A THESIS REPORT

ON

Spatio Temporal Interest Keypoints and spatial distribution gradients based HAR

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIRNMENT FOR THE AWARD OF THE DEGREE OF

MASTER OF TECHNOLOGY

IN

SIGNAL PROCESSING AND DIGITAL DESIGN

SUBMITTED BY

JAYA GAUTAM

2K14/SPD/06

UNDER SUPERVISION OF

Dr. DINESH KUMAR VISHWAKARMA

ASSISTANT PROFESSOR

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING DELHI TECHNOLOGICAL UNIVERSITY, DELHI (INDIA) JUNE 2016

DECLARATION

I hereby declare that the work presented in this report, titled ""Spatio **Temporal Interest Keypoints and spatial distribution gradients based HAR**", in partial fulfillment for the award of the degree of M.Tech in Signal Processing and Digital Design, submitted in the Department of Electronics and Communication Engineering, Delhi Technological University, Delhi, is original and to the best of my knowledge and belief, it has not been submitted in part or full for the award of any other degree or diploma of any other university or institute, except where due acknowledgement has been made in the text.

Jaya Gautam Roll No. 2K14/SPD/06

M.Tech Signal Processing and Digital Design

Date:

CERTIFICATE

This is to certify the research work embodied in this dissertation entitled "Spatio Temporal Interest Keypoints and spatial distribution gradients based HAR" submitted by Miss Jaya Gautam, Roll no. 2K14/SPD/06 student of Master of Technology in Signal Processing and Digital Design under Department of Electronics and Communication Engineering, Delhi Technological University, Delhi is a bonafide record of the candidate's own work carried out by her under my guidance. This work is original and has not been submitted in part or full for award of any other degree or diploma to any university or institute.

(Dr. Dinesh K. Vishwakarma)

Assistant Professor

Dept. of Electronics and Communication Engineering

Delhi Technological University, Delhi, India.

Date:

ACKNOWLEDGEMENT

I express my sincere thanks and deep sense of gratitude to my guide, **Dr. Dinesh Kumar Vishwakarma**, Assistant Professor, Department of Electronics & Communication Engineering, Delhi Technological University, whose encouragement, the initial to final level enabled me to develop an understanding of the subject. His suggestions and ways of summarizing the things made me go for independent studying and trying my best to get the maximum in my topic, this made my circle of knowledge very vast. I am highly thankful to him for guiding me in this project.

I am also grateful to Prof. Prem R. Chadha. HOD, Department of Electronics & Communication Engineering, Delhi Technological University for his immense support.

Finally, I take this opportunity to extend my deep appreciation to my family, for their endless support during the crucial times of the completion of my project.

Jaya Gautam

Roll No. 2K14/SPD/06

M.Tech Signal Processing and Digital Design

ABSTRACT

Human activity recognition is a formidable topic of machine learning and computer vision research. The aim of action recognition is to analyse the events occurring during the on-going activity from video data. A dependable HAR system is capable of recognizing human actions based upon the uniqueness of the activities and has several applications include video surveillance systems, human computer interaction which involves communication between humans and machine, content-based video annotation and retrieval, video summarization, biometrics and in health care domain.

In past decade, an expeditious proliferation of video cameras has resulted in an enormous outburst of video content. The area of analysing human activity from video data is growing faster and received rapid importance due to surveillance, security, entertainment and personal logging. The activity recognition is an area compiled with several challenges at each level of processing. The low level processing contains pre-processing challenges, robustness against errors. Mid level processing has space and time-invariant representations challenges whereas high level processing has semantic representation problems. In this work, a new hybrid technique is proposed for human action and activity recognition in video sequences. The work is demonstrated on widely used databases i.e. KTH, Weizmann, Ballet and a multi view dataset IXMAS to show the accuracy of the adopted method. The videos are segmented using texture based segmentation followed by calculating the average energy image (AEI). The extreme points are calculated from difference of Gaussians images to find the key points of AEI images. The vocabulary of these points is created

using vector quantization which is unique for each class of dataset. Then spatial distribution gradients are calculated which are combined with key point descriptors to act as a unique feature vector. These features are classified using support vector machine (SVM) and hidden markov model (HMM) for accurate recognition.

Keywords— Human activity recognition, average energy image, spatial distribution gradients, spatio temporal interest points.

Table of Contents

DECLARATIONi
CERTIFICATEii
ACKNOWLEDGEMENTi
ABSTRACT ii
Table of Contents iv
LIST OF FIGURES vii
LIST OF TABLEixx
CHAPTER 1Error! Bookmark not defined.
INTRODUCTIONError! Bookmark not defined.
1.0 OVERVIEW OF HAR Error! Bookmark not defined.
1.1 MOTIVATION FOR HAR4
1.2 FRAMEWORK OF HAR
1.3 CHALLENGES IN HAR
1.3.1 Variation in view point8
1.3.2 Occlusion
1.3.3 Execution Rate10
1.3.4 Variation in body measures10
1.3.5 Camera motion
1.3.6 Cluttered background10
1.4 OUTLINE OF THESIS11

