by hypothesis of theorem, we have Re β ≥ 0.

Now consider the function

w(z) = 1 + β +
zq′′(z)

q′(z)
= β +

1 + z

1− z
.

It is easy to see that w maps the unit disk D onto Rew > Re β ≥ 0. The result now

follows by an application of the subordination part of Theorem 3.2.1.

Note that if p = 1, l = m + 1 and αi+1 = βi (i = 1, 2, ...,m), then we have

H1[1]f(z) = f(z), H1[2]f(z) = zf ′(z) and H1[3]f(z) = 1
2
z2f ′′(z) + zf ′(z). Putting

α1 = 1, p = 1, l = m + 1 and αi+1 = βi (i = 1, 2, ...,m) in Corollary 3.3.2, we obtain

the following.

Corollary 3.3.3. Let 0 ≤ α < 1 and 2µ ≥ ν. If f ∈ A and satisfies

Re

(
(f ′(z))µ

(
z

f(z)

)ν (
µ

(
2 +

zf ′′(z)

f ′(z)

)
− ν zf

′(z)

f(z)

))
>

2(2µ− ν)α− (1− α)

2
,

then

Re

(
(f ′(z))µ

(
z

f(z)

)ν)
> α.

Proof. From Corollary 3.3.2, we see that

(f ′(z))µ
(

z

f(z)

)ν (
µ

(
2 +

zf ′′(z)

f ′(z)

)
− ν zf

′(z)

f(z)

)
≺ (2µ− ν)

1 + (1− 2α)z

1− z
+

2(1− α)z

(1− z)2
=: h(z).

We now investigate the image domain h(D). Assuming a = 1 − 2α and b = 2µ − ν,

we have

h(z) =
b+ (1 + a− b+ ab)z − abz2

(1− z)2
,

where h(0) = b and h(−1) = [2b(1−a)− (1+a)]/4. The boundary curve of the image

of h(D) is given by h(eiθ) = u(θ) + iv(θ), −π < θ < π, where

u(θ) =
(1 + a− b+ ab) + (1− a)b cos θ

2(cos θ − 1)
and v(θ) =

(1 + a)b sin θ

2(1− cos θ)
.
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By eliminating θ, we obtain the equation of the boundary curve as

v2 = −b2(1 + a)

(
u− 2b(1− a)− (a+ 1)

4

)
. (3.3.2)

Obviously (3.3.2) represents a parabola opening towards the left, with the vertex

at the point
(

2b(1−a)−(a+1)
4

, 0
)

and negative real axis as its axis. Hence h(D) is the

exterior of the parabola (3.3.2) which includes the right half plane

u >
2b(1− a)− (a+ 1)

4
.

Hence the result follows at once.

Taking µ = 1 = ν in Corollary 3.3.3, we have the following result which provides

a sufficient condition for starlike function of order α.

Example 3.3.4. If f ∈ A and satisfies

Re

(
zf ′(z)

f(z)

(
2 +

zf ′′(z)

f ′(z)
− zf ′(z)

f(z)

))
>

3α− 1

2
,

then f ∈ S∗(α).

Setting µ = 0 and ν = −1 in Corollary 3.3.3, we obtain the following result.

Example 3.3.5. If f ∈ A satisfies

Re f ′(z) >
3α− 1

2
(0 ≤ α < 1),

then

Re
f(z)

z
> α.

Remark 3.3.1. When α = 1/3, Example 3.3.5 reduces to a result of Obradović [121,

Theorem 2].

The following corollary is a straight forward consequence of the first part of The-

orem 3.2.3 for the case when q(z) = (1 + (1− 2α)z)/(1− z).
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Corollary 3.3.6. Let 0 ≤ α < 1 and Re((µ− ν)α1 +µ) ≥ 0. If f ∈ Ap, F as defined

in (3.2.8) and satisfying the subordination

Ωα1
H,µ,ν(F (z))(µ(α1 + 1)Ωα1

H,1,0(f(z), F (z))− να1Ω
α1
H,0,−1(f(z), F (z)))

≺ ((µ− ν)α1 + µ)
1 + (1− 2α)z

1− z
+

2(1− α)z

(1− z)2

then

Ωα1
H,µ,ν(F (z)) ≺ 1 + (1− 2α)z

1− z
and (1 + (1− 2α)z)/(1− z) is the best dominant.

Setting p = 1, l = m + 1, α1 = 1 and αi+1 = βi (i = 1, 2, ...m) in Corollary 3.3.6,

we obtain the following result:

Corollary 3.3.7. Let 0 ≤ α < 1 and 2µ ≥ ν. If f ∈ A, F is defined by

F (z) =

∫ z

0

f(t)

t
dt (3.3.3)

and

Re

{
(F ′(z))µ

(
z

F (z)

)ν (
2µ
f ′(z)

F ′(z)
− ν f(z)

F (z)

)}
<

2(2µ− ν)α− (1− α)

2
,

then

Re

(
(F ′(z))µ

(
z

F (z)

)ν)
> α.

Proof. From Corollary 3.3.6, we see that the subordination

(F ′(z))µ
(

z

F (z)

)ν (
2µ
f ′(z)

F ′(z)
− ν f(z)

F (z)

)
≺ (2µ− ν)

1 + (1− 2α)z

1− z
+

2(1− α)z

(1− z)2
=: h(z)

implies that

Re

[
(F ′(z))µ

(
z

F (z)

)ν]
> α.

Let z = eiθ,−π ≤ θ ≤ π. Then, we have

Re(h(eiθ)) = Re

{
(2µ− ν)

1 + (1− 2α)eiθ

1− eiθ
+

2(1− α)eiθ

(1− eiθ)2

}
= (2µ− ν)α− (1− α)

2

(
1

sin2 (θ/2)

)
=: k(θ).
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Since 2µ− ν ≥ 0, it is easy to see that k(θ) attains its maximum at θ = π and

max
|θ|≤π

k(θ) =
2(2µ− ν)α− (1− α)

2
.

Hence the result follows at once.

The following result, provides a sufficient condition for starlikeness, is obtained

from Corollary 3.3.7 by putting µ = 1 = ν.

Example 3.3.8. Let 0 ≤ α < 1. If f ∈ A, F as defined in (3.3.3) and

Re

(
zF ′(z)

F (z)

(
2
f ′(z)

F ′(z)
− f(z)

F (z)

))
<

3α− 1

2
,

then F ∈ S∗(α).

The Dominant: q(z) =

(
1 + z

1− z

)η
(0 < η ≤ 1).

The function q maps the unit disk D onto a sector | argw| ≤ π/2 and is a convex

function. Taking this function as a dominant in the first part of Theorem 3.2.1, for

the Dziok–Srivastava operator, we have the following result:

Corollary 3.3.9. Let 0 < η ≤ 1, α1 6= −1 and Re(α1(µ− ν) + µ) ≥ 0. If f ∈ Ap
and satisfies the subordination

Ωα1
H,µ,ν(f(z))

(
µΩα1+1

H,1,1(f(z))− α1ν

α1 + 1
Ωα1
H,1,1(f(z))

)
≺ 1

α1 + 1

(
(α1(µ− ν) + µ) +

2ηz

1− z2

)(
1 + z

1− z

)η
,

then

Ωα1
H,µ,ν(f(z)) ≺

(
1 + z

1− z

)η
and the function ((1 + z)/(1− z))η is the best dominant.

By taking p = 1, l = m+1, α1 = 1 and αi+1 = βi (i = 1, 2, ...m), in Corollary 3.3.9,

we have the following:
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Corollary 3.3.10. Let 0 < η ≤ 1 and 2µ ≥ ν. If f ∈ A and satisfies∣∣∣∣arg

{
(f ′(z))µ

(
z

f(z)

)ν (
µ

(
2 +

zf ′′(z)

f ′(z)

)
− ν zf

′(z)

f(z)

)}∣∣∣∣ < δπ

2
,

then ∣∣∣∣arg

{
(f ′(z))µ

(
z

f(z)

)ν}∣∣∣∣ < ηπ

2

where

δ = η + 1− 2

π
arctan

(
2µ− ν
η

)
.

Proof. In view of Corollary 3.3.9, we see that the subordination

(f ′(z))µ
(

z

f(z)

)ν (
µ

(
2 +

zf ′′(z)

f ′(z)

)
− ν zf

′(z)

f(z)

)
≺
(

(2µ− ν) +
2ηz

1− z2

)(
1 + z

1− z

)η
=: h(z)

implies that

(f ′(z))µ
(

z

f(z)

)ν
≺
(

1 + z

1− z

)η
or equivalently

∣∣∣∣arg

{
(f ′(z))µ

(
z

f(z)

)ν}∣∣∣∣ < ηπ

2
.

Now we shall find the minimum value of arg h(z) over |z| < 1. For this purpose let

z = eiθ,−π ≤ θ ≤ π. Since h(D) is symmetrical about the real axis, we shall restrict

ourself to 0 < θ ≤ π. Setting t = cot θ/2, we have t ≥ 0 and for z = (it− 1)/(it+ 1),

we arrive at

h(eiθ) = (it)η−1
[
(2µ− ν)it− η(1 + t2)

2

]
= (it)η−1G(t), t = cot θ/2

where

G(t) = (2µ− ν)it− η(1 + t2)

2
.

Let G(t) = U(t) + iV (t), where U(t) = −(η(1 + t2))/2 and V (t) = (2µ − ν)t, there

arises two cases namely 2µ > ν and 2µ = ν. If 2µ > ν, then a calculation shows that

mint≥0 argG(t) occurs at t = 1 and

min
t≥0

argG(t) = π − arctan

(
2µ− ν
η

)
.
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Thus

min
|z|<1

arg h(z) =
(η + 1)π

2
− arctan

(
2µ− ν
η

)
.

If 2µ = ν, then argG(t) = π and min|z|<1 arg h(z) = (η+ 1)π/2. Thus for 2µ ≥ ν, we

have

min
|z|<1

arg h(z) =
(η + 1)π

2
− arctan

(
2µ− ν
η

)
.

This completes the proof.

Letting µ = 1 = ν in Corollary 3.3.10, we have the following result which gives a

sufficient condition for strongly starlike functions of order η.

Example 3.3.11. Let 0 < η ≤ 1. If f ∈ A and satisfies∣∣∣∣arg

(
zf ′(z)

f(z)

(
2 +

zf ′′(z)

f ′(z)
− zf ′(z)

f(z)

))∣∣∣∣ < δπ

2
,

then f ∈ SS∗(η), where δ = η + 1− 2
π

arctan 1
η
.

By taking q(z) = ((1 + z)/(1 − z))η in the subordination part of Theorem 3.2.3

for the Dzoik Srivastava operator, we have the following result:

Corollary 3.3.12. Let 0 < η ≤ 1 and Re[(µ−ν)α1 +µ] ≥ 0. If f ∈ Ap, F as defined

in (3.2.8) and satisfies the subordination

Ωα1
H,µ,ν(F (z))

(
(α1 + 1)µΩα1

H,1,0(f(z), F (z))− να1Ω
α1
H,0,−1(f(z), F (z))

)
≺
(

((µ− ν)α1 + µ) +
2ηz

(1− z2)

)(
1 + z

1− z

)η
,

then

Ωα1
H,µ,ν(F (z)) ≺

(
1 + z

1− z

)η
and ((1 + z)/(1− z))η is the best dominant.

By putting p = 1, l = m + 1, α1 = 1 and αi+1 = βi (i = 1, 2, ...m) in Corol-

lary 3.3.12, we obtain the following result.
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Corollary 3.3.13. Let 0 < η ≤ 1 and 2µ ≥ ν. If f ∈ A, F as defined in (3.3.3) and∣∣∣∣arg

{
(F ′(z))µ

(
z

F (z)

)ν (
2µ
f ′(z)

F ′(z)
− ν f(z)

F (z)

)}∣∣∣∣ < (η + 1)π

2
− arctan

(2µ− ν)

η
,

then ∣∣∣∣arg

{
(F ′(z))µ

(
z

F (z)

)ν}∣∣∣∣ < ηπ

2
.

Proof. From Corollary 3.3.12, we observe that the subordination

(F ′(z))µ
(

z

F (z)

)ν (
µ
f ′(z)

F ′(z)
− ν f(z)

F (z)

)
≺
(

2µ− ν +
2ηz

(1− z2)

)(
1 + z

1− z

)η
=: h(z)

implies that ∣∣∣∣arg

{
(F ′(z))µ

(
z

F (z)

)ν}∣∣∣∣ < ηπ

2
(z ∈ D).

We shall find the minimum value of the arg h(z) over |z| < 1. Since h(D) is sym-

metrical about the real axis, by taking z = eiθ, we need to consider only the case

0 < θ ≤ π. Set t = cot θ/2, then t ≥ 0. Also, for z = (it− 1)/(it+ 1), after a simple

computation, we have

h(eiθ) = (it)η−1
[
(2µ− ν)it− η(1 + t2)

2

]
= (it)η−1H(t),

where

H(t) = (2µ− ν)it− η(1 + t2)

2
.

Writing H(t) := U(t) + iV (t), where U(t) = −η(1 + t2)/2 and V (t) = (2µ − ν)t. If

2µ > ν, then a calculation shows that mint≥0 argH(t) occurs at t = 1 and

min
t≥0

argH(t) = π − arctan

(
2µ− ν
η

)
.

Thus, we have

min
|z|<1

arg h(z) =
(η + 1)π

2
− arctan

(
2µ− ν
η

)
.

If 2µ = ν, then min argH(t)t≥0 = π. Therefore

min
|z|<1

arg h(z) =
(η + 1)π

2
.
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Thus for 2µ ≥ ν, we have

min
|z|<1

arg h(z) =
(η + 1)π

2
− arctan

(
2µ− ν
η

)
.

This completes the proof of corollary.

Putting µ = 1 = ν in Corollary 3.3.13, we have the following result providing a

sufficient condition for strongly starlikeness.

Example 3.3.14. Let 0 < η ≤ 1. If f ∈ A, F as defined in (3.3.3) and∣∣∣∣arg

(
zF ′(z)

F (z)

(
2
f ′(z)

F ′(z)
− f(z)

F (z)

))∣∣∣∣ < (η + 1)π

2
− arctan

1

η
,

then f ∈ SS∗(η).

The Dominant: q(z) =
√

1 + z.

The function q is a convex function which maps the unit disk D onto the interior

of the right-half of the lemniscate Bernoulli. The following result is a consequence

of the first part of Theorem 3.2.1 for the Dziok-Srivastava operator for the dominant

q(z) =
√

1 + z.

Corollary 3.3.15. Let α1 6= −1 and Re [α1(µ− ν) + µ] ≥ 0. If f ∈ Ap and satisfies

the subordination

Ωα1
H,µ,ν(f(z))

(
µΩα1+1

H,1,1(f(z))− α1ν

α1 + 1
Ωα1
H,1,1(f(z))

)
≺ 1

α1 + 1

(
[α1(µ− ν) + µ]

√
1 + z +

z

2
√

1 + z

)
,

then Ωα1
H,µ,ν(f(z)) ≺

√
1 + z and

√
1 + z is the best dominant.

By taking p = 1, l = m+1, α1 = 1 and αi+1 = βi (i = 1, 2, ...m) in Corollary 3.3.15,

we obtain the following result.

Corollary 3.3.16. Let 2µ ≥ ν. If f ∈ A and satisfies the subordination

(f ′(z))µ
(

z

f(z)

)ν (
µ

(
2 +

zf ′′(z)

f ′(z)

)
− ν zf

′(z)

f(z)

)
≺ (2µ− ν)

√
1 + z +

z

2
√

1 + z
,
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then

(f ′(z))µ
(

z

f(z)

)ν
≺
√

1 + z

and
√

1 + z is the best dominant.

We obtain the following example from Corollary 3.3.16.

Example 3.3.17. If f ∈ A and satisfies∣∣∣∣zf ′(z)

f(z)

(
2 +

zf ′′(z)

f ′(z)
− zf ′(z)

f(z)

)∣∣∣∣ < √1.22 ≈ 1.10,

then f ∈ S∗L.

Proof. Putting µ = ν = 1 in Corollary 3.3.16, we see that the subordination

zf ′(z)

f(z)

(
2 +

zf ′′(z)

f ′(z)
− zf ′(z)

f(z)

)
≺
√

1 + z +
z

2
√

1 + z
=: h(z),

implies that
zf ′(z)

f(z)
≺
√

1 + z.

The dominant h(z) can be written as

h(z) =
3z + 2

2
√

1 + z
.

Writing h(eiθ) = u(θ) + iv(θ),−π < θ < π, we have

u(θ) =
3 cos(3θ/4) + 2 cos(θ/4)

2
√

2 cos(θ/2)

and

v(θ) =
3 sin(3θ/4)− 2 sin(θ/4)

2
√

2 cos(θ/2)
.

Squaring and adding, we have

u2(θ) + v2(θ) =
13 + 12 cos θ

8 cos(θ/2)
=: k(θ).

It is easy to see that k(θ) attains its minimum at θ = arccos(
√

1/24) ≈ 78.22◦ and

k(θ) ≥
√

3/2 ≈ 1.22. In addition to that since h(0) = 1 and h(−1) = −∞, it follows

that the image domain h(D) is the interior of a domain bounded by parabola opening

towards left which contains the interior of the circle u2 + v2 = 1.22.
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Taking the dominant q(z) =
√

1 + z in the first part of Theorem 3.2.3, we have

the following corollary for the Dzoik-Srivastava operator.

Corollary 3.3.18. Let 0 < η ≤ 1 and Re(α1(µ−ν)+µ) ≥ 0. If f ∈ Ap, F as defined

in (3.2.8) and satisfies the subordination

Ωα1
H,µ,ν(F (z))

(
(α1 + 1)µΩα1

H,1,0(f(z), F (z))− α1νΩα1
H,0,−1(f(z), F (z))

)
≺ (α1(µ− ν) + µ)

√
1 + z +

z

2
√

1 + z
,

then Ωα1
H,µ,ν(F (z)) ≺

√
1 + z and

√
1 + z is the best dominant.

Putting p = 1, l = m+ 1, α1 = 1 and αi+1 = βi (i = 1, 2, ...m) in Corollary 3.3.18,

we obtain the following result.

Corollary 3.3.19. Let 2µ ≥ ν. If f ∈ A, F as defined in (3.3.3) and

(F ′(z))µ
(

z

F (z)

)ν (
2µ
f ′(z)

F ′(z)
− ν f(z)

F (z)

)
≺ (2µ− ν)

√
1 + z +

z

2
√

1 + z
,

then (F ′(z))µ
(

z
F (z)

)ν
≺
√

1 + z and
√

1 + z is the best dominant.

Putting µ = ν = 1 in the above Corollary 3.3.19, we have the following example.

Example 3.3.20. If f ∈ A, F as defined in (3.3.3) and∣∣∣∣zF ′(z)

F (z)

(
2
f ′(z)

F ′(z)
− f(z)

F (z)

)∣∣∣∣ < √1.22 ≈ 1.10,

then F ∈ S∗L.

Proof. Putting µ = ν = 1 in Corollary 3.3.16, we see that the subordination

zf ′(z)

f(z)

(
2 +

zf ′′(z)

f ′(z)
− zf ′(z)

f(z)

)
≺
√

1 + z +
z

2
√

1 + z
=: h(z),

implies that
zf ′(z)

f(z)
≺
√

1 + z.

The dominant h(z) can be written as

h(z) =
3z + 2

2
√

1 + z
.
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Writing h(eiθ) = u(eiθ) + iv(eiθ),−π < θ < π, we have

u(θ) =
3 cos(3θ/4) + 2 cos(θ/4)

2
√

2 cos(θ/2)
and v(θ) =

3 sin(3θ/4)− 2 sin(θ/4)

2
√

2 cos(θ/2)
.

A simple calculation gives

u2(θ) + v2(θ) =
13 + 12 cos θ

8 cos(θ/2)
=: k(θ).

A computation shows that k(θ) has minimum at θ = arccos(
√

1/24) ≈ 78.22◦ and

k(θ) ≥
√

3/2 ≈ 1.22. In view of this and since h(0) = 1 and h(−1) = −∞, it follows

that the image domain h(D) is the interior of a domain bounded by parabola opening

towards left which contains the interior of the circle u2 + v2 = 1.22. This completes

the proof.

Applications Involving the Multiplier Transform

Next we discuss some applications related to the multiplier transform.

The Dominant: q(z) =
1 + (1− 2α)z

1− z
(0 ≤ α < 1).

For this q the first part of Theorem 3.2.1 yields the following:

Corollary 3.3.21. Let 0 ≤ α < 1, λ 6= −p be any complex number and suppose that

Re((ν − µ)(λ+ p)) ≥ 0. If f ∈ Ap and satisfies the following subordination

Ωr
I,µ,ν(f(z))

(
µΩgr+1

I,1,1 (f(z))− νΩr
I,1,1(f(z))

)
≺ (µ−ν)

1 + (1− 2α)z

1− z
+

1

λ+ p

2(1− α)z

(1− z)2
,

then

Ωr
I,µ,ν(f(z)) ≺ 1 + (1− 2α)z

1− z

and (1 + (1− 2α)z)/(1− z) is the best dominant.

Note that for p = 1, λ = 0 and r = 0, we have I1(0, 0)f(z) = f(z), I1(1, 0)f(z) =

zf ′(z), I1(2, 0)f(z) = z(zf ′′(z) + f ′(z)). Putting these values in Corollary 3.3.21, we

have the following result.
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Corollary 3.3.22. Let 0 ≤ α < 1 and µ ≥ ν. If f ∈ A and satisfies

Re

(
(f ′(z))µ

(
z

f(z)

)ν (
µ

(
1 +

zf ′′(z)

f ′(z)

)
− ν zf

′(z)

f(z)

))
>

2(µ− ν)α− (1− α)

2
,

then

Re

(
(f ′(z))

µ

(
z

f(z)

)ν)
> α.

Proof. In view of Corollary 3.3.21, it is observed that the subordination

(f ′(z))µ
(

z

f(z)

)ν (
µ

(
1 +

zf ′′(z)

f ′(z)

)
− ν zf

′(z)

f(z)

)
≺ (µ− ν)

1 + (1− 2α)z

1− z
+

2(1− α)z

(1− z)2
=: h(z),

implies that

Re

(
(f ′(z))

µ

(
z

f(z)

)ν)
> α.

We now investigate the image domain h(D). Let a = 1− 2α and b = µ− ν. We can

rewrite the function h as

h(z) =
b+ (1 + a− b+ ab)z − abz2

(1− z)2
,

so that h(0) = b and h(−1) = [2b(1 − a) − (1 + a)]/4. The boundary curve of the

image domain is given by h(eiθ) = u(θ) + iv(θ), −π ≤ θ ≤ π, where

u(θ) =
(1 + a− b+ ab) + (1− a)b cos θ

2(cos θ − 1)

and

v(θ) =
(1 + a)b sin θ

2(1− cos θ)
.

