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ABSTRACT 

 

In current world, all information systems development follows well defined 

development process based on requirements & business needs. Every stake holder‟s 

expectation is to get best product with zero or minimum defects also cost effective. So, In 

order to achieve best product in given time, it is necessary to uncover most defects as 

early as possible in development life cycle.  

In spite of thorough planning, well documentation and proper process control 

during software development, occurrences of certain defects are inevitable. These defects 

may leads to poor software quality which may hamper the brand image & lead to 

business failure. In today‟s competitive world it‟s necessary to make world class product 

with minimum defects, high in quality & cost effective. 

 Cost of defects finding is directly proportional to time of its finding in 

development cycle. Later are defects found, more is the cost of fixing them leads higher 

development cost. Hence it‟s necessary to identify defective classes in early phase of 

software development to reduce the testing cost. This may guide the product planning 

team for efficient resource planning for testing. Software metrics have been used to 

describe the complexity of the program and, to estimate software development time.  

Software metrics can be used in simultaneity with defect data to develop models 

for predicting defective classes. The development of predictive models to predict fault 

classes can help & guide the stakeholders in predicting faulty classes in early phase of 

software development. Hence, it is vital to analyse and compare the predictive accuracy 

of machine learning classifiers. Various Machine Learning Techniques were used to 

understand & analyse the core relationships of classes and fetching useful information 

from problems.  

The objective of this thesis is to evaluate the performance & comparison of 

Machine Learning Techniques over unpopular data sets. The evaluation is performed 

with an intention to identify which algorithm suits best for prediction of defect prone 

classes in software based on software quality metrics. Chidamber & Kemerer Java 

matrices [4] were generated over 4 subsequent releases of Android „Contact‟ Module. 

Jelly Bean to KitKat to Lollypop to Marshmallow. 7 Machine Learning techniques were 
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compared to evaluate the relationship of Chidamber & Kemerer Java matrices on 

defective classes. 

 The result shows the predictive capability of Machine Learning Techniques & 

suggested model. The results of work were based on data sets obtained from popular 

open source mobile software Android “Contacts” module. 
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Chapter 1. Introduction 
 

In current time software development have reached to another level from 

standalone systems to multiple interactive systems like Internet of Things, Robotics, 

Spacecraft‟s etc. Hence the complexity of software system is increasing day by day 

leading to more defects prone. It‟s been almost impossible to produce software systems 

without defects. Therefore Software testing is considered as one of the key phase of 

software development. It consumes at least half the development resources & still error 

free or 100% correctness of software system is a dream. Testing phase should be 

considered as critical area while software development to minimise the cost & maintain 

the market trust. The cost of finding defects is directly proportional to time of its 

occurrence. The cost of fixing a defect increases exponentially if defects are uncovered 

towards the end of software development or after product delivery. Market reputation is 

also hits badly if product is not correct or having defects. Hence finding & fixing most 

software defects as early as possible is always recommended.  

Software defect prediction can play a very vital role in this regards. Software 

defect prediction is good practise in reducing testing efforts also help in proper test 

planning. Early detection of defects may results in delivering the high quality & cost 

effective software product. The challenges of effective testing leads to research area of 

identifying faulty classes in early phase & aligning the test activity accordingly. This 

predictive model helps to guide & produce defect free/cost effective software using 

object oriented metrics for predicting fault classes. These software matrices which 

capture various properties (like Coupling, Cohesion, Encapsulation, Inheritance, No. of 

classes etc.) Of software shall be used for developing models for predicting defective 

classes in software. Often these metrics have been used as an early indicator of these 

externally visible attributes, because the externally visible attributes could not be 

measures until too late in the software development process. The software metrics 

collected from a similar project or past release (Android subsequent releases Jellybean to 

Marshmallow) can be used for developing defect prediction model. The developed defect  
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 Prediction model can then be subsequently used for classifying classes of current 

projects as defective or not defective. 

Various machine learning techniques are available which may be used to predict 

faulty classes. We have used 7 machine learning techniques over the object oriented 

matrices generated from open source software Android subsequent releases. Machine 

learning techniques used are Bayes Net, Naive Bayes, Logistic, Kstar, Bagging, Logit 

Boost and Random Forest. The performance of these techniques varies with different 

datasets and it‟s difficult to determine which technique is superior to another. 

In this work we have compared the performance of 7 machines learning 

techniques on 5 releases of „Contacts‟ application package of popular mobile operating 

system Android. This enables the investigation whether one technique outperforms others 

and also provides insights on the selection of a particular ML technique. We have used 

object oriented metrics for predicting the defect prone classes. The results were evaluated 

based on Receiver operating Characteristics.
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Chapter 2. Literature Review 
 

Several studies were done in the past to relate software metrics with defect 

proneness. Some of the key studies are discussed below. 

 

Malhotra R, Raje R [1] addressed four issues (i) comparison of the machine 

learning techniques over unpopular used data sets (ii) use of inappropriate performance 

measures for measuring the performance of defect prediction models (iii) less use of 

statistical tests and (iv) validation of models from the same data set from which they are 

trained. To resolve these issues, we have compared 18 machine learning techniques for 

investigating the effect of Object-Oriented metrics on defective classes. The results are 

validated on six releases of the open source android operating system „MMS‟ application 

package. The overall results of the study indicate the predictive capability of the machine 

learning techniques and an endorsement of one particular ML technique to predict 

defects. 

 

Malhotra R, Singh Y [2], proposed to find the relation of object oriented metrics 

and fault proneness of a class. They used seven machine learning and one logistic 

regression method in order to predict faulty classes. The results of work are based on data 

set obtained from open source software. The results show that the predictive accuracy of 

machine learning technique Logit Boost is highest with Area under Curve of 0.806. 