CHAPTER 2	12
RELATED WORK and LITERATURE REVIEW	12
2.1Pre-Processing	15
2.1.1 Image Smoothing	15
2.1.2 Image Sharpening	15
2.1.3 Enhancement	16
2.2 Foreground Detection	17
2.2.1 Background Subtraction	17
2.2.2 Temporal average filter	19
2.2.3 Optical flow	20
2.2.4 Texture based segmentation	21
2.3 Feature Detector	22
2.3.1 Canny edge detection	22
2.3.2 Scale invariant feature transform	26
2.3.3 Harris corner detector	
2.4 Feature Descriptor and Feature Representation	
2.4.1 Histogram of oriented gradients	
2.4.2 HOG 3D	31
2.4.3 Bag of Words	32
2.5 Supervised Learning	

2.5.1 Support Vector Machine	34
2.5.2 Hidden Markov Model	37
CHAPTER 3	40
METHODOLOGY	40
3.1 Input video sequences	42
3.2 Silhouette Extraction	44
3.3 Average energy image (AEI) feature computation	46
3.4 SDGs Computation	
3.5 Computation of Spatio Temporal Interest Keypoints	54
3.5.1 Scale Space	56
3.5.2 Keypoint localisation	57
3.5.3 Orientation Assignment	57
3.5.4 Keypoint Descriptor	58
3.6 Codebook Generation	60
3.7 Hybrid Feature Vector	60
CHAPTER-4	71
Conclusion and Future Scope	71
References	74

LIST OF FIGURES

Figure 1.1: General Human Action Recognition Framework	6
Figure 1.2: HAR framework used in our approach	7
Figure 1.3 : Walking action images from i3DPost multiview dataset	8
Figure 1.4 : Actions during occlusion	9
Figure 2.1 : Figure 2.1: Spatial filter using image sharpening	16
Figure 2.2 : Process showing Background subtraction	19
Figure 2.3 : Foreground Detection using Optical Flow	20
Figure 2.4 : Foreground detection using texture segmentation	22
Figure 2.5: The original grayscale image is smoothed with a Gaussiar	ı filter to
suppress noise	23
Figure 2.6 The gradient magnitudes in the smoothed image as well	as their
directions are determined by applying Sobel operator	24
Figure 2.7: Non-maximum suppression. Edge-pixels are only preserve	ed where
the gradient has local maxima	
Figure 2.8: Thresholding of edges. In the second image strong edges a	ure white,
while weak edges are grey. Edges with strength below both thresh	olds are
suppressed	26
Figure 2.9: Keypoints in hand waving activity	29
Figure 2.10: Block Diagram of HOG	31
Figure 2.11: HOG3D Block Diagram	32
Figure 2.12: Bag of Feature representation	
Figure 2.13: Support Vector Machine Hyperplane	34
Figure 2.14:Data points shown in cartesian coordinates, And Data poin	its shown
in polar coordinates	
Figure 2.15: Trellis Diagram of HMM	

Figure 3.1: Flow diagram of proposed framework	41
Figure 3.2: KTH Dataset	42
Figure 3.3: Weizmann dataset sample frames	43
Figure 3.4: Ballet dataset actions	43
Figure 3.5: IXMAS action sequences at different camera views	44
Figure 3.6: The workflow of silhouette extraction	45
Figure 3.7: Flow Diagram depicting AEI feature computation	48
Figure 3.8: Pixel intensity values of AEI image for hand waving activity	49
Figure 3.9: AEI Image Representation	50
Figure 3.10: AEI image of different action classes of IXMAS datasets	51
Figure 3.11: AEI image of check watch action class of IXMAS datas	sets at
different camera angles	51
Figure 3.12: PHOG descriptor	52
Figure 3.13: SDGs of various action classes of KTH dataset	53
Figure 3.14: Interest points shown in Handwaving activity	54
Figure 3.15: Example of good and bad detected feature points. Video is	s class
"running" from KTH dataset	55
Figure 3.16: Keypoints shown in different activity classes in KTH dataset.	59
Figure 3.17: Codebook Generation	60
Figure 3.18: Hybrid feature vectors for KTH dataset	61

LIST OF TABLE

Table 2.1. Examples of kernel functions
Table 3.1(a): Confusion matrix for KTH dataset by using SVM classifier63
Table 3.1(b): Confusion matrix for KTH dataset by using HMM classifier63
Table 3.2(a): Confusion matrix for Weizmann dataset by using SVM
classifier64
Table 3.2(b): Confusion matrix for Weizmann dataset by using HMM
classifier64
Table 3.3(a): Confusion matrix for Ballet dataset by using SVM classifier65
Table 3.3(b): Confusion matrix for Ballet dataset by using HMM classifier65
Table 3.4(a): Confusion matrix for IXMAS dataset by using SVM classifier66
Table 3.4(b): Confusion matrix for IXMAS dataset by using HMM
classifier67
Table 3.5: Classification accuracy for all the datasets using SVM and HMM
classifier68
Table 3.6: Comparison of recognition accuracy with similar state-of-the-art
techniques on Weizmann Dataset68
Table 3.7: Comparison of recognition accuracy with similar state-of-the-art
techniques on KTH Dataset69
Table 3.8: Comparison with other human action recognition approaches of the
state of-the art. The accuracy obtained in the leave-one-actor-out cross
validation performed on the Ballet dataset70
Table 3.9: Comparison with other multi-view human action recognition
approaches of the state of-the art. The accuracy obtained in the leave-one-actor-
out cross validation performed on the IXMAS