Eliminating θ, we obtain the equation of the boundary curve as

v2 = −b2(1 + a)

(
u− 2b(1− a)− (1 + a)

4

)
. (3.3.4)

Since b = µ − ν ≥ 0 and a + 1 > 0, it follows that (3.3.4) represents a parabola

opening towards the left, with the vertex at the point ((2b(1 − a) − (1 + a))/4, 0)

with negative real axis as its axis. Thus h(D) is the exterior of the parabola (3.3.4)

includes the right half-plane

u >
2b(1− a)− (1 + a)

4
.

This completes the proof.
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Setting µ = ν = 1 in Corollary 3.3.22, we have the following result which provides

a sufficient condition for starlikeness of order α.

Example 3.3.23. Let 0 ≤ α < 1. If f ∈ A satisfies the differential subordination

zf ′(z)

f(z)

(
1− zf ′(z)

f(z)
+
zf ′′(z)

f ′(z)

)
∈ C \

{
w : w ≤ α− 1

2

}
,

then f ∈ S∗(α).

Remark 3.3.2. For α = 0, Example 3.3.23 reduces to a result obtained by Owa and

Obradović [127, Corollary 2].

Putting µ = 1 and ν = 0 in Corollary 3.3.22, we have the following result:

Example 3.3.24. Let 0 ≤ α < 1. If f ∈ A and satisfies

Re(f ′(z) + zf ′′(z)) >
3α− 1

2
,

then Re f ′(z) > α.

Remark 3.3.3. The above Example 3.3.24 generalize the result [43, Theorem 5] due

to Chichra. Further Corollary 3.3.22 reduces to [121, Theorem 2] when µ = 0, ν = −1

and α = 1/3.

The Dominant: q(z) =

(
1 + z

1− z

)η
(0 < α ≤ 1).

From the first part of Theorem 3.2.1 for multiplier transform, we have the follow-

ing:

Corollary 3.3.25. Let 0 < η ≤ 1, λ 6= −p be any complex number and assume that

Re((µ− ν)(λ+ p)) ≥ 0. If f ∈ Ap, and satisfies the subordination

Ωr
I,µ,ν(f(z))

(
µΩr+1

I,1,1(f(z))− νΩr
I,1,1(f(z))

)
≺
(

(µ− ν) +
2ηz

(λ+ p)(1− z2)

)(
1 + z

1− z

)η
,

then

Ωr
I,µ,ν(f(z)) ≺

(
1 + z

1− z

)η
and ((1 + z)/(1− z))η is the best dominant.
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Putting p = 1, λ = 0 and r = 0 in Corollary 3.3.25, we obtain the following

corollary.

Corollary 3.3.26. Let 0 < η ≤ 1 and µ ≥ ν. If f ∈ A and satisfies∣∣∣∣arg

{
(f ′(z))µ

(
z

f(z)

)ν (
µ

(
1 +

zf ′′(z)

f ′(z)

)
− ν zf

′(z)

f(z)

)}∣∣∣∣ < δπ

2
,

where

δ = η + 1− 2

π
arctan

µ− ν
η

,

then ∣∣∣∣arg

{
(f ′(z))µ

(
z

f(z)

)ν}∣∣∣∣ < ηπ

2
.

Proof. From Corollary 3.3.25, we see that the subordination

(f ′(z))µ
(

z

f(z)

)ν (
µ

(
1 +

zf ′′(z)

f ′(z)

)
− ν zf

′(z)

f(z)

)
≺
(

(µ− ν) +
2ηz

(1− z2)

)(
1 + z

1− z

)η
=: h(z)

implies that ∣∣∣∣arg

{
(f ′(z))µ

(
z

f(z)

)ν}∣∣∣∣ < ηπ

2
.

We need to find the minimum value of arg h(z) over |z| < 1. Since h(z̄) = h̄(z), it

follows that h(D) is symmetrical about the real axis and so we need only to discuss

the case 0 < θ ≤ π. If we set z = eiθ and t = cot θ/2, then obviously t ≥ 0. Also, for

z = (it− 1)/(it+ 1), after a simple computation, we have

h(eiθ) = (it)η−1
[
(µ− ν)it− η(1 + t2)

2

]
= (it)η−1H(t)

where

H(t) = (µ− ν)it− η(1 + t2)

2
.

Writing H(t) = U(t) + iV (t), where U(t) = −η(1 + t2)/2 and V (t) = (µ − ν)t. If

µ > ν, then a calculation shows that mint≥0 argH(t) occurs at t = 1 and

min
t≥0

argH(t) = π − arctan
µ− ν
η

.
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Thus, we have

min
|z|<1

arg h(z) =
(η + 1)π

2
− arctan

µ− ν
η

.

If µ = ν, then argH(t) = π and min|z|<1 arg h(z) = (η + 1)π/2. Thus for µ ≥ ν, we

have

min
|z|<1

arg h(z) =
(η + 1)π

2
− arctan

µ− ν
η

.

Thus the proof is complete now.

Letting µ = 1 = ν in Corollary 3.3.26, we get the following result which provides

a sufficient condition for a function to be strongly starlike.

Example 3.3.27. Let 0 < η ≤ 1. If f ∈ A and satisfies∣∣∣∣arg

(
zf ′(z)

f(z)

)(
1 +

zf ′′(z)

f ′(z)
− zf ′(z)

f(z)

)∣∣∣∣ < (η + 1)π

2
,

then f ∈ SS∗(η).

The Dominant: q(z) =
√

1 + z.

Taking q(z) =
√

1 + z as dominant in the subordination part of Theorem 3.2.1 for

multiplier transform, we obtain the following corollary:

Corollary 3.3.28. Let λ 6= −p be a complex number and Re[(µ− ν)(λ+ p)] ≥ 0. If

f ∈ Ap, and satisfies the subordination

Ωr
I,µ,ν(f(z))

(
µΩr+1

I,1,1(f(z))− νΩr
I,1,1(f(z))

)
≺ (µ− ν)

√
1 + z +

z

2(λ+ p)
√

1 + z
,

then Ωr
I,µ,ν(f(z)) ≺

√
1 + z and

√
1 + z is the best dominant.

Putting p = 1, λ = 0 and r = 0 in Corollary 3.3.28, we have the following corollary.

Corollary 3.3.29. Let µ ≥ ν. If f ∈ A and satisfies the subordination

(f ′(z))µ
(

z

f(z)

)ν (
µ

(
1 +

zf ′′(z)

f ′(z)

)
− ν zf

′(z)

f(z)

)
≺ (µ− ν)

√
1 + z +

z

2
√

1 + z
:= h(z),
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then

(f ′(z))µ
(

z

f(z)

)ν
≺
√

1 + z

and
√

1 + z is the best dominant.

Example 3.3.30. If f ∈ A and satisfies∣∣∣∣zf ′(z)

f(z)

(
1− zf ′(z)

f(z)
+
zf ′′(z)

f ′(z)

)∣∣∣∣ < 1

2
√

2
≈ 0.35,

then f ∈ S∗L.

Proof. Putting µ = ν = 1 in Corollary 3.3.29 the dominant h(z) reduces to

h(z) =
z

2
√

1 + z
.

Writing h(eiθ) = u(θ) + iv(θ),−π < θ < π, we have

u(θ) =
cos 3(θ/4)

2
√

2 cos(θ/2)
and v(θ) =

sin 3(θ/4)

2
√

2 cos(θ/2)
.

A simple calculation gives

u2(θ) + v2(θ) =
1

8 cos(θ/2)
≥ 1

8
.

Here h(0) = 0 and h(−1) = −∞ and image domain of h(D) is the interior of a domain

bounded by parabola opening towards left on the real axis and contains the interior

of the circle u2 + v2 = 1/8.





Chapter 4

Sandwich Theorems for Analytic

Functions Involving a Generalized

Linear Operator

4.1 Introduction

There are several linear operators defined in univalent function theory and studied in

past few decades. Recently, Lupaş [2–5] in his series of papers considered the linear

combination of two linear operators and discussed subordination results related to

them. Let us have a look on results carried out by Lupaş first. For function f given

by (1.1.1) the generalized Sǎlǎgean operator [24] is defined by

Dm
λ f(z) = z +

∞∑
k=2

(1 + (k − 1)λ)makz
k (λ ≥ 0,m ∈ N).

For λ = 1, this operator reduces to the Sǎlǎgean operator [162]. The generalized

Sǎlǎgeǎn operator is further generalized by Ramdan and Darus [143] and discussed

univalent criteria for this operator. Using the Ruscheweyh operator [160], for func-

tion f ∈ A, defined by Rmf(z) =
∑∞

k=2C
m
m+k−1akz

k and the generalized multiplier

The contents of this chapter appeared in [175].

77
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transform [3] defined by

I(m,λ, l)f(z) = z +
∞∑
k=2

(
1 + λ(k − 1) + l

l + 1

)m
akz

k (l, λ ≥ 0,m ∈ N ∪ {0}),

which is another generalization of the generalized Sǎlǎgean operator [24], Lupaş [5],

in 2010, considered a new operator defined as follows:

RIα(m,λ, l)f(z) = (1− α)Rmf(z) + αI(m,λ, l)f(z).

This operator was further generalized by Lupaş [4]. Recently in 2011, Lupaş [2]

introduced another operator using the generalized Sǎlǎgean operator [24] and the

Ruscheweyh operator [160] as follows:

RDm
λ,αf(z) = (1− α)Rmf(z) + αDm

λ f(z) (α ≥ 0,m ∈ N).

In all these papers of Lupaş the main focus was to establish certain differential

subordination results. It should be noted that all these operators, mentioned above,

can be written in terms of the Hadamard product. Motivated by this fact, in this

chapter, we have unified all those operator introduced by Lupaş [2–5] and Ramdan

and Darus [143] using the Hadamard product. We have derived some differential

sandwich results associated with the newly defined operator for normalized analytic

functions. The results proved in this chapter generalize results proved by Lupaş in

his series of papers. Lupaş in his papers proved results for some particular operators

but our results hold good for any linear operator which can be written in terms of

Hadamard product. Our results also generalize several results including that of Owa

et al. [99], Hallenbeck [69], Miller and Mocanu [108], Obradović [125] and Kumar

et al. [180] and others.

Definition 4.1.1. For f ∈ A and α ∈ C, the operator Og,h(α) is defined by

Og,h(α)f(z) = (1− α)(f ∗ g)(z) + α(f ∗ h)(z),

where g, h ∈ A are given by g(z) = z +
∑∞

k=2 gkz
k and h(z) = z +

∑∞
k=2 hkz

k.



79

Remark 4.1.1. By taking suitable values for α and appropriate functions g, h, the

operator Og,h(α) reduces to the several known operators introduced in [2–5,24,142,

143,162,181]. For instance, if we set α ≥ 0,

g(z) = z +
∞∑
k=2

Cm
m+k−1z

k and h(z) = z +
∞∑
k=2

(
1 + λ(k − 1) + l

l + 1

)m
zk (m ∈ N),

then the operator Og,h(α) reduces to the operator RIα(m,λ, l) introduced by Lupaş

[5]. Further if we take

g(z) = z +
∞∑
k=2

Cm
m+k−1z

k and h(z) = z +
∞∑
k=2

[1 + (k − 1)λ]mzk,

then Og,h(α) = RDm
λ,α (m ∈ N) is the operator introduced by Lupaş [2].

Preliminaries

The following lemmas are required to prove our main results:

Lemma 4.1.1. [69, 108] Let φ be a convex function in D, with φ(0) = a, γ 6= 0 and

Re(γ) ≥ 0. If p ∈ H[a, n] satisfies the subordination

p(z) +
zp′(z)

γ
≺ φ(z),

then p(z) ≺ q(z) ≺ φ(z), where

q(z) =
γ

nzγ/n

∫ z

0

φ(t)tγ/n−1dt.

The function q is convex function and is the best (a, n)-dominant.

Lemma 4.1.2. [105] Let φ be a convex function in D, with φ(0) = a, γ 6= 0 and

Re γ ≥ 0. Let p ∈ H[a, n] ∩ Q be such that p(z) + (zp′(z))/γ is univalent in D and

satisfies the subordination

φ(z) ≺ p(z) +
zp′(z)

γ
.

Then

q(z) =
γ

nzγ/n

∫ z

0

φ(t)tγ/n−1dt ≺ p(z).

The function q is convex and is the best (a,n)-subordinant.
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Lemma 4.1.3. [109] Let w be a convex function in D and let the function φ be given

by φ(z) = w(z) + nδzw′(z), where δ > 0 and n is a positive integer. If the function

p(z) = w(0) + pnz
n + pn+1z

n+1 + · · · , is analytic in D and p(z) + δzp′(z) ≺ φ(z), then

p ≺ w and this result is sharp.

Lemma 4.1.4. [207] Let a, b and c (c 6= 0,−1,−2,−3, · · · ) be real or complex pa-

rameters. Then∫ 1

0

tb−1(1− t)c−b−1(1− tz)−adt =
Γ(b)Γ(c− b)

Γ(c)
2F1(a, b; c; z) (Re c > Re b > 0);

(b+ 1) 2F1(1, b; b+ 1; z) = (b+ 1) + bz 2F1(1, b+ 1; b+ 2; z).

First we shall give a generalization to the result [5, Theorem 2.1] of Lupaş. For

convenience, let us denote

Bδ
α(g, h) := {f ∈ A : Re(Og,h(α)f(z))′ > δ, 0 ≤ δ < 1} .

The following result shows the convexity of the set Bδ
α(g, h).

Theorem 4.1.5. The set Bδ
α(g, h) is convex.

Proof. Let us assume that

fj(z) = z +
∞∑
k=2

akjz
k ∈ Bδ

α(g, h) (j = 1, 2).

Define the function H by

H(z) = γ1f1(z) + γ2f2(z),

where γ1 and γ2 are non-negative real number such that γ1 + γ2 = 1. To prove the

convexity of the set Bδ
α(g, h) it suffices to show that the function H ∈ Bδ

α(g, h) or

Re(Og,h(α)H(z))′ > δ. From the definition of H, we have

H(z) = z +
∞∑
k=2

(γ1ak1 + γ2ak2)z
k.

A simple computation gives

Og,h(α)H(z) = z +
∞∑
k=2

(αhk + (1− α)gk)(γ1ak1 + γ2ak2)z
k
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and

Re(Og,h(α)H(z))′ = 1 + Re
∞∑
k=2

(αhk + (1− α)gk)[γ1ak1 + γ2ak2]kz
k−1. (4.1.1)

Since fj ∈ Bδ
α(g, h), it follows that

Re

{
∞∑
k=2

(αhk + (1− α)gk)kakjz
k−1

}
> δ − 1 (j = 1, 2). (4.1.2)

It is clear from (4.1.1) and (4.1.2) that Re(Og,h(α)H(z))′ > δ, and hence Bδ
α(g, h) is

convex.

Remark 4.1.2. Theorem 4.1.5 can be extended as follows:

If fj ∈ Bδ
α(g, h) (j = 1, 2, 3...n), then

∑n
j=1 γjfj ∈ Bδ

α(g, h), where γi are non-

negative real numbers such that
∑n

j=1 γj = 1. Note that Theorem 4.1.5 generalizes

the result [5, Theorem 2.1] of Lupaş.

4.2 Sandwich Theorems

Theorem 4.2.1. Let φ be a convex function in D with φ(0) = 1. Assume that

Re(c) > −1, and f ∈ A. Let the function F be defined by

F (z) =
c+ 1

zc

∫ z

0

tc−1f(t)dt. (4.2.1)

1. If (Og,h(α)f(z))′ ≺ φ(z), then ((Og,h(α))F (z))′ ≺ q(z), where q is a convex

function and is the best dominant given by

q(z) =
c+ 1

zc+1

∫ z

0

φ(t)tcdt. (4.2.2)

2. Let (Og,h(α)f(z))′ be analytic univalent in D. If φ(z) ≺ (Og,h(α)f(z))′ and

(Og,h(α)F (z))′ ∈ H[1, 1] ∩ Q, then q(z) ≺ ((Og,h(α))F (z))′, where q given by

(4.2.8), is a convex function and is the best subordinant.
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Proof. It can be easily seen from (4.2.1) that

cF (z) + zF ′(z) = (c+ 1)f(z). (4.2.3)

Now convoluting both sides of (4.2.3) with h(z) = z +
∑∞

k=2(αhk + (1− α)gk)z
k and

differentiating, we get

(Og,h(α)F (z))′ +
z(Og,h(α)F (z))′′

c+ 1
= (Og,h(α)f(z))′. (4.2.4)

In view of the first assumption of Theorem 4.2.1 namely (Og,h(α)f(z))′ ≺ φ(z), and

(4.2.4), we have

(Og,h(α)F (z))′ +
z(Og,h(α)F (z))′′

c+ 1
≺ φ(z). (4.2.5)

If we assume p(z) = (Og,h(α)F (z))′, then (4.2.5) becomes

p(z) +
zp′(z)

c+ 1
≺ φ(z). (4.2.6)

Now an application of Lemma 4.1.1 with n = 1, γ = c+ 1 implies

p ≺ q or equivalently (Og,h(α)F (z))′ ≺ q(z),

where q given by (4.2.2), is convex and is the best dominant. The second half of the

proof follows in a similar way by using Lemma 4.1.2.

Theorem 4.2.1 leads to the following sandwich result:

Corollary 4.2.2. Let φi (i = 1, 2) be convex function in D with φi(0) = 1. Let

Re c > −1, f ∈ A and F is given by (4.2.1). Assume that (Og,h(α)f(z))′ is analytic

univalent in D and (Og,h(α)F (z))′ ∈ H[1, 1] ∩Q.

If

φ1(z) ≺ (Og,h(α)f(z))′ ≺ φ2(z),

then

q1(z) ≺ (Og,h(α)F (z))′ ≺ q2(z),

where the function qi is given by

qi(z) =
c+ 1

zc+1

∫ z

0

φi(t)t
cdt (i = 1, 2). (4.2.7)
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Theorem 4.2.3. Let φ be a convex function in D, with φ(0) = 1 and f ∈ A.

1. If (Og,h(α)f(z))′ ≺ φ(z), then ((Og,h(α))f(z))/z ≺ q(z), where q is a convex

function and is the best dominant given by

q(z) =
1

z

∫ z

0

φ(t)dt. (4.2.8)

2. Let (Og,h(α)f(z))′ be analytic univalent in D. If φ(z) ≺ (Og,h(α)f(z))′ holds

and ((Og,h(α))f(z))/z ∈ H[1, 1] ∩ Q, then q(z) ≺ ((Og,h(α))f(z))/z, where q

given by (4.2.2), is a convex function and is the best subordinant.

Proof. Let us prove the first part of theorem. For this we assume

p(z) =
Og,h(α)f(z)

z
. (4.2.9)

It is clear that p(0) = 1 and p ∈ H[1, 1]. From (4.2.9), we have

p(z) + zp′(z) = (Og,h(α)f(z))′. (4.2.10)

Since (Og,h(α)f(z))′ ≺ φ(z), it follows from (4.2.10) that p(z) + zp′(z) ≺ φ(z). Now

an application of Lemma 4.1.1 with n = 1 and γ = 1 leads to

p ≺ q or (Og,h(α)f(z))/z ≺ q(z),

where q is given by (4.2.8) is a convex function and is the best dominant. The second

half of the proof follows in a similar way by using Lemma 4.1.2.

The following corollary is the sandwich result obtained from Theorem 4.2.3:

Corollary 4.2.4. Let φi (i = 1, 2) be convex in D with φi(0) = 1. Assume that

f ∈ A, ((Og,h(α))f(z))/z ∈ H[1, 1] ∩ Q and (Og,h(α)f(z))′ is analytic univalent in

D. If

φ1(z) ≺ (Og,h(α)f(z))′ ≺ φ2(z),

then

q1(z) ≺ ((Og,h(α))f(z))/z ≺ q2(z),

where qi be given by

qi(z) =
1

z

∫ z

0

φi(t)dt. (4.2.11)
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Theorem 4.2.5. Let φ be a convex function in D, with φ(0) = 0 and f ∈ A.

1. If

Og,h(α)f(z) + z(Og,h(α)f(z))′ ≺ φ(z),

then Og,h(α)f(z) ≺ q(z), where the function q, given by (4.2.8), is convex and

is the best dominant.

2. Let Og,h(α)f(z) + z(Og,h(α)f(z))′ be analytic univalent in D. If f satisfies

φ(z) ≺ Og,h(α)f(z) + z(Og,h(α)f(z))′

and Og,h(α)f(z) ∈ H[0, 1] ∩ Q, then q(z) ≺ Og,h(α)f(z), where the function q

given by (4.2.8), is convex and is the best subordinant.

Proof. Let us assume that

p(z) = Og,h(α)f(z). (4.2.12)

Then clearly p(0) = 0 and p ∈ H[0, 1]. A computation using (4.2.12) yields

p(z) + zp′(z) = Og,h(α)f(z) + z(Og,h(α)f(z))′. (4.2.13)

Since Og,h(α)f(z) + z(Og,h(α)f(z))′ ≺ φ(z), (4.2.13) becomes p(z) + zp′(z) ≺ φ(z).

Now an application of Lemma 4.1.1 with γ = n = 1 completes the proof of first part

of the theorem. The second half of the proof follows similarly using Lemma 4.1.2.

From Theorem 4.2.5, we have the following sandwich result:

Corollary 4.2.6. Let φi (i = 1, 2) be convex function in D, with φi(0) = 0 and

f ∈ A. Assume that Og,h(α)f(z) + z(Og,h(α)f(z))′ is analytic univalent in D and

Og,h(α)f(z) ∈ H[0, 1] ∩Q. If

φ1(z) ≺ Og,h(α)f(z) + z(Og,h(α)f(z))′ ≺ φ2(z),

then

q1(z) ≺ Og,h(α)f(z) ≺ q2(z),

where the function qi (i = 1, 2) is given by (4.2.11).
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Theorem 4.2.7. Let φ be convex function in D, with φ(0) = 1 and f ∈ A.

1. If (Og,h(α)f(z))′ + z(Og,h(α)f(z))′′ ≺ φ(z), then (Og,h(α)f(z))′ ≺ q(z), where

the function q, given by (4.2.8) is convex and is the best dominant.

2. Let (Og,h(α)f(z))′ + z(Og,h(α)f(z))′′ is analytic univalent in D. If f satisfies

φ(z) ≺ (Og,h(α)f(z))′ + z(Og,h(α)f(z))′′,

and Og,h(α)f(z) ∈ H[1, 1] ∩ Q, then q(z) ≺ (Og,h(α)f(z))′, where the function

q, given by (4.2.8), is convex and is the best subordinant.

