

A DISSERTATION

ON

DEVELOPMENT OF SOFTWARE PREDICTION MODELS

USING VARIOUS MACHINE LEARNING TECHNIQUES

Submitted in partial fulfilment of the requirements

For the award of the degree of

MASTER OF TECHNOLOGY

in

SOFTWARE TECHNOLOGY

Submitted by

Abhishek Sharma

University Roll No. 2K13/SWT/02

Under the Esteemed Guidance of

Dr. Ruchika Malhotra

Associate Head & Assistant Professor, Department of Computer Science &

Engineering, DTU

2013-2016

DEPARTMENTCOMPUTER ENGINEERING & ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY,

DELHI– 110042, INDIA

ii | P a g e

DELHI TECHNOLOGICAL UNIVERSITY

DELHI-110042

DECLARATION

I hereby declare that the thesis entitled “DEVELOPMENT OF SOFTWARE

PREDICTION MODELS USING VARIOUS MACHINE LEARNING

TECHNIQUES” which is being submitted to the Delhi Technological University, in

partial fulfilment of the requirements for the award of degree of Master of Technology

in Software Technology is an authentic work carried out by me. The material contained

in this thesis has not been submitted to any university or institution for the award of any

degree.

DATE:

SIGNATURE:

ABHISHEK SHARMA

2K13/SWT/02

iii | P a g e

DELHI TECHNOLOGICAL UNIVERSITY

DELHI-110042

CERTIFICