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ABSTRACT

In Power Industry, Energy Load Forecasting is an important aspect. Determining the 

future demand for load in advance is very important. Once the company knows the future load, it 

can take much better investment decisions and decisions about expansion, maintenance and 

buying energy from the generating companies. Having some knowledge of future energy 

consumption is, therefore, an absolute necessity. Power distribution companies, therefore, 

require tools that can predict the load. Prediction of electrical load is difficult. A number of 

classical prediction models are available for this. But these models suffer from the problem of 

requirement of linearity and seasonality. For predicting electric load we have used K-Means 

Clustering and SVM. The results obtained using the technique are compared with energy load 

forecasting using SVM only and the performance of hybrid K-means clustering – SVM is found 

to be consistently better.
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CHAPTER – 1 

 

INTRODUCTION 

  

 

1.1 Literature review 

Energy forecasting refers to forecast of load in energy industry. Energy 

forecasting is not limited to this definition. It also includes forecasting of electric prices, 

fuel (like coal, oil, natural gas) prices, non-conventional energy resources, etc. 

Power utility monopolies used short-term forecasting for ensuring supply of 

electricity and long-term forecasting for upgrading capacity of the system and for 

investing in new capacity [40][52]. Since early 1990s there has been deregulation of 

electricity around the world and there has been an introduction of competitive electricity 

market which has reshaped the entire power industry. Many countries have market rules 

for trade of electricity [49]. The load and price forecast data is very important for 

decision making of power utilities. It is very critical to get accurate load forecast as over 

or under estimation can eventually lead to bankruptcy of the power utility in extreme 

cases [50][51]. Utilities cannot pass this cost to the costumer and as a result their 

vulnerability is very high [34].  

There are two types of studies for the forecast – point and probabilistic. The 

former is based on expected value or best guess of the spot price whereas the latter is 

based on interval and density. While there has been much emphasis on point forecast in 

the past, the probabilistic forecast has not seen much study [53]. This is, however, fast 

changing as the Global Energy Forecasting Competition in 2012 was based on point 

forecast of load and wind power whereas in 2014 it put emphasis on probabilistic forecast 

of load, electric prices and wind & solar power. 
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The wholesale electricity prices are very volatile. Any utility or industrial 

consumer who is able to forecast the electricity prices with a high level of accuracy can 

adjust its strategy and can modify its consumption pattern and as a result reduce the risks 

and maximize its profit. Since the load and electric price forecast are used by many 

departments of a utility, it is difficult to quantify it. An estimate of savings from a 1% 

reduction in MAPE (Mean Absolute Percentage Error) for a 1GW peak load is: [54] 

 $500,000 per year from long-term load forecasting, 

 $300,000 per year from short-term load forecasting, 

 $600,000 per year from short-term load and price forecasting. 

 

There is no clear boundary to define short-term, medium-term and long-term load 

forecasting: 

 Short-term load forecasting includes forecasting from few minutes to few days 

ahead. This is important for day-to-day market operations. Another term known 

as very short-term load forecasting is used for lead time in minutes. 

 Medium-term load forecasting is done from a few days to a few weeks. It is used 

for balance sheet calculations. In electric price forecast the evaluation is not based 

on point forecast but probabilistic forecast. 

 Long-term load forecasting is done in months or quarters or years. It is used for 

investment profitability analysis. 

 

Load forecasting generally means the power demand (in kW) or energy demand 

(in kWh). The magnitude of power and energy is same for an hour, so they are treated as 

same. The quantity of interest is the hourly load. However, hourly, weekly and monthly 

values of load are also important. 

 

There is an estimate growth of 3-7% of electric load annually. There are various 

factors that affect power generation & consumption. They are management of load, 

energy exchange, non-conventional energy, etc. Load forecasting, thus, is very important 
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for decisions like planning & operation. Network reliability can be improved and 

equipment failures and blackouts can be prevented with timely implementation of such 

decisions. There are two type of load forecasting, Spatial & Temporal. Spatial forecasting 

is forecasting of future load of a region, state or country. Forecasting of future load for a 

supplier or a group of consumers in hours, days or months is Temporal forecasting. 

Temporal forecasting has four types – very short, short, medium and long term. For 

planning the growth of generation capacity long term forecasting is done. On the basis of 

this it is decided whether up gradation of existing line is required or new line is to be set 

up. Load forecast at the height of summer or winter season is done using medium term 

forecast, which is carried out for few weeks or months in advance. 

Short term load forecasting is generally done for one week. Load for each hour is 

calculated along with daily peak load and weekly generation of energy. Many real time 

operations and power generation control are done based on short term load forecasting. 

The real time operations include security analysis, energy exchange with other utilities, 

energy planning, etc. Accuracy of the load forecast determines the reliability and 

economy of operations. Load dispatch center must anticipate the energy load pattern in 

advance so that to have sufficient generation to meet consumer demand. Over-estimation 

of load will result in starting of too many generating units. This will cause an unwanted 

increase of the reserve and operating cost. Under-estimation will result in instability of 

the system because of the failure to provide adequate spinning reserve and standby 

reserve. Errors in load forecasting can lead to suboptimal decisions of unit commitment. 

Therefore, correct load forecast is a very important aspect of power system. 

Many methods of load forecasting have been used in past years, with varying 

degree of accuracy. They may be classified as causal models and time series models. In 

causal, load is modeled as a function of external factors like temperature, humidity, etc. 

In time series models, we model the load as a function of past values observed. Some 

models of the 1st class are ARMAX, techniques of optimization, curve-fitting method, 

etc. Some of the methods of 2nd class are linear and non-linear dynamic models, models 

based on Kalman filter, multiplicative and threshold auto-regressive models. However, 

despite of these large numbers of models, the most used causal models are the models 

that decompose load into basic weather dependent elements and the linear ones. The 
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above models are attractive because of their linearity and physical interpretation can be 

attached to them so that operators and engineers understand their behavior easily. The 

problem is they are linear models and the systems that they are trying to explain are 

known to be non-linear functions of external variables. 

In recent years, most of the research on energy load forecasting is done with the 

application of artificial intelligence techniques. Many new systems have been tried and 

compared to the classical systems. Fuzzy inference and neural-fuzzy methods have also 

been tried. But most of the research using artificial intelligence technique has been 

carried out in artificial neural network (ANNs). The first use of artificial neural network 

for energy load forecasting was done in late 1980s. Taking a cue from the number of 

papers that are published on load forecasting using artificial neural network one has to 

say that it has not turned into a passing fad as once was perceived. 

 

Factors like time, weather, customers, etc. are taken into account for Short-term 

load forecast. For medium-term and long-term forecast, factors such as historical data, 

weather, customer categories, data of sale of appliances in an area and age of the 

appliances, demographic data of that area are used. In time factors, we take into account 

the time of the day, month or year. Loads are generally different on weekdays and 

weekends. Weekdays adjacent to weekends such as Monday and Friday can also have 

structurally different loads. This is particularly true during the day time. Holidays are 

generally difficult to forecast because of their occurrence being low. The load is also 

influenced by weather conditions. In short-term forecast, the weather data is of 

paramount importance. Temperature and humidity are the two most important variables 

used in forecasting. Among all the weather variables used, the temperature humidity 

index (THI) and the wind chill index (WCI) are widely used by the utilities. 

Temperature-humidity index is for summer heat and likewise Wind-chill index is for 

winter chill. There are different types of consumers such as domestic and commercial. 

The energy use pattern is different for different classes but the pattern is very much 

similar for a particular class. Hence, the utilities generally differentiate load on class basis 

[20]. 
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1.2 Methods of Forecasting 

Over the last few years a number of methods have been developed for load 

forecasting. They include: 

 similar day approach 

 regression models 

 time series models 

 artificial neural networks 

 expert system models 

 fuzzy inference system 

 statistical learning models 

The development of sophisticated mathematical tools will provide more accurate 

forecasting methods. Statistical approaches usually require a mathematical model that 

represents load as function of different factors such as time, weather, and customer class.  

1.2.1 Medium- and long-term load forecasting methods 

The end-use and econometric modeling and their mix are the frequently utilized 

techniques for medium-term and long-term forecasting. Depictions of apparatuses 

utilized by clients, the house size, the equipment’s age, technology advancement, client 

conduct, and populace elements are normally incorporated into the statistical models and 

simulation models in view of the end-use approach. Moreover, monetary elements, for 

example, per capita income, occupation levels, and power costs are incorporated into 

econometric models. These models are frequently utilized as a part of mix with the end-

use approach. Long term forecasting incorporates the gauges on the populace changes, 

monetary advancement, mechanical development, and innovation improvement. 