Proof. Define the function p : D→ C by

p(z) = (Og,h(α)f(z))′. (4.2.14)

Then clearly p(0) = 0 and p ∈ H[0, 1]. A computation using (4.2.14) yields

p(z) + zp′(z) = (Og,h(α)f(z))′ + z(Og,h(α)f(z))′′. (4.2.15)

Since (Og,h(α)f(z))′ + z(Og,h(α)f(z))′′ ≺ φ(z), the expression given in (4.2.15) be-

comes p(z) + zp′(z) ≺ φ(z). Now an application of Lemma 4.1.1 with γ = n = 1

completes the proof of first part of the theorem. The second half of the proof follows

by a similar application of Lemma 4.1.2.

We have the following sandwich result from Theorem 4.2.7:

Corollary 4.2.8. Let φi (i = 1, 2) be convex function in D, with φi(0) = 1. As-

sume that f ∈ A, (Og,h(α)f(z))′ + z(Og,h(α)f(z))′′ is analytic univalent in D and

Og,h(α)f(z) ∈ H[1, 1] ∩Q. If the following holds

φ1(z) ≺ (Og,h(α)f(z))′ + z(Og,h(α)f(z))′′ ≺ φ2(z),

then q1(z) ≺ (Og,h(α)f(z))′ ≺ q2(z), where the function qi (i = 1, 2) is given by

(4.2.11).
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Theorem 4.2.9. Let q be a convex function in D with φ(0) = 1. Further assume that

f ∈ A and F is defined by (4.2.1). If the subordination

(Og,h(α)f(z))′ ≺ q(z) +
zq′(z)

c+ 1
(c > −1),

then (Og,h(α)F (z))′ ≺ q(z).

Proof. Let p(z) = (Og,h(α)F (z))′. Proceeding as described in the proof of Theo-

rem 4.2.1, we arrive at

p(z) +
zp′(z)

c+ 1
≺ q(z) +

zq′(z)

c+ 1
.

Now the result follows at once by an application of Lemma 4.1.3.

Theorem 4.2.10. Let q be a convex function in D with q(0) = 1. If f ∈ A satisfies

(Og,h(α)f(z))′ ≺ q(z) + zq′(z), then ((Og,h(α))f(z))/z ≺ q(z). The function q is

convex and is the best dominant.

Proof. Proceeding as in the proof of Theorem 4.2.3, we have (4.2.10). Now (4.2.10)

together with φ(z) = q(z) + zq′(z) lead to p(z) + zp′(z) ≺ q(z) + zq′(z). Now an

application of Lemma 4.1.3 completes the proof.

The following theorems can be proved in a similar way to that of Theorem 4.2.10:

Theorem 4.2.11. Let q be a convex function in D and φ(z) = q(z) + zq′(z). Assume

that f ∈ A. If the subordination Og,h(α)f(z) + z(Og,h(α)f(z))′ ≺ φ(z) holds, then

Og,h(α)f(z) ≺ q(z).

Theorem 4.2.12. Let q be a convex function in D and φ(z) := q(z)+zq′(z). Assume

that f ∈ A. If the subordination (Og,h(α)f(z))′ + z(Og,h(α)f(z))′′ ≺ φ(z) holds, then

(Og,h(α)f(z))′ ≺ q(z).

4.3 Applications

In this section, we shall choose distinct functions as dominant satisfying the conditions

of general subordination theorems proved in Section 4.2. As a consequence, we shall

get some new and interesting results.
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Corollary 4.3.1. Let f ∈ A and F be defined by (4.2.1). If Re c > −1 and

f ′(z) + (1− α)zf ′′(z) ≺ 1 + (2β − 1)z

1 + z
(β < 1), (4.3.1)

then the following holds:

F ′(z) + (1− α)zF ′′(z) ≺ 2(1− β) 2F1(1, c+ 1; c+ 2;−z) + 2β − 1. (4.3.2)

The function on the right of (4.3.2) is convex and is the best dominant.

Proof. If we take g(z) = z/(1− z) and h(z) = z/(1− z)2, then it is easy to see that

(f ∗ g)(z) = f(z), (f ∗ h)(z) = zf ′(z) and Og,h(α)f(z) = (1 − α)f(z) + αzf ′(z) and

thus, (Og,h(α)f(z))′ = f ′(z) + αzf ′′(z), and (Og,h(α)F (z))′ = F ′(z) + αzF ′′(z).

Now by setting φ(z) = (1 + (1 − 2β)z)/(1 + z) (β < 1) in the first part of

Theorem 4.2.1 yields (4.3.1). Further we have

q(z) =
c+ 1

zc+1

∫ z

0

1− (1− 2β)t

1 + t
tcdt.

Now a computation using Lemma 4.1.4, yields

q(z) = 2(1− β) 2F1(1, c+ 1; c+ 2;−z) + 2β − 1.

This completes the proof.

Setting c = 0 and α = 1, Corollary 4.3.1 reduces to the following result.

Corollary 4.3.2. [108, Lemma 5.5k] Let f ∈ A and F be defined by (4.2.1). If the

following subordination holds

f ′(z) ≺ 1− (1− 2β)z

1 + z
(β < 1),

then we have F ′(z) ≺ 2(1− β) 2F1(1, 1; 2;−z) + 2β − 1. The function on the right of

(4.3.2) is convex and is the best dominant.

By taking

g(z) =
z

1− z
, h(z) =

z

(1− z)2
and φ(z) =

1 + (1− 2β)z

1− z
(0 ≤ β < 1)

in Theorem 4.2.3, we obtain the following result:
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Corollary 4.3.3. Let f ∈ A satisfies Re(f ′(z) + (1− α)zf ′′(z)) > β. Then

Re

(
αf(z) + (1− α)zf ′(z)

z

)
> 2(β − 1) ln 2 + 2β − 1.

Remark 4.3.1. The above result generalizes the result of Owa et al. [128, Corollary

1] and when α = 0, the result reduces to the result [69, Theorem 6] of Hallenbeck.

Corollary 4.3.4. [69, Theorem 6] If f ∈ A satisfies Re(f ′(z) + zf ′′(z)) > β, then

Re f ′(z) > 2(β − 1) ln 2 + 2β − 1.

Corollary 4.3.5. [128, Corollary 1] If f ∈ A satisfies Re f ′(z) > β, then

Re

(
f(z)

z

)
> 2(β − 1) ln 2 + 2β − 1.

Remark 4.3.2. Let the function q : D→ C be defined by

q(z) =
1 + (1− 2β)z

1− z
(0 ≤ β < 1).

Then q is convex in D with q(0) = 1. Further by setting g(z) = z/(1 − z) and

h(z) = z/(1− z)2 in Theorem 4.2.10 we see that

αf(z) + (1− α)zf ′(z)

z
≺ 1 + (1− 2β)z

1− z

whenever the following subordination holds:

f ′(z) + (1− α)zf ′′(z) ≺ 1 + (1− 2β)z

1− z
+

2(1− β)z

(1− z)2
.

Thus, we have the following result:

Corollary 4.3.6. If f ∈ A satisfies

Re(f ′(z) + (1− α)zf ′′(z)) >
3β − 1

2
(0 ≤ β < 1),

then

Re

(
αf(z) + (1− α)zf ′(z)

z

)
> β.

Corollary 4.3.6 reduces to the following results for the choices of α = 0, and 1

respectively.
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Corollary 4.3.7. [180, Example 3.5] If f ∈ A satisfies

Re(f ′(z) + zf ′′(z)) >
3β − 1

2
(0 ≤ β < 1),

then Re f ′(z) > β.

Corollary 4.3.8. [125, Theorem 2] If f ∈ A satisfies

Re f ′(z) >
3β − 1

2
(0 ≤ β < 1),

then Re(f(z)/z) > β.

Setting g(z) = h(z) = φ(z) = z/(1 − z)2 in the first part of Theorem 4.2.5, we

obtain the following result:

Example 4.3.9. Let f ∈ A satisfies

Re(αf(z) + (2− α)zf ′(z) + (1− α)z2f ′′(z)) > −1

2
.

Then Re(αf(z) + (1− α)zf ′(z)) > ln 2− 1.

By taking

g(z) = h(z) =
z

1− z
and φ(z) =

1 + (1− 2β)z

1− z
(0 ≤ β < 1)

in the first part of Theorems 4.2.7 and 4.2.12, we deduce the following results re-

spectively:

Example 4.3.10. Let f ∈ A satisfies Re(f(z) + zf ′(z)) > β (0 ≤ β < 1), then

Re f(z) > 2(1− β) ln 2 + 2β − 1.

Example 4.3.11. If f ∈ A satisfies the inequality

Re(f ′(z) + zf ′′(z)) > 2(1− β) ln 2 + 2β − 1 (0 ≤ β < 1),

then Re f ′(z) > β.
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Corollary 4.3.12. Let f ∈ A and the function F be as defined in (4.2.1). If the

following inequality holds

Re(Og,h(α)f(z))′ > β +
β − 1

2(c+ 1)
(0 ≤ β < 1, c > −1), (4.3.3)

then Re(Og,h(α)F (z))′ > β. The result is best possible.

Proof. Let us define the function q : D→ C by

q(z) =
1 + (1− 2β)z

1− z
(0 ≤ β < 1).

Clearly q is convex in D with q(0) = 1. A calculation shows that

q(z) +
zq′(z)

c+ 1
=

1 + (1− 2β)z

1− z
− 2(1− β)z

(c+ 1)(1− z)2
.

Now an application of Theorem 4.2.9 yields

(Og,h(α)f(z))′ ≺ 1 + (1− 2β)z

1− z
− 2(1− β)z

(c+ 1)(1− z)2
.

This implies (4.3.3) and hence the result follows at once.

Remark 4.3.3. By setting β = 0 in Corollary 4.3.12, we have the inequality

Re(Og,h(α)f(z))′ >
−1

2(c+ 1)
(c > −1)

which implies that Re(Og,h(α)F (z))′ > 0. This shows that Og,h(α)F (z) is univalent.



Chapter 5

Fekete-Szegö Coefficient Inequality

for Certain Classes of Analytic

Functions

5.1 Introduction

Finding the necessary conditions for functions satisfying certain geometric proper-

ties have been a core area of research. The Bierberbach conjecture and its proof by

de Branges was the main attraction for many researchers working in GFT till 1985.

Since many of them were attempting to prove or disprove the Bierberbach conjec-

ture, the Fekete-Szegö coefficient problem could not get much attention during that

time, but at the same time the Fekete–Szegö coefficient problems for the classes S∗,

K, and CC were settled by Keogh and Merkes [83]. Further Ma–Minda [101] and

Ravichandran [18] explored the Fekete–Szegö coefficient problem for more general

classes. In this direction, Obradović [123], in 2010, introduced a class of functions

f ∈ A satisfying

Re

{
f ′(z)

(
z

f(z)

)λ+1
}
> 0 (0 < λ < 1).

Most of the results of this chapter appeared in [176–178].
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He discussed the starlikeness criteria of the functions satisfying the above condition.

Tuneksi and Darus [202] generalized this class by introducing the class of functions

f ∈ A satisfying the condition

Re

{
f ′(z)

(
z

f(z)

)λ+1
}
> α (0 ≤ α < 1, 0 < λ < 1) (5.1.1)

and they obtained the estimate on Fekete-Szegö functional for functions in this class.

The above expressions are some what similar to the analytic representation of starlike

functions. It should be noted that the analytic representations of convex and starlike

functions can be written in terms of Hadamard product. The expression zf ′(z)/f(z)

can be written as (f ∗K1)(z)/(f ∗K2)(z) where K1(z) = z/(1−z)2 and K2(z) = z/(1−

z). Similarly 1+zf ′′(z)/f ′(z) can also be written by taking K1(z) = (z+z2)/(1−z)3

and K2(z) = z/(1− z). Using this fact Murugusundaramoorthy et al. [112], in 2007,

for ϕ ∈ P , with the image domain ϕ(D) symmetrical with respect to the real axis,

starlike with respect to ϕ(0) = 1 and ϕ′(0) > 1, introduced a classMg,h(ϕ) such that

f ∈ A satisfying
(f ∗ g)(z)

(f ∗ h)(z)
≺ ϕ(z) (gn > hn > 0),

where g, h ∈ A, and are given by

g(z) = z +
∞∑
n=2

gnz
n, h(z) = z +

∞∑
n=2

hnz
n (5.1.2)

and obtained the estimate on the Fekete-Szegö functional for the class Mg,h(ϕ). All

the linear operators investigated in GFT can be written as L(f, g) = f ∗ g for some

suitable g ∈ A. Motivated by the above defined classes and using the generalized

Sălăgean operator [24], Răducanu [151] introduced the class Mn,λ
α,β(ϕ) defined by(

Dn+1
λ f(z)

Dn
λf(z)

)α(
Dn+2
λ f(z)

Dn+1
λ f(z)

)β
≺ ϕ(z) (α, β, λ ≥ 0; f ∈ A)

and discussed the Fekete-Szegö problem for functions in this class.

It has been observed that the univalence or starlikeness of ϕ is required only in

proving the growth, distortion and covering theorems. For estimate on coefficients

we do not require any such assumptions, we can take the superordinate function with
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suitable normalization with positive real part. Since our main motive in this chapter

is to discuss the Fekete-Szegö coefficient estimate, here after throughout this chapter,

we assume that ϕ ∈ P has the form ϕ(z) = 1 + B1z + B2z
2 + B3z

3 + · · · , B1 > 0,

and B2 ∈ R. Further, in Sections 5.2, 5.3 and 5.4, we shall consider three different

classes of analytic functions defined in terms of convolution and subordination as

follows:

Definition 5.1.1. Let α and β be real numbers. Assume that g and h are given by

g(z) = z +
∞∑
n=2

gnz
n and h(z) = z +

∞∑
n=2

hnz
n. (5.1.3)

A function f ∈ A is said to be in the class Mα,β
g,h (ϕ), if it satisfies(

(f ∗ g)(z)

z

)α(
(f ∗ h)(z)

z

)β
≺ ϕ(z),

where the powers are principal one.

Note that the definition explicitly assumes that (f ∗ g)(z) 6= 0, (f ∗ h)(z) 6= 0 for

z 6= 0. For appropriate choice of the functions g, h, ϕ and constants α and β, the class

Mα,β
g,h (ϕ) reduces to the following classes:

1. M1,−1
g,h (ϕ) =:Mg,h(ϕ), the class introduced by Murugusundaramoorthy et al. [112].

2. M1,−1
z

(1−z)2
, z
1−z

(ϕ) =: S∗(ϕ), the class of Ma-Minda Starlike functions.

3. M1,−1
z+z2

(1−z)3
, z
(1−z)2

(ϕ) =: K(ϕ), the class of Ma-Minda convex functions.

4. If g(z) = z/(1 − z)2, h(z) = z/(1 − z) and ϕ(z) = (1 + z)/(1 − z), then class

M1,−(λ+1)
g,h (ϕ) (0 < λ < 1) reduces to the class introduced by Obradović [123].

Definition 5.1.2. Let g and h be given by (5.1.3) with gn > hn > 0. A function

f ∈ A given by (1.1.1) is said to be in the class Ng,h(α, ϕ), if it satisfies

(1− α)
(f ∗ g)(z)

(f ∗ h)(z)
+ α

(f ∗ g)′(z)

(f ∗ h)′(z)
≺ ϕ(z) (α ≥ 0). (5.1.4)
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Remark 5.1.1. For various choices of the functions g, h, ϕ and the real number α,

the class Ng,h(α, ϕ) reduces to several known classes, we enlist a few of them below:

1. The classNg,h(0, ϕ) =: Mg,h(ϕ), introduced and studied by Murugusundaramoor-

thy et al. [112].

2. If we set

g(z) =
z

(1− z)2
, h(z) =

z

(1− z)
(5.1.5)

and ϕ(z) = (1 + z)/(1− z), then the class Ng,h(α, ϕ) reduces to the classM(α)

of α–convex functions.

3. N z
(1−z)2

, z
(1−z)

(α, ϕ) =:M(α, ϕ), the class introduced by Ali et al. [21].

4. N z
(1−z)2

, z
(1−z)

(0, ϕ) =: S∗(ϕ) and N z
(1−z)2

, z
(1−z)

(1, ϕ) =: C(ϕ), the classes intro-

duced by Ma and Minda [101].

Definition 5.1.3. Let α ≥ 0. For a fixed function g ∈ A given by (5.1.3), the class

Sαg (ϕ) consists of functions f ∈ A of the form (1.1.1) satisfying

1 +
z(f ∗ g)′(z)

(f ∗ g)(z)
+
z(f ∗ g)′′(z)

(f ∗ g)′(z)
− (1− α)z2(f ∗ g)′′(z) + z(f ∗ g)′(z)

(1− α)z(f ∗ g)′(z) + α(f ∗ g)(z)
≺ ϕ(z). (5.1.6)

Note that the above class Sαg (ϕ), in fact generalizes several known classes, a few are

enlisted below:

1. For g(z) = z/(1 − z), we have S0
g (ϕ) =: S∗(ϕ) and S1

g (ϕ) =: K(ϕ), the classes

introduced by Ma and Minda [101].

2. If we take g(z) = z +
∑∞

n=2 n
mzn, then (f ∗ g)(z) becomes the Sălăgean [162]

operator Dm defined by

Dmf(z) = z +
∞∑
n=2

nmanz
n (m ∈ {0, 1, 2, 3, . . .}).

3. Further, if we set ϕ(z) = (1 + z)/(1− z) and g = z +
∑∞

n=2 n
mzn in the above

Definition 5.1.3, then the class Sαg (ϕ) reduces to the classHS∗m(α) introduced by

Răducanu [151]. He investigated the relationship property between the classes

HS∗m(α) and S∗ and obtained the Fekete-Szegö inequality for the classHS∗m(α).
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Preliminaries

Recently Ali et al. [18] reformulated the results of Ma and Minda (see Lemma 1.1.1)

and Keogh and Merkes (see Lemma 1.1.2) as mentioned below:

Lemma 5.1.1. [18] If w ∈ B and w(z) = w1z + w2z
2 + · · · (z ∈ D), then

|w2 − tw2
1| ≤


−t (t ≤ −1),

1 (−1 ≤ t ≤ 1),

t (t ≥ 1).

For t < −1 or t > 1, equality holds if and only if w(z) = z or one of its rotations. For

−1 < t < 1, equality holds if and only if w(z) = z2 or one of its rotations. Equality

holds for t = −1 if and only if w(z) = z(λ + z)/(1 + λz) (0 ≤ λ ≤ 1) or one of its

rotations, while for t = 1, equality holds if and only if w(z) = −z(λ + z)/(1 + λz)

(0 ≤ λ ≤ 1) or one of its rotations. Also the sharp upper bound can be improved for

−1 < t < 1,

|w2 − tw2
1|+ (1 + t)|w1|2 ≤ 1 (−1 < t ≤ 0) (5.1.7)

and

|w2 − tw2
1|+ (1− t)|w1|2 ≤ 1 (0 ≤ t < 1). (5.1.8)

Lemma 5.1.2. [18,83] If w ∈ B and w(z) = w1z +w2z
2 + · · · (z ∈ D), then for any

complex number t,

|w2 − tw2
1| ≤ max{1; |t|}

and the result is sharp for the functions given by w(z) = z2 or w(z) = z.

Further Ali et al. [18] utilized the above results to discuss the estimate on the

Fekete-Szegö functional for p−valent analytic functions. This motivates us to dis-

cuss the Fekete-Szegö problem for classesMα,β
g,h (ϕ), Ng,h(α, ϕ) and Sαg (ϕ) of analytic

functions by considering ϕ ∈ P with ϕ(0) = 1 and ϕ′(0) > 0.

5.2 Fekete-Szegö Inequality for Mα,β
g,h (ϕ)

Throughout this section, it is assumed that αgn+βhn > 0, and f(z) = z+
∑∞

n=2 anz
n.
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Theorem 5.2.1. If f ∈Mα,β
g,h (ϕ), then for any real number µ, we have

|a3 − µa22| ≤


B1A

(αg3+βh3)
(µ ≤ σ1),

B1

(αg3+βh3)
(σ1 ≤ µ ≤ σ2),

− B1A
(αg3+βh3)

(µ ≥ σ2),

where

A :=
B2

B1

− [α(α− 1)g22 + β(β − 1)h22 + 2αβg2h2 + 2µ(αg3 + βh3)]B1

2(αg2 + βh2)2
,

σ1 :=
2(B2 −B1)(αg2 + βh2)

2 − [α(α− 1)g22 + β(β − 1)h22 + 2αβg2h2]B
2
1

2(αg3 + βh3)B2
1

and

σ2 :=
2(B2 +B1)(αg2 + βh2)

2 − [α(α− 1)g22 + β(β − 1)h22 + 2αβg2h2]B
2
1

2(αg3 + βh3)B2
1

.

The result is sharp.

Proof. Since f ∈Mα,β
g,h (ϕ), there exists w(z) = w1z + w2z

2 + · · · ∈ B such that(
(f ∗ g)(z)

z

)α(
(f ∗ h)(z)

z

)β
= ϕ(w(z)). (5.2.1)

By a computation, we get(
(f ∗ g)(z)

z

)α
= 1 + αa2g2z +

(
αa3g3 +

α(α− 1)

2
a22g

2
2

)
z2 + · · ·

and (
(f ∗ h)(z)

z

)β
= 1 + βa2h2z +

(
βa3h3 +

β(β − 1)

2
a22h

2
2

)
z2 + · · · .

Substituting these in (5.2.1) and comparing the coefficients, we have

(αg2 + βh2)a2 = B1w1 (5.2.2)

and

(αg3 + βh3)a3 + (α(α− 1)g22 + β(β − 1)h22 + 2αβg2h2)
a22
2

= B1w2 +B2w
2
1. (5.2.3)

From (5.2.2) and (5.2.3), we obtain

a3 − µa22 =
B1

2(αg3 + βh3)
(w2 − tw2

1),
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where

t := −B2

B1

+
[α(α− 1)g22 + β(β − 1)h22 + 2αβg2h2 + 2µ(αg3 + βh3)]B1

2(αg2 + βh2)2
. (5.2.4)

The result now follows by an application of Lemma 5.1.1. Further if

−B2

B1

+
[α(α− 1)g22 + β(β − 1)h22 + 2αβg2h2 + 2µ(αg3 + βh3)]B1

2(αg2 + βh2)2
≤ −1,

then, for

µ ≤ 2(B2 −B1)(αg2 + βh2)
2 − [α(α− 1)g22 + β(β − 1)h22 + 2αβg2h2]B

2
1

2(αg3 + βh3)B2
1

:= σ1

and A be as given in the statement of Theorem 5.2.1, we have

|a3 − µa22| ≤
B1A

(αg3 + βh3)
.

