STUDY AND IMPLEMENTATION OF CURRENT CONVEYOR BASED FILTER REALIZATION AND COMPONENT REALIZATION

DISSERTATION

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD OF THE DEGREE OF

MASTER OF TECHNOLOGY IN CONTROL & INSTRUMENTATION

Submitted by:

PRIYA BANGA

2K11/C&I/21

Under the supervision of

MRS. GARIMA

DEPARTMENT OF ELECTRICAL ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

DEPARTMENT OF ELECTRICAL ENGINEERING DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering) Bawana Road, Delhi-110042

CERTIFICATE

I, **Priya Banga**, Roll No. **2K11/C&I/21** student of M. Tech. (Control and Instrumentation), hereby declare that the dissertation/project titled "**Study And Implementation Of Current Conveyor Based Filter Realization And Component Realization**" under the supervision of **Mrs. Garima** of Electrical Engineering Department, Delhi Technological University in partial fulfilment of the requirement for the award of the degree of Master of Technology has not been submitted elsewhere for the award of any Degree.

Place: Delhi

(PRIYA BANGA)

(MRS. GARIMA) (Project Guide) Assistant Professor Department of Electrical Engineering, Delhi Technological University, Bawana Road, Delhi – 110042.

ACKNOWLEDGEMENT

It gives me immense pleasure to express my deep sense of gratitude to my project guide **Mrs Garima**, Assistant Professor, Department of Electrical Engineering, Delhi Technological University, New Delhi, for her invaluable guidance, encouragement and patient reviews. I sincerely acknowledge the earnestness and patronage of **Prof. Pragati kumar**, Department of Electrical Engineering, Delhi Technological University, New Delhi, for his support and motivation throughout this project. Without his help and guidance, this dissertation would have been impossible. It has been a great experience to get a chance to do research under his rich experience. He remained a pillar of help throughout the project.

I would like to extend my gratitude to **Prof. Madhusudan Singh**, Head, Department of Electrical Engineering, Delhi Technological University, New Delhi and all the faculty of Electrical Department of DTU for their kind guidance and support. I would like to express my gratitude to the management of DTU for providing me a conductive work atmosphere.

I am grateful to my parents and my brother for their endless love and moral support all the time. Thank you for always being there for me. I am also thankful to my classmates and friends for their unconditional support and motivation during this work.

Above all, thanks to Almighty God for his blessings and guidance throughout my life.

PRIYA BANGA

ABSTRACT

Current conveyors are very important active building blocks used for analog signal processing. Current conveyors and their various derivatives are used for performing signal processing functions like amplification, filtering (both in voltage mode and current mode) and signal generation under different performance requirements. Different realization of current conveyors has been presented in the literature during past several decades. The second generation current conveyor is a three terminal active building block in which one of the input terminals has infinite input impedance whereas the other input terminal has zero input impedance. The output terminal has infinite output impedance (behaves as an ideal current source). The current conveyor can be used in both voltage mode as well as current mode circuits. Current conveyors have also been used in the realization of simulated immittances. Though the current conveyor is not available as a standard IC from major IC manufacturers many integrable realization of the current conveyor (both in bipolar and CMOS forms) are available in the open literature. In the present work a comparative study of different signal processing functions namely filter realizations and component simulations using different realizations of the second generation current conveyor has been presented.

CONTENTS

Candidate's declaration	i
Certificate	ii
Acknowledgement	iii
Abstract	iv
Contents	v
List of figures	ix
List of tables	xiv
List of abbreviations	XV
CHAPTER 1 INTRODUCTION	1
1.1 EVOLUTION OF CURRENT MODE APPROACH	2
1.2 VARIOUS ACTIVE BUILDING BLOCKS USED IN	
ANALOG SIGNAL PROCESSING	2
1.3 CURRENT CONVEYORS AND THEIR VARIOUS VERSIONS	4
1.3.1 First Generation current conveyor (CCI)	5
1.3.2 The Second Generation Current conveyor (CCII)	7
1.3.3 The Third Generation Current Conveyor (CCIII)	9
1.3.4 A brief summary of the behavioural models of selected conveyors	10
1.4 OBJECTIVES OF THE WORK	16
1.5 CONCLUSION	16