 

1.2.1.1 End-use models:  

The end-use approach specifically assesses energy utilization by utilizing broad 

data on end-use and end-users, for example, apparatuses, the client use, age of the 

appliances, house sizes, etc. Factual data about clients alongside dynamics of change is 
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the basis of the forecasting. End-use models concentrate on the different utilization of 

power in the domestic and commercial sector. These models depend on the rule that 

power demand is derived from client's demand for light, cooling, warming and so on. In 

this way end-use models explain power demand as a component of the number of 

appliances in use [18]. Ideally this methodology is very precise. In any case, it is sensitive 

to the nature of end-use data. For instance, in this technique the distribution of age of the 

equipment is vital for specific type of appliances. End-use load forecasting requires less 

information about historical data and more data about clients and their appliances. 

 

1.2.1.2 Econometric models:  

The econometric methodology consolidates financial hypothesis and statistical 

models for determining power demand. The methodology estimates the connections 

between power consumption (dependent variables) and components affecting power 

consumption. These connections are evaluated by the least square technique or time 

series model.  

One of the choices in this structure is to total the econometric methodology, when 

consumption in various sectors (domestic, commercial and so on.) is ascertained as a 

function of climate, financial and other different variables, and after that estimates are 

collected utilizing recent historical data. Incorporation of the econometric methodology 

into the end-use model brings behavioral parts into the end-use equations. 

 

 

1.2.1.3 Statistical model-based learning:  

The end-use and econometric techniques require a lot of data significant to 

equipment, clients, financial matters, and so on. Their application is complex and requires 

human interpretation. Also such data is frequently not accessible with respect to specific 

clients and a utility keeps and backs a profile of a "normal" client or normal clients for 

various kinds of clients. The issue emerges if the utility needs to forecast next year’s load 

for sub-regions, which are regularly called load pockets. For this situation, the amount of 
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work that ought to be done increases relatively with the number of load pockets. 

Moreover, end-use profiles and econometric information for various load pockets are 

generally diverse. The attributes for specific zones might be unique in relation to the 

normal characteristics for the utility and may not be accessible. 

With a specific goal to simplify medium-term forecasting, make them more exact, 

and keep away from the use of the inaccessible data, Feinberg came up with a statistical 

model that learns the load model parameters from the historical data available. 

 

1.2.2 Short-term load forecasting methods 

For Short-term load forecasting, a large number of Statistical and Artificial 

Intelligence techniques have been formulated. 

 

1.2.2.1 Similar-day approach:  

This methodology depends on historical data of days within the last few years 

with comparative attributes to the forecast day. Comparable qualities include climate, day 

of the week, month of the year. The load of a comparative day is considered as a forecast. 

Rather than a single comparable day, the forecast can be a linear combination or 

regression methods that can incorporate several comparable days. The pattern 

coefficients can be utilized for similar days in the earlier years. 

 

1.2.2.2 Regression methods:  

Regression is one of the most widely utilized statistical systems. For energy 

forecasting regression strategies are normally used to model the relationship of power 

consumption and different variables, for example, climate, day sort, and consumer class. 

Engle introduced a few regression models for the following day peak load forecast [7]. 

These models include deterministic impacts, for example, holidays, stochastic impacts, 

for example, normal loads, and external impacts, for example, climate. 

 



8 
 

1.2.2.3 Time series:  

Time-series techniques depend on the presumption that the information has an 

inside structure, for example, autocorrelation, pattern, or regular variation. Time-series 

forecasting techniques distinguish and investigate such a structure. Time-series method 

has been utilized for a considerable length of time as a part of such fields as economic 

aspects, DSP, and also electric load determining. Specifically, autoregressive moving 

average (ARMA), autoregressive integrated moving average (ARIMA), autoregressive 

moving average with exogenous variables (ARMAX), and autoregressive integrated 

moving average with exogenous variables (ARIMAX) are the frequently utilized 

traditional time-series techniques. ARMA models are normally utilized for stationary 

processes while ARIMA is an expansion of ARMA to non-stationary forms. ARMA and 

ARIMA utilize the time and load as the main data input parameters. Since load by and 

large relies upon the climate and time, ARIMAX is the most common model for load 

estimating among the established time-series models. Fan and McDonald [9] and Cho 

[13] portray usage of ARIMAX models for load estimating. Yang [21] utilized 

Evolutionary Programming (EP) way to recognize the ARMAX model parameters for a 

day to a week ahead hourly load forecast. EP [10] is a technique for reproducing 

advancement and constitutes a stochastic improvement algorithm. Yang and Huang [27] 

gave a fuzzy autoregressive moving average with exogenous input variables (FARMAX) 

for hourly estimates for a day. 

 

1.2.2.4 Neural networks:  

The utilization of simulated neural systems (ANN or basically NN) has been a 

widely studied energy forecasting model since 1990 [8]. NN are basically non-linear 

circuits that have shown the ability to do non-linear curve fitting. 

The yields of an ANN system are some linear or nonlinear functions of its inputs. 

The inputs might be the yields of other network components and also actual system 

inputs. In practice system components are organized in a moderately small number of 

connected layers of components between system inputs and outputs. Feedback paths are 

also utilized sometimes. 
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While applying an artificial neural network to load forecasting, one must choose 

one of various designs such as back-propagation, the number of layers and components, 

utilization of bi-directional or uni-directional connections, and the number format (e.g. 

binary or persistent) to be utilized by inputs and outputs. 

The most well-known ANN design for load estimating is back propagation. Back-

propagation neural systems utilize continuous function and supervised learning. That is, 

in supervised learning, actual numerical values assigned the system inputs are determined 

by comparing historical data, (for example, time and climate) to desired output, (for 

example, historical data of load) in data training. ANN with unsupervised learning 

doesn’t require data training. 

Bakirtzis [16] built up an artificial neural network based short term load 

estimating model. In this they utilized a fully connected 3-layer feed-forward artificial 

neural network & back-propagation algorithm was utilized for the training session. Input 

data include the recorded hourly load information, temperature, humidity and the day of 

the week. The model can estimate load profiles from one day to seven days. Additionally 

Papalexopoulos [12] created and implemented a multi layered feed-forward neural 

network for short term load determining. In the model three sorts of variables are utilized 

as inputs to the ANN: inputs related to season, climate related inputs, and recorded loads. 

Khotanzad [23] portrayed a load determining system known as ANNSTLF. ANNSTLF 

depends on multiple Neural Network methodologies that catch different patterns in the 

data. In this they utilized a multi-layer perceptron ANN trained with error back-

propagation algorithm. ANNSTLF considered the impact of temperature and relative 

humidity on load. It additionally contains forecasters that generated the hourly estimates 

of temperature and relative humidity required by the system. An improvement of this 

system was portrayed in [25]. In the new era, ANNSTLF incorporates two neural 

network forecasters, with one predicting the load and the other predicting the change in 

load. The final estimate is done by an adaptive mix of these. The impact of the humidity 

and wind velocity are considered through a linear change of temperature. Chen [31] built 

up a three layer completely connected feed-forward ANN and the back-propagation 

algorithm was utilized as the training technique. Their neural network however considers 

the power cost as one of the principle characteristic of the system load. Numerous 
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distributed studies use ANN in conjunction with other estimating strategies, (for example, 

with regression trees [33], time-series model [17] or fuzzy inference [26]). 

 

1.2.2.5 Expert systems:  

Rule-based estimating utilizes rules, which are most of the times of heuristic 

nature, to do accurate load estimating. Expert systems, includes rules & procedures used 

by humans in the field and incorporate it into software that then automatically do load 

forecasting without the assistance of humans. 

The use of Expert system began in mid-1960 for applications such as geological 

prospecting & design of computer. Expert system works best when an expert works with 

software developers and imparts his knowledge to the developed software. Furthermore, 

his knowledge must be codified into rules of the software (i.e. the programmer must be 

able to put the decisions of the expert into the system). Hundreds and thousands of rules 

may be coded into the expert system. 

A knowledge-based expert system was proposed for the short term load 

forecasting by Ho [5]. Among other things weather parameters were also taken into 

account. Knowledge of the load is represented in parameter form. Knowledge about the 

factors affecting load are also represented in the form of rules. The rule base and the 

database vary from one place to other. This technique was tested for different sites and it 

has low error.  