Further if −1 ≤ t ≤ 1, then for σ1 ≤ µ ≤ σ2, we have

|a3 − µa22| ≤
B1

(αg3 + βh3)
.

Similarly if t ≥ 1, for µ ≥ σ2, we have

|a3 − µa22| ≤ −
B1A

(αg3 + βh3)
.

This completes the proof. To show sharpness of bounds, we now define the functions

Kφn (n = 2, 3, 4, · · · ) by(
(Kφn ∗ g)(z)

z

)α(
z

(Kφn ∗ h)(z)

)β
= φ(zn−1), Kφn(0) = 0 = (Kφn)′(0)− 1

and the functions Gγ and Hγ (0 ≤ γ ≤ 1) are defined by(
(Gγ ∗ g)(z)

z

)α(
z

(Gγ ∗ h)(z)

)β
= φ

(
z(z + γ)

1 + γz

)
, with Gγ(0) = 0 = (Gγ)

′(0)− 1

and(
(Hγ ∗ g)(z)

z

)α(
z

(Hγ ∗ h)(z)

)β
= φ

(
−z(z + γ)

1 + γz

)
, with Hγ(0) = 0 = (Hγ)

′(0)− 1.

It is clear that the functions Kφn (n = 2, 3, 4, · · · ), Gγ and Hγ (0 ≤ γ ≤ 1) are in the

class Mα,β
g,h (φ). In either cases µ < σ1 or µ > σ2, the equality holds if and only if f is

Kφ2 or one of its rotations. When σ1 < µ < σ2, the equality occurs if and only if f is

Kφ3 or one of its rotations. If µ = σ1 then equality holds if and only if f is Gλ or one

of its rotations. If µ = σ2 then the quantity holds if and only if f is Hλ or one of its

rotations.
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Remark 5.2.1. If σ1 ≤ µ ≤ σ2, then the estimate given in Theorem 5.2.1 can be

improved by bifurcating the interval as follows: Let

σ3 :=
2B2(αg2 + βh2)

2 − [α(α− 1)g22 + β(β − 1)h22 + 2αβg2h2]B
2
1

2(αg3 + βh3)B2
1

.

If σ1 ≤ µ ≤ σ3, then

|a3 − µa22|+R1 ≤
B1

αg3 + βh3
,

where

R1 :=
2(B1 −B2)(αg2 + βh2)

2 + [α(α− 1)g22 + β(β − 1)h22 + 2αβg2h2 + 2µ(αg3 + βh3)]B
2
1

2(αg3 + βh3)B2
1

|a2|2.

Similarly if σ3 ≤ µ ≤ σ2, then

|a3 − µa22|+R2 ≤
B1

αg3 + βh3
,

where

R2 :=
2(B2 +B1)(αg2 + βh2)

2 + [α(α− 1)g22 + β(β − 1)h22 + 2αβg2h2 + 2µ(αg3 + βh3)]B
2
1

2(αg3 + βh3)B2
1

|a2|2.

Remark 5.2.2. When α = 1 and β = −1, Theorem 5.2.1 reduces to the result [112,

Theorem 2.1] of Murugusundaramoorthy et al.

Theorem 5.2.2. If f ∈Mα,β
g,h (ϕ), then for any complex number µ, we have

|a3 − µa22| ≤
B1

2(αg2 + βh2)
max {1; |R|} ,

where

R :=
[α(α− 1)g22 + β(β − 1)h22 + 2αβg2h2 + 2µ(αg3 + βh3)]B1

2(αg2 + βh2)2
− B2

B1

.

Proof. Proceeding in the similar way as in the proof of Theorem 5.2.1, using (5.2.4)

and Lemma 1.1.2, the result immediately follows.

Here below, we discuss some special cases of our main results of this section.

Theorem 5.2.3. Let the functions g and h are given by

g(z) = z +
∞∑
n=2

nΓ(n+ 1)Γ(2− δ)
Γ(n− δ + 1)

zn and h(z) = z +
∞∑
n=2

Γ(n+ 1)Γ(2− δ)
Γ(n− δ + 1)

zn.
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If f ∈Mα,β
g,h (ϕ), then for any real number µ, we have

|a3 − µa22| ≤


(2−δ)(3−δ)AB1

6(3α+β)
(µ ≤ σ1),

(2−δ)(3−δ)B1

6(3α+β)
(σ1 ≤ µ ≤ σ2),

− (2−δ)(3−δ)AB1

6(3α+β)
(µ ≥ σ2),

where

A :=
B2

B1

− [(4α(α− 1) + β(β − 1) + 4αβ)(3− δ) + 3µ(2− δ)(3α + β)]B1

(2α + β)2(3− δ)
,

σ1 :=
(3− δ)[2(B1 −B2)(2α + β)2 − (4α(α− 1) + β(β − 1) + 4αβ)B2

1 ]

3(2− δ)(3α + β)B2
1

and

σ2 :=
(3− δ)[2(B1 +B2)(2α + β)2 − (4α(α− 1) + β(β − 1) + 4αβ)B2

1 ]

3(2− δ)(3α + β)B2
1

.

Remark 5.2.3. If we set α = 1 and β = −1 in the Theorem 5.2.3, it reduces to

the result [112, Corollary 3.2] of Murugusundaramoorthy et al. For α = 1, β = −1,

B1 = 8/π2, B2 = 16/3π2 and δ = 1, Theorem 5.2.3 reduces to the result [102,

Theorem 2] of Ma and Minda.

If we set g(z) = z/(1 − z)2, h(z) = z/(1 − z) and ϕ(z) = (1 + z)/(1 − z) in

Theorem 5.2.1, we have the following result.

Corollary 5.2.4. [83,188] If f ∈ S∗, then for any real number µ, we have

|a3 − µa22| ≤


3− 4µ if µ ≤ 1

2
;

1 if 1
2
≤ µ ≤ 1;

4µ− 3 if µ ≥ 1.

If we take

ϕ(z) =
1 + Cz

1 +Dz
(−1 ≤ D < C ≤ 1)

in Theorem 5.2.2, it reduces to the following:

Corollary 5.2.5. Let f ∈Mα,β
g,h ((1 +Cz)/(1 +Dz)). Then for any complex number

µ, we have

|a3 − µa22| ≤
C −D

2(αg2 + βh2)
max {1; |R1|} ,



100

where

R1 = D +
[α(α− 1)g22 + β(β + 1)h22 − 2αβg2h2 + 2µ(αg3 − βh3)](C −D)

2(αg2 + βh2)2
.

Setting g(z) = z/(1 − z)2, h(z) = z/(1 − z), α = 1 and β = −λ − 1, λ < 1 in

Theorem 5.2.2, we deduce the following result:

Corollary 5.2.6. Let f ∈ A satisfies

f ′(z)

(
z

f(z)

)λ+1

≺ 1 + Cz

1 +Dz
,

then for any complex number µ, we have

|a3 − µa22| ≤
C −D
2− λ

max

{
1;

∣∣∣∣D +
(1 + λ− 2µ)(λ− 2)(C −D)

(1− λ)2

∣∣∣∣} .
Remark 5.2.4. For C = 1 − 2a, 0 ≤ a < 1, 0 < λ < 1 and D = −1, the Corol-

lary 5.2.6 reduces to [202, Theorem 1] of Tuneski and Darus. Note that our proof is

quite different from the one given by Tuneski and Darus [202]. There was a typo-

graphical error in the assertion of [202, Theorem 1], and it is rectified in the following

result.

Corollary 5.2.7. [202, Theorem 1] Let 0 ≤ a < 1 and 0 < λ < 1. If f ∈ A satisfies

Re

{
f ′(z)

(
z

f(z)

)λ+1
}
> a,

then for any complex number µ, we have

|a3 − µa22| ≤
2(1− a)

2− λ
max

{
1;

∣∣∣∣1 +
(1 + λ− 2µ)(2− λ)(1− a)

(1− λ)2

∣∣∣∣} .
Remark 5.2.5. For a = 0, the Corollary 5.2.7 reduces to the result [202, Corollary

1] of Tuneski and Darus. Setting C = k (0 < k ≤ 1) and D = 0 in Corollary 5.2.6,

we obtain the following result of Tuneski and Darus [202, Theorem 2].

Corollary 5.2.8. [202, Theorem 2] Let 0 < λ < 1 and 0 < k ≤ 1. If f ∈ A satisfies∣∣∣∣∣f ′(z)

(
z

f(z)

)λ+1

− 1

∣∣∣∣∣ < k,

then for all complex number µ, we have

|a3 − µa22| ≤
k

1− λ
max

{
1;

k

(1− λ)2

∣∣∣∣(1 + λ− 2µ)(λ− 2)

2

∣∣∣∣} .
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5.3 Fekete-Szegö Inequality for Ng,h(α, ϕ)

Throughout this section we shall assume that

f(z) = z +
∞∑
n=2

anz
n, g(z) = z +

∞∑
n=2

gnz
n and h(z) = z +

∞∑
n=2

hnz
n.

Theorem 5.3.1. If f ∈ Ng,h(α, ϕ), then for any real number µ, we have

|a3 − µa22| ≤


B1A

(1+2α)(g3−h3) (µ ≤ σ1),

B1

(1+2α)(g3−h3) (σ1 ≤ µ ≤ σ2),

B1A
(1+2α)(h3−g3) (µ ≥ σ2),

(5.3.1)

where

A =
B2

B1

− [(1 + 3α)(h22 − h2g2) + µ(1 + 2α)(g3 − h3)]B1

(1 + α)2(g2 − h2)2
,

σ1 :=
(B2 −B1)(1 + α)2(g2 − h2)2 − (1 + 3α)(h22 − h2g2)B2

1

(1 + 2α)(g3 − h3)B2
1

and

σ2 :=
(B2 +B1)(1 + α)2(g2 − h2)2 − (1 + 3α)(h22 − h2g2)B2

1

(1 + 2α)(g3 − h3)B2
1

,

and for any complex number µ

|a3 − µa22| ≤
B1

2(1 + 2α)(g3 − h3)
max {1; |t|} , (5.3.2)

where

t := −B2

B1

+
[(1 + 3α)(h22 − h2g2) + µ(1 + 2α)(g3 − h3)]B1

(1 + α)2(g2 − h2)2
. (5.3.3)

The inequality is sharp.

Proof. If f ∈ Ng,h(α, ϕ), then there exists w(z) = w1z + w2z
2 + · · · ∈ B such that

(1− α)
(f ∗ g)(z)

(f ∗ h)(z)
+ α

(f ∗ g)′(z)

(f ∗ h)′(z)
= ϕ(w(z)). (5.3.4)

A computation shows that

(f ∗ g)(z)

(f ∗ h)(z)
= 1 + a2(g2 − h2)z + [a3(g3 − h3) + a22(h

2
2 − h2g2)]z2 + · · · , (5.3.5)

(f ∗ g)′(z)

(f ∗ h)′(z)
= 1 + 2a2(g2 − h2)z + [3a3(g3 − h3) + 4a22(h

2
2 − h2g2)]z2 + · · · (5.3.6)
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and

ϕ(w(z)) = 1 +B1w1z + (B1w2 +B2w
2
1)z

2 + · · · . (5.3.7)

From (5.3.4), (5.3.5), (5.3.6) and (5.3.7), we have

(1 + α)(g2 − h2)a2 = B1w1 (5.3.8)

and

(1 + 2α)(g3 − h3)a3 + (1 + 3α)(h22 − h2g2)a22 = B1w2 +B2w
2
1. (5.3.9)

A computation using (5.3.8) and (5.3.9) gives

a3 − µa22 =
B1

(1 + 2α)(g2 − h2)
(w2 − tw2

1), (5.3.10)

where t is given by (5.3.3). Now the first inequality (5.3.1) is established by an

application of Lemma 5.1.1 as follows:

If

−B2

B1

+
[(1 + 3α)(h22 − h2g2) + µ(1 + 2α)(g3 − h3)]B1

(1 + α)2(g2 − h2)2
≤ −1,

then

µ ≤ (B2 −B1)(1 + α)2(g2 − h2)2 − (1 + 3α)(h22 − h2g2)B2
1

(1 + 2α)(g3 − h3)B2
1

:= σ1

and hence Lemma 5.1.1 implies

|a3 − µa22| ≤
B1A

(1 + 2α)(g3 − h3)
,

where

A =
B2

B1

− [(1 + 3α)(h22 − h2g2) + µ(1 + 2α)(g3 − h3)]B1

(1 + α)2(g2 − h2)2
.

For

−1 ≤ −B2

B1

+
[(1 + 3α)(h22 − h2g2) + µ(1 + 2α)(g3 − h3)]B1

(1 + α)2(g2 − h2)2
≤ 1,

we have σ1 ≤ µ ≤ σ2, where σ1 and σ2 are as stated Theorem 5.3.1. Now an

application of Lemma 5.1.1 yields

|a3 − µa22| ≤
B1

(1 + 2α)(g3 − h3)
.

For

−B2

B1

+
[(1 + 3α)(h22 − h2g2) + µ(1 + 2α)(g3 − h3)]B1

(1 + α)2(g2 − h2)2
≥ 1,
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we have µ ≥ σ2 and it follows from Lemma 5.1.1 that

|a3 − µa22| ≤
B1A

(1 + 2α)(h3 − g3)
.

Now the second inequality (5.3.2) follows by an application of Lemma 1.1.2 as follows:

|a3 − µa22| =
B1

(1 + 2α)(g2 − h2)
[w2 − tw2

1]

≤ B1

(1 + 2α)(g3 − h3)
max {1; |t|} ,

where t is given by (5.3.3). Sharpness can be verified in a similar way as in the proof

of Theorem 5.2.1.

Remark 5.3.1. If we set α = 1, g and h are as given by (5.1.5), then Theorem 5.3.1

reduces to [101, Theorem 3] of Ma and Minda. When α = 0, Theorem 5.3.1 reduces

to the result [112, Theorem 2.1], proved by Murugusundaramoorthy et al. There

were few typographical errors in the assertion of the result [112, Theorem 2.1] and it

is rectified in the following corollary:

Corollary 5.3.2. [112, Theorem 2.1] If f ∈ Mg,h(ϕ), then for any real number µ,

we have

|a3 − µa22| ≤


B1

g3−h3

(
B2

B1
− [(h22−h2g2)+µ(g3−h3)]B1

(g2−h2)2

)
(µ ≤ σ1),

B1

g3−h3 (σ1 ≤ µ ≤ σ2),

B1

g3−h3

(
[(h22−h2g2)+µ(g3−h3)]B1

(g2−h2)2 − B2

B1

)
(µ ≥ σ2),

where

σ1 :=
(B2 −B1)(g2 − h2)2 − (h22 − h2g2)B2

1

(g3 − h3)B2
1

and

σ2 :=
(B2 +B1)(g2 − h2)2 − (h22 − h2g2)B2

1

(g3 − h3)B2
1

.

We now discuss some applications of Theorem 5.3.1.

Corollary 5.3.3. Assume that

g(z) = z +
∞∑
n=2

nΓ(n+ 1)Γ(2− δ)
Γ(n− δ + 1)

zn and h(z) = z +
∞∑
n=2

Γ(n+ 1)Γ(2− δ)
Γ(n− δ + 1)

zn.
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If f ∈ Ng,h(α, ϕ), then for any real number µ, we have

|a3 − µa22| ≤


(2−δ)(3−δ)B1

12(1+2α)

(
B2

B1
− [12µ(1+2α)(2−δ)−4(3−δ)(1+3α)]B1

4(3−δ)(1+α)2

)
(µ ≤ σ1),

(2−δ)(3−δ)B1

12(1+2α)
(σ1 ≤ µ ≤ σ2),

(2−δ)(3−δ)B1

12(1+2α)

(
[12µ(1+2α)(2−δ)−4(3−δ)(1+3α)]B1

4(3−δ)(1+α)2 − B2

B1

)
(µ ≥ σ2),

where

σ1 :=
(3− δ)[(B1 −B2)(1 + α)2 + (1 + 3α)B2

1 ]

3(2− δ)(1 + 2α)B2
1

and

σ2 :=
(3− δ)[(B1 +B2)(1 + α)2 + (1 + 3α)B2

1 ]

3(2− δ)(1 + 2α)B2
1

.

Remark 5.3.2. Taking α = 8/π2, B2 = 16/3π2 and δ = 1 in Corollary 5.3.3, we have

the result of Ma and Minda [102, Theorem 2]. When α = 0, Corollary 5.3.3 reduces

to the result [112, Corollary 3.2] of Murugusundaramoorthy et al. There were few

typographical errors in the assertion of [112, Corollary 3.2] and we corrected it as

follows:

Corollary 5.3.4. [112, Corollary 3.2] If f ∈ Mg,h(ϕ), then for any real number µ,

we have

|a3 − µa22| ≤


(2−δ)(3−δ)B1

12

(
B2

B1
− [12µ(2−δ)−4(3−δ)]B1

4(3−δ)

)
(µ ≤ σ1),

(2−δ)(3−δ)B1

12
(σ1 ≤ µ ≤ σ2),

(2−δ)(3−δ)B1

12

(
[12µ(2−δ)−4(3−δ)]B1

4(3−δ) − B2

B1

)
(µ ≥ σ2),

where

σ1 :=
(3− δ)[B1 −B2 +B2

1 ]

3(2− δ)B2
1

and

σ2 :=
(3− δ)[B1 +B2 +B2

1 ]

3(2− δ)B2
1

.

Putting ϕ(z) = (1 + z)/(1− z), g and h are as given by (5.1.5) in Theorem 5.3.1,

we deduce the following result:

Corollary 5.3.5. Let f ∈M(α), then for any real number µ, we have

|a3 − µa22| ≤


(α2+8α+3)−4µ(1+2α)

(1+α)2(1+2α)
(µ ≤ σ1),

1
1+2α

(σ1 ≤ µ ≤ σ2),

4µ(1+2α)−(α2+8α+3)
(1+α)2(1+2α)

(µ ≥ σ2),
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where

σ1 :=
1 + 3α

2(1 + 2α)
and σ2 :=

α2 + 5α + 2

2(1 + 2α)
.

Note that for α = 0, Corollary 5.3.5 reduces to a result in [83] (see also [188]).

By taking ϕ(z) = (1 + z)/(1 − z), g and h are given by (5.1.5), in second result of

Theorem 5.1.1, we have the following result:

Corollary 5.3.6. Let f ∈M(α), then for any complex number µ, we have

|a3 − µa22| ≤
1

1 + 2α
max

{
1;

∣∣∣∣4µ(1 + 2α)− (α2 + 8α + 3)

(1 + α)2

∣∣∣∣} .
Remark 5.3.3. For α = 1, Corollary 5.3.6 reduces to the result [83, Corollary 1] of

Keogh and Merkes.

5.4 Fekete-Szegö Inequality for Sαg (ϕ)

Throughout this section, it is assumed that α ≥ 0,

f(z) = z +
∞∑
n=2

anz
n and g(z) = z +

∞∑
n=2

bnz
n

with b2 and b3 are non-zero real numbers unless otherwise stated specifically.

Theorem 5.4.1. If f ∈ Sαg (ϕ), then for any real number µ, we have

|a3 − µa22| ≤


B1

2(2α+1)|b3|

(
B2
B1
− (α2−4α−1)B1

(1+α)2
− 2µ(2α+1)B1b3

(1+α)2b22

)
if µ ≤ σ1;

B1
2(2α+1)|b3| if σ1 ≤ µ ≤ σ2;

B1
2(2α+1)|b3|

(
(α2−4α−1)B1

(1+α)2
+ 2µ(2α+1)B1b3

(1+α)2b22
− B2

B1

)
if µ ≥ σ2,

(5.4.1)

where

σ1 :=
(1 + α)2b22

2(2α + 1)B1b3

(
B2

B1

− (α2 − 4α− 1)B1

(1 + α)2
− 1

)
and

σ2 :=
(1 + α)2b22

2(2α + 1)B1b3

(
1 +

B2

B1

− (α2 − 4α− 1)B1

(1 + α)2

)
.

The inequality (5.4.1) is sharp.

Further when σ1 < µ < σ2, the above result can be improved as follows:
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Let

σ3 :=
(1 + α)2b22

2(2α + 1)B1b3

(
B2

B1

− (α2 − 4α− 1)B1

(1 + α)2

)
.

If σ1 < µ ≤ σ3, then

|a3 − µa22|+
(1 + α)2b22

2(2α + 1)B1|b3|

(
1− B2

B1

+
(α2 − 4α− 1)B1

(1 + α)2
+

2µ(2α + 1)B1b3
(1 + α)2b22

)
|a2|2

≤ B1

2(2α + 1)|b3|

and if σ3 ≤ µ < σ2, then

|a3 − µa22|+
(1 + α)2b22

2(2α + 1)B1|b3|

(
1 +

B2

B1

− (α2 − 4α− 1)B1

(1 + α)2
− 2µ(2α + 1)B1b3

(1 + α)2b22

)
|a2|2

≤ B1

2(2α + 1)|b3|
.

Proof. Since f ∈ Sαg (ϕ), there exists an analytic function w(z) = w1z+w2z
2+· · · ∈ B

such that

1 +
z(f ∗ g)′(z)

(f ∗ g)(z)
+
z(f ∗ g)′′(z)

(f ∗ g)′(z)
− (1− α)z2(f ∗ g)′′(z) + z(f ∗ g)′(z)

(1− α)z(f ∗ g)′(z) + α(f ∗ g)(z)
= φ(w(z)).

(5.4.2)

A calculation shows that

z((f ∗ g)′(z))

(f ∗ g)(z)
= 1 + a2b2z + (2a3b3 − a22b22)z2 + . . . ,

1 +
z(f ∗ g)′′(z)

(f ∗ g)′(z)
= 1 + 2a2b2z + (6a3b3 − 4a22b

2
2)z

2 + · · ·

and

(1− α)z2(f ∗ g)′′(z) + z(f ∗ g)′(z)

(1− α)z(f ∗ g)′(z) + α(f ∗ g)(z)
= 1 + (2− α)a2b2z

+ [(6− 4α)a3b3 − (α− 2)2a22b
2
2]z

2 + · · · .

Substituting these expressions in (5.4.2), we obtain

(1 + α)a2b2 = B1w1 (5.4.3)

and

2(2α + 1)a3b3 + (α2 − 4α− 1)a22b
2
2 = B1w2 +B2w

2
1. (5.4.4)
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By using (5.4.3) and (5.4.4), we have

a3 − µa22 =
B1

2(2α + 1)b3
(w2 − tw2

1), (5.4.5)

where

t := −B2

B1

+
(α2 − 4α− 1)B1

(1 + α)2
+

2µ(2α + 1)B1b3
(1 + α)2b22

. (5.4.6)

If t ≤ −1, then

−B2

B1

+
(α2 − 4α− 1)B1

(1 + α)2
+

2µ(2α + 1)B1b3
(1 + α)2b22

≤ −1,

which implies

µ ≤ (1 + α)2b22
2(2α + 1)B1b3

(
B2

B1

− (α2 − 4α− 1)B1

(1 + α)2
− 1

)
:= σ1.