CHAF	TER 2 CMOS REALIZATION OF CURRENT CONVEYOR II	17
2.1	CCII+ available off-the shelf	17
	2.1.1 CCII+ using OA and OTA	17
	2.1.2 CCII+ using 741 in supply current sensing mode	18
	2.1.3 Second Generation Current Conveyor based on CFOA	20
2.2	CCII+ FROM DIRECTLY AVAILABLE IC	25
	2.2.1 Trans linear Second Generation Current Conveyor	25
	2.2.2 Second Generation Current Conveyor based on flipped	
	Voltage follower	29
2.3	MEASUREMENT OF PARASITIC EFFECTS	36
	2.3.1 Characterization by simulation	37
2.4	CONCLUSION	40
CHAF	TER 3 COMPONENT REALIZATION USING CCII	41
3.1	GROUNDED INDUCTOR	41
	3.1.1 Lossy Grounded Inductor	41
	3.1.2 Lossless Grounded Inductor	` 44
3.2	FLOATING INDUCTOR	45
	3.2.1 Lossy Floating Inductor	46
	3.2.2 Lossless Floating Inductor	48
3.3	LOSSLESS FLOATING CAPACITIVE MULTIPLIER	49
3.4		
5.1	CONCLUSION	52
5.1	CONCLUSION	52
	CONCLUSION PTER 4 FILTER DESIGNING USING CCII	52 53
CHAP		-

4.3 CONCLUSION

CHAPTER 5 HIGHER ORDER FILTER DESIGN USING

			CURRENT CONVEYOR	64	
	5.1 INTRODUCTION			64	
		5.1.1	The Cascade Method	64	
		5.1.2	Element Substitution Method	65	
		5.1.3	Leap Frog (LF) Method	65	
	5.2	FOUF	RTH ORDER HIGH PASS BUTTERWORTH FILTER DESIGN	66	
	5.3	5.3 CONCLUSION			
(CHAI	PTER 6	CONCLUSION AND FUTURE SCOPE	70	
	6.1	CONC	CLUSION	70	
	6.2	SCOP	E FOR FURTHER WORK IN FUTURE	71	
I	REFE	RENCI	ES	72	
1	APPENDICES				

62

LIST OF FIGURES

- Fig 1.1 Representation of CCI.
- Fig 1.2 Nullator Norator representation of CCI.
- Fig 1.3 Circuit symbol of CCII.
- Fig 1.4 Principle of second generation current conveyor (CCII).
- Fig 1.5 Nullator Norator representation of a CCII.
- Fig 1.6 A simplified representation of CCII-.
- Fig 1.7 Block diagram representation of CCIII.
- Fig 2.1 Circuit capable of implementing Current Conveyor.
- Fig 2.2 CCII+ using IC 741.

Fig 2.3 CCII+ using IC 741 in supply current sensing mode.

Fig 2.4 Functional Block Diagram of CFOA.

Fig 2.5 Port relationship between V_X and V_Y when we applied input dc sweep at Y terminal.

Fig 2.6 Port relationship between V_X and V_Y when we applied sinusoidal input voltage at Y terminal.

Fig 2.7 Port relationship between Vx and Vy when we applied AC input voltage at Y terminal.

Fig 2.8 Port relationship between I_X and I_Z when we applied input dc sweep at X terminal.

Fig 2.9 Port relationship between I_X and I_Z when we applied sinusoidal input current at X terminal.

Fig 2.10 Port relationship between I_X and I_Z when we applied AC input current at X terminal.

Fig 2.11 Translinear second generation current conveyor (CCII+).

Fig 2.12 Port relationship between V_X and V_Y when we applied input dc sweep at Y terminal.

Fig 2.13 Port relationship between V_X and V_Y when we applied sinusoidal input voltage at Y terminal.

Fig 2.14 Port relationship between V_X and V_Y when we applied AC input voltage at Y terminal.

Fig 2.15 Port relationship between I_X and I_Z when we applied input dc sweep at X terminal.

Fig 2.16 Port relationship between I_X and I_Z when we applied sinusoidal input current at X terminal.

Fig 2.17 Port relationship between I_X and I_Z when we applied AC input current at X terminal.

Fig 2.18 (a) Common drain amplifier circuit (b) Flipped voltage follower.

Fig 2.19 Second generation current conveyor (CCII+) using Flipped voltage follower.

Fig 2.20 Port relationship between V_X and V_Y when dc sweep is applied at Y terminal.

Fig 2.21 Port relationship between V_X and V_Y when sinusoidal input voltage is applied at Y terminal.

Fig 2.22 Port relationship between V_X and V_Y when AC input voltage is applied at Y terminal.