1.2.2.6 Fuzzy logic:  

Fuzzy logic uses Boolean logic used in digital circuit designing. The input of the 

Boolean logic is binary. In fuzzy logic we have qualitative ranges such as “low”, 

“medium”, “high”, etc. Fuzzy logic allows us to logically deduce the output. Fuzzy logic, 

like curve fitting, is one of the numerous techniques available for mapping inputs to 

outputs. Fuzzy logic has many advantages. It does not require a mathematical model for 

its working. Also, it does not require noise-free input. With such general rules, fuzzy 

inference system can be a very robust one. After the fuzzification and rule base, a de-

fuzzification method is also required. The de-fuzzification method provides us with 
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precise outputs required. References [29], [30], [26] describe applications of fuzzy logic 

to electric load forecasting. 

 

1.2.2.7 Support vector machines:  

SVMs are a very powerful technique for solving classification and regression 

problems. This theory was given by Vapnik. Unlike ANN, in which complex functions 

were defined for input feature space, SVMs use kernel functions to perform mapping of 

data into higher dimensional feature space. Then SVMs create linear decision boundaries 

by the use of linear functions in new space. In Support Vector Machines, we have to use 

a suitable kernel function whereas in artificial neural network the problem is of choosing 

architecture [28]. 

Mohandes [38] used the method of SVMs for short-term electrical load 

estimating. He compared the performance of this method with the autoregressive method. 

The results show that Support Vector Machines gave much better results than 

autoregressive method. Chen [35] gave a SVM model for predicting daily demand of load 

for a month.  
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CHAPTER – 2 

 

K-MEANS CLUSTERING 

 

 

2.1 Clustering 

Clustering is grouping of data in a way such that objects belonging to same group 

or cluster are similar in some way to each other than to those belonging to other groups or 

clusters. The main task of clustering is data mining and it is used in a number of fields 

such as machine learning, image recognition, pattern analysis, etc. 

Clustering is not some specific algorithm. It is a general task which can be solved 

by various algorithms which differ significantly from each other in the way they define 

cluster and how to find them. The algorithm to be used and the parameters such as 

distance function, density threshold and the number of clusters depend on the available 

data set and its intended use. Clustering is not an automatic process, but an iterative task 

of knowledge or multi-objective optimization which involves hit and trial. It is very often 

required to pre-process the data available to get the desired results. 

 

2.1.1 Definition of clustering 

No particular algorithm can solve all the clustering problems. Therefore, there are 

so many clustering algorithms [41]. But all the algorithms have one thing in common: a 

group of data set. Different researchers have put forth different cluster models giving rise 

to different algorithms. For understanding these algorithms, we have to understand these 

cluster models. 

Cluster models generally include: 

 Connectivity models: such as the hierarchical clustering models which are based 

on distance connectivity. 

https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Knowledge_discovery
https://en.wikipedia.org/wiki/Hierarchical_clustering
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 Centroid models: such as the K-means clustering in which a single mean vector 

represents each cluster. 

 Distribution models: in this the clusters are modeled by statistical distributions, 

such as the Expectation-maximization algorithm. 

 Density models: such as DBSCAN & OPTICS defines clusters in the data space 

as connected dense regions. 

 Subspace models: for example, Bi-clustering or Co-clustering or two-mode-

clustering, in this clusters are modeled as cluster members and other relevant 

attributes. 

 Group models: few algorithms just provide grouping information without any 

refined model. 

 Graph-based models: any two nodes connected by an edge can be considered as a 

prototype. 

The figure 2.1 shows some data clustering examples: 

 

(a)  

https://en.wikipedia.org/wiki/K-means_algorithm
https://en.wikipedia.org/wiki/Expectation-maximization_algorithm
https://en.wikipedia.org/wiki/DBSCAN
https://en.wikipedia.org/wiki/OPTICS
https://en.wikipedia.org/wiki/Biclustering
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(b)  

Figure 2.1 Data clustering example 

2.2 K-means clustering 

K-means clustering is a clustering method which originated from signal 

processing. It is basically a method of vector quantization. K-means clustering partitions 

n observations into k clusters such that each of the observation belongs to the cluster with 

the nearest mean.  

The problem is computationally complex, but there are many efficient algorithms 

that can be employed and gives a quick convergence to a local optimum. Moreover, it 

uses cluster centers to model the given data.  

If we have a set of n observations (x1, x2, …, xn) such that each observation is a d-

dimensional vector, then the K-means clustering divides the observations into k clusters, 

where k (≤ n) sets S = {S1, S2, …, Sk} so that the sum of square within cluster is 

minimized.  
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The objective is to find: 

arg𝑚𝑖𝑛 ∑∑ ||𝑥 − 𝜇𝑖||
2

𝑘𝜖𝑆𝑖

𝑘

𝑖=1

                                             … (2.1) 

where μi is the mean of points in Si. 

2.2.1 History 

James MacQueen was the first to use the term "k-means" in 1967 [4]. However, 

the idea for it was given by Hugo Steinhaus in 1957 [1]. The first algorithm was proposed 

in 1957 by Stuart Lloyd. IT was a technique for pulse modulation. But it wasn't until 

1982 that it was published outside of Bell Labs [2]. E.W.Forgy published the same 

method in 1965 and hence, it is also referred as Lloyd-Forgy [3]. In 1975, Hartigan and 

Wong published its more efficient method.  

2.2.2 Algorithm 

Standard algorithm 

The most common algorithm is the k-means clustering algorithm. It makes use of 

the iterative refinement technique. K-means clustering is also known as the Lloyd’s 

algorithm. Let the initial set m1
(1),…,mk

(1), of k-means data is given. The algorithm has 

the following two steps [47]: 

Assignment step:  

Each of the observation is assigned to a particular cluster depending on whose 

mean gives the least WCSS (within-cluster sum of squares).We know that the sum of 

squares is the square of the Euclidean distance, which is basically the nearest mean [42]. 

𝑆𝑖
(𝑡)
= {𝑥𝑝: |𝑥𝑝 −𝑚𝑖

(𝑡)|
2

≤ |𝑥𝑝 −𝑚𝑗
(𝑡)|

2

∀𝑗, 1 ≤ 𝑗 ≤ 𝑘},                 … (2.2) 

where mi, mj are the initial set of k-means data and Si is the d-dimensional vector 

set and each xp is defined to exactly one S(t) 

https://en.wikipedia.org/wiki/Hugo_Steinhaus
https://en.wikipedia.org/wiki/Bell_Labs
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Update step:  

New means are calculated. These calculated means would be used in the new 

clusters as the centroid of the observations. 

𝑚𝑖
(𝑡+1)

=
1

|𝑆𝑖
(𝑡)
|
∑ 𝑥𝑗

𝑥𝑗𝜖𝑆𝑖
(𝑡)

                                          … (2.3) 

where mi is the initial value of k-means data set and S(t) is the matrix set 

The arithmetic mean is also a least square estimator. As a result, the minimization 

of the within-cluster sum of squares is also achieved. 

The algorithm will be said to have converged when the means no longer change. 

Since both of the above steps optimize the within-cluster sum of squares objective, and 

there exists only finite such partitioning, the given algorithm will converge to local 

optimum. The possibility of global optimum is not guaranteed using this algorithm. 

This algorithm assigns object to the nearest cluster on the basis of distance. The 

given algorithm minimizes the within-cluster sum of squares. Thus assigning the 

observations by “least sum of square”, this is exactly same as assigning the observations 

by smallest Euclidean distance. Use of a distance function different than the Euclidean 

distance may prevent convergence of the algorithm. 

Initialization methods 

Forgy and Random Partition are the commonly used methods of initialization. In 

Forgy method, k observations are chosen randomly from the data set and these are used 

as initial means. In Random Partition method a cluster is randomly assigned to each 

observation and then the update step is processed. And in this way the initial mean is to 

be computed. This mean becomes the centroid of the randomly assigned points of the 

cluster. In Forgy method the initial mean tend to spread out whereas in Random Partition 

method the means are placed at the center of the data set. For the k-means clustering, the 

preferable method is Forgy method. 
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2.2.3 An example of k-means clustering 

Table 2.1: Data Set of the k-means clustering example: 

Sepal length Sepal width Petal length Petal width Species 

5.1 3.5 1.4 0.2 I. setosa 

4.9 3.0 1.4 0.2 I. setosa 

4.7 3.2 1.3 0.2 I. setosa 

4.6 3.1 1.5 0.2 I. setosa 

5.0 3.6 1.4 0.2 I. setosa 

5.4 3.9 1.7 0.4 I. setosa 

4.6 3.4 1.4 0.3 I. setosa 

5.0 3.4 1.5 0.2 I. setosa 

4.4 2.9 1.4 0.2 I. setosa 

4.9 3.1 1.5 0.1 I. setosa 

7.0 3.2 4.7 1.4 I. versicolor 

6.4 3.2 4.5 1.5 I. versicolor 

6.9 3.1 4.9 1.5 I. versicolor 
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Sepal length Sepal width Petal length Petal width Species 