 

Kaur A., Malhotra R, Singh Y [3], proposed Support Vector Machine (SVM) 

model to find the relationship between object-oriented metrics given by Chidamber and 

Kemerer [4] and fault proneness. The proposed model is empirically evaluated using 

public domain KC1 NASA data set. The performance of the SVM method was evaluated 

by Receiver Operating Characteristic (ROC) analysis. Based on these results, it is 

reasonable to claim that such models could help for planning and performing testing by 

focusing resources on fault-prone parts of the design and code. Thus, the study shows that 

SVM method may also be used in constructing software quality models. 
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Kaur A, Kaur I [5], Used six machine learning models for software quality 

prediction on five open source software. Varieties of metrics have been evaluated for the 

software including Chidamber and Kemerer [4], Henderson & Sellers, McCabe etc. 

Results show that Random Forest and Bagging produce good results while Naïve Bayes 

is least preferable for prediction 

 

Gyimothy T, Ference R, Siket I [6] showed how to calculate the object-oriented 

metrics given by Chidamber and Kemerer  [4] to illustrate how fault-proneness detection 

of the source code of the open source Web and e-mail suite called Mozilla can be carried 

out. He checked the values obtained against the number of bugs found in its bug database 

- called Bugzilla - using regression and machine learning methods to validate the 

usefulness of these metrics for fault-proneness prediction. He also compared the metrics 

of several versions of Mozilla to see how the predicted fault-proneness of the software 

system changed during its development cycle. 

 

Zhou, Y., Leung, H.  [7], distinguish among faults according to the severity of 

impact. It would be valuable to know how object-oriented design metrics and class fault-

proneness are related when fault severity is taken into account. In this paper, we use 

logistic regression and machine learning methods to empirically investigate the 

usefulness of object-oriented design metrics, specifically, a subset of the Chidamber and 

Kemerer suite [4], in predicting fault-proneness when taking fault severity into account. 

Our results, based on a public domain NASA data set, indicate that 1) most of these 

design metrics are statistically related to fault-proneness of classes across fault severity, 

and 2) the prediction capabilities of the investigated metrics greatly depend on the 

severity of faults. More specifically, these design metrics are able to predict low severity 

faults in fault-prone classes better than high severity faults in fault-prone classes  
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Chapter 3. Research Background 
 

In this section we will see the Data collection process, tools used, Object Oriented 

Metrics generation etc. 

 

3.1 Data Set Generation:  

In this study, Object Oriented Metrics were obtained using open source mobile 

Operating System – Android. “Contact” package is considered for generating the data 

sets. We have downloaded the 4 latest released of Android Operating System from 

KitKat (version 4.4 to) to Marshmallow (version 6.0.0). Android is most widely used & 

leading phone Operating system. 

Source code is fetched from Google GIT* Repository [8] 

(https://android.googlesource.com/platform/packages/apps/Contacts/) for Contact 

Application package. Android source code contains JAVA files. First Android code is 

compiled to generate the Class files from the JAVA Files. For Compiling the Android 

code we require multiple .jar files (firmware etc.), Resource files to compile Source code 

successfully. Once Class files are generated, Defect Collection and Reporting System 

(DCRS) tool [6] is used to generate the reports having Object Oriented Metrics. DCRS 

have CKJM tool integrated which calculates Chidamber and Kemerer object-oriented 

metrics [4] by processing the bytecode of compiled Java files. The program calculates for 

each class & generated the Object Oriented Metrics mentioned in Table 3.1. And displays 

them in a standard output format. 

To generates the reports. We give the path of App package compiled code path 

having class files & run the tool to generate Object Oriented metrics with respect to each 

Class files. 
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Characteristics of Contact Application package with respect to different releases 

are mentioned in Table 3.1. 

 

Table 3.1 

Data Set : Android App Package  - "Contacts" 

Google GIT Repository : 

https://android.googlesource.com/platform/packages/apps/Contacts/ 

Android OS  

Release 

Code 

 Name 

Total  

LoC 

Total 

Class 

Defective 

Count 

Defective 

% 

4.4 KitKat ( KK ) 49,040 210 28 13% 

5.0.0 Lollipop ( LL ) 36,969 177 115 65% 

5.1.1 Lollipop ( LL ) 37,257 139 48 35% 

6.0.0 Marshmallow (M) 41,012 138 49 36% 

 

*GIT is a version control system used for software development & version control 

task for Google Android source code. GIT as a distributed revision control system is 

aimed at speed, data integrity and support for distributed, non-linear workflows. 

 

Table 3.1 contains Android App Packages – Contacts Data Sets with Total LoC, 

Total Class, Defective/Non Defective Classes w.r.t. each Android release for Contact 

Application Package. Defects were generated using DCRS Tools (Defect Collection & 

Reporting System) developed by Delhi Technical University (DTU) Students. LoC is 

generated using LoC Metrics freeware tool.  

 

3.1.1 Defect Collection and Reporting System (DCRS) Tool: 

The Defect Collection and Reporting System (DCRS) [6] is a JAVA based 

automated tool which collects and reports various defects, bugs or issues which were 

present in a given Version of Android OS, and have been fixed in the subsequent 

Version. The System caters to only two consecutive versions of Android OS.  

Studies have shown that defect data collected from open source projects (like 

Android) can be used in research areas such as defect prediction. Some commonly 

https://en.wikipedia.org/wiki/Distributed_revision_control
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traversed areas of defect prediction include Analysis and Validation of the effect of given 

metric suite, (Like Metrics) on fault proneness; and applicability of such metric suites for 

the prediction of fault proneness models.  

DCRS determining the deleted source files, newly added source files, defects 

fixed, etc. It efficiently collects defect data and can be used research areas.  

DCRS first obtain the defect logs of android source code and filter them to obtain 

the defects which were present in a given version of Android Operating System and have 

been fixed in the subsequent version. Then, the system process the filtered defect logs to 

extract useful defect information such as unique defect identifier and defect description, 

if any.  