Fig 2.23 Port relationship between I_X and I_Z when dc sweep is applied at X terminal.

Fig 2.24 Port relationship between I_X and I_Z when sinusoidal input current is applied at X terminal.

Fig 2.25 Port relationship between I_X and I_Z when we applied AC input current at X terminal.

Fig 2.26 The ideal CCII with its parasitics.

- Fig 2.27 Voltage transfer ratio with respect to frequency.
- Fig 2.28 Current transfer ratio with respect to frequency.
- Fig 2.29 Simulation Response of V_Y/I_Y with respect to frequency.
- Fig 2.30 Simulation Response of V_Z/I_X with respect to frequency.
- Fig 3.1 Grounded inductor using CCII+.
- Fig 3.2 Lossless grounded inductor using CCII+ and CCII-.
- Fig 3.3 Realizing CCII- from CCII+.
- Fig 3.4 Lossy Floating Inductor using two CCII+.
- Fig 3.5 Second order RLC low pass filter.
- Fig 3.6 Lossless Floating Inductor using four CCII+.
- Fig 3.7 Lossless Floating Capacitor using four CCII+.
- Fig 3.8 Second order RLC high pass filter.
- Fig 4.1 Current mode universal filter.
- Fig 4.2 Voltage Mode Universal Filter.
- Fig 5.1 Cascade realization of nth order filter
- Fig 5.2 Leap frog topology of high order active filters
- Fig 5.3 4^{rth} order High Pass Butterworth filter design.

Fig 5.4 4^{rth} order High Pass Butterworth filter design using element substitution method

LIST OF TABLES

- Table 1.1
 Active building blocks used in analog signal processing
- Table 1.2
 Basic block and port relationship of Current Conveyor derivatives
- Table 2.1 Aspect ratio for the CCII+ in Translinear mode
- Table 2.2
 Aspect ratio for the CCII+ based on flipped voltage follower
- Table 3.1 Lossy grounded inductor realization from CCII+
- Table 3.2 Lossless grounded inductor realization from CCII+
- Table 3.3
 LPF realization using Lossy floating inductor realized from CCII
- Table 3.4 LPF Realization using Lossless floating inductor realized from CCII+
- Table 3.5 HPF realization using Lossless floating capacitor realized from CCII+
- Table 4.1 Realization of current mode filter from CCII+
- Table 4.2Evaluation for Low pass filter
- Table 4.3
 Evaluation for Band pass filter
- Table 4.4Evaluation for High pass filter
- Table 4.5 Realization of voltage mode filter from CCII+
- Table 4.6 Evaluation for Low pass filter
- Table 4.7 Evaluation for Band pass filter
- Table 4.8Evaluation for High pass filter
- Table 5.1 4^{rth} order Butterworth filter design using CCII+

LIST OF SYMBOLS, ABBREVIATIONS

S. NO.	SYMBOLS/ ABBREVIATIONS	DESCRIPTIONS
1	g _m	Transconductance
2	Wo	Natural Frequency
3	Q	Quality Factor
4	V _{SS}	Source Supply Voltage
5	V _{DD}	Drain Supply Voltage
6	ASP	Analog Signal Processing
7	DSP	Digital Signal Processing
8	CMOS	Complementary Metal Oxide Semiconductor
9	OP-AMP	Operational Amplifier
10	VFA	Voltage Feedback Amplifier
11	CFA	Current Feedback Amplifier
12	IC	Integrated Circuit
13	CC	Current Conveyor
14	CCI	First generation Current Conveyor
15	CCII	Second generation Current Conveyor
16	CCIII	Third generation Current Conveyor
17	ΟΤΑ	Operational Transconductance Amplifier
18	CFOA	Current Feedback Operational Amplifier
19	DCC	Differential Current Conveyor

20	DVCC	Differential voltage current conveyor
21	DVCCC	Differential Voltage Complementary Current conveyor
22	ICCII	Inverting current conveyor II
23	DDCC	Differential difference current conveyor
24	DDCCC	Differential Difference Current Controlled Conveyor
25	DCCII	Differential Current Conveyor II
26	MDCC	Modified Differential Current Conveyor
27	DXCCII	Dual-X Current Conveyor
28	FDCCII	Fully Differential Current Conveyor II
29	FBCCII	Fully Balanced CCII
30	UCC	Universal Current Conveyor
31	CCCII	Current Controlled Conveyor II
32	CGCCII	Current Gain CCII