Now an application of Lemma 5.1.1 gives

|a3 − µa22| ≤
B1

2(2α + 1)|b3|

(
B2

B1

− (α2 − 4α− 1)B1

(1 + α)2
− µ(2α + 1)B1b3

(1 + α)2b22

)
(µ ≤ σ1),

which is nothing but the first part of assertion (5.4.1).

Next, if t ≥ 1, then

−B2

B1

+
(α2 − 4α− 1)B1

(1 + α)2
+

2µ(2α + 1)B1b3
(1 + α)2b22

≥ 1

which implies

µ ≥ (1 + α)2b22
2(2α + 1)B1b3

(
1 +

B2

B1

− (α2 − 4α− 1)B1

(1 + α)2

)
=: σ2,

applying Lemma 5.1.1, we have

|a3 − µa22| ≤
B1

2(2α + 1)|b3|

(
(α2 − 4α− 1)B1

(1 + α)2
+
µ(2α + 1)B1b3

(1 + α)2b22
− B2

B1

)
(µ ≥ σ2),

which is essentially the third part of assertion (5.4.1).

Finally if −1 ≤ t ≤ 1, then

−1 ≤ −B2

B1

+
(α2 − 4α− 1)B1

(1 + α)2
+

2µ(2α + 1)B1b3
(1 + α)2b22

≤ 1

which shows that σ1 ≤ µ ≤ σ2. Thus by an application of Lemma 5.1.1, we obtain

|a3 − µa22| ≤
B1

2(2α + 1)|b3|
(σ1 ≤ µ ≤ σ2)
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which is the second part of assertion (5.4.1). Sharpness can be verified in a similar

way as in the proof of Theorem 5.2.1.

Further when σ1 < µ < σ2 the above result can be improved as follows:

If −1 < t ≤ 0, then

−1 < −B2

B1

+
(α2 − 4α− 1)B1

(1 + α)2
+

2µ(2α + 1)B1b3
(1 + α)2b22

≤ 0,

which implies that σ1 < µ ≤ σ3. Now using (5.1.7), (5.4.5) and (5.4.6), we have

2(2α + 1)b3
B1

|a3 − µa22|+
(

1− B2

B1

+
(α2 − 4α− 1)B1

(1 + α)2
+

2µ(2α + 1)B1b3
(1 + α)2b22

)
|w1|2 ≤ 1.

(5.4.7)

Substituting the value of w1 obtained from (5.4.3) in (5.4.7) and simplifying, we have

|a3 − µa22|+
(1 + α)2b22

2(2α + 1)B1|b3|

(
1− B2

B1

+
(α2 − 4α− 1)B1

(1 + α)2
+

2µ(2α + 1)B1b3
(1 + α)2b22

)
|a2|2

≤ B1

2(2α + 1)|b3|
(σ1 < µ ≤ σ3).

Further if 0 ≤ t < 1, then σ3 ≤ µ < σ2. Now a similar computation using (5.1.8),

(5.4.3), (5.4.5) and (5.4.6) gives

|a3 − µa22|+
(1 + α)2b22

2(2α + 1)B1|b3|

(
1 +

B2

B1

− (α2 − 4α− 1)B1

(1 + α)2
− 2µ(2α + 1)B1b3

(1 + α)2b22

)
|a2|2

≤ B1

2(2α + 1)|b3|
.

This completes the proof.

Remark 5.4.1. If we set α = 1 and g(z) = z/(1− z) in Theorem 5.4.1, then we have

a result of Ma and Minda [101, Theorem 3]. By setting α = 0 and g(z) = z/(1−z) in

Theorem 5.4.1, we obtain a result of Murugusundaramoorthy et al. [112, Corollary

2.2].

Using Lemma 1.1.2 and Equation (5.4.5), we deduce the following:

Theorem 5.4.2. If f ∈ Sαg (φ), then for any complex number µ, we have

|a3 − µa22| ≤
B1

2(2α + 1)|b3|
max

{
1;

∣∣∣∣2µ(2α + 1)B1b3
(1 + α)2b22

+
(α2 − 4α− 1)B1

(1 + α)2
− B2

B1

∣∣∣∣} .
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From Theorem 5.4.1, we deduce the following result:

Corollary 5.4.3. If f ∈ Sαg ((1 + Cz)/(1 + Dz)) (−1 ≤ D < C ≤ 1), then for any

real number µ, we have

|a3 − µa22| ≤


D−C

2(2α+1)|b3|

(
D + (α2−4α−1)(C−D)

(1+α)2
+ 2µ(2α+1)(C−D)b3

(1+α)2b22

)
if µ ≤ σ1;

C−D
2(2α+1)|b3| if σ1 ≤ µ ≤ σ2;

C−D
2(2α+1)|b3|

(
D + (α2−4α−1)(C−D)

(1+α)2
+ 2µ(2α+1)(C−D)b3

(1+α)2b22

)
if µ ≥ σ2,

where

σ1 :=
(1 + α)2b22

2(2α + 1)(D − C)b3

(
1 +D +

(α2 − 4α− 1)(C −D)

(1 + α)2

)
and

σ2 :=
(1 + α)2b22

2(2α + 1)(C −D)b3

(
1−D − (α2 − 4α− 1)(C −D)

(1 + α)2

)
.

The result is sharp.

The above result can be improved when σ1 < µ < σ2 as follows:

Let

σ3 :=
(1 + α)2b22

2(2α + 1)(D − C)b3

(
D +

(α2 − 4α− 1)(C −D)

(1 + α)2

)
.

If σ1 < µ ≤ σ3, then

|a3 − µa22|+
(1 + α)2b22

2(2α + 1)(C −D)|b3|
τ1|a2|2 ≤

C −D
2(2α + 1)|b3|

,

τ1 :=

(
1 +D +

(α2 − 4α− 1)(C −D)

(1 + α)2
+

2µ(2α + 1)(C −D)b3
(1 + α)2b22

)
and if σ3 ≤ µ < σ2, then

|a3 − µa22|+
(1 + α)2b22

2(2α + 1)(C −D)|b3|
τ2|a2|2 ≤

C −D
2(2α + 1)|b3|

,

where

τ2 :=

(
1−D − (α2 − 4α− 1)(C −D)

(1 + α)2
− 2µ(2α + 1)(C −D)b3

(1 + α)2b22

)
.

By taking D = −1 and C = 1 in Corollary 5.4.3, we obtain the following result:
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Example 5.4.4. If f ∈ Sαg ((1 + z)/(1− z)), then for any real number µ, we have

|a3 − µa22| ≤


1

(1+α)2|b3|

(
3+10α−α2

2α+1
− 4µb3

b22

)
if µ ≤ σ1;

1
(2α+1)|b3| if σ1 ≤ µ ≤ σ2;

1
(1+α)2|b3|

(
α2−10α−3

2α+1
+ 4µb3

b22

)
if µ ≥ σ2,

where

σ1 :=
(1 + 4α− α2)b22

2(2α + 1)b3
and σ2 :=

(3α + 1)b22
(2α + 1)b3

.

The result can be improved when σ1 ≤ µ ≤ σ2 as follows:

Let

σ3 :=
(3 + 10α− α2)b22

4(2α + 1)b3
.

If σ1 ≤ µ ≤ σ3, then

|a3 − µa22|+
b22

2|b3|

(
α2 − 4α− 1

2α + 1
+

2µb3
b22

)
|a2|2 ≤

1

(2α + 1)|b3|

and if σ3 ≤ µ ≤ σ2, then

|a3 − µa22|+
b22
|b3|

(
3α + 1

2α + 1
− µb3

b22

)
|a2|2 ≤

1

(2α + 1)|b3|
.

The result is sharp.

Remark 5.4.2. If we take g(z) = z +
∑∞

n=2 n
mzn (m ∈ {0, 1, 2, 3, . . .}), in Exam-

ple 5.4.4, it reduces to [151, Theorem 2] of Răducanu.

Taking ϕ(z) = (1+Cz)/(1+Dz) (−1 ≤ D < C ≤ 1) in Theorem 5.4.2, we deduce

the following result:

Corollary 5.4.5. If f ∈ Sαg ((1 +Cz)/(1 +Dz)), then for any complex number µ, we

have

|a3 − µa22| ≤
C −D

2(2α + 1)|b3|
max {1;R} ,

where

R =

∣∣∣∣2µ(2α + 1)(C −D)b3
(1 + α)2b22

+
(α2 − 4α− 1)(C −D)

(1 + α)2
+D

∣∣∣∣ .
If we take g(z) = z +

∑∞
n=2 n

mzn, D = −1 and C = 1 in Corollary 5.4.5, we have

the following result:
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Corollary 5.4.6. [151, Theorem 3, Răducanu] If f ∈ HS∗m(α), then for any complex

number µ, we have

|a3 − µa22| ≤
1

3m(1 + 2α)
max

{
1;
|22m−1(α2 − 10α− 3) + 2.3m(1 + 2α)µ|

22m−1(1 + α)2

}
.

If we set D = −1, C = 1 and g(z) = z/(1− z) in Corollary 5.4.5, then for α = 0,

we have the following result:

Corollary 5.4.7. [83, Theorem 1] If f ∈ S∗, then for any complex number µ, we

have

|a3 − µa22| ≤ max {1; |4µ− 3|} .

Setting α = 1, D = −1, C = 1 and g(z) = z/(1− z) in Corollary 5.4.5, we obtain

the following result:

Corollary 5.4.8. [83, Corollary 1] If f ∈ K, then for any complex number µ, we

have

|a3 − µa22| ≤ max

{
1

3
; |µ− 1|

}
.





Chapter 6

Initial Coefficients Estimate of

Certain Bi-univalent Functions

6.1 Introduction

Recall that a function f ∈ A is called bi-univalent in D if both f and f−1 are univalent

on D. Lewin [93] introduced the class σ of bi-univalent analytic functions and showed

that the second coefficient of every f ∈ σ satisfy the inequality |a2| ≤ 1.51. Let σ1

be the class of all functions f = φ ◦ ψ−1 where φ, ψ map D onto a domain containing

D and φ′(0) = ψ′(0). In 1969, Suffridge [193] constructed a function in σ1 ⊂ σ, with

the second coefficient a2 = 4/3 and conjectured that |a2| ≤ 4/3 for all functions in

σ. In 1969, Netanyahu [116] proved this conjecture for the subclass σ1 of σ. Later in

1981, Styer and Wright [192] disproved the conjecture of Suffridge [193] by showing

a2 > 4/3 for some function in σ. For the counter example showing σ 6= σ1, see [35].

For results related to bi-univalent polynomial, see [82, 182]. In 1979, Brannan [27]

conjectured that |a2| ≤
√

2 for f ∈ σ. In 1985, Kedzierawski [81, Theorem 2] proved

this conjecture for a special case when the functions f and f−1 both are starlike

functions. In 1985, Tan [195] obtained the bound |a2| ≤ 1.485 for the class σ. At

Most of the results of this chapter will appear in [179].

113
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that time the researchers were interested in finding estimate on the initial coefficients

of the functions which are in some specific subclass of S along with their inverses also

belong to the same subclass. In 1985, Kedzierawski [81], in an attempt to prove the

Brannan’s conjecture [27], considered a case when f and its inverse are in different

subclasses of the class S. He provided the following estimate for second coefficient of

such functions:

|a2| ≤



1.5894, f ∈ S, f−1 ∈ S;
√

2, f ∈ S∗, f−1 ∈ S∗;

1.507, f ∈ S∗, f−1 ∈ S;

1.224, f ∈ K, f−1 ∈ S.

In 1986, Brannan and Taha [30] obtained estimate on the initial coefficients for func-

tions in the classes Kσ(β), Kσ(β) and SS∗σ(α). The work on bi-univalent functions

gained momentum with the advent of a paper by Srivastava et al. [189], in 2010, in

which they obtained the bounds of the initial coefficients for functions belonging to

the classes

Hσ(β) =
{
f ∈ σ : Re(f ′(z)) > β and Re(f−1)′(z) > β, 0 ≤ β < 1

}
and

Hσ,α =
{
f ∈ σ : | arg f ′(z)| ≤ απ

2
and | arg(f−1)′(z)| ≤ απ

2
, 0 < α ≤ 1

}
.

Recently, Ali et al. [13] extended the results of Brannan and Taha [30] by proving

their results for more general classes. For similar coefficients estimate related problems

of certain bi-univalent functions, see [56, 189, 208]. For a comprehensive survey

and some open problems and survey related to bi-univalent functions, one may refer

to [63,183].

The results in this chapter are essentially motivated by the paper of Ali et al. [13],

and Srivastava et al. [189]. This chapter mainly concerned with the estimation of

coefficients of certain bi-univalent functions especially when both f and its inverse

function f−1 belongs to the same class. Further the work of Kedzierawski [81] actuates

us to consider cases when f is in some subclass of univalent functions and f−1 belongs
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to some other subclass of univalent functions. In Section 6.2, we find the estimate on

the initial coefficients when f and f−1 belong to the same class, whereas in Section 6.3

estimates on the initial coefficients are derived when f and its inverse f−1 belong to

different classes. Our results generalize several results derived in [13, 56, 81, 189]

which are pointed out here. The classes we have considered are defined as follows:

Throughout this chapter, unless stated clearly, we shall assume that ϕ ∈ P is an

analytic function in D of the form

ϕ(z) = 1 +B1z +B2z
2 +B3z

3 + · · · (6.1.1)

with B1 > 0 and B2 is any real number. For the sake of convenience, we shall write

F := f−1.

Definition 6.1.1. Let λ ≥ 0. A function f ∈ σ is in the class Rσ(λ, ϕ), if it satisfies

(1− λ)
f(z)

z
+ λf ′(z) ≺ ϕ(z) and (1− λ)

F (w)

w
+ λF ′(w) ≺ ϕ(w).

On specializing the function ϕ and λ, the class Rσ(λ, ϕ) reduces to the known

classes, a few are enlisted below:

1. Rσ(λ, (1 + (1− 2β)z)/(1− z)) = Rσ(λ, β) (λ ≥ 1; 0 ≤ β < 1), introduced by

Frasin and Aouf [56, Definition 3.1].

2. Rσ(λ, ((1 + z)/(1− z))α) = Rσ,α(λ) (λ ≥ 1; 0 < α ≤ 1), introduced by Frasin

and Aouf [56, Definition 2.1].

3. Rσ(1, ϕ) = Rσ(ϕ), introduced by Ravichandran et al. [13, p. 345].

4. Rσ(1, (1 + (1− 2β)z)/(1− z)). = Rσ(β) (0 ≤ β < 1), introduced by Srivastava

et al. [189, Definition 2]

5. Rσ(1, ((1 + z)/(1 − z))α). = Rσ,α (0 < α ≤ 1), introduced by Srivastava et

al. [189, Definition 1].

Definition 6.1.2. A function f ∈ σ is in the class S∗σ(ϕ), if it satisfies

zf ′(z)

f(z)
≺ ϕ(z) and

wF ′(w)

F (w)
≺ ϕ(w).
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Note that for a suitable choice of ϕ, the class S∗σ(ϕ), reduces to the following well-

known classes:

1. S∗σ((1 + (1− 2β)z)/(1− z)) = S∗σ(β) (0 ≤ β < 1).

2. S∗σ(((1 + z)/(1− z))α) = SS∗σ(α) (0 < α ≤ 1).

Definition 6.1.3. A function f ∈ σ is in the class Kσ(ϕ), if f and F satisfy the

subordinations

1 +
zf ′′(z)

f ′(z)
≺ ϕ(z) and 1 +

wF ′′(w)

F ′(w)
≺ ϕ(w).

Note that Kσ((1 + (1− 2β)z)/(1− z))) =: Kσ(β) (0 ≤ β < 1).

6.2 Functions f and f−1 belong to the same class

In this section, we shall consider the results when both f and f−1 are in the same class.

Our first result provides estimate for the coefficient a2 of functions f in Rσ(λ, ϕ).

Theorem 6.2.1. If f ∈ Rσ(λ, ϕ), then

|a2| ≤
√
B1 + |B1 −B2|

1 + 2λ
. (6.2.1)

Proof. Since f ∈ Rσ(λ, ϕ), there exist two analytic functions r, s : D → D, with

r(0) = 0 = s(0), such that

(1− λ)
f(z)

z
+ λf ′(z) = ϕ(r(z)) and (1− λ)

F (w)

w
+ λF ′(w) = ϕ(s(z)). (6.2.2)

Define the functions p and q by

p(z) =
1 + r(z)

1− r(z)
= 1 + p1z + p2z

2 + p3z
3 + · · · (6.2.3)

q(z) =
1 + s(z)

1− s(z)
= 1 + q1z + q2z

2 + q3z
3 + · · · , (6.2.4)
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or equivalently,

r(z) =
p(z)− 1

p(z) + 1
=

1

2

(
p1z +

(
p2 −

p21
2

)
z2 + · · ·

)
(6.2.5)

and

s(z) =
q(z)− 1

q(z) + 1
=

1

2

(
q1z +

(
q2 −

q21
2

)
z2 + · · ·

)
. (6.2.6)

It is clear that p and q are analytic in D and p(0) = 1 = q(0). Also since p and q have

positive real part in D, it follows that |pi| ≤ 2 and |qi| ≤ 2. In view of (6.2.2), (6.2.5)

and (6.2.6), clearly

(1−λ)f(z)
z

+λf ′(z) = ϕ

(
p(z)− 1

p(z) + 1

)
and (1−λ)F (w)

w
+λF ′(w) = ϕ

(
q(w)− 1

q(w) + 1

)
. (6.2.7)

On expanding (6.1.1) using (6.2.5) and (6.2.6), it is evident that

ϕ

(
p(z)− 1

p(z) + 1

)
= 1 +

1

2
B1p1z +

(
1

2
B1

(
p2 −

1

2
p21
)

+
1

4
B2p

2
1

)
z2 + · · · (6.2.8)

and

ϕ

(
q(w)− 1

q(w) + 1

)
= 1 +

1

2
B1q1w +

(
1

2
B1

(
q2 −

1

2
q21
)

+
1

4
B2q

2
1

)
w2 + · · · . (6.2.9)

Since f ∈ σ has the Maclaurin series expansion given by (1.1.1), a computation shows

that its inverse F = f−1 has the expansion given by (1.2.1). It follows from (6.2.7),

(6.2.8) and (6.2.9) that

(1 + λ)a2 =
1

2
B1p1

(1 + 2λ)a3 =
1

2
B1

(
p2 −

1

2
p21

)
+

1

4
B2p

2
1 (6.2.10)

−(1 + λ)a2 =
1

2
B1q1

(1 + 2λ)(2a22 − a3) =
1

2
B1

(
q2 −

1

2
q21

)
+

1

4
B2q

2
1. (6.2.11)

Now (6.2.10) and (6.2.11) yield

8(1 + 2λ)a22 = 2(p2 + q2)B1 + (B2 −B1)(p
2
1 + q21). (6.2.12)

Finally an application of the known results, |pi| ≤ 2 and |qi| ≤ 2 in (6.2.12) yields

the desired estimate for a2 provided in (6.2.1).
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Remark 6.2.1. Let ϕ(z) = (1 + (1 − 2β)z)/(1 − z) with 0 ≤ β < 1, which implies

that B1 = B2 = 2(1− β). When λ = 1, Theorem 6.2.1 gives |a2| ≤
√

2(1− β)/3 for

functions in the class Rσ(β), which in fact coincides with the result [208, Corollary 2]

of Xu et al. In particular if β = 0, then |a2| ≤
√

2/3 ≈ 0.816 for functions f ∈ Rσ(0).

Since the estimate on |a2| for f ∈ Rσ(0) is improved over the conjectured estimate

|a2| ≤
√

2 ≈ 1.414 for f ∈ σ, functions in Rσ(0) are not the candidates for the

sharpness of the estimate in the class σ.

Theorem 6.2.2. If f ∈ S∗σ(ϕ), then

|a2| ≤ min

{√
B1 + |B2 −B1|,

√
B2

1 +B1 + |B2 −B1|
2

,
B1

√
B1√

B2
1 + |B1 −B2|

}

and

|a3| ≤ min

{
B1 + |B2 −B1|,

B2
1 +B1 + |B2 −B1|

2
, R

}
,

where

R :=
1

4

(
B1 + 3B1 max

{
1;

∣∣∣∣B1 − 4B2

3B1

∣∣∣∣}) .
Proof. Since f ∈ S∗σ(ϕ), there exist analytic functions r, s : D → D, with property

r(0) = 0 = s(0), such that

zf ′(z)

f(z)
= ϕ(r(z)) and

wF ′(w)

F (w)
= ϕ(s(w)). (6.2.13)

Let p and q be defined as in (6.2.3) and (6.2.4), then it is clear from (6.2.13), (6.2.5)

and (6.2.6) that

zf ′(z)

f(z)
= ϕ

(
p(z)− 1

p(z) + 1

)
and

wF ′(w)

F (w)
= ϕ

(
q(w)− 1

q(w) + 1

)
. (6.2.14)

It follows from (6.2.14), (6.2.8) and (6.2.9) that

a2 =
1

2
B1p1 (6.2.15)

2a3 =
B1p1

2
a2 +

1

2
B1

(
p2 −

1

2
p21

)
+

1

4
B2p

2
1 (6.2.16)

− a2 =
1

2
B1q1 (6.2.17)
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and

4a22 − 2a3 = −B1q1
2

a2 +
1

2
B1

(
q2 −

1

2
q21

)
+

1

4
B2q

2
1. (6.2.18)

The equations (6.2.15) and (6.2.17) yield

p1 = −q1 (6.2.19)

8a22 = (p21 + q21)B2
1 (6.2.20)

and

2a2 =
B1(p1 − q1)

2
. (6.2.21)

From (6.2.16), (6.2.18) and (6.2.21), it follows that

8a22 = 2B1(p2 + q2) + (B2 −B1)(p
2
1 + q21). (6.2.22)

Further a computation using (6.2.16), (6.2.18), (6.2.15) and (6.2.19) gives

16a22 = 2B2
1q

2
1 + 2B1(p2 + q2) + (B2 −B1)(p

2
1 + q21). (6.2.23)

Similarly a computation using (6.2.16), (6.2.18), (6.2.21) and (6.2.20) yields

4(B2
1 −B2 +B1)a

2
2 = B3

1(p2 + q2). (6.2.24)

Now (6.2.22), (6.2.23) and (6.2.24) yield the desired estimate on |a2| as asserted in

the theorem. To find estimate for |a3| subtract (6.2.16) from (6.2.18), to get

− 4a3 = −4a22 +
B1(q2 − p2)

2
. (6.2.25)

Now a computation using (6.2.23) and (6.2.25) leads to

16a3 = 2B2
1q

2
1 + 4B2p2 + (B1 −B2)(p

2
1 + q21). (6.2.26)

From (6.2.15), (6.2.16), (6.2.17) and (6.2.18), it follows that

4a3 =
B1

2
(3p2 + q2) + (B2 −B1)p

2
1 (6.2.27)

=
B1q2

2
+

3B1

2

(
p2 −

2(B1 −B2)

3B1

p21

)
. (6.2.28)

An application of the result Lemma 1.1.2 in (6.2.28), yields

4|a3| ≤ B1 + 3B1 max

{
1;

∣∣∣∣B1 − 4B2

3B1

∣∣∣∣} . (6.2.29)

Now the desired estimate on a3 follows from (6.2.26), (6.2.27) and (6.2.29) at once.
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Remark 6.2.2. If f ∈ S∗σ(β) (0 ≤ β < 1), then from Theorem 6.2.2, it is evident

that

|a2| ≤ min
{√

2(1− β),
√

(1− β)(3− 2β)
}

=


√

2(1− β), 0 ≤ β ≤ 1/2;√
(1− β)(3− 2β), 1/2 ≤ β < 1.