DCRS also associates defects to their corresponding source files (java code files, 

or simply class files in the android OS source code). Then, it performs the computation of 

total number of fixed defects for each class, i.e., the number of defects which have been 

associated with that class. Finally, the corresponding values of different metric suites are 

obtained by the system for each class file in the source code of previous version of 

Android OS. 

Install & Configure Git software installed, for extracting the change-logs for 

source code of each version of Android OS. Download „Android Manifest File‟ from Git 

repository to get the list of Android Source Code components/ projects available at „Git‟ 

repository (https://android.googlesource.com). Source code of both the versions is 

required to generate the change logs. The system will guide user to download the same. 
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Figure 3.1 DCRS Tool 

 

We can fetch information using DCRS as per below procedure. It process two 

versions of source code to retrieve Change-Logs. Change log provides information 

regarding the modifications that have been made in the source code. These Change Logs 

are further processed to get Bug-Logs (i.e. changes w.r.t. bug-fixes only). We can retrieve 

Bug-Ids and Description from the Bug-Logs. These Bug-Ids were mapped to Classes in 

the source code. Based on the above gathered information, the DCRS generates the 

following Reports: 

 

a. Bug-Report –Contains details of each bug, class-wise (Bug-ID and description)  

b. Bug-Count report - Contains Bug-count (class-wise), Chidamber and Kemerer Java 

Matrics and other Metrics data for each class  

c. Change Report – Contains total LOC inserted and deleted, class-wise, for all the 

incurred changes  

We can collect defects from the Android OS defects logs as per below steps:   
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3.1.2 Generating Change Logs:   

We can obtain Change logs using DCRS tool which processes the Git repository 

and obtains change logs of two predetermined consecutive releases (like Android-4.4_r1, 

Android-5.0.0_r1). The change is due to defect fixation, addition of new functionality, 

refactoring or other related enhancements. Each change constitutes a single change 

record. A change logs consists of various information like timestamp of committing, 

unique identifier, change description (optional) and list of changed lines of source code. 

The change logs of four releases of Android Contact App Package were 

obtained.

 

Figure 3.2 DCRS – Change Logs 
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 Table 3.2 Android - Contacts 

 

 

 

 

 

 

 

 

3.1.3 Generating Metrics: 

Object Oriented Metrics are being used to evaluate & predict the Software 

Quality. Object Oriented Metrics are usually used for defect prediction & as an early 

indicator of externally visible attributes (like coupling, cohesion, inheritance, 

Encapsulation etc.) as these cannot be measures until too late in software development 

lifecycle. Chidamber & Kemerer metrics are the most popular used Object Oriented 

Metrics. Another comprehensive set of metrics is Mood metrics [13, 14, 17]. 

 

Object Oriented Metrics were generated using DCRS tool on each Java file. 

Downloaded Android Packages is first compiled to generate Class files used to generate 

Object Oriented Metrics.  Android code is compiled using the ADT (Android 

Development Tools). Object Oriented Metrics are collected for each of the classes 

mentioned in Table 3.1 w.r.t each Android release. Object Oriented Metrics generated 

using DCRS are described below in Table 3.3: 

 

 

 

 

 

 

 

 

Android 

OS Release 
Code Name 

4.4 KitKat ( KK ) 

5.0.0 Lollipop ( LL ) 

5.1.1 Lollipop ( LL ) 

6.0.0 Marshmallow (M) 



12 | P a g e  

 

Table 3.3 Object Oriented Metrics 

WMC Weighted Methods Per Class 
Count of sum of complexities of number of 

methods in a class. 

NOC Number Of Children Number of sub classes of a given class. 

DIT Depth of Inheritance 
Tree Provides the maximum steps from the root 

to the leaf node. 

LCOM Lack of Cohesion 
Among Methods of a Class Null pairs not having 

common attributes. 

CBO Coupling Between Objects Number of classes to which a class is coupled. 

RFC Response For a Class 
Number of external and internal methods in a 

class. 

DAM Data Access Metric 

Ratio of the number of private (and/or protected) 

attributes to the total number of attributes of a 

class. 

MOA Measure Of Aggression 
Percentage of data declarations (user defined) in 

a class. 

MFA 
Method of Functional 

Abstraction 

Ratio of total number of inherited methods to the 

number of methods in a class. 

CAM 
Cohesion Among the Methods 

of a Class 

Computes method similarity based on their 

signatures. 

AMC Average Method Complexity 
Computed using McCabe‟s Cyclomatic 

Complexity method. 

LCOM3 
Lack Of Cohesion Revision of LCOM metric given by Henderson 

sellers Among Methods of a Class 

LOC Line Of Code Number of lines of source code of a given class. 

NPM Number of Public Methods Number of public methods in a given class. 

Ca Afferent Couplings Number of classes calling a given class. 

Ce Efferent Couplings Number of other classes called by a class. 

IC Inheritance Coupling 
Number of parent classes to which a class is 

coupled. 

Defects Defect Count 
Binary variable indicating the presence or 

absence of the defects. 

 

 

We have used six CKJM metrics in our research mentioned below :  
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3.2 Chidamber and Kemerer Java Metrics:  

Chidamber and Kemerer [4] define the so called C&K metric suite. This metric 

suite offers informative insight into whether developers are following object oriented 

principles in their design. These metrics collectively helps managers and designers to 

make better design decision. C&K metrics have generated a significant amount of interest 

and are currently the most well-known suite of measurements for Object Oriented 

software. Chidamber and Kemerer proposed six metrics; the following discussion shows 

their metrics. 

 

3.2.1 Weighted Methods Per Class (WMC): 

This metric represents number of methods defined in class. It measures the 

complexity of a class. Complexity of a class can for example be calculated by the 

cyclomatic complexities of its methods. High value of WMC indicates the class is more 

complex than that of low values. So class with less WMC is better. As WMC is 

complexity measurement metric, we can get an idea of required effort to maintain a 

particular class. 