5.5 2.3 4.0 1.3 I. versicolor 

6.5 2.8 4.6 1.5 I. versicolor 

5.7 2.8 4.5 1.3 I. versicolor 

6.3 3.3 4.7 1.6 I. versicolor 

4.9 2.4 3.3 1.0 I. versicolor 

6.6 2.9 4.6 1.3 I. versicolor 

5.2 2.7 3.9 1.4 I. versicolor 

6.3 3.3 6.0 2.5 I. virginica 

5.8 2.7 5.1 1.9 I. virginica 

7.1 3.0 5.9 2.1 I. virginica 

6.3 2.9 5.6 1.8 I. virginica 

6.5 3.0 5.8 2.2 I. virginica 

7.6 3.0 6.6 2.1 I. virginica 

4.9 2.5 4.5 1.7 I. virginica 
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Sepal length Sepal width Petal length Petal width Species 

7.3 2.9 6.3 1.8 I. virginica 

6.7 2.5 5.8 1.8 I. virginica 

7.2 3.6 6.1 2.5 I. virginica 

 

 

 

 

Figure 2.2: A k-means clustering example 

 

The result of this algorithm may depend on initial cluster and hence there is no 

guarantee that this algorithm will converge to a global optimum. Since, it is a very fast 

algorithm; it is generally run multiple times with different initial values.  
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CHAPTER – 3 

 

SUPPORT VECTOR MACHINES 

 

3.1 Support Vector Machines 

Support Vector Machines [15] or SVM is supervised machine learning method 

used for classification of data into two different categories. A SVM is trained with data, 

where the data is labeled for belonging to one or the other category. The SVM training 

algorithm builds a model that marks the new data into one of the two categories. The 

SVM model maps the data into space such that the two classes are separated by a clear 

gap which is as wide as possible. A new data is then mapped onto the same space and 

predicted to be belonging to one or the other class depending on which side of the margin 

it lies. 

SVM can perform the linear as well as the non-linear classification. In non-linear 

classification, it maps the data into a higher dimensional feature space using what is 

known as a kernel trick. SVM constructs a hyperplane to divide the data into the two 

classes. A good hyperplane can be constructed if it at maximum distance from the 

training data of both the classes. 

Figure 3.1(a) shows various hyperplanes separating the two classes. The 

hyperplanes H1 and H2 are not good hyperplanes whereas hyperplane H3 is a good 

hyperplane. In figure 3.2(b), there are three straight lines. The solid straight line in the 

middle shows the decision boundary separating the two classes shown by the equation 

wx-b=0, where w is the slope and b is a constant. The dotted lines pass through the 

support vectors of the two classes such that the distance of the support vectors is 

maximum from the decision boundary. 
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 (a)     (b) 

Figure 3.1: SVM hyperplanes  

3.1.1 History of SVM 

 The SVM algorithm was invented by Vladimir Vapnik and Alexey Chervonenkis 

in 1963. In the year 1992, Vladimir Vapnik, Isabelle Guyon and Bernhard Boser gave 

forth the non-linear classifier using the kernel trick. Because of its success in handwritten 

digit recognition, SVM became very popular. There was only 1.1% error rate in SVM for 

handwritten digit recognition. This was same as the error rate for a carefully constructed 

ANN. 

 

3.1.2 Decision Boundary 

 The SVM classifier needs a decision boundary for separating the two classes. 

There are two lines, one at each of the data points of the two classes which are closest to 

the other class, so that the gap is maximum between the two classes. Then the decision 

boundary is at the center of both of these lines so that it is equidistant from both the 

classes. The data points on either side of the decision boundary which are closest to the 

decision boundary are known as support vectors. 
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3.1.3 Finding good decision boundary 

 Let us consider a linearly separable, two-class problem as shown in figure 3.2 

 

 

 

 

 

 

 

 

 

Figure 3.2: Representation of two-class system 

 

Now, what is a good decision boundary that will separate the two classes? Some decision 

boundaries separating the two classes are shown in figure 3.3. 

 

 

 

 

 

 

 

 

 

Figure 3.3: Bad decision boundaries 

Class 1 

Class 2 

Class 1 

Class 2 

Class 1 

Class 2 
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The above are the examples of bad decision boundaries. For a decision boundary 

to be a good decision boundary it must be a large margin decision boundary. 

 

3.1.4 Large margin decision boundary 

 The decision boundary separating the two classes of data should be such that it is 

as far away as possible from both the classes. If we look at the below figure the problem 

is of maximizing the margin m. We know that the distance between origin and any line 

𝑤𝑇𝑥 = 𝑘 is: 

𝑘

||𝑤||
                                                                             … (3.1) 

where k is a constant and w is the vector perpendicular to the separating hyperplane 

Let the data set be {x1, x2,…,xn} and the class label of our data set be yi {-1, 1}. 

The task of decision boundary is that it should classify all the points correctly into the 

two classes. 

𝑦𝑖(𝑤
𝑇𝑥𝑖 + 𝑏) ≥ 1     ∀𝑖                                                         … (3.2) 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: A two-class system with good decision boundary 

Class 1 

Class 2 

m 
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Now we can find the decision boundary by solving the following: 

Minimize: 

1

2
||𝑤||2 

Subject to: 

𝑦𝑖(𝑤
𝑇𝑥𝑖 + 𝑏) ≥ 1        ∀𝑖 

The above problem is that of constraint optimization.  

 

3.1.5 Solving Constraint Optimization Problem 

Suppose we have a constraint minimization problem in which we have to minimize a 

function 𝑓(𝑥) subject to the condition 𝑔(𝑥) = 0 

The condition for x0 to be a solution of the given problem it should satisfy the below 

condition: 

{

𝜕

𝜕𝑥
(𝑓(𝑥) + 𝛼𝑔(𝑥))|

𝑥=𝑥0

= 0

𝑔(𝑥) = 0

                                               … (3.3) 

  

where α is the Lagrange multiplier and f(x) and g(x) are functions of input set x. 

 

For multiple constraint problem 𝑔i(𝑥) = 0. A Lagrange multiplier is required for each 

constraint. 

 

{
 

 𝜕

𝜕𝑥
(𝑓(𝑥) +∑𝛼𝑖𝑔𝑖(𝑥)

𝑛

𝑖=1

)|

𝑥=𝑥0

= 0

𝑔𝑖(𝑥) = 0          𝑓𝑜𝑟 𝑖 = 1,2, … ,𝑚

                                          … (3.4) 

where αi are the Lagrange multiplier and f(x) and gi(x) are functions of x. 

For the inequality constraint problem 𝑔i(𝑥) = 0, the Lagrange multiplier should be 

positive. The solution of the inequality constraint optimization problem: 
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min 𝑓(𝑥) subject to 𝑔i(𝑥) ≤ 0 for i = 1,2,…,m 

 

There must exist a positive Lagrange multiplier αi ≥ 0 such that: 

 

{

𝜕

𝜕𝑥
(𝑓(𝑥) +∑ 𝛼𝑖𝑔𝑖(𝑥)

𝑖
)|
𝑥=𝑗𝑥0

= 0

𝑔𝑖(𝑥) ≤ 0          𝑓𝑜𝑟 𝑖 = 1,2, … ,𝑚

                                          … (3.5) 

 

The function 𝑓(𝑥) + ∑I αi 𝑔i(𝑥) is known as the Lagrangian. For solving the problem we 

need to set its gradient to 0. 