(6.2.30)

Brannan and Taha [29, Theorem 3.1] proved that |a2| ≤
√

2(1− β) for f ∈ S∗σ(β).

We may expect a better estimate for functions in the class S∗σ(β) in comparison to

those in the class S∗(β). If we compare Brannan and Taha’s estimate with the one

namely |a2| ≤ 2(1−β) for function f ∈ S∗(β), given by Robertson [152], we see that

Brannan and Taha’s estimate is better than the Robertson’s only when 0 ≤ β ≤ 1/2.

However it may be noted that our estimate given in (6.2.30) improved the estimate

of Brannan and Taha [29, Theorem 3.1].

Next if we take ϕ(z) = ((1 + z)/(1 − z))α (0 < α ≤ 1) in Theorem 6.2.2, we have

B1 = 2α and B2 = 2α2. Then we obtain the estimate on a2 for functions f in SS∗σ(α)

as:

|a2| ≤ min

{√
4α− 2α2,

√
α2 + 2α,

2α√
1 + α

}
=

2α√
1 + α

.

Brannan and Taha [29, Theorem 2.1] gave the same estimate for functions in the

class SS∗σ(α).

Theorem 6.2.3. If f ∈ Kσ(ϕ), then

|a2| ≤ min

{√
B2

1 +B1 + |B2 −B1|
6

,
B1

2

}

and

|a3| ≤ min

{
B2

1 +B1 + |B2 −B1|
6

,
B1(3B1 + 2)

12

}
.

Proof. Since f ∈ Kσ(ϕ), there exist analytic functions r, s : D→ D, with the property

r(0) = 0 = s(0), satisfying

1 +
zf ′′(z)

f ′(z)
= ϕ(r(z)) and 1 +

wF ′′(w)

F ′(w)
= ϕ(s(w)). (6.2.31)
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Let p and q be defined as in (6.2.3) and (6.2.4), then it is clear from (6.2.31), (6.2.5)

and (6.2.6) that

1 +
zf ′′(z)

f ′(z)
= ϕ

(
p(z)− 1

p(z) + 1

)
and 1 +

wF ′′(w)

F ′(w)
= ϕ

(
q(w)− 1

q(w) + 1

)
. (6.2.32)

It follows from (6.2.32), (6.2.8) and (6.2.9) that

2a2 =
1

2
B1p1 (6.2.33)

6a3 = B1p1a2 +
1

2
B1

(
p2 −

1

2
p21

)
+

1

4
B2p

2
1 (6.2.34)

− 2a2 =
1

2
B1q1 (6.2.35)

and

6(2a22 − a3) = −B1q1a2 +
1

2
B1

(
q2 −

1

2
q21

)
+

1

4
B2q

2
1. (6.2.36)

Now (6.2.33) and (6.2.35) yield

p1 = −q1 (6.2.37)

and

4a2 =
B1(p1 − q1)

2
. (6.2.38)

From (6.2.34), (6.2.36), (6.2.37) and (6.2.33), it follows that

48a22 = 2B2
1p

2
1 + 2B1(p2 + q2) + (B2 −B1)(p

2
1 + q21). (6.2.39)

In view of |pi| ≤ 2 and |qi| ≤ 2 together with (6.2.38) and (6.2.39), yield the desired

estimate on a2 as asserted in the theorem. In order to find estimate for |a3|, we

subtract (6.2.34) from (6.2.36) and use (6.2.37) to obtain

− 12a3 = −12a22 +
B1(q2 − p2)

2
. (6.2.40)

A computation using (6.2.39) and (6.2.40) leads to

− 48a3 = 2B2
1p

2
1 − 4B2p2 + (B1 −B2)(p

2
1 + q21). (6.2.41)

From (6.2.38) and (6.2.40), it follows that

− 12a3 =
B1(q2 − p2)

2
− 3(p1 − q1)2B2

1

16
. (6.2.42)

Now (6.2.41) and (6.2.42) yield the desired estimate on a3.
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Remark 6.2.3. If f ∈ Kσ(β), 0 ≤ β < 1, then Theorem 6.2.3 gives

|a2| ≤ min

{√
(1− β)(3− 2β)

3
, 1− β

}
= 1− β

and

|a3| ≤ min

{
(1− β)(3− 2β)

3
,
(1− β)(4− 3β)

3

}
=

(1− β)(3− 2β)

3
,

which improves the following estimate given by Brannan and Taha.

Corollary 6.2.4. [29, Theorem 4.1] Let f ∈ Kσ(β), then

|a2| ≤
√

1− β and |a3| ≤ 1− β.

6.3 Functions f and f−1 belong to the different

classes

In this section, we shall deal with the results of those bi-univalent functions where f

and its inverse f−1 are in different classes. The function ϕ is taken to be the same as

given in (6.1.1). Let us first recall the definitions of some classes.

R(ϕ) := {f ∈ A : f ′(z) ≺ ϕ(z)} , S∗(ϕ) :=

{
f ∈ A :

zf ′(z)

f(z)
≺ ϕ(z)

}
and

K(ϕ) :=

{
f ∈ A : 1 +

zf ′′(z)

f ′(z)
≺ ϕ(z)

}
.

Theorem 6.3.1. Let f ∈ σ and if f ∈ K(ϕ) and F ∈ R(ϕ), then

|a2| ≤
√

3[B1 + |B2 −B1|]
8

and |a3| ≤
5[B1 + |B2 −B1|]

12
.

Proof. Since f ∈ K(ϕ) and F ∈ R(ϕ), there exist analytic functions r, s : D → D,

with r(0) = 0 = s(0), such that

1 +
zf ′′(z)

f ′(z)
= ϕ(r(z)) and F ′(w) = ϕ(s(w)). (6.3.1)

Let the functions p and q are defined by (6.2.3) and (6.2.4). It is clear that p and

q are analytic in D and p(0) = 1 = q(0). Also p and q have positive real part in D,
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and hence |pi| ≤ 2 and |qi| ≤ 2. Proceeding as in the proof of Theorem 6.2.1 it follow

from (6.3.1), (6.2.8) and (6.2.9) that

2a2 =
1

2
B1p1

6a3 − 4a22 =
1

2
B1

(
p2 −

1

2
p21

)
+

1

4
B2p

2
1 (6.3.2)

−2a2 =
1

2
B1q1

and

3(2a22 − a3) =
1

2
B1

(
q2 −

1

2
q21

)
+

1

4
B2q

2
1. (6.3.3)

A computation using (6.3.2) and (6.3.3) leads to

a22 =
2(p2 + 2q2)B1 + (p21 + 2q21)(B2 −B1)

32
. (6.3.4)

and

a3 =
2(3p2 + 2q2)B1 + (3p21 + 2q21)(B2 −B1)

48
. (6.3.5)

Now the desired estimates for a2 and a3 follow from (6.3.4) and (6.3.5) respectively

using the fact that |pi| ≤ 2 and |qi| ≤ 2.

Remark 6.3.1. If f ∈ K(β) and F ∈ R(β), then from Theorem 6.3.1 we see that

|a2| ≤
√

3(1− β)/2 and |a3| ≤ 5(1− β)/6.

In particular if f ∈ K and F ∈ R, then |a2| ≤
√

3/2 ≈ 0.867 and |a3| ≤ 5/6 ≈ 0.833.

Recall the known estimate namely |a2| ≤ 1 and |a3| ≤ 1 for functions in the class K.

Thus our estimates are better than corresponding estimates known for the class K.

Theorem 6.3.2. Let f ∈ σ and if f ∈ S∗(ϕ) and F ∈ R(ϕ), then

|a2| ≤
√

5(B1 + |B2 −B1|)
3

, and |a3| ≤
7(B1 + |B2 −B1|)

9
.

Proof. Since f ∈ S∗(ϕ) and F ∈ R(ϕ), there exist analytic functions r, s : D → D,

with r(0) = 0 = s(0), such that

zf ′(z)

f(z)
= ϕ(r(z)) and F ′(w) = ϕ(s(w)). (6.3.6)
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Let the functions p and q be defined as in (6.2.3) and (6.2.4). Then

zf ′(z)

f(z)
= ϕ

(
p(z)− 1

p(z) + 1

)
and F ′(w) = ϕ

(
q(w)− 1

q(w) + 1

)
. (6.3.7)

It follow from (6.3.7), (6.2.8) and (6.2.9) that

a2 =
1

2
B1p1

2a3 − a22 =
1

2
B1

(
p2 −

1

2
p21

)
+

1

4
B2p

2
1 (6.3.8)

−2a2 =
1

2
B1q1

3(2a22 − a3) =
1

2
B1

(
q2 −

1

2
q21

)
+

1

4
B2q

2
1. (6.3.9)

A computation using (6.3.8) and (6.3.9) leads to

a22 =
2(3p2 + 2q2)B1 + (3p21 + 2q21)(B2 −B1)

36
(6.3.10)

and

a3 =
2(6p2 + q2)B1 + (6p21 + q21)(B2 −B1)

36
. (6.3.11)

Now the bounds for |a2| and |a3| are obtained from (6.3.10) and (6.3.11) respectively

using the fact that |pi| ≤ 2 and |qi| ≤ 2.

Remark 6.3.2. If f ∈ S∗(β) and F ∈ R(β), then from Theorem 6.3.2, it is easy to

see that

|a2| ≤
√

10(1− β)/3 and |a3| ≤ 14(1− β)/9.

Further if f ∈ S∗ and F ∈ R, then |a2| ≤
√

10/3 ≈ 1.054 and |a3| ≤ 14/9 ≈ 1.56.

Recall the known estimates namely |a2| ≤ 2 and |a3| ≤ 3 for functions in the class

S∗. Thus our estimates are better than the corresponding known estimates for the

class S∗.

Theorem 6.3.3. Let f ∈ σ and if f ∈ S∗(ϕ) and F ∈ K(ϕ), then

|a2| ≤
√
B1 + |B2 −B1|

2
and |a3| ≤

B1 + |B2 −B1|
2

.
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Proof. Let f ∈ S∗(ϕ) and F ∈ K(ϕ). Proceeding in the similar way as in the proof

of Theorem 6.3.1, it is easy to see that

a2 =
1

2
B1p1

3a3 − a22 =
1

2
B1

(
p2 −

1

2
p21

)
+

1

4
B2p

2
1 (6.3.12)

−2a2 =
1

2
B1q1

8a22 − 6a3 =
1

2
B1

(
q2 −

1

2
q21

)
+

1

4
B2q

2
1. (6.3.13)

A computation using (6.3.12) and (6.3.13) leads to

a22 =
2(2p2 + q2)B1 + (2p21 + q21)(B2 −B1)

24
(6.3.14)

and

a3 =
2(8p2 + q2)B1 + (8p21 + q21)(B2 −B1)

72
. (6.3.15)

Now using the result |pi| ≤ 2 and |qi| ≤ 2, the estimates on a2 and a3 follow from

(6.3.14) and (6.3.15) respectively.

Remark 6.3.3. Let f ∈ S∗(β) and F ∈ K(β), 0 ≤ β < 1. Then from Theorem 6.3.3,

it is easy to see that

|a2| ≤
√

1− β and |a3| ≤ 1− β.

In particular, if f ∈ S∗ and F ∈ K, then |a2| ≤ 1 and |a3| ≤ 1. Recall the known

estimates |a2| ≤ 2 and |a3| ≤ 3 for functions in the class S∗. Thus, our estimates are

better than the so far known estimates for the class S∗.





Chapter 7

Radius of Starlikeness for Analytic

Functions with Fixed Second

Coefficient

It is well-known that the estimate on the second coefficient gives several geometric

properties like growth estimate, distortion estimate and covering theorem for func-

tions in the class S. This chapter focuses on the study of radius problems for functions

with fixed second coefficient. We shall now see, how the second coefficient affects the

radius constants for various classes of functions.

7.1 Introduction

We know that the radius of convexity of starlike functions is 2−
√

3, see [63]. Goel [59],

in 1971, generalized this result and obtained the radius of convexity for starlike func-

tion with fixed second coefficient. He also obtained the radius of starlikeness for

functions f(z) = z + 2bz2 + · · · (0 ≤ b ≤ 1) satisfying Re(f(z)/z) > 0. For growth

and distortion estimates, order of convexity and radius of convexity for functions

Most of the results of this chapter are from [12], under review.
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in S∗b , see [197]. McCarty [103], in 1972, introduced the class P ′b(α) of functions

F (z) = z + b(1− α)z2 + · · · such that F ′ ∈ Pb. Further he obtained the growth and

distortion estimates. He also determined the radius of convexity for functions in the

class P ′b(α), see [103, Theorem 4]. This result was sharp for α = 0. In 1974, McCarty

[104] proved the sharp result [103, Theorem 4] which is true for all b ∈ [0, 1] and

α ∈ [0, 1). He further generalized and proved the sharpen form of [197, Lemma 4] for

functions in the class S∗b (α). Juneja and Mogra [78], in 1978, extended the results

proved by McCarty [104].

Tuan and Anh [198] obtained the radii of convexity for functions in the classes

Rγa =

{
f(z) = z − 2az2 + · · · :

∣∣∣∣f(z)

z
− γ
∣∣∣∣ < γ, γ > 1, 0 ≤ a ≤ 1− (2γ)−1

}
and

Tγ(G) =

{
f(z) = z + a2z

2 + · · · :
∣∣∣∣f(z)

g(z)
− γ
∣∣∣∣ < γ, γ > 1

}
,

where G is the class of functions g ∈ A satisfying |g(z)/z − 1| < 1.

Ali et al. [10] considered radius problems for several classes of functions defined

either in terms of the ratio of f and g or the ratio of their derivatives, where f, g ∈ A.

Their results include (i) Re(f(z)/g(z)) > 0, where the function g satisfies either

Re(g(z)/z) > 0 or Re(g(z)/z) > 1/2 (ii) |f(z)/g(z) − 1| < 1, where Re(g(z)/z) > 0

or g is convex and several other problems namely radius of uniform convexity for the

classes |f ′(z)/g′(z) − 1| < 1, where g is univalent or starlike or convex. The works

presented in [7,10,131,172,198] motivates us to consider the problems carried out

by Ali et al. [10] for analytic functions with the second fixed coefficient. Most of the

results proved in [10] are generalized in this chapter.

Preliminaries

The following results are required in the present investigation. In the following results

it is assumed that |b| ≤ 1 and 0 ≤ α < 1.
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Lemma 7.1.1. [103, Theorem 2] Let |b| ≤ 1 and 0 ≤ α < 1. If p ∈ Pb(α), then, for

|z| = r < 1, we have∣∣∣∣zp′(z)

p(z)

∣∣∣∣ ≤ 2(1− α)r

1− r2
|b|r2 + 2r + |b|

(1− 2α)r2 + 2(1− α)|b|r + 1
.

Lemma 7.1.2. [104, Lemma 1] Let |b| ≤ 1 and 0 ≤ α < 1. If p ∈ Pb(α), then, for

|z| = r < 1, we have |p(z)− Ab| ≤ Db, where

Ab =
(1 + |b|r)2 + (1− 2α)(|b|+ r)2r2

(1 + 2|b|r + r2)(1− r2)
, Db =

2(1− α)(|b|+ r)(1 + |b|r)r
(1 + 2|b|r + r2)(1− r2)

.

Lemma 7.1.3. [104, Theorem 1] Let |b| ≤ 1 and 0 ≤ α < 1. Suppose p ∈ Pb(α).

Then, for |z| = r < 1, we have

Re

(
zp′(z)

p(z)

)
≥


−2(1−α)(|b|+2r+|b|r2)r

(1+2α|b|r+(2α−1)r2)(1+2|b|r+r2) , R′ ≤ Rb;

(2
√
αA1 − A1 − α)/(1− α), R′ ≥ Rb,

where Rb = Ab −Db, R
′ =
√
αA1, Ab and Db are as given in Lemma 7.1.2.

Lemma 7.1.4. [14, Theorem 5.1] If f(z) = z + a2z
2 + · · · ∈ K, then f ∈ S∗(α),

where α is the smallest positive root of the equation 2α3− |a2|α2− 4α+ 2 = 0, in the

interval [1/2, 2/3].

Lemma 7.1.5. [11, Lemma 2.2] For 0 < a <
√

2, let ra be given by

ra =

 (
√

1− a2 − (1− a2))1/2, 0 < a ≤ 2
√

2/3;
√

2− a, 2
√

2/3 ≤ a <
√

2,

and for a > 0, let Ra be given by

Ra =


√

2− a, 0 < a ≤ 1/
√

2;

a, 1/
√

2 ≤ a.

Then {w : |w − a| < ra} ⊂ {w : |w2 − 1| < 1} ⊂ {w : |w − a| < Ra}.

Lemma 7.1.6. [165, Section 3] Let a > 1/2. If the number Ra is given by

Ra =

 a− 1/2, 1/2 < a ≤ 3/2;
√

2a− 2, a ≥ 3/2,

then {w ∈ C : |w − a| < Ra} ⊂ {w ∈ C : |w − a| < Rew}.
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7.2 Radii of Starlikeness

For notational convenience, let us denote by A(b), the class of normalized analytic

functions of the form f(z) = z + bz2 + · · · . Since the coefficients of functions with

positive real part are bounded by 2, for the function f(z) = z + a2z
2 + · · · satisfying

Re(f(z)/z) > 0, it follows that |a2| ≤ 2. Hence, the functions with the property

Re(f(z)/z) > 0 have the Maclaurin series expansion of the form

f(z) = z + 2bz2 + · · · (|b| ≤ 1).

Definition 7.2.1. The class F1
b is defined by

F1
b :=

{
f ∈ A(2b) : Re

(
f(z)

z

)
> 0, |b| ≤ 1

}
.

Theorem 7.2.1. For the class F1
b ,

(1) S∗L−radius r0 is the smallest positive root in (0, 1] of the equation

(
√

2− 1)r4 + 2
√

2|b|r3 + 4r2 + 2|b|(2−
√

2)r −
√

2 + 1 = 0, (7.2.1)

(2) M(β)−radius r1 is the smallest positive root in (0, 1] of the equation

(β − 1)r4 + 2|b|βr3 + 4r2 + 2|b|(2− β)r − β + 1 = 0. (7.2.2)

(3) S∗(α)−radius r2 is the smallest positive root in (0, 1] of the equation

(1− α)r4 + 2|b|(2− α)r3 + 4r2 + 2|b|αr + α− 1 = 0. (7.2.3)

(4) S∗P− radius r3 is the smallest positive root in (0, 1] of the equation

r4 + 6|b|r3 + 8r2 + 2|b|r − 1 = 0. (7.2.4)

Proof. (1) Given that the function p(z) = f(z)/z = 1 + 2bz + · · · ∈ Pb. Using the

fact zp′(z)/p(z) = zf ′(z)/f(z)− 1 and Lemma 7.1.1 with α = 0, we have∣∣∣∣zf ′(z)

f(z)
− 1

∣∣∣∣ =

∣∣∣∣zp′(z)

p(z)

∣∣∣∣ ≤ 2r(|b|r2 + 2r + |b|)
(1− r2)(r2 + 2|b|r + 1)

. (7.2.5)
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Now Lemma 7.1.5 reveals that the function f satisfies |(zf ′(z)/f(z))2 − 1| < 1, in

|z| < r, if the following inequality holds:

2r(|b|r2 + 2r + |b|)
(1− r2)(r2 + 2|b|r + 1)

≤
√

2− 1,

or equivalently, if the inequality

1−
√

2 + 2|b|
(

2−
√

2
)
r + 4r2 + 2

√
2|b|r3 +

(√
2− 1

)
r4 ≤ 0

holds. Therefore, S∗L–radius of the class F1
b is the smallest positive root r0 ∈ (0, 1] of

the Equation (7.2.1).

To prove the sharpness, consider the function f0 defined by

f0(z) =
z(1 + 2bz + z2)

1− z2
. (7.2.6)

If we set w(z) := z(z + b)/(1 + bz) (|b| ≤ 1), the Schwarz function, then we see that

f0(z)

z
=

1 + w(z)

1− w(z)

and hence Re(f0(z)/z) > 0 in D or f0 ∈ F1
b . Since, for z = r0,

zf ′0(z)

f0(z)
=

1 + 4br0 + 4r20 − r40
(1− r20) (1 + 2br0 + r20)

=
√

2,

it follows that, for z = r0, ∣∣∣∣∣
(
zf ′(z)

f(z)

)2

− 1

∣∣∣∣∣ = 1.

This shows sharpness of the result. Figures given below illustrate sharpness of the

result:

Figure 7.1. The S∗L-radius r0 ≈ 0.19891

for b = 1 is sharp.

Figure 7.2. The S∗L-radius r0 ≈ 0.2479

for b = 0.5 is sharp.
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(2) The inequality (7.2.5) shows that

Re

(
zf ′(z)

f(z)

)
≤ 1 +

2r(|b|r2 + 2r + |b|)
(1− r2)(r2 + 2|b|r + 1)

≤ β

if the following inequality holds:

(β − 1)r4 + 2|b|βr3 + 4r2 + 2(2− β)|b|r + 1− β ≤ 0.

Therefore, M(β)-radius of the class F1
b is the smallest positive root r1 ∈ (0, 1] of

the Equation (7.2.2). The result is sharp for the function given in (7.2.6). Since for

z = r1,
zf ′0(z)

f0(z)
=

1 + 4br1 + 4r21 − r41
(1− r21) (1 + 2br1 + r21)

= β.

Figures shown below illustrate the sharpness of result:

Figure 7.3. TheM(2)-radius r1 ≈ 0.4142

for b = 1 radius is sharp.