 

3.2.2 Depth of Inheritance Tree (DIT): 

This metric shows maximum inheritance path from the class to the root class.  

DIT metric is the length of the maximum path from the node to the root of the tree. So 

this metric calculates how far down a class is declared in the inheritance hierarchy. This 

metric also measures how many ancestor classes can potentially affect this class. DIT 

represents the complexity of the behaviour of a class, the complexity of design of a class 

and potential reuse. The deeper a class is in the hierarchy. The more methods & variables 

it is likely to inherit, making it more complex. A high DIT has been found to increase 

faults. A recommended DIT is 5 or less. 

 

3.2.3 Number of Children (NOC): 

This metric shows total Number of immediate sub-classes of a class.  This metric 

measures how many sub-classes are going to inherit the methods of the parent class. The 
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size of NOC approximately indicates the level of reuse in an application. If NOC grows it 

means reuse increases. On the other hand, as NOC increases, the amount of testing will 

also increase because more children in a class indicate more responsibility. So, NOC 

represents the effort required to test the class and reuse. 

A high NOC, a large no. of Child class, indicates following: 

1. High reuse of base class. Inheritance is a form of reuse. 

2. Base class may require more testing 

3. Improper abstraction of parent class. 

4. Misuse of sub-classing. 

5. High NOC indicates fewer faults. 

 

3.2.4 Coupling between Object Classes (CBO) 

This metric shows number of classes to which a class is coupled. The idea of this 

metrics is that an object is coupled to another object if two object act upon each other. A 

class is coupled with another if the methods of one class use the methods or attributes of 

the other class. An increase of CBO indicates the reusability of a class will decrease. 

Thus, the CBO values for each class should be kept as low as possible 

 

3.2.5 Response for a Class (RFC) 

RFC is the number of methods that can be invoked in response to a message in a 

class. Since RFC increases, the effort required for testing also increases because the test 

sequence grows. If RFC increases, the overall design complexity of the class increases 

and becomes hard to understand. On the other hand lower values indicate greater 

polymorphism. The value of RFC can be from 0 to 50 for a class12, some cases the 

higher value can be 100- it depends on project to project. 

 

3.2.6 Lack of Cohesion of Methods (LCOM) 

This metric uses the notion of degree of similarity of methods. LCOM measures 

the amount of cohesiveness present, how well a system has been designed and how 
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complex a class is. LCOM is a count of the number of method pairs whose similarity is 

zero, minus the count of method pairs whose similarity is not zero 

 

3.3 Dependent & Independent Variables: 

The binary dependent variable in our study is fault proneness and the independent 

variables are object oriented metrics. The objective of our study is to explore empirically 

the relationship between Object Oriented metrics and fault proneness. We have used 

CKJM Object Oriented metrics as independent variables. Fault proneness is defined as 

the probability of fault detection in a class. We use machine learning methods to predict 

the probability of fault proneness. Our dependent variable will be predicted based on the 

faults found during software development life cycle. The metrics given by [4] are 

summarized in Table 3.3.  
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Chapter 4. Research Methodlogy 
 

In a quest for answers for our research questions, we have conducted an empirical 

validation of various techniques on the four releases of the Android Mobile OS given in 

Table 3.2 using the following steps. 

1. Pre-processing of collected data sets. 

2. Selection of various ML Techniques for defect prediction.  

3. Selection of performance measures and model validation techniques for analysing 

the Performance of the models developed using Android data sets.  

4. Selection of relevant Object Oriented metrics 

5. Model development for defect prediction using ML techniques in step 2. 

 

4.1 Preprocessing of Data: 

We have used six Object Oriented Metrics for defect prediction. The uncorrelated 

and best attributes are selected out of a set of Object Oriented metrics using correlation 

based feature selection [24] technique. This technique is simple, fast and widely used 

method in for sub selecting attributes using the ML techniques. In order to predict models 

using machine learning techniques, it is important to identify relevant and important 

features. A relevant feature is one that is correlated to the class and is less related to other 

features. The correlation based feature selection technique searches all the combinations 

of attributes to find the best combination of the independent variables. The correlation 

based feature selection is a heuristic technique that evaluates the correlation between the 

independent variables and the dependent variable. The correlation based feature selection 

technique is based on the principle that good attributes are highly correlated with the 

dependent variables and less correlated amongst themselves. An attribute is selected if 

the correlation with the dependent variable is higher than the highest correlation amongst 

the attributes. The aim is to select individual variables that are correlated with the 

dependent variable and uncorrelated with other independent variables. Thus, the 

correlation based feature selection technique handles both redundant and irrelevant 

attributes. 
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4.2 Machine Learning Techniques Selection 

In this study, we have used seven Machine Learning Techniques namely Bayes 

Net, Naive Bayes, Logistic Regression, KStar, Bagging, Logit Boost, Random Forest. 

 

4.2.1 Bayes Net 

A Bayesian network [9] is computer technology that deals with probabilities in 

Artificial Intelligence; Bayesian networks (BNs) are graphical models for reasoning 

under uncertainty, where the nodes represent variables (discrete or continuous) and arcs 

represent direct connections between them. These direct connections are often causal 

connections. In addition, BNs model the quantitative strength of the connections between 

variables, allowing probabilistic beliefs about them to be updated automatically as new 

information becomes available 

Bayesian networks (BNs), also known as belief networks (or Bayes nets for 

short), belong to the family of probabilistic graphical models (GMs). These graphical 

structures are used to represent knowledge about an uncertain domain. In particular, each 

node in the graph represents a random variable, while the edges between the nodes 

represent probabilistic dependencies among the corresponding random variables. These 

conditional dependencies in the graph are often estimated by using known statistical and 

computational methods. Hence, BNs combine principles from graph theory, probability 

theory, computer science, and statistics. 