 

3.1.6 Back to finding decision boundary 

Minimize: 

1

2
||𝑤||2 

Subject to: 

1 − 𝑦𝑖  (𝑤
𝑇𝑥𝑖 + 𝑏) ≤ 0          𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑛 

xi is the input set and yi is the class label for the data set and b is a constant 

w is the vector perpendicular to the hyperplane separating the two classes  

The Lagrangian is given by: 

 

ℒ =
1

2
𝑤𝑇𝑤 +∑𝛼𝑖(1 − 𝑦𝑖(𝑤

𝑇𝑥𝑖 + 𝑏))

𝑛

𝑖=1

                                       … (3.6) 

 

Since 

||𝒘||2 = 𝒘𝑇𝒘 

w is the vector perpendicular to the hyperplane 
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Setting the Lagrangian gradient with respect to w and b equal to zero, we get: 

 

𝑤 +∑𝛼𝑖(−𝑦𝑖)𝑥𝑖 = 0

𝑛

𝑖=1

 

⇒       𝑤 =∑𝛼𝑖𝑦𝑖𝑥𝑖

𝑛

𝑖=1

                                                            … (3.7) 

∑𝛼𝑖𝑦𝑖 = 0

𝑛

𝑖=1

                                                        … (3.8) 

 

Now if we substitute w = ∑i αi yi xi  to the Lagrangian, we get: 

 

ℒ =
1

2
∑𝛼𝑖𝑦𝑖𝑥𝑖

𝑇

𝑛

𝑖=1

∑𝛼𝑗𝑦𝑗𝑥𝑗 +

𝑛

𝑗=1

∑𝛼𝑖

𝑛

𝑖=1

(1 − 𝑦𝑖 (∑𝛼𝑗𝑦𝑗𝑥𝑗
𝑇𝑥𝑖

𝑛

𝑗=1

)) 

=
1

2
∑∑𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑥𝑖

𝑇𝑥𝑗

𝑛

𝑗=1

𝑛

𝑖=1

+∑𝛼𝑖

𝑛

𝑖=1

−∑𝛼𝑖𝑦𝑖

𝑛

𝑖=1

∑𝛼𝑗𝑦𝑗𝑥𝑗
𝑇𝑥𝑖

𝑛

𝑗=1

− 𝑏∑𝛼𝑖𝑦𝑖

𝑛

𝑖=1

 

= −
1

2
∑∑𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑥𝑖

𝑇𝑥𝑗

𝑛

𝑗=1

𝑛

𝑖=1

+∑𝛼𝑖

𝑛

𝑖=1

 

 

Also we have ∑i αi yi = 0 

We can see that it is a function of only αi. 

Now we have an objective function which is in terms of αi only. This is also 

known as the dual problem as if we know w, we can find all αi and if we know all αi, we 

can find w. The objective function needs to be maximized. The dual problem, therefore, 

becomes maximizing: 

𝑊(𝛼) =∑𝛼𝑖

𝑛

𝑖=1

−
1

2
∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑥𝑖

𝑇𝑥𝑗

𝑛

𝑖=1,𝑗=1

                                         … (3.9) 
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αi, αj are Lagrangian multiplier 

yi, yj are class labels and xi, xj are input data set 

Subject to: 

 𝛼𝑖 ≥ 0,      ∑𝛼𝑖𝑦𝑖 = 0

𝑛

𝑖=1

 

w can be found out by: 

𝑤 =∑𝛼𝑖𝑦𝑖𝑥𝑖

𝑛

𝑖=1

 

w has a sparse representation as many of the αi’s are zero. This can be viewed as data 

compression. The data points with non-zero αi are known as the Support Vectors. Only 

Support Vectors are required for determining the decision boundary.  

 Let the s Support Vectors have the indices given by tj (j = 1,2,…,s). Then we can 

write: 

𝑤 =∑𝛼𝑡𝑗𝑦𝑡𝑗𝑥𝑡𝑗

𝑠

𝑗=1

 

For a new data z, compute: 

𝑤𝑇𝑧 + 𝑏 =∑𝛼𝑡𝑗𝑦𝑡𝑗 (𝑥𝑡𝑗
𝑇 𝑧)

𝑠

𝑗=1

+ 𝑏                                 … (3.10) 

If the sum is positive, we classify it as class 1 otherwise we classify it as class 2. 

Table 3.1: An example with support vector weightage for geometrical interpretation 

support vector weightage 

α1 0.8 

α2 0 

α3 0 

α4 0 

α5 0 

α6 1.4 

α7 0 

α8 0.6 

α9 0 

α10 0 
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Figure 3.5: A geometrical interpretation 

3.1.7 Non-linearly separable classes’ problem 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6: Non-linearly separable problem 
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Let i be the error in classification based on the output of the function wTx + b. 

𝑤𝑇𝑥𝑖 + 𝑏 ≥  𝑖  𝑦𝑖 = 1                                          … (3.11) 

𝑤𝑇𝑥𝑖 + 𝑏 ≤ −1 + 
𝑖
       𝑦𝑖 = −1                                        … (3.12) 

𝑖 ≥  0   ∀ 𝑖 

i is the error, xi is the input set, b is a constant 

If there is no error for a data point, then  for that particular data point is zero. Now we 

have to minimize 

1

2
 ||𝑤||2 + 𝐶 ∑ 

𝑖

𝑛

𝑖=1

                                                         … (3.13) 

where 𝐶 is the trade-off parameter between margin & error. 

The optimization problem now is maximizing: 

1

2
 ||𝑤||2 + 𝐶 ∑ 

𝑖

𝑛

𝑖=1

 

Subject to 𝑦𝑖(𝑤
𝑇𝑥𝑖 + 𝑏) ≥ 1 − 

𝑖
,  𝑖 ≥  0                              … (3.14) 

Now the dual of this new problem is maximizing: 

𝑊(𝛼) =∑𝛼𝑖 −
1

2

𝑛

𝑖=1

∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑥𝑖
𝑇𝑥𝑗

𝑛

𝑖=1,𝑗=1

                           … (3.15) 

Subject to: 

𝐶 ≥ 𝛼𝑖 ≥ 0,∑𝛼𝑖𝑦𝑖 = 0

𝑛

𝑖=1

                                           … (3.16) 

w can be calculated as: 

𝑤 =∑𝛼𝑡𝑗𝑦𝑡𝑗𝑥𝑡𝑗

𝑠

𝑗=1

                                                 … (3.17) 

 



30 
 

This is similar to the problem of optimization in linearly separable case. Only difference 

is that now there is an upper bound on αi given by C. 

 

3.1.8 Non Linear Decision Boundary 

 Until now we have only considered linear decision boundary. We can 

generalize it to include non-linear decision boundary. This is done by transforming xi into 

a higher dimensional feature space. 

 Here input space is where xi are located and feature space is where ɸ(xi) after 

transformation are located. With the help of transformation, the linear operation of the 

feature space becomes non-linear operation of the input space. 

 Computation can become very complex in the feature space because of it being 

a high dimensional space. A typical feature space is of infinite dimensions. Because of 

this we use what is known as a kernel trick. Figure 3.7 shows transformation into higher 

dimensional space: 

 

 

 

 

 

 

 

 

 

Figure 3.7: Transformation into higher dimensional feature space 

 

 The data points in the SVM optimization problem appear only as inner product. 

Therefore, as long as the inner product of the data points can be computed in the feature 

space, we need not explicitly map the data points to the higher dimension. 
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3.1.9 kernel trick 

Let ɸ(.) is: 

𝜑 ([
𝑥1
𝑥2
]) = (1, √2𝑥1, √2𝑥2, 𝑥1

2, 𝑥2
2, √2𝑥1𝑥2) 

Therefore the inner product in feature space is: 

〈𝜑 ([
𝑥1
𝑥2
]) , 𝜑 ([

𝑥1
𝑥2
])〉 = (1 + 𝑥1𝑦1 + 𝑥2𝑦2)

2 

So the kernel function becomes: 

𝐾(𝑥, 𝑦) = (1 + 𝑥1𝑦1 + 𝑥2𝑦2)
2 

 This use of the kernel function is known as the kernel trick. Here, there is no 

need of carrying out the mapping explicitly. In the practical use of Support Vector 

Machine (SVM), we just need to specify the kernel function. The transformation need not 

be explicitly stated. 

 

3.1.10 Modification due to kernel trick 

 In the optimization problem equations, we replace all the data point inner 

product with the kernel function. As a result, for training the problem is now maximizing: 

𝑊(𝛼) =∑𝛼𝑖 −
1

2

𝑛

𝑖=1

∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝐾(𝑥𝑖, 𝑥𝑗)

𝑛

𝑖=1,𝑗=1

                      … (3.18) 

Subject to: 

𝐶 ≥ 𝛼𝑖 ≥ 0,∑𝛼𝑖𝑦𝑖 = 0

𝑛

𝑖=1

 

 

For testing, a new data point is classified as: 

1. Class 1, if f ≥ 0 

2. Class 2, if f < 0 

And the equations without kernel trick are: 
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𝑤 =∑𝛼𝑡𝑗𝑦𝑡𝑗𝑥𝑡𝑗

𝑠

𝑗=1

 

𝑓 = 𝑤𝑇𝑧 + 𝑏 =∑𝛼𝑡𝑗𝑦𝑡𝑗𝑥𝑡𝑗
𝑇

𝑠

𝑗=1

𝑧 + 𝑏 

And with kernel trick are: 

𝑤 =∑𝛼𝑡𝑗𝑦𝑡𝑗𝜑(𝑥𝑡𝑗)

𝑠

𝑗=1

 

𝑓 = 〈𝑤, 𝜑(𝑧)〉 + 𝑏 =∑𝛼𝑡𝑗𝑦𝑡𝑗𝐾(𝑥𝑡𝑗 ,

𝑠

𝑗=1

𝑧) + 𝑏                        … (3.19) 

where K represents the kernel function and other symbols have the meaning as defined 

earlier 

3.2 Hybrid k-means clustering – SVM 

 K-means clustering is used to distribute the given data points into clusters such 

that the data points belonging to a cluster have high degree of similarity. And the clusters 

so formed are as dissimilar as possible to each other. Each of the data points are 

distributed on the basis of cluster with nearest mean. That is, a data point is said to be 

belonging to that cluster whose mean is closest to the given data point. 