Figure 7.4. The M(3/2)-radius

r1 ≈ 0.2833 for b = 0.5 is sharp.

(3) In view of (7.2.5), it follows that

Re

(
zf ′(z)

f(z)

)
≥ 1− 2r(|b|r2 + 2r + |b|)

(1− r2)(r2 + 2|b|r + 1)
≥ α

if the following inequality holds:

(1− α)r4 + 2|b|(2− α)r3 + 4r2 + 2|b|αr + α− 1 ≤ 0.

Thus, S∗(α)−radius of the class F1
b is the smallest positive root r2 ∈ (0, 1] of the

Equation (7.2.3).
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The function f0 defined by

f0(z) =
z(1− z2)

1− 2bz + z2
(7.2.7)

is in the class F1
b because for the function f0 defined in (7.2.7), we have

f0(z)

z
=

1− w(z)

1 + w(z)
,

where w(z) = z(z − b)/(1 − bz) is an analytic function satisfying the conditions of

Schwarz’s lemma in the unit disk D, and hence Re(f0(z)/z) > 0 in D. The result is

sharp for the function given in (7.2.7) as, for

Re

(
zf ′0(z)

f0(z)

)
=
zf ′0(z)

f0(z)
=

1− r22 (4− 4br2 + r22)

(1− r22) (1− 2br2 + r22)
= α (z = −r2),

which demonstrates sharpness.

Figure 7.5. The S∗(1/2)-radius

r2 ≈ 0.2360 for b = 1 is sharp.

Figure 7.6. The S∗-radius r2 ≈ 0.41421

for b = 1 is sharp.

(4) Lemma 7.1.6 shows that the disk given in (7.2.5) lies inside the parabolic

domain Ω = {w : |w − 1| < Rew} provided that

2r(|b|r2 + 2r + |b|)
(1− r2)(r2 + 2|b|r + 1)

≤ 1

2
,

or equivalently, if the inequality r4+6|b|r3+8r2+2|b|r−1 ≤ 0 holds. Thus, S∗P−radius

of the class F1
b is the smallest positive root r3 ∈ (0, 1] of the Equation (7.2.4).
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The function defined in (7.2.7) satisfies

zf ′0(z)

f0(z)
=

1− r23 (4− 4br3 + r23)

(1− r23) (1− 2br3 + r23)
=

1

2
(z = −r3)

which demonstrates sharpness. Sharpness of the result evident form the following

figures.

Figure 7.7. The S∗P−radius r3 ≈ 0.2360

for b = 1 is sharp.

Figure 7.8. The S∗P−radius r3 ≈ 0.3509

for b = 0 is sharp.

Remark 7.2.1. For α = 0, part (3) of Theorem 7.2.1 reduces to the following result

of Goel [59, Theorem 2]:

If f(z) = z+ bz2 + · · · is analytic in D and satisfies the condition Re(f(z)/z) > 0,

then f is univalent and starlike for |z| < r2, where r2 ∈ (0, 1] is the smallest positive

root of the equation 1− 4r2 − 4br3 − r4 = 0.

7.3 Radii Problems for Functions Defined by Ratio

of Functions

Let f(z) = z + a2z
2 + · · · satisfies Re(f(z)/g(z)) > 0 for some normalized analytic

function g(z) = z + g2z
2 + · · · such that Re(g(z)/z) > 0 in D. Then the second

coefficient g2 of g is bounded by 2, and a2 = g2 + c1, where c1 is the coefficient of
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a function with positive real part and so |c1| ≤ 2, and hence |a2| ≤ 4. Our next

theorem focuses on these functions with fixed second coefficient which are given by

respectively

f(z) = z + 4bz2 + · · · and g(z) = z + 2cz2 + · · · .

Definition 7.3.1. For |b| ≤ 1 and |c| ≤ 1, we define the class of function F2
b,c as

follows:

F2
b,c :=

{
f ∈ A(4b) : Re

(
f(z)

g(z)

)
> 0 and Re

(
g(z)

z

)
> 0, g ∈ A(2c)

}
.

Theorem 7.3.1. Assume that γ := |2b− c|. For the class F2
b,c,

(1) S∗L−radius r0 is the smallest positive root in (0, 1] of the equation

(
√

2− 1)r6 + (|c|+ γ)2
√

2r5 + (7 +
√

2 + 4(1 +
√

2)|c|γ)r4 + 12(|c|+ γ)r3

+ (9−
√

2 + 4(3−
√

2)|c|γ)r2 + 2(2−
√

2)(|c|+ γ)r −
√

2 + 1 = 0. (7.3.1)

(2) M(β)−radius r1 is the smallest positive root in (0, 1] of the equation

(β − 1)r6 + 2β(|c|+ γ)r5 + (7 + β + 4(1 + β)|c|γ)r4 + 12(|c|+ γ)r3

+ (9− β + 4(3− β)|c|γ)r2 + 2(2− β)(|c|+ γ)r − β + 1 = 0. (7.3.2)

(3) S∗(α)−radius r2 is the smallest positive root in (0, 1] of the equation

(1− α)r6 + 2(2− α)(|c|+ γ)r5 + (9− α + 4(3− α)|c|γ)r4 + 12(|c|+ γ)r3

+ (7 + α + 4(1 + α)|c|γ)r2 + 2(|c|+ γ)αr + α− 1 = 0. (7.3.3)

(4) S∗P−radius r3 is the smallest positive root in (0, 1] of the equation

r6 + 6(|c|+ γ)r5 + (17 + 20γ|c|)r4+24(|c|+ γ)r3 + (15 + 12γ|c|)r2

+ 2(|c|+ γ)r − 1 = 0. (7.3.4)

Proof. (1) Let the functions p and h be defined by

p(z) =
g(z)

z
and h(z) =

f(z)

g(z)
.
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Then

p(z) = 1 + 2cz + · · · and h(z) = 1 + 2(2b− c)z + · · ·

or p ∈ Pc and h ∈ P2b−c. Since f(z) = zp(z)h(z), we obtain from Lemma 7.1.1 with

α = 0 the following∣∣∣∣zf ′(z)

f(z)
− 1

∣∣∣∣ ≤ ∣∣∣∣zp′(z)

p(z)

∣∣∣∣+

∣∣∣∣zh′(z)

h(z)

∣∣∣∣
≤ 2r

1− r2

(
|c|r2 + 2r + |c|
r2 + 2|c|r + 1

+
γr2 + 2r + γ

r2 + 2γr + 1

)
. (7.3.5)

From Lemma 7.1.5 it follows that, the function f satisfies∣∣∣∣∣
(
zf ′(z)

f(z)

)2

− 1

∣∣∣∣∣ < 1 (|z| < r)

if the inequality

2r

1− r2

(
|c|r2 + 2r + |c|
r2 + 2|c|r + 1

+
γr2 + 2r + γ

r2 + 2γr + 1

)
≤
√

2− 1

holds or equivalently

(
√

2− 1)r6 + (|c|+ γ)2
√

2r5 + (7 +
√

2 + 4(1 +
√

2)|c|γ)r4 + 12(|c|+ γ)r3

+ (9−
√

2 + 4(3−
√

2)|c|γ)r2 + 2(2−
√

2)(|c|+ γ)r −
√

2 + 1 ≤ 0.

Therefore, the S∗L-radius of the class F2
b,c is the smallest positive root r0 ∈ (0, 1] of

the Equation (7.3.1).

Consider the functions defined by

f0(z) =
z
(
1 + (4b− 2c)z + z2

) (
1 + 2cz + z2

)
(1− z2)2

and g0(z) =
z
(
1 + 2cz + z2

)
(1− z2)

. (7.3.6)

The function f0 with the choice g0, defined above, is in the class F2
b,c because

f0(z)

g0(z)
=

1 + w1(z)

1− w1(z)
and

g0(z)

z
=

1 + w2(z)

1− w2(z)
,

where

w1(z) =
z(z + 2b− c)
1 + (2b− c)z

and w2(z) =
z(z + c)

1 + cz

are analytic functions satisfying the conditions of Schwarz’s lemma on the unit disk

D, and hence

Re

(
g0(z)

z

)
> 0 and Re

(
f0(z)

g0(z)

)
> 0 (z ∈ D).
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Since, for z = r0

zf ′0(z)

f0(z)
= 1 +

2

1− r0
+

2

1 + r0
− 2(1 + cr0)

1 + 2cr0 + r20
− 2 + 4br0 − 2cr0

1 + r0(4b− 2c+ r0)
=
√

2, (7.3.7)

we have ∣∣∣∣∣
(
zf0(z)

f0(z)

)2

− 1

∣∣∣∣∣ = 1.

Thus, the result is sharp. The following figures illustrate sharpness of the result:

Figure 7.9. The S∗L-radius r0 ≈ 0.1025

for b = 1 = c is sharp.

Figure 7.10. The S∗L-radius r0 ≈ 0.3509

for b = 0.5 and c = 1 is sharp.

(2) The inequality (7.3.5) shows that

Re

(
zf ′(z)

f(z)

)
≤ 1 +

2r

1− r2

(
|c|r2 + 2r + |c|
r2 + 2|c|r + 1

+
γr2 + 2r + γ

r2 + 2γr + 1

)
≤ β

if the following inequality holds:

(β − 1)r6 + 2β(|c|+ γ)r5 + (7 + β + 4(1 + β)|c|γ)r4

+ 12(|c|+ γ)r3 + (9− β + 4(3− β)|c|γ)r2

+ 2(2− β)(|c|+ γ)r − β + 1 ≤ 0.

Hence M(β)-radius of the class F2
b,c is the smallest positive root r1 ∈ (0, 1] of the

Equation (7.3.2).
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The result is sharp for the functions given in (7.3.6). For z = r1, we have

zf ′0(z)

f0(z)
= 1 +

2

1− r1
+

2

1 + r1
− 2(1 + cr1)

1 + 2cr1 + r21
− 2 + 4br1 − 2cr1

1 + r1(4b− 2c+ r1)

= β.

This shows sharpness of the result. The following figures illustrate sharpness of the

result:

Figure 7.11. TheM(2)-radius r1 ≈ 0.2360

for b = 1 = c is sharp.

Figure 7.12. TheM(2)-radius r1 ≈ 0.2659

for b = 1 and c = 0 is sharp.

(3) In view of (7.3.5), it follows that

Re

(
zf ′(z)

f(z)

)
≥ 1− 2r

1− r2

(
|c|r2 + 2r + |c|
r2 + 2|c|r + 1

+
γr2 + 2r + γ

r2 + 2γr + 1

)
≥ α

if the following inequality holds:

(1− α)r6 + 2(2− α)(|c|+ γ)r5 + (9− α + 4(3− α)|c|γ)r4 + 12(|c|+ γ)r3

+ (7 + α + 4(1 + α)|c|γ)r2 + 2(|c|+ γ)αr + α− 1 ≤ 0.

Thus, S∗(α)−radius of the class F2
b,c is the smallest positive root r2 ∈ (0, 1] of the

Equation (7.3.3).

Consider the functions defined by

f0(z) =
z (1− z2)2

(1− (4b− 2c)z + z2) (1− 2cz + z2)
and g0(z) =

z (1− z2)
(1− 2cz + z2)

. (7.3.8)
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The function f0 with the choice g0, defined in (7.3.8), is in the class F2
b,c because

f0(z)

g0(z)
=

1− w1(z)

1 + w1(z)
and

g0(z)

z
=

1− w2(z)

1 + w2(z)
,

where

w1(z) =
z(z − (2b− c))
1− (2b− c)z

and w2(z) =
z(z − c)
1− cz

(|2b− c| ≤ 1)

are analytic functions satisfying the conditions of Schwarz’s lemma and hence

Re

(
g0(z)

z

)
> 0 and Re

(
f0(z)

g0(z)

)
> 0 (z ∈ D).

The functions defined in (1.4.2) satisfy

zf ′0(z)

f0(z)
= 1− 2

1 + r2
− 2

1− r2
+

2 + 2cr2
1 + 2cr2 + r22

+
2(1 + 2br2 − cr2)

1 + r2(4b− 2c+ r2)
= α (z = −r2)

which demonstrates the sharpness. Figures given below illustrate sharpness of the

result:

Figure 7.13. The S∗(1/2)-radius

r2 ≈ 0.1406 for b = 1 and c = 0 is

sharp.

Figure 7.14. The S∗-radius r2 ≈ 0.2360

for b = 1 = c is sharp.

(4) In view of Lemma 7.1.6, the disk given in (7.3.5) lies inside the parabolic region

Ω = {w : |w − 1| < Rew}, if M ≤ 1/2 which on simplification becomes

r6 + (6q+ 6γ)r5 + (17 + 20qγ)r4 + (24q+ 24γ)r3 + (15 + 12qγ)r2 + (2q+ 2γ)r− 1 ≤ 0.
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The result is sharp for the functions defined in (7.3.8) as it can be seen from(
zf ′(z)

f(z)

)
z=−r0

= 1− 2

1 + r0
− 2

1− r0
+

2 + 2q1r0
1 + 2q1r0 + r20

+
2(1 + 2p1r0 − q1r0)

1 + r0(4p1 − 2q1 + r0)
=

1

2
.

This confirms the sharpness of result. The following figures illustrate sharpness of

the result.

Figure 7.15. The S∗P -radius r3 ≈ 0.1406

for b = 1 and c = 0 is sharp.

Figure 7.16. The S∗P -radius r3 ≈ 0.1231

for b = 1 = c is sharp.

Remark 7.3.1. Setting b = 1 = c, in Theorem 7.3.1 obtain the following result of

Ali et al. [10, Theorem 2.1].

For the class F2
1,1,

(i) the S∗L−radius, r0 =
√
2−1

2+
√

7−2
√
2
,

(ii) the M(β)−radius, r1 = β−1
2+
√

4+(β−1)2
,

(iii) the S∗(α)−radius, r2 = 1−β
2+
√

4+(1−α)2
,

(iv) the S∗P−radius, r3 = 1
4+
√
17
.

Let f(z) = z+a2z
2 + · · · satisfies Re(f(z)/g(z)) > 0 for some normalized analytic

function g(z) = z + g2z
2 + · · · such that Re(g(z)/z) > 1/2 in D. Then the second

coefficient g2 of g is bounded by 1, and a2 = g2 + c1, where c1 is the coefficient of a
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function with positive real part, and hence |a2| ≤ 3. In the next theorem, we shall

focus on functions with fixed second coefficient which are given respectively by

f(z) = z + 3bz2 + · · · and g(z) = z + cz2 + · · · .

Definition 7.3.2. For |b| ≤ 1 and |c| ≤ 1, let

F3
b,c :=

{
f ∈ A3b : Re

(
f(z)

g(z)

)
> 0, and Re

(
g(z)

z

)
>

1

2
, g ∈ Ac

}
.

Theorem 7.3.2. Assume that γ1 = |3b− c|. For the class F3
b,c,

(1) S∗L−radius r0 is the smallest positive root in (0, 1] of the equation

√
2|c|r5 + (1 +

√
2)(1 + |c|γ1)r4 + (6|c|+

√
2(1 +

√
2)γ1)r

3

+ (6 + (3−
√

2)|c|γ1)r2 +
√

2(
√

2− 1)(|c|+ γ1)r −
√

2 + 1 = 0. (7.3.9)

The result is sharp.

(2) M(β)−radius r1 is the smallest positive root in (0, 1] of the equation

|c|βr5 + (1 + β)(1 + |c|γ1)r4 + (6|c|+ (2 + β)γ1)r
3

+ (6 + (3− β)|c|γ1)r2 + (2− β)(|c|+ γ1)r − β + 1 = 0. (7.3.10)

The result is sharp.

(3) S∗(α)−radius r2 is the smallest positive root in (0, 1] of the equation

− |c|αr7 + (|c|(1− α)(γ1 + 2|c|)− 1− α)r6 + (|c|(2− α)(3 + 2|c|γ1)− αγ1)r5

+ (5 + 8|c|2 − α + 2(3− α)|c|γ1)r4 + ((12 + α)|c|+ 2(2 + |c|2α)γ1)r
3

+ (5− 2|c|2 + α + 2|c|2α + (1 + 3α)|c|γ1)r2 + (2|c|+ 3|c|α + αγ1)r

+ α− 1 = 0. (7.3.11)

(4) S∗P−radius r3 is the smallest positive root in (0, 1] of the equation

|c|r7 + (1 + 4|c|2 + 3|c|γ1)r6 + (17|c|+ 3γ1 + 8|c|2γ1)r5

+ (13 + 20|c|2 + 16|c|γ1)r4 + (31|c|+ 8γ1 + 4|c|2γ1)r3

+ (11 + 5|c|γ1)r2 + (γ1 − |c|)r − 1 = 0. (7.3.12)
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Proof. (1) Define the functions p and h by p(z) = g(z)/z and h(z) = f(z)/g(z)

p(z) = 1 + cz + · · · and h(z) =
f(z)

g(z)
= 1 + (3b− c)z + · · · (7.3.13)

or p ∈ Pc/2(1/2) and h ∈ P(3b−c)/2. Lemma 7.1.1 with α = 0 and α = 1/2 respectively

lead to ∣∣∣∣zh′(z)

h(z)

∣∣∣∣ ≤ r

1− r2

(
γ1r

2 + 4r + γ1
r2 + γ1r + 1

)
(7.3.14)

and ∣∣∣∣zp′(z)

p(z)

∣∣∣∣ ≤ r

1− r2

(
|c|r2 + 2r + |c|
|c|r + 1

)
. (7.3.15)

From (7.3.13), f(z)/z = p(z)h(z), and so the inequalities in (7.3.14) and (7.3.15)

yield ∣∣∣∣zf ′(z)

f(z)
− 1

∣∣∣∣ ≤ ∣∣∣∣zh′(z)

h(z)

∣∣∣∣+

∣∣∣∣zp′(z)

p(z)

∣∣∣∣
≤ r

1− r2

(
γ1r

2 + 4r + γ1
r2 + γ1r + 1

+
|c|r2 + 2r + |c|
|c|r + 1

)
. (7.3.16)

By Lemma 7.1.5, the function f satisfies |(zf ′(z)/f(z))2 − 1| < 1, in |z| < r, if the

following inequality holds

r

1− r2

(
γ1r

2 + 4r + γ1
r2 + γ1r + 1

+
|c|r2 + 2r + |c|
|c|r + 1

)
≤
√

2− 1

or equivalently, if the following inequality holds:

√
2|c|r5 + (1 +

√
2)(1 + |c|γ1)r4 + (6|c|+

√
2(1 +

√
2)γ1)r

3

+ (6 + (3−
√

2)|c|γ1)r2 +
√

2(
√

2− 1)(|c|+ γ1)r −
√

2 + 1 ≤ 0.

Therefore, S∗L-radius of the class F3
b,c is the smallest positive root r0 ∈ (0, 1] of the

Equation (7.3.9). Consider the functions defined by

f0(z) =
z(1 + (3b− c)z + z2)(1 + cz)

(1− z2)2
and g0(z) =

z(1 + cz)

(1− z2)
. (7.3.17)

The function f0 with the choice g0, defined in (7.3.17), is in the class F3
b,c because

f0(z)

g0(z)
=

1 + w1(z)

1− w1(z)
and

g0(z)

z
=

1 + w2(z)

1− w2(z)
,

where

w1(z) =
z
(
z + 3b−c

2

)
1 + (3b−c)z

2

and w2(z) =
z
(
z + c

2

)
1 + cz

2

(|3b− c| ≤ 2)
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are analytic functions satisfying the conditions of Schwarz’s lemma in the unit disk

D. Hence Re(g0(z)/z) > 1/2 and Re(f0(z)/g0(z)) > 0 in D. Since

zf ′(z)

f(z)
=

2

1− r0
+

2

1 + r0
− 1

1 + cr0
− 2 + 3br0 − cr0

1 + r0(3b− c+ r0)
=
√

2 (z = r0),

we have ∣∣∣∣∣
(
zf0(z)

f0(z)

)2

− 1

∣∣∣∣∣ = 1.

Thus the result is sharp. Following figures illustrate sharpness of the result:

Figure 7.17. The S∗L-radius r0 ≈ 0.1452

for b = 1 and c = 0 is sharp.

Figure 7.18. The S∗L-radius r0 ≈ 0.1300

for b = 1 and c = 1 is sharp.

(2) From inequality (7.3.16), we have

Re

(
zf ′(z)

f(z)

)
≤ r

1− r2

(
γ1r

2 + 4r + γ1
r2 + γ1r + 1

+
|c|r2 + 2r + |c|
|c|r + 1

)
+ 1 ≤ β

if the following inequality holds:

β|c|r5 + (1 + β)(1 + |c|γ1)r4 + (6|c|+ (2 + β)γ1)r
3

+ (6 + (3− β)|c|γ1)r2 + (2− β)(|c|+ γ1)r − β + 1 ≤ 0.

Therefore M(β)−radius of the class F3
b,c is the smallest positive root r1 ∈ (0, 1] of

the Equation (7.3.10). The result is sharp for the functions given in (7.3.17) as it can

be seen that, for z = r1,

zf ′(z)

f(z)
=

2

1− r1
+

2

1 + r1
− 1

1 + cr1
− 2 + 3br1 − cr1

1 + r1(3b− c+ r1)
= β.

Following figures illustrate sharpness of the result:
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Figure 7.19. M(2)−radius r1 ≈ 0.3277

for b = 0.5 and c = 0.5 is sharp.

Figure 7.20. M(10)−radius r1 ≈ 0.8104

for b = 1 and c = 1 is sharp.

(3) Since f(z)/z = p(z)h(z), it follows from Lemma 7.1.1 and Lemma 7.1.3 that

Re

(
zf ′(z)

f(z)

)
≥ 1− (γ1r

2 + 4r + γ1)r

(r2 + γ1r + 1)(1− r2)
+

(|c|+ 2r + |c|r2)r
(1 + 2|c|r + r2)(1 + |c|r)

≥ α, (7.3.18)

if the following inequality holds:

− |c|αr7 + (|c|(1− α)(γ1 + 2|c|)− 1− α)r6 + (|c|(2− α)(3 + 2|c|γ1)− αγ1)r5

+ (5 + 8|c|2 − α + 2(3− α)|c|γ1)r4 + ((12 + α)|c|+ 2(2 + |c|2α)γ1)r
3

+ (5− 2|c|2 + α + 2|c|2α + (1 + 3α)|c|γ1)r2 + (2|c|+ 3|c|α + αγ1)r + α− 1 ≤ 0.

Thus, S∗(α)−radius of the class F3
b,c is the smallest positive root r2 ∈ (0, 1] of the

Equation (7.3.11).