 A Bayesian network is a graphical structure that allows us to represent and reason 

about an uncertain domain. BNs correspond to directed acyclic graph that is popular in 

the statistics, the machine learning, and the artificial intelligence societies. BNs are both 

mathematically rigorous and intuitively understandable. They enable an effective 

representation and computation of the joint probability distribution over a set of random 

variables Bayes network or probabilistic directed acyclic graphical model is a 

probabilistic graphical model (a type of statistical model) that represents a set of random 

variables and their conditional dependencies via a directed acyclic graph.  
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Formally, Bayesian networks are directed acyclic graphical whose nodes 

represent random variables in the Bayesian sense: they may be observable quantities, 

latent variables, unknown parameters or hypotheses. Edges represent conditional 

dependencies; nodes that are not connected represent variables that are conditionally 

independent of each other. Each node is associated with a probability function that takes 

as input a particular set of values for the node's parent variables and gives the probability 

of the variable represented by the node.  

Efficient algorithms exist that perform inference and learning in Bayesian 

networks. Bayesian networks that model sequences of variables (e.g. speech 

signals or protein sequences) are called dynamic Bayesian networks. Generalizations of 

Bayesian networks that can represent and solve decision problems under uncertainty are 

called influence diagrams.  

 

 

4.2.2 Naive Bayes 

The Naive Bayes [10] Classifier technique is based on the so-called Bayesian 

theorem and is particularly suited when the dimensionality of the inputs is high. Despite 

its simplicity, Naive Bayes can often outperform more sophisticated classification 

methods. Naive Bayes is a simple but important probabilistic model.  

The Bayesian Classification represents a supervised learning method as well as a 

statistical method for classification. Assumes an underlying probabilistic model and it 

allows us to capture uncertainty about the model in a principled way by determining 

probabilities of the outcomes. It can solve diagnostic and predictive problems. 

 This Classification is named after Thomas Bayes [10], who proposed the Bayes 

Theorem. Bayesian classification provides practical learning algorithms and prior 

knowledge and observed data can be combined. Bayesian Classification provides a useful 

perspective for understanding and evaluating many learning algorithms. It calculates 

explicit probabilities for hypothesis and it is robust to noise in input data 

 

https://en.wikipedia.org/wiki/Inference
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Speech_recognition
https://en.wikipedia.org/wiki/Speech_recognition
https://en.wikipedia.org/wiki/Peptide_sequence
https://en.wikipedia.org/wiki/Dynamic_Bayesian_network
https://en.wikipedia.org/wiki/Influence_diagram
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In machine learning, naive Bayes classifiers are a family of simple probabilistic 

classifiers based on applying Bayes' theorem with strong 

(naive) independence assumptions between the features.  

Naive Bayes has been studied extensively since the 1950s. It was introduced 

under a different name into the text retrieval community in the early 1960s and remains a 

popular (baseline) method for text categorization, the problem of judging documents as 

belonging to one category or the other (such as spam or legitimate, sports or politics, etc.) 

with word frequencies as the features. With appropriate pre-processing, it is competitive 

in this domain with more advanced methods including support vector machines. It also 

finds application in automatic medical diagnosis.  

Naive Bayes classifiers are highly scalable, requiring a number of parameters 

linear in the number of variables (features/predictors) in a learning problem. Maximum-

likelihood training can be done by evaluating a closed-form expression which takes linear 

time, rather than by expensive iterative approximation as used for many other types of 

classifiers. 

 

4.2.3 Logistic Regression 

Logistics Regression [20] is a regression model where the dependent variable is 

categorical. Logistic Regression is a type of regression model where the dependent 

variable (target) has just two values, such as (1/0, Y/N, F/T). Involves a more 

probabilistic view of classification. The binary logistic model is used to estimate the 

probability of a binary response based on one or more predictor (or independent) 

variables (features). As such it is not a classification method. It could be called 

a qualitative response/discrete choice model in the terminology of economics. 

Logistic regression measures the relationship between the categorical dependent 

variable and one or more independent variables by estimating probabilities using 

a logistic function, which is the cumulative logistic distribution. Thus, it treats the same 

set of problems as probit regression using similar techniques, with the latter using a 

cumulative normal distribution curve instead. Equivalently, in the latent variable 

interpretations of these two methods, the first assumes a standard logistic distribution of 

errors and the second a standard normal distribution of errors. 

https://en.wikipedia.org/wiki/Bayes%27_theorem
https://en.wikipedia.org/wiki/Statistical_independence
https://en.wikipedia.org/wiki/Information_retrieval
https://en.wikipedia.org/wiki/Text_categorization
https://en.wikipedia.org/wiki/Spam_filtering
https://en.wikipedia.org/wiki/Bag_of_words
https://en.wikipedia.org/wiki/Support_vector_machine
https://en.wikipedia.org/wiki/Medical_diagnosis
https://en.wikipedia.org/wiki/Maximum-likelihood_estimation
https://en.wikipedia.org/wiki/Maximum-likelihood_estimation
https://en.wikipedia.org/wiki/Closed-form_expression
https://en.wikipedia.org/wiki/Linear_time
https://en.wikipedia.org/wiki/Linear_time
https://en.wikipedia.org/wiki/Iterative_method
https://en.wikipedia.org/wiki/Regression_analysis
https://en.wikipedia.org/wiki/Discrete_choice
https://en.wikipedia.org/wiki/Economics
https://en.wikipedia.org/wiki/Logistic_function
https://en.wikipedia.org/wiki/Probit_regression
https://en.wikipedia.org/wiki/Logistic_distribution
https://en.wikipedia.org/wiki/Normal_distribution
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Logistic regression can be seen as a special case of the generalized linear 

model and thus analogous to linear regression. The model of logistic regression, however, 

is based on quite different assumptions (about the relationship between dependent and 

independent variables) from those of linear regression. In particular the key differences of 

these two models can be seen in the following two features of logistic regression. First, 

the conditional distribution is a Bernoulli distribution rather than a Gaussian distribution, 

because the dependent variable is binary. Second, the predicted values are probabilities 

and are therefore restricted to (0, 1) through the logistic distribution function because 

logistic regression predicts the probability of particular outcomes. 