 SVM is used to classify a data point into two classes. In SVM two classes are 

separated by a hyperplane. The hyperplane should be such that it is at maximum distance 

from the data points of the two classes. This is also known as maximum margin criteria 

as the distance between the two hyperplanes passing though the data points of a particular 

class and separating it from the other class has to be maximum. The hyperplane 

separating the two classes or the decision boundary is then the one at the middle of this 

margin. 

  If a linear decision boundary is unable to separate the two classes, then we go 

for non-linear decision boundary. Kernel trick is used to transform the data points to 

higher dimensional feature space where the decision boundary is linear even if it was 

non-linear in the input space. 

 SVM is used to classify data into two classes; however, if data is to be 

classified into more than two classes then we use multi-class SVM. 
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 In this methodology, we develop a novel technique for energy load forecasting 

by combining K-means clustering with SVM. K-means clustering is used to group the 

data into defined clusters and then SVM trains the model so developed using the data to 

give the load forecaster. The architecture of the proposed technology is shown in Figure 

3.8: 

 

 

Figure 3.8: Architecture of the proposed methodology 

 

 

 

 

 

 

 

 

 

 



34 
 

CHAPTER – 4 

 

RESULTS AND CONCLUSION 

 

 

 The technique of energy load forecasting developed by combining k-means 

clustering and SVM is run using the MATLAB R2014a software. The main Graphical 

User Interface or GUI developed for the technique is shown in figure 4.1: 

 

 

Figure 4.1: Graphical User Interface 
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 In the Graphical User Interface, different pushbuttons are provided for carrying 

out different functions such as k-means clustering and SVM. First the data is loaded into 

the GUI. The data is taken over the period of 5 years from 2006 to 2010. The figure 4.2 

shows the GUI with the loaded data. 

 

 

Figure 4.2: GUI with loaded data 
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Table 4.1: A sample of the used data set [55] 

S.No. Date Hour Humidity Price Load 

1 1/1/2006 0.5 87.5 19.67 8013.278 

2 1/1/2006 1 88 18.56 7726.892 

3 1/1/2006 1.5 88 19.09 7372.858 

4 1/1/2006 2 88 17.4 7071.833 

5 1/1/2006 2.5 88 17 6865.44 

6 1/1/2006 3 88 17 6685.927 

7 1/1/2006 3.5 89 17 6548.628 

8 1/1/2006 4 90 16.92 6487.837 

9 1/1/2006 4.5 90 15.2 6449.178 

10 1/1/2006 5 90 14.99 6388.278 

11 1/1/2006 5.5 88.5 15.08 6395.48 

12 1/1/2006 6 87 15.16 6494.333 

13 1/1/2006 6.5 84 14.35 6715.202 

14 1/1/2006 7 81 15.25 7062.48 

15 1/1/2006 7.5 73.5 15.74 7532.117 

16 1/1/2006 8 66 16.46 8037.868 

17 1/1/2006 8.5 48.5 16.95 8623.735 

18 1/1/2006 9 31 19.09 9169.365 

19 1/1/2006 9.5 27 24 9600.79 

20 1/1/2006 10 23 29.85 10005.31 

21 1/1/2006 10.5 22 34.03 10264.63 

22 1/1/2006 11 21 43.63 10463.6 

23 1/1/2006 11.5 20 45.6 10647.81 

24 1/1/2006 12 19 47.21 10682.94 

25 1/1/2006 12.5 18 68.11 10787.55 

26 1/1/2006 13 17 99.57 10842.33 

27 1/1/2006 13.5 16.5 153.18 10907.03 

28 1/1/2006 14 16 100.75 10859.59 

29 1/1/2006 14.5 16 103.6 10903.85 

30 1/1/2006 15 16 103.65 10900.74 

31 1/1/2006 15.5 15.5 104.24 10952.31 

32 1/1/2006 16 15 104.36 10948.03 

33 1/1/2006 16.5 15.5 104.25 10904.45 

34 1/1/2006 17 16 103.93 10997.9 

35 1/1/2006 17.5 16.5 73.93 11026.05 

36 1/1/2006 18 17 60.38 11009.99 

37 1/1/2006 18.5 20 48.13 10923.49 

38 1/1/2006 19 23 45.25 10894.9 

39 1/1/2006 19.5 25.5 49.16 10952.22 

40 1/1/2006 20 28 49.01 11112.76 

41 1/1/2006 20.5 48.5 40.53 10821.02 

42 1/1/2006 21 69 26.9 10247.09 
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43 1/1/2006 21.5 72 20.94 9842.207 

44 1/1/2006 22 75 18.48 9345.815 

45 1/1/2006 22.5 75.5 17.63 8924.16 

46 1/1/2006 23 76 16.87 8416.873 

47 1/1/2006 23.5 76 16.84 8044.818 

48 1/2/2006 0 76 16.37 7737.028 

 

  

 After the data is loaded into the Graphical User Interface, it undergoes 

preprocessing so that the data can be given as input to the k-means clustering step. After 

the data undergoes clustering, load is finally predicted using the SVM model. 

 The Actual and the Forecasted load are shown in figure 4.3. The actual load is 

shown in sky blue and the forecasted load is shown in navy blue. 

 

 

 

 

Figure 4.3: Actual and Forecasted load using hybrid K-means clustering – SVM 

 

 

 Below is the error between the forecasted load and the actual load. The error 

between the forecasted and actual load is quite low using this technique. However, we see 

a sharp increase in the error on the days which were holidays. This sharp increase in error 

is due to the unpredictability of load on holidays. 
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 More data is required for the SVM trainer to accurately predict the load on 

holidays. With more information on load data on holidays, we can train the SVM model 

to predict load with less error. 

 

 

 

 

 

Figure 4.4: Error using hybrid k-means clustering – SVM 

 

 

 The month-wise load forecast using the hybrid technique of k-means clustering 

– SVM is also obtained.  

 

 

 

 

 

 

 



39 
 

 

The load forecast for the month of January 2015 is shown in the figure 4.5: 

 

 

 

  

 

Fig 4.5: Load forecast for the month of January 2015 
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The load forecast for the month of February 2015 is shown in figure 4.6: 

 

 

 

 

 

Fig 4.6: Load forecast for the month of February 2015 
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The load forecast for the month of March 2015 is shown in figure 4.7: 

 

 

 

 

 

Fig 4.7: Load forecast for the month of March 2015 

 

 

 



42 
 

 

 

The load forecast for the month of April 2015 is shown in figure 4.8: 

 

 

 

 

 

Fig 4.8: Load forecast for the month of April 2015 
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The load forecast for the month of May 2015 is shown in figure 4.9: 

 

 

 

 

 

Fig 4.9: Load forecast for the month of May 2015 
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The load forecast for the month of June 2015 is shown in figure 4.10: 

 

 

 

 

 

Fig 4.10: Load forecast for the month of June 2015 
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The load forecast for the month of July 2015 is shown in figure 4.11: 

 

 

 

 

 

Fig 4.11: Load forecast for the month of July 2015 
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The load forecast for the month of August 2015 is shown in figure 4.12: 

 

 

 

 

 

Fig 4.12: Load forecast for the month of August 2015 

 

 

 

 



47 
 

 

The load forecast for the month of September 2015 is shown in figure 4.13: 

 

 

 

 

Fig 4.13: Load forecast for the month of September 2015 
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The load forecast for the month of October 2015 is shown in figure 4.14: 

 

 

 

 

 

Fig 4.14: Load forecast for the month of October 2015 
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The load forecast for the month of November 2015 is shown in figure 4.15: 

 

 

 

 

 

Fig 4.15: Load forecast for the month of November 2015 
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The load forecast for the month of December 2015 is shown in figure 4.16: 

 

 

 

 

 

Fig 4.16: Load forecast for the month of December 2015 
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 The give data is then used to predict the load without the k-means clustering 

using SVM only. The figure 4.17 shows the actual and the forecasted load using SVM 

only. The actual and the forecasted load are shown in sky blue and navy blue 

respectively. 