(4) From (7.3.16) and (7.3.18), it is clear that |(zf ′(z)/f(z))−1| < Re(zf ′(z)/f(z))

provided

1− (γ1r
2 + 4r + γ1)r

(r2 + γ1r + 1)(1− r2)
+

(|c|+ 2r + |c|r2)r
(1 + 2|c|r + r2)(1 + |c|r)

≥ r

1− r2

(
γ1r

2 + 4r + γ1
r2 + γ1r + 1

+
|c|r2 + 2r + |c|
|c|r + 1

)
or equivalently, if the following inequality holds:

|c|r7 + (1 + 4|c|2 + 3|c|γ1)r6 + (17|c|+ 3γ1 + 8|c|2γ1)r5 + (13 + 20|c|2 + 16|c|γ1)r4

+ (31|c|+ 8γ1 + 4|c|2γ1)r3 + (11 + 5|c|γ1)r2 + (γ1 − |c|)r − 1 ≤ 0.
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The S∗P−radius of the class F3
b,c is the smallest positive root r3 in (0, 1] of the Equa-

tion (7.3.12).

Remark 7.3.2. Putting b = 1 = c in Theorem 7.3.2, we have the following result of

Ali et al. [10, Theorem 2.2]:

For the class F3
1,1,

(i) the sharp S∗L−radius, r0 = 4−2
√
2

√
2(
√

17−4
√
2+3)

,

(ii) the sharp M(β)−radius, r1 = 2(β−1)
3+
√

9+4β(β−1)
,

(iii) the sharp S∗(α)−radius, r2 = 2(1−α)
3+
√
9−4α+4α2 ,

(iv) the S∗P−radius, r3 =
√

10− 3.

Let f(z) = z+a2z
2+ · · · satisfies |f(z)/g(z)−1| < 1 for some normalized analytic

function g(z) = z + g2z
2 + · · · such that Re(g(z)/z) > 0 in D. Then the second

coefficient g2 of g is bounded by 2, and a2 = g2 + c1, where c1 is the coefficient of a

function with positive real part and so |c1| ≤ 2, and hence |a2| ≤ 3. Our next theorem

focuses on these functions with fixed second coefficients which are given respectively

by f(z) = z + 3bz2 + · · · and g(z) = z + 2cz2 + · · · .

Definition 7.3.3. For |b| ≤ 1 and |c| ≤ 1, let

F4
b,c :=

{
f ∈ A3b :

∣∣∣∣f(z)

g(z)
− 1

∣∣∣∣ < 1, and Re

(
g(z)

z

)
> 0, where g ∈ A2c

}
.

Theorem 7.3.3. Assume that δ := |2c− 3b|. For the class F4
b,c,

(1) S∗L−radius r0 is the smallest positive root in (0, 1] of the equation

√
2δr5 + (1 +

√
2)(1 + 2δ|c|))r4 + 2(3δ +

√
2(1 +

√
2)|c|)r3

+ 2(3 + (3−
√

2)δ|c|)r2 + (2−
√

2)(δ + 2|c|)r −
√

2 + 1 = 0. (7.3.19)

(2) M(β)−radius r1 is the smallest positive root in (0, 1] of the equation

βδr5 + (1 + β)(1 + 2δ|c|)r4 + 2(3δ + 2|c|+ |c|β)r3

+ 2(3 + (3− β)δ|c|)r2 + (2− β)(δ + 2|c|)r − β + 1 = 0. (7.3.20)
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(3) f ∈ S∗(α)−radius r2 is the smallest positive root in (0, 1] of the equation

(2− α)δr5 + (1 + 2δ|c|)(3− α)r4 + 2(3δ + 4|c| − |c|α)r3

+ (δ + 2|c|)αr2 + 2(3 + (1 + α)δ|c|)r + α− 1 = 0. (7.3.21)

(4) S∗P−radius r3 is the smallest positive root in (0, 1] of the equation

3δr5+5(1+2δ|c|)r4+2(6δ+7|c|)r3+6(2+δ|c|)r2+(δ+2|c|)r−1 = 0. (7.3.22)

Proof. (1) It is easy to see that |f(z)/g(z)−1| < 1 if and only if Re(g(z)/f(z)) > 1/2.

Define the functions p and h by

p(z) =
g(z)

z
and h(z) =

g(z)

f(z)
.

Then

p(z) = 1 + 2cz + · · · and h(z) =
g(z)

f(z)
= 1 + (2c− 3b)z + · · ·

or p ∈ Pc and h ∈ P(2c−3b)/2(1/2). Lemma 7.1.1 with α = 0 and α = 1/2 respectively

lead to∣∣∣∣zh′(z)

h(z)

∣∣∣∣ ≤ 2r(|c|r2 + 2r + |c|)
(1− r2)(r2 + 2|c|r + 1)

and

∣∣∣∣zp′(z)

p(z)

∣∣∣∣ ≤ r(δr2 + 2r + δ)

(1− r2)(δr + 1)
(7.3.23)

respectively, where δ := |2c− 3b|. Since zp(z) = f(z)h(z), from (7.3.23), we have∣∣∣∣zf ′(z)

f(z)
− 1

∣∣∣∣ ≤ ∣∣∣∣zp′(z)

p(z)

∣∣∣∣+

∣∣∣∣zh′(z)

h(z)

∣∣∣∣
≤ r

1− r2

(
2(|c|r2 + 2r + |c|)
r2 + 2qr + 1

+
(δr2 + 2r + δ)

δr + 1

)
. (7.3.24)

By Lemma 7.1.5, the function f satisfies |(zf ′(z)/f(z))2 − 1| < 1, in |z| < r, if the

following inequality holds:

r

1− r2

(
2(|c|r2 + 2r + |c|)
r2 + 2qr + 1

+
(δr2 + 2r + δ)

δr + 1

)
≤
√

2− 1,

or equivalently, if

√
2δr5 + (1 +

√
2)(1 + 2δ|c|))r4 + 2(3δ +

√
2(1 +

√
2)|c|)r3

+ 2(3 + (3−
√

2)δ|c|)r2 + (2−
√

2)(δ + 2|c|)r −
√

2 + 1 ≤ 0.
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Therefore the S∗L−radius of the class F4
b,c is the smallest positive root r0 ∈ (0, 1] of

the Equation (7.3.19).

(2) Using (7.3.24), we can get

Re

(
zf ′(z)

f(z)

)
≤ 1 +

r

1− r2

(
2(|c|r2 + 2r + |c|)
r2 + 2qr + 1

+
(δr2 + 2r + δ)

δr + 1

)
≤ β

if the following inequality holds:

βδr5 + (1 + β)(1 + 2δ|c|)r4 + 2(3δ + 2|c|+ |c|β)r3

+ 2(3 + (3− β)δ|c|)r2 + (2− β)(δ + 2|c|)r − β + 1 ≤ 0.

Therefore, M(β)−radius of the class F4
b,c is the smallest positive root r1 ∈ (0, 1] of

the Equation (7.3.20).

(3) Inequality in (7.3.24) implies that

Re

(
zf ′(z)

f(z)

)
≥ 1− r

1− r2

(
2(|c|r2 + 2r + |c|)
r2 + 2qr + 1

+
(δr2 + 2r + δ)

δr + 1

)
≥ α

if the following inequality holds:

(2− α)δr5 + (1 + 2δ|c|)(3− α)r4 + 2(3δ + 4|c| − |c|α)r3

+ (δ + 2|c|)αr2 + 2(3 + (1 + α)δ|c|)r + α− 1 ≤ 0.

Thus, S∗(α)−radius of the class F4
b,c is the smallest positive root in r2 ∈ (0, 1] of the

Equation (7.3.21).

(4) Lemma 7.1.6 shows that the disk (7.3.24) lies inside the parabolic region

Ω = {w : |w − 1| < Rew} provided∣∣∣∣zf ′(z)

f(z)
− 1

∣∣∣∣ ≤ r

1− r2

(
2(|c|r2 + 2r + |c|)
r2 + 2qr + 1

+
(δr2 + 2r + δ)

δr + 1

)
≤ 1

2

if the following inequality holds:

3δr5 + 5(1 + 2δ|c|)r4 + 2(6δ + 7|c|)r3 + 6(2 + δ|c|)r2 + (δ + 2|c|)r − 1 ≤ 0.

Therefore, S∗P−radius of the class F4
b,c is the smallest positive root r3 ∈ (0, 1] of the

Equation (7.3.12).
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Remark 7.3.3. In the special case when b = 1 = c the parts (3) and (4) are sharp.

Putting b = 1 = c in Theorem 7.3.3, we obtain the following results of Ali et al. [10,

Theorem 2.3]:

For the class F4
1,1,

(i) the S∗L−radius, r0 = 2(2−
√
2)

√
2(
√

17−4
√
2+3)

,

(ii) the M(β)−radius, r1 = 2(β−1)
3+
√

9+4β(β−1)
,

(iii) the sharp f ∈ S∗(α)−radius, r2 = 2(1−α)
3+
√

9+4β(1−α)(2−α)
,

(iv) the sharp S∗P−radius, r3 = 2
√
3−3
3

.

Let f(z) = z + a2z
2 + · · · satisfies |f(z)/g(z) − 1| < 1 for some convex function

g(z) = z + g2z
2 + · · · in D. Then the second coefficient g2 of g is bounded by 1, and

a2 = g2 + c1, where c1 is the coefficient of a function with positive real part and so

|c1| ≤ 2, this implies |a2| ≤ 2. Our next theorem focuses on these functions with fixed

second coefficient which are given respectively by

f(z) = z + 2bz2 + · · · and g(z) = z + cz2 + · · · .

Definition 7.3.4. For |b| ≤ 1 and |c| ≤ 1, let

F5
b,c :=

{
f ∈ A2b :

∣∣∣∣f(z)

g(z)
− 1

∣∣∣∣ < 1, and Re

(
g(z)

z

)
> 0, where g ∈ Ac

}
.

Theorem 7.3.4. Assume that δ1 := |c− 2b|. For the class F5
b,c,

(1) S∗(λ)−radius r0 is the smallest root in (0, 1] of the equation

(δ1 + β0δ1 − δ1λ)r5 + (2 + β0 + 3|c|δ1 + |c|β0δ1 − λ− 2|c|δ1λ)r4

+ (5|c|+ |c|β0 + 3δ1 − β0δ1 − 2|c|λ)r3 + (3− β0 + (1− β0 + 2λ)δ1|c|)r2

+ (2|c|λ+ δ1λ− |c| − |c|β0)r + λ− 1 = 0, (7.3.25)

where β0 = 2α0 − 1 and α0 ∈ (0, 1] is the smallest positive root of the equation

2α3 − qα2 − 4α + 2 = 0 in the interval [1/2, 2/3].
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(2) f ∈ S∗P−radius r1 is the smallest root in (0, 1] of the equation

(δ1 + 2β0δ1)r
5 + (3 + 2β0 + 4|c|δ1 − 2|c|β0δ1)r4

+ (8|c| − 2|c|β0 + 6δ1 − 2β0δ1 + 2|c|β0δ1 − 2|c|2β0δ1)r3

+ (6− 2β0 + 2|c|β0 − 2|c|2β0 + 4|c|δ1 − 2|c|β0δ1)r2

+ (−2|c|β0 + δ1)r − 1 = 0. (7.3.26)

(3) f ∈ S∗L−radius r2 is the smallest root in (0, 1] of the equation

(δ1 +
√

2δ1 − β0δ1)r5 + (2 +
√

2− β0 + 3qδ1 + 2
√

2|c|δ1 − |c|β0δ1)r4

+ (5|c|+ 2
√

2|c| − |c|β0 + 3δ1 + 2|c|2δ1 − β0δ1 − |c|β0δ1 − |c|2β0δ1)r3

+ (3 + 2|c|2 − β0 − |c|β0 − |c|2β0 + 5|c|δ1 − 2
√

2|c|δ1 − |c|β0δ1)r2

+ (3|c| − 2
√

2|c| − |c|β0 + 2δ1 −
√

2δ1)r −
√

2 + 1 = 0. (7.3.27)

(4) f ∈M(β)−radius r3 is the smallest root in (0, 1] of the equation

(δ1 + βδ1 − β0δ1)r5 + (2 + β − β0 + 3|c|δ1 + 2β|c|δ1 − |c|β0δ1)r4

+ (5|c|+ 2β|c| − |c|β0 + 3δ1 + 2|c|2δ1 − β0δ1 − |c|β0δ1 − |c|2β0δ1)r3

+ (3 + 2|c|2 − β0 − |c|β0 − |c|2β0 + 5|c|δ1 − 2b|c|δ1 − |c|β0δ1)r2

+ (|c| − 2β|c| − |c|β0 + 2δ1 − βδ1)r − β + 1 = 0. (7.3.28)

Proof. (1) Define the functions h and p by

h(z) =
g(z)

f(z)
and p(z) =

zg′(z)

g(z)
.

Then

h(z) = 1 + (c− 2b)z + · · · and p(z) = 1 + cz + · · · .

Since ∣∣∣∣f(z)

g(z)
− 1

∣∣∣∣ < 1 if and only if Re

(
g(z)

f(z)

)
>

1

2
,

we have h ∈ P(c−2b)/2(1/2). Now an application of Lemma 7.1.1 to the function h(z),

gives ∣∣∣∣zh′(z)

h(z)

∣∣∣∣ ≤ (δ1r
2 + 2r + δ1)r

(δ1r + 1)(1− r2)
, (7.3.29)
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where δ1 := |c − 2b|. Since g(z) = z + cz2 + · · · ∈ Kc, it follows from Lemma 7.1.4

that

Re

(
zg′(z)

g(z)

)
> α0,

where α0 is the smallest positive root of the equation 2α3− |c|α2− 4α+ 2 = 0 in the

interval [1/2, 2/3]. Thus, we have Re(p(z)) > α0. An application of Lemma 7.1.2, for

α = α0, gives

|p(z)− Ac| ≤ Dc, (7.3.30)

where

Ac =
(1 + |c|r)2 − β0(|c|+ r)2r2

(1 + 2|c|r + r2)(1− r2)
, Dc =

(1− β0)(|c|+ r)(1 + |c|r)r
(1 + 2|c|r + r2)(1− r2)

and β0 = 2α0 − 1.

Since h(z) = g(z)/f(z) and p(z) = zg′(z)/g(z), we have∣∣∣∣zf ′(z)

f(z)
− Ac

∣∣∣∣ ≤ |p(z)− Ac|+
∣∣∣∣zh′(z)

h(z)

∣∣∣∣ . (7.3.31)

From (7.3.30), (7.3.29) and (7.3.31), we have∣∣∣∣zf ′(z)

f(z)
− Ac

∣∣∣∣ ≤ Dc +
(δ1r

2 + 2r + δ1)r

(δ1r + 1)(1− r2)
. (7.3.32)

Clearly f ∈ S∗(λ), provided that

Re

(
zf ′(z)

f(z)

)
≥ Ac −Dc −

(δ1r
2 + 2r + δ1)r

(δ1r + 1)(1− r2)
) ≥ λ

or equivalently, if the following inequality holds:

(δ1 + β0δ1 − δ1λ)r5 + (2 + β0 + 3|c|δ1 + |c|β0δ1 − λ− 2|c|δ1λ)r4

+ (5|c|+ |c|β0 + 3δ1 − β0δ1 − 2|c|λ)r3 + (3− β0 + (δ1 − β0δ1 + 2δ1λ)|c|)r2

+ (−|c| − |c|β0 + 2|c|λ+ δ1λ)r − 1 + λ ≤ 0.

Thus, S∗(λ)−radius of the class F5
b,c is the smallest positive root r0 ∈ (0, 1] of the

Equation (7.3.25).

(2) In view of Lemma 7.1.6, the disk in (7.3.32) lies inside the parabolic region

|w − 1| < Rew, provided

Dc +
(δ1r

2 + 2r + δ1)r

(δ1r + 1)(1− r2)
) ≤ Ac − 1/2
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or equivalently, if the following inequality holds:

(δ1 + 2β0δ1)r
5 + (3 + 2β0 + 4|c|δ1 − 2|c|β0δ1)r4

+ (8|c| − 2|c|β0 + 6δ1 − 2β0δ1 + 2|c|β0δ1 − 2|c|2β0δ1)r3

+ (6− 2β0 + 2|c|β0 − 2|c|2β0 + 4|c|δ1 − 2|c|β0δ1)r2 + (δ1 − 2|c|β0)r − 1 ≤ 0.

Hence M(β)−radius of the class F5
b,c is the smallest positive root r1 ∈ (0, 1] of the

Equation (7.3.26).

(3) From Lemma 7.1.5, the function f satisfies∣∣∣∣∣
(
zf ′(z)

f(z)

)2

− 1

∣∣∣∣∣ < 1 (|z| < r),

if the following inequality holds:

Dc +
(δ1r

2 + 2r + δ1)r

(δ1r + 1)(1− r2)
) ≤
√

2− Ac,

or equivalently, if the following inequality holds:

(δ1 +
√

2δ1 − β0δ1)r5 + (2 +
√

2− β0 + 3qδ1 + 2
√

2|c|δ1 − |c|β0δ1)r4

+ (5|c|+ 2
√

2|c| − |c|β0 + 3δ1 + 2|c|2δ1 − β0δ1 − |c|β0δ1 − |c|2β0δ1)r3

+ (3 + 2|c|2 − β0 − |c|β0 − |c|2β0 + 5|c|δ1 − 2
√

2|c|δ1 − |c|β0δ1)r2

+ (3|c| − 2
√

2|c| − |c|β0 + 2δ1 −
√

2δ1)r −
√

2 + 1 ≤ 0.

Therefore the S∗L−radius of the class F5
b,c is the smallest positive root r2 ∈ (0, 1] of

the Equation (7.3.27).

(4) From (7.3.32), we have

Re

(
zf ′(z)

f(z)

)
≤ Ac +Dc +

(δ1r
2 + 2r + δ1)r

(δ1r + 1)(1− r2)
≤ β.

if the following inequality holds:

(δ1 + βδ1 − β0δ1)r5 + (2 + β − β0 + 3|c|δ1 + 2β|c|δ1 − |c|β0δ1)r4

+ (5|c|+ 2β|c| − |c|β0 + 3δ1 + 2|c|2δ1 − β0δ1 − |c|β0δ1 − |c|2β0δ1)r3

+ (3 + 2|c|2 − β0 − |c|β0 − |c|2β0 + 5|c|δ1 − 2b|c|δ1 − |c|β0δ1)r2

+ (|c| − 2β|c| − |c|β0 + 2δ1 − βδ1)r − β + 1 = 0.



152

Therefore, M(β)−radius of the class F5
b,c is the smallest positive root r3 ∈ (0, 1] of

the Equation (7.3.28).

Remark 7.3.4. On setting b = 1 = c, Theorem 7.3.4 reduces to the following result

of Ali et al. [10, Theorem 2.5]:

For the class F5
b,c,

(i) the S∗(λ)−radius, r0 = 1−α
1+
√
2−2α+α2

(ii) the S∗P−radius, r1 = 1
2+
√
5
.

(iii) the S∗L−radius, r2 = 3− 2
√

2,

(iv) the M(β)−radius, r3 = β−1
β

.



Conclusion and Future Plans

• In the present work, we have established differential subordination implications

associated with the analytic functions which maps the unit disk onto either a

disk or right half-plane or right-half of the lemniscate of Bernoulli. We have also

provided alternate proofs of some results of Ali et al. [17]. Using these results

several sufficient conditions for normalized analytic functions to be Janowski

and Sokó l-Stankiewicz starlike are also derived. As a future task, similar type

of results can be discussed for some other functions such as 1 + 4z/3 + 2z2/3,

sin z and ez.

• Several differential subordination, superordination and corresponding sandwich

results for a class of linear operators have been established. Many interesting

examples for different choices of dominant are investigated. Many existing re-

sults proved by Al-Kharsani and Al-Areefi [23], Kumar [174], Obradović [121]

and Chichra [43] have been generalized. For further investigation, one may dis-

cuss some other properties of functions satisfying the given form of recurrence

relation.

• The Fekete-Szegö inequality for certain subclasses of analytic functions has been

obtained, which generalize the earlier results in this direction. Further, the

estimate on initial coefficients of some subclasses of bi-univalent function are

also derived in this thesis. The coefficient estimates proved for the bi-univalent

functions are either generalizing earlier results or giving the best-known estimate

on the coefficients. For further work, these kind of results can be discussed for
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more general classes and may try to find estimate on a4 and a5 and even on an.

• In the concluding chapter, we have generalized the results of Ali et al. [10] for

functions with fixed second coefficient by obtaining sharp radius constants for

specific classes. The work may be further extended by considering more general

classes. For future task, these kind of problems may be considered for other

classes of analytic functions with fixed second coefficient.
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functional for transforms of analytic functions, Bull. Iranian Math. Soc. 35
(2009), no. 2, 119–142, 276.

[22] H. S. Al-Amiri, On p-close-to-star functions of order α, Proc. Amer. Math. Soc.
29 (1971), 103–108.

[23] H. A. Al-Kharsani and N. M. Al-Areefi, On classes of multivalent functions
involving linear operator and multiplier transformations, Hacet. J. Math. Stat.
37 (2008), no. 2, 115–127.

[24] F. M. Al-Oboudi, On univalent functions defined by a generalized Sălăgean
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[133] E. Paprocki and J. Sokó l, The extremal problems in some subclass of strongly
starlike functions, Zeszyty Nauk. Politech. Rzeszowskiej Mat. No. 20 (1996),
89–94.

[134] J. Patel and A. K. Mishra, On certain subclasses of multivalent functions asso-
ciated with an extended fractional differintegral operator, J. Math. Anal. Appl.
332 (2007), no. 1, 109–122.

[135] R. Parvatham, A study on Reade-Wesolowski class of functions, Math. Inequal.
Appl. 8 (2005), no. 4, 607–618.
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lytic functions, Stud. Univ. Babeş-Bolyai Math. 58 (2013), no. 2, 181–188.

[179] S. Sivaprasad Kumar, V. Kumar and V. Ravichandran, Estimates for the initial
coefficients of bi-univalent functions, Tamsui Oxf. J. Inf. Math. Sci., in press

[180] S. Sivaprasad Kumar, V. Ravichandran and H. C. Taneja, Differential sandwich
theorems for linear operators, Int. J. Math. Model. Simul. Appl. 2 (2009), no. 4,
490–507.

[181] S. Sivaprasad Kumar, H. C. Taneja and V. Ravichandran, Classes of multivalent
functions defined by Dziok-Srivastava linear operator and multiplier transfor-
mation, Kyungpook Math. J. 46 (2006), no. 1, 97–109.

[182] H. V. Smith, Bi-univalent polynomials, Simon Stevin 50 (1976/77), no. 2, 115–
122.

[183] H. V. Smith, Some results/open questions in the theory of bi-univalent func-
tions, J. Inst. Math. Comput. Sci. Math. Ser. 7 (1994), no. 3, 185–195.
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