Logistic regression is an alternative to linear discriminate analysis. If the 

assumptions of linear discriminant analysis hold, the conditioning can be reversed to 

produce logistic regression. The converse is not true, however, because logistic 

regression does not require the multivariate normal assumption of discriminant analysis 

 

4.2.4 KStar 

KStar [11] is an instance based learning algorithm that uses entropy distance 

measure. The use of entropy as a distance measure has several benefits. Amongst other 

things it provides a consistent approach to handling of symbolic attributes, real valued 

attributes and missing values. We describe K* [12], an instance-based learner which uses 

such a measure. The algorithm has a loose relationship to the k-nearest neighbor 

classifier, a popular machine learning technique for classification that is often confused 

with k-means because of the k in the name. One can apply the 1-nearest neighbor 

classifier on the cluster centers obtained by k-means to classify new data into the existing 

clusters. K* is a simple, instance based classifier, similar to K-Nearest Neighbor (K-NN). 

New data instances, x, are assigned to the class that occurs most frequently amongst the 

k-nearest data points, yj, where j = 1,2…k (Hart, 1968). Entropic distance is then used to 

retrieve the most similar instances from the data set. Using entropic distance as a metric 

has a number of benefits including handling of real valued attributes and missing values. 

 

https://en.wikipedia.org/wiki/Generalized_linear_model
https://en.wikipedia.org/wiki/Generalized_linear_model
https://en.wikipedia.org/wiki/Linear_regression
https://en.wikipedia.org/wiki/Bernoulli_distribution
https://en.wikipedia.org/wiki/Gaussian_distribution
https://en.wikipedia.org/wiki/Logistic_function
https://en.wikipedia.org/wiki/K-nearest_neighbor
https://en.wikipedia.org/wiki/K-nearest_neighbor
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4.2.5 Bagging 

Bagging or Bootstrap [21] Aggregating is a machine learning ensemble meta-

algorithm designed to improve the stability and accuracy of machine learning algorithms 

used in statistical classification and regression. Leo Breiman proposed this technique in 

1996. It also reduces variance and helps to avoid overfitting. Although it is usually 

applied to decision tree methods, it can be used with any type of method. Bagging is a 

special case of the model averaging approach. It improves the performance of 

classification models by creating various sets of the training sets. The aim is to create 

numerous similar training sets and train a new function for each of these sets. In the case 

of class prediction the result of majority voting is considered. In order to construct 

multiple versions we create bootstrap duplicates of the learning set. These sets are then 

used as the new learning set. Bagging has the following advantages: 

 

1. It can improve classification accuracy over other classification models. 

2. It reduces variance. 

3. It avoids overfitting 

 

If we are given a training set Rn, with N samples from a population P, a bootstrap 

set Bi would also contain N samples. For each sample of Bi we can draw any sample 

from R independently and with replacement from R. Hence we would obtain some 

samples being repeated in Bi and some samples being present in R but not in Bi. Hence 

the dataset Bi is as plausible as Rn but is drawn from R rather than P. The bootstrap 

datasets are combined by taking the average output and hence we get an aggregated 

prediction result. In this work we use Bag Size Percent of 100, 10 iterations and REP tree 

as classifier. These are the default setting provided by the WEKA tool 

 

4.2.6 Logit Boost 

In machine learning and computational learning theory, LogitBoost is 

 boosting algorithm formulated by Jerome Friedman, Trevor Hastie, and Robert 

Tibshirani [18, 19]. The original paper casts the AdaBoost algorithm into a statistical 

framework. Specifically, if one considers AdaBoost as a generalized additive model and 

https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Statistical_classification
https://en.wikipedia.org/wiki/Regression_analysis
https://en.wikipedia.org/wiki/Variance
https://en.wikipedia.org/wiki/Ensemble_learning
https://en.wikipedia.org/wiki/Computational_learning_theory
https://en.wikipedia.org/wiki/Boosting_(meta-algorithm)
https://en.wikipedia.org/wiki/Jerome_H._Friedman
https://en.wikipedia.org/wiki/Trevor_Hastie
https://en.wikipedia.org/wiki/Robert_Tibshirani
https://en.wikipedia.org/wiki/Robert_Tibshirani
https://en.wikipedia.org/wiki/AdaBoost
https://en.wikipedia.org/wiki/Generalized_additive_model
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then applies the cost functional of logistic regression, one can derive the LogitBoost 

algorithm. Logit Boost performs additive logistic regression. It use decision stump 

(creates binary one-level decision tree algorithm) classification algorithm designed to be 

used for boosting algorithms 

 

4.2.7 Random Forest 

Random forests are an ensemble learning method for classification (and 

regression) that operate by constructing a multitude of decision trees at training time and 

outputting the class that is the mode of the classes output by individual trees. The 

algorithm for inducing a random forest was developed by Leo Breiman and Adele Cutler 

[15, 16], and "Random Forests" is their trademark. The term came from random decision 

forests that were first proposed by Ho of Bell Labs in 1995 [15, 16]. The method 

combines Breiman's "bagging" idea and the random selection of features, introduced first 

by Ho and later by Amit and Geman [25] in order to construct a collection of decision 

trees with controlled variance.  