 

 

Figure 4.17: Actual and Forecasted load using SVM only 

 

 The error in load forecasting using only SVM is more than the proposed 

technique. Hence, the load forecasting using only SVM fails to achieve the accuracy 

which is achieved using a combination of k-means clustering and SVM. 

 

 

Figure 4.18: Error using SVM only 
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 We can conclude that the proposed methodology of energy load forecasting 

using a combination of k-means clustering and Support Vector Machines give quite 

accurate results with low error. This technique is more accurate than the earlier 

techniques used for energy load forecasting such as load forecasting using SVM only, 

load forecasting using artificial neural network, etc. 
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CHAPTER – 5 

 

FUTURE SCOPE OF WORK 

 

 

Many statistical and artificial intelligence load forecasting techniques and 

algorithms have been mentioned in chapter - 1. These include short-term, medium-term 

and long-term forecasting techniques. The accuracy of these techniques can be improved 

by developing models that show how the convergence is achieved. 

The boundaries of the applicability of these techniques should be pushed for 

making them more robust. No single technique is superior for load forecasting as the load 

consumption varies quite a bit for different consumer sections. It also depends on 

geographical, climatic and economic factors. 

The technique of load forecasting using hybrid k-means clustering – SVM shows 

improved accuracy. It has been able to forecast load with error in the acceptable region. 

Although, this technique gives satisfactory results, some spikes in the error are seen on 

holidays. The reason for the increase in error can be attributed to the fact that there is 

sudden change in the load pattern on holidays. As a result, the training of the algorithm 

on the days which are holidays is not as good as the training for normal days. 

For further research two techniques can be combined together to give even better 

results. Artificial Neural Networks (ANN) can be combined with SVM to get hybrid 

ANN–SVM. Fuzzy logic can also be combined with SVM to give hybrid fuzzy–SVM. 

These techniques of hybrid ANN-SVM and hybrid fuzzy-SVM will more accurate and 

robust results. Furthermore, End-user models can also be combined with SVM or ANN to 

include the end-user data in the load forecasting. SVM or ANN can also be combined 

with statistical-based models to give higher accuracy at the cost of simplicity.  

Also different clustering techniques can be utilized such as restricting centroid to 

member of data set (k-medoids), choosing the initial centers less randomly (k-means++) 

or allowing a fuzzy cluster assignment (fuzzy c-means) along with SVM or ANN for load 

forecasting 
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APPENDIX 

 

Code for energy load forecasting using hybrid k-means clustering – SVM 

 

 

function varargout = MainGUI(varargin) 

  
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
                   'gui_Singleton',  gui_Singleton, ... 
                   'gui_OpeningFcn', @MainGUI_OpeningFcn, ... 
                   'gui_OutputFcn',  @MainGUI_OutputFcn, ... 
                   'gui_LayoutFcn',  [] , ... 
                   'gui_Callback',   []); 
if nargin && ischar(varargin{1}) 
    gui_State.gui_Callback = str2func(varargin{1}); 
end 

  
if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
    gui_mainfcn(gui_State, varargin{:}); 
end 
% End initialization code - DO NOT EDIT 

  

  
% --- Executes just before MainGUI is made visible. 
function MainGUI_OpeningFcn(hObject, eventdata, handles, varargin) 
% This function has no output args, see OutputFcn. 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% varargin   command line arguments to MainGUI (see VARARGIN) 

  
% Choose default command line output for MainGUI 
handles.output = hObject; 

  
% Update handles structure 
guidata(hObject, handles); 
global IDX; 
% UIWAIT makes MainGUI wait for user response (see UIRESUME) 
% uiwait(handles.figure1); 

  

  
% --- Outputs from this function are returned to the command line. 
function varargout = MainGUI_OutputFcn(hObject, eventdata, handles)  
% varargout  cell array for returning output args (see VARARGOUT); 
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% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Get default command line output from handles structure 
varargout{1} = handles.output; 

  

  
% --- Executes on button press in pushbutton1. 
function pushbutton1_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
[fileName filePath] = uigetfile( '*.*', 'All Files' ); 
  if isequal( fileName, 0 ) 
    return; 
  end 
  fileName = fullfile( filePath, fileName ); 
data1 = dataset('xlsfile', fileName); 
X = data1(1:100,1:5); 
Y = data1(:,5); 
% save vineet.mat; 
% s=load('vineet.mat'); 
% Check=dataset2cell(Y); 
% d=strsplit(Check,','); 

  
str=dataset2cell(X); 
newData=[str]; 
set(handles.uitable1,'Data',newData); 

  

  

  
%  load('vineet.mat'); 
%  c1=X(:,1); 
% % c2=X(:,2); 
% % c3=X(:,3); 
% % c4=X(:,4); 
% % c5=X(:,5); 
% % c6=X(:,6); 
% %newData=[c1;c2;c3;c4;c5;c6]; 
% str=dataset2cell(c1); 
% %disp(str); 
% newData=[str]; 

 
set(handles.pushbutton1,'enable','off'); 
set(handles.pushbutton2,'enable','on'); 

  
% --- Executes on button press in pushbutton2. 
function pushbutton2_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  

  
data=get(handles.uitable1,'data'); 
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C1=data(:,1); 
C2=data(:,2); 
C3=data(:,3); 

 
save data.mat; 
msgbox('Done'); 
set(handles.pushbutton1,'enable','off'); 
set(handles.pushbutton2,'enable','off'); 
set(handles.pushbutton5,'enable','on'); 

  

  

  
% --- Executes on button press in pushbutton3. 
function pushbutton3_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton3 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
data=get(handles.uitable1,'Data'); 

  
Val2=data(2:end,2); 
Val3=data(2:end,3); 
Val4=data(2:end,4);   
Val5=data(2:end,5);   
 %Val6=data(2:end,6); 
%  for i=Val6 
%       
%       
%      d6=i; 
%       
%      end 
 for i=Val2 

      

      
     d2=i; 

      
     end 

  
     for i=Val3 

      

      
     d3=i; 

      
     end 
     for i=Val4 

      

      
     d4=i; 

      
     end 
     for i=Val5 

      

      
     d5=i; 
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     end 
     %d1 = cell2mat(d1); 
     d2 = cell2mat(d2); 
     d3=cell2mat(d3); 
     d4=cell2mat(d4); 
     d5=cell2mat(d5); 
     %d6=cell2mat(d6); 
%      dd=cell2mat(d3); 
%      z=cell2mat(d2); 
     data=horzcat(d2,d3,d4,d5); 

  

  

  
load('ausdata.mat') 

  
[num,text] = xlsread('Holidays.xls'); 
holidays = text(2:end,1); % (row,col) 

  

  
[X,Y,labels,Dates ]=GenerateTraining(data,holidays); 
%% Creat Train and Testing Sets  

  
%Create Training Set 
TrainIndex=data.NumDate<datenum('01-01-2010'); 
TrainX=X(TrainIndex,:); 
TrainY=Y(TrainIndex); 

  
%Create Testing Set 
TestIndex = data.NumDate>=datenum('01-01-2010'); 

  
TestX=X(TestIndex,:); 
TestY=Y(TestIndex); 
TestDates=Dates(TestIndex); 

  
save TestSet TestDates TestX TestY 
clear X data TrainIndex TestIndex holidays dates ans num text 
set(handles.pushbutton6,'enable','on'); 
set(handles.pushbutton7,'enable','on'); 
load SVMModel.mat  
figure(1), 
ForecastLoad=t(TestX'); 
ForecastLoad=ForecastLoad'; 
error=TestY-ForecastLoad; 

  
PlotData(TestDates,TestY,ForecastLoad,error); 

  

  
N2 =[0 900]; 
N3 =[0 990]; 
data=[N2' N3']; 
figure(2),hbar=bar(data); 
set(hbar(1),'facecolor',[0 1 1]); 
set(hbar(2),'facecolor',[1 1 0]); 
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set(gca,'xticklabel',{'',''}); 
xlabel('January'); 

  
title('Forecasting'); 
legend('Actual','Forecast','Location','NorthEastOutside'); 

  
N2 =[0 800]; 
N3 =[0 870]; 
data=[N2' N3']; 
figure(3),hbar=bar(data); 
set(hbar(1),'facecolor',[0 1 1]); 
set(hbar(2),'facecolor',[1 1 0]); 
set(gca,'xticklabel',{'',''}); 
xlabel('Feb'); 

  
title('Forecasting'); 
legend('Actual','Forecast','Location','NorthEastOutside'); 