Random Forest constructs a forest of multiple trees and each tree depends on the 

value of a random vector. For each of the tree in the forest, this random vector is sampled 

with the same distribution and independently. Hence, random forest is a classifier that 

consists of a number of decision trees. The resultant output class is the mode of classes 

output by the individual trees.  

The algorithm for constructing the tree is as follows: For M training sets, N 

variables in the classifier and the variable n (n << N) where n indicates the number of 

independent 

Variables that determine the decision at the terminal node of the tree. A bootstrap 

training sample is selected. The best split is based on these n variables in the training set. 

Each tree is allowing growing fully and is not pruned. RFs have the following benefits: 

 

1. RFs are simple and Runs efficiently on large data bases. It can handle thousands 

of input variables without variable deletion 

2. RFs are comparatively robust to outliers and noise.  

https://en.wikipedia.org/wiki/Logistic_regression
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3. RFs provide give useful internal estimates of error, strength, correlation and 

Variable importance. It gives estimates of what variables are important in the 

classification. 

4. RFs may produce a highly accurate classifier for various data sets. It has an 

effective method for estimating missing data and maintains accuracy when a large 

proportion of the data are missing 

5. RFs provide fast learning. Generated forests can be saved for future use on other 

data. 

6. It computes proximities between pairs of cases that can be used in clustering, 

locating outliers or (by scaling) give interesting views of the data. 

7. It offers an experimental method for detecting variable interactions. 

 

4.3 Application of Algorithms 

WEKA tool is for implementing algorithms. Correlation based feature selection  

technique is applied as preprocessing technique using the Object Oriented Metrics 

attributes- WMC, DIT, NOC, CBO, RFC, LCOM, LOC.  

In Figure 4.1, WEKA is used to pre-process the selected data set. WEKA is 

capable of reading „.csv‟ format files. Data is loaded into WEKA, We have performed a 

series of operations using WEKA's attribute. We have used the GUI interface for WEKA 

Explorer. 

In Figure 4.2, we have used WEKA for executing different Machine Learning 

Techniques & generating results with respect to each Android release. Results shows 

performance measures like Sensitivity, Precision, F Measure, ROC etc. 
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Figure 4.1 WEKA - Preprocess 

 

 

Figure 4.2 WEKA - Classify 
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4.4 Performance Evaluation 

A variety of performance measures have been used in the literature to examine the 

strength of the developed models using different ML techniques. The data having 

disproportionate ratio of defective and not defective classes is often known as unbalanced 

data. Given the imbalanced nature of the datasets, the ROC analysis is a commonly used 

performance measure. The ROC curve depicts the percentage of correctly predicted 

defective classes (sensitivity) on the y-axis versus the one minus the percentage of 

correctly predicted non-defective classes (1- specificity) on the x-axis at various cut-off 

points. Hence, in ROC analysis the sensitivity and 1-specificity of the developed model is 

calculated at each cut-off point. To compare various ML techniques the ROC curves are 

drawn for each ML technique. The Area Under Curve (AUC) computed using ROC 

analysis lies between 0 and 1 and higher the value of the AUC better is the predictive 

capability of the developed model. The advantage of using AUC for evaluating 

performance of the models is that it can deal with noisy and unbalanced data as it is 

insensitive to changes in class distribution. 

 

In order to validate the predicted models we use the following performance 

measures: 

1. Sensitivity: Also known as True Positive Rate (TP Rate) or Recall measures the 

proportion of positives that are correctly identified. It is defined as the ratio of 

classes predicted as faulty to the total number of classes actually faulty. 

2. Specificity:  It Measures the proportion of negatives that are correctly identified. 

It is defined as the ratio of classes predicted as non-faulty to the total number of 

classes actually non faulty.  

3. Precision: It is defined as the ratio of classes predicted correctly as faulty and non-

faulty to the total number of classes.  

4. ROC analysis: The output of the predicted models can be analyzed using ROC 

analysis. ROC curve is a plot of sensitivity (on the y-axis) and 1-specificity (on 

the x-axis). Many cut off points are selected between 0 and 1 while the 

construction of ROC curves. AUC is a measure obtained using ROC analysis. 

This gives optimal cut off point that maximizes both sensitivity and specificity. 
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This measure is very effective in measuring the quality of the predicted models 

and is popularly being used in machine learning research. The following rules can 

be used to categorize AUC: 

Table 4.1 ROC Value 

ROC Value Remarks 

=< 0.5 No Discrimination 

0.7 =< ROC < 0.8 Acceptable Discrimination 

0.8 =< ROC < 0.9 Excellent Discrimination 

ROC => 0.9 Outstanding Discrimination 

 

We have used AUC as a measure to evaluate and assess the models predicted 

using machine learning techniques. 

 

4.5 Model Evaluation Results:  

In this section we will discuss about performance evaluation of various ML 

Techniques for defect prediction on generated data set OO metrics indicated above and 

the outcome of the prediction model based on our work. Below are the evaluation 

parameters for used Machine Learning Algorithms with respect to four Android OS 

release. The results of models predicted using machine learning techniques were 

predicted using WEKA tool. The predicted models are validated using 10-fold cross 

validation. 

 

After this we empirically compared the ML techniques and the results were 

evaluated in terms of the AUC. The AUC has been advocated as a primary indicator of 

comparative performance of the predicted models. The AUC measure can deal with noisy 

and unbalanced data and is insensitive to the changes in the class distributions. The ML 

technique yielding best AUC for a given release was highlighted.  
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Table 4.2 to Table 4.8 shows results for different performance parameters TP rate, 

FP Rate, Precision, Recall, F Measure, and ROC Area with respect to various Machine 

Learning Techniques. 