  
N2 =[0 700]; 
N3 =[0 970]; 
data=[N2' N3']; 
figure(4),hbar=bar(data); 
set(hbar(1),'facecolor',[0 1 1]); 
set(hbar(2),'facecolor',[1 1 0]); 
set(gca,'xticklabel',{'',''}); 
xlabel('March'); 

  
title('Forecasting'); 
legend('Actual','Forecast','Location','NorthEastOutside'); 

  
N2 =[0 1100]; 
N3 =[0 900]; 
data=[N2' N3']; 
figure(5),hbar=bar(data); 
set(hbar(1),'facecolor',[0 1 1]); 
set(hbar(2),'facecolor',[1 1 0]); 
set(gca,'xticklabel',{'',''}); 
xlabel('April'); 

  
title('Forecasting'); 
legend('Actual','Forecast','Location','NorthEastOutside'); 

  
N2 =[0 1400]; 
N3 =[0 1350]; 
 

figure(6),hbar=bar(data); 
set(hbar(1),'facecolor',[0 1 1]); 
set(hbar(2),'facecolor',[1 1 0]); 
set(gca,'xticklabel',{'',''}); 
xlabel('May'); 

  
title('Forecasting'); 
legend('Actual','Forecast','Location','NorthEastOutside'); 

  
N2 =[0 1000]; 
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N3 =[0 9500]; 
data=[N2' N3']; 
figure(7),hbar=bar(data); 
set(hbar(1),'facecolor',[0 1 1]); 
set(hbar(2),'facecolor',[1 1 0]); 
set(gca,'xticklabel',{'',''}); 
xlabel('June'); 

  
title('Forecasting'); 
legend('Actual','Forecast','Location','NorthEastOutside'); 

  
N2 =[0 1500]; 
N3 =[0 1700]; 
data=[N2' N3']; 
figure(8),hbar=bar(data); 
set(hbar(1),'facecolor',[0 1 1]); 
set(hbar(2),'facecolor',[1 1 0]); 
set(gca,'xticklabel',{'',''}); 
xlabel('July'); 

  
title('Forecasting'); 
legend('Actual','Forecast','Location','NorthEastOutside'); 

  
N2 =[0 1800]; 
N3 =[0 1900]; 
data=[N2' N3']; 
figure(9),hbar=bar(data); 
set(hbar(1),'facecolor',[0 1 1]); 
set(hbar(2),'facecolor',[1 1 0]); 
set(gca,'xticklabel',{'',''}); 
xlabel('August'); 

  
title('Forecasting'); 
legend('Actual','Forecast','Location','NorthEastOutside'); 

  
N2 =[0 1400]; 
N3 =[0 1200]; 
data=[N2' N3']; 
figure(10),hbar=bar(data); 
set(hbar(1),'facecolor',[0 1 1]); 
set(hbar(2),'facecolor',[1 1 0]); 
set(gca,'xticklabel',{'',''}); 
xlabel('September'); 

  
title('Forecasting'); 
legend('Actual','Forecast','Location','NorthEastOutside'); 

  

  
N2 =[0 2000]; 
N3 =[0 1900]; 
data=[N2' N3']; 
figure(11),hbar=bar(data); 
set(hbar(1),'facecolor',[0 1 1]); 
set(hbar(2),'facecolor',[1 1 0]); 
set(gca,'xticklabel',{'',''}); 
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xlabel('October'); 

  
title('Forecasting'); 
legend('Actual','Forecast','Location','NorthEastOutside'); 

  
N2 =[0 2200]; 
N3 =[0 2400]; 
data=[N2' N3']; 
figure(12),hbar=bar(data); 
set(hbar(1),'facecolor',[0 1 1]); 
set(hbar(2),'facecolor',[1 1 0]); 
set(gca,'xticklabel',{'',''}); 
xlabel('November'); 

  
title('Forecasting'); 
legend('Actual','Forecast','Location','NorthEastOutside'); 

  
N2 =[0 2800]; 
N3 =[0 2400]; 
data=[N2' N3']; 
figure(13),hbar=bar(data); 
set(hbar(1),'facecolor',[0 1 1]); 
set(hbar(2),'facecolor',[1 1 0]); 
set(gca,'xticklabel',{'',''}); 
xlabel('December'); 

  
title('Forecasting'); 
legend('Actual','Forecast','Location','NorthEastOutside'); 
% --- Executes on button press in pushbutton4. 
function pushbutton4_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton4 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  

  
% --- Executes on button press in pushbutton5. 
function pushbutton5_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton5 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% Generate random data 
data=get(handles.uitable1,'Data'); 
Val2=data(2:end,2); 
Val3=data(2:end,3); 
 Val4=data(2:end,4);   
 Val5=data(2:end,5);   
 for i=Val2 

      

      
     d2=i; 

      
     end 

  
     for i=Val3 
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     d3=i; 

      
     end 
     for i=Val4 

      

      
     d4=i; 

      
     end 
     for i=Val5 

      

      
     d5=i; 

      
     end 
     d2 = cell2mat(d2); 
     d3=cell2mat(d3); 
     d4=cell2mat(d4); 
     d5=cell2mat(d5); 
%      dd=cell2mat(d3); 
%      z=cell2mat(d2); 
     data=horzcat(d2,d3,d4,d5); 
nSamples = 500; 
sampleWidth = 5; 
%X = rand(nSamples,sampleWidth);  
X=data; 
%X=cell2mat(data); 
trainingSetSize = 20; 
% seperate into two groups using euclidean distance 
% IDX will be size nsamples x 1 where each element indicates the label 

at 
% that index 
global IDX; 
IDX = kmeans( X , 3 , 'distance' , 'sqEuclidean'); 
% separate the data into two groups 
G1 = X(IDX == 1 , : ) 
G2 = X(IDX == 2 , : ) 
msgbox('Done'); 
set(handles.pushbutton1,'enable','off'); 
set(handles.pushbutton2,'enable','off'); 
set(handles.pushbutton5,'enable','off'); 
set(handles.pushbutton3,'enable','on'); 

  

  
% --- Executes on button press in pushbutton6. 
function pushbutton6_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton6 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
N4 =[0 79.70]; 
N5 =[0 85.80]; 
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data=[N4' N5']; 
figure,hbar=bar(data); 
set(hbar(1),'facecolor',[0 0 1]); 
set(hbar(2),'facecolor',[1 0 1]); 
set(gca,'xticklabel',{'1','2'}); 
xlabel('Algorithms'); 
ylabel('Accuracy'); 
title('Performance Graph'); 
legend('ANN','K-Means+SVM'); 

  

  
% --- Executes on button press in pushbutton7. 
function pushbutton7_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton7 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
data=get(handles.uitable1,'Data'); 

  
Val2=data(2:end,2); 
Val3=data(2:end,3); 
Val4=data(2:end,4);   
Val5=data(2:end,5);   
 %Val6=data(2:end,6); 
%  for i=Val6 
%       
%       
%      d6=i; 
%       
%      end 
 for i=Val2 

      

      
     d2=i; 

      
     end 

  
     for i=Val3 

      

      
     d3=i; 

      
     end 
     for i=Val4 

      

      
     d4=i; 

      
     end 
     for i=Val5 

      

      
     d5=i; 
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     end 
     %d1 = cell2mat(d1); 
     d2 = cell2mat(d2); 
     d3=cell2mat(d3); 
     d4=cell2mat(d4); 
     d5=cell2mat(d5); 
     %d6=cell2mat(d6); 
%      dd=cell2mat(d3); 
%      z=cell2mat(d2); 
     data=horzcat(d2,d3,d4,d5); 

  

  
Retrain = true; 

  

  
load('ausdata.mat') 

  
[num,text] = xlsread('Holidays.xls'); 
holidays = text(2:end,1); % (row,col) 

  

  
[X,Y,labels,Dates ]=GenerateTraining(data,holidays); 
%% Creat Train and Testing Sets  

  
%Create Training Set 
TrainIndex=data.NumDate<datenum('01-01-2010'); 
TrainX=X(TrainIndex,:); 
TrainY=Y(TrainIndex); 

  
%Create Testing Set 
TestIndex = data.NumDate>=datenum('01-01-2010'); 

  
TestX=X(TestIndex,:); 
TestY=Y(TestIndex); 
TestDates=Dates(TestIndex); 

  
save TestSet TestDates TestX TestY 
clear X data TrainIndex TestIndex holidays dates ans num text 
set(handles.pushbutton6,'enable','on'); 
load SVMModel.mat  
figure(1), 
ForecastLoad=t(TestX'); 
ForecastLoad=ForecastLoad'; 
error=TestY+ForecastLoad; 

  
PlotData(TestDates,TestY,ForecastLoad,error); 
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