 

 

4.5.1 Bayes Net 

Table 4.2 shows the evaluation results for Bayes Net ML technique: 

Table 4.2 Evaluation Results for Bayes Net 

ML 

Technique 

Android 

OS Version 

TP 

Rate 

FP 

Rate 
Precision Recall 

F 

Measure 

ROC 

Area 

Bayes Net 

4.4 0.78 0.43 0.84 0.78 0.8 0.71 

5.0.0 0.68 0.31 0.71 0.68 0.69 0.68 

5.1.1 0.75 0.41 0.75 0.75 0.73 0.71 

6.0.0 0.59 0.43 0.59 0.59 0.59 0.58 

 

 

4.5.2 Naïve Bayes 

Table 4.3 shows the evaluation results for Naïve Bayes ML technique: 

Table 4.3 Evaluation Results for Naïve Bayes 

Attributes Android 
TP 

Rate 

FP 

Rate 
Precision Recall 

F 

Measure 

ROC 

Area 

Naïve 

Bayes 

4.4 0.85 0.57 0.84 0.85 0.85 0.75 

5.0.0 0.61 0.27 0.74 0.61 0.6 0.68 

5.1.1 0.75 0.39 0.74 0.74 0.73 0.76 

6.0.0 0.7 0.48 0.69 0.7 0.66 0.66 

 

 

4.5.3 Logistic Regression 

Table 4.4 shows the evaluation results for Logistic ML technique: 
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Table 4.4 Evaluation Results for Logistic Regression 

Attributes Android 
TP 

Rate 

FP 

Rate 
Precision Recall 

F 

Measure 

ROC 

Area 

Logistic 

4.4 0.86 0.75 0.82 0.86 0.83 0.74 

5.0.0 0.65 0.45 0.64 0.65 0.64 0.7 

5.1.1 0.78 0.34 0.77 0.77 0.77 0.76 

6.0.0 0.7 0.41 0.69 0.7 0.69 0.72 

 

 

4.5.4 KStar 

Table 4.5 shows the evaluation results for KStar ML technique: 

Table 4.5 Evaluation Results for KStar 

Attributes Android 
TP 

Rate 

FP 

Rate 
Precision Recall 

F 

Measure 

ROC 

Area 

K Star 

4.4 0.82 0.6 0.82 0.82 0.82 0.68 

5.0.0 0.66 0.34 0.66 0.66 0.66 0.69 

5.1.1 0.7 0.42 0.69 0.7 0.69 0.72 

6.0.0 0.66 0.4 0.66 0.66 0.66 0.67 

 

 

4.5.5 Bagging 

Table 4.6 shows the evaluation results for Bagging ML technique: 

Table 4.6 Evaluation Results for Bagging 

Attributes Android 
TP 

Rate 

FP 

Rate 
Precision Recall 

F 

Measure 

ROC 

Area 

Bagging 

4.4 0.87 0.78 0.84 0.87 0.83 0.78 

5.0.0 0.71 0.37 0.7 0.7 0.7 0.75 

5.1.1 0.7 0.43 0.7 0.7 0.7 0.7 

6.0.0 0.72 0.39 0.71 0.72 0.71 0.7 

 

 

4.5.6  Logit Boost 

Table 4.7 shows the evaluation results for Logit Boost ML technique: 
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Table 4.7 Evaluation Results for Logit Boost 

Attributes Android 
TP 

Rate 

FP 

Rate 
Precision Recall 

F 

Measure 

ROC 

Area 

Logit 

Boost 

4.4 0.85 0.78 0.8 0.85 0.82 0.75 

5.0.0 0.72 0.31 0.73 0.72 0.73 0.73 

5.1.1 0.76 0.37 0.76 0.76 0.75 0.71 

6.0.0 0.72 0.43 0.71 0.72 0.69 0.7 

 

 

 

4.5.7 Random Forest 

Table 4.8 shows the evaluation results for Random Forest ML technique: 

Table 4.8 Evaluation Results for Random Forest 

Attributes Android 
TP 

Rate 

FP 

Rate 
Precision Recall 

F 

Measure 

ROC 

Area 

Random 

Forest 

4.4 0.84 0.69 0.81 0.84 0.82 0.68 

5.0.0 0.68 0.38 0.68 0.68 0.68 0.73 

5.1.1 0.73 0.4 0.72 0.73 0.71 0.71 

6.0.0 0.66 0.43 0.65 0.65 0.66 0.7 
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Chapter 5. Conclusion 
 

In Our work we have found relationship between CKJM Metrics & Fault 

Proneness of a class. In Table 5.1, AUC results for most of the models predicted using 

various Machine Learning techniques on Android App Package „Contacts‟ is 0.7 which 

depicts the predictive capability of ML techniques. Bagging, Naïve Bayes & Random 

Forest shows best prediction with AUC value 0 .75. ML Techniques with AUC 0.7 & 

above is highlighted in bold. 

Hence, we can conclude our work as ML models for defect prediction developed 

can be used for identifying defective classes in subsequent releases of Android OS Data 

Sets( like Android KitKat to Lollipop to Marshmallow ). Developed Models can be also 

applied in future to different projects that are similar in nature. 

 

Table 5.1 shows 10-fold Cross Validation Results of 7 ML Techniques with 

respect to AUC. 

Table 5.1 Result Summary 

Android  

OS Release 

Bayes  

Net 

Naïve  

Bayes 
Logistic Kstar Bagging 

Logit  

Boost 

Random 

 Forest 

4.4 0.71 0.75 0.74 0.68 0.78 0.75 0.74 

5.0.0 0.68 0.68 0.7 0.69 0.75 0.73 0.7 

5.1.1 0.71 0.76 0.76 0.72 0.7 0.71 0.76 

6.0.0 0.58 0.66 0.72 0.67 0.7 0.7 0.72 

 
 

In future we have planned to enhance scope of our work to larger data sets & 

more Machine Learning techniques. Current work is focused only on one Android 

module „Contacts‟. In future we can consider more than one modules to understand the 

relationship of Chidamber & Kemerer Java matrices on defective classes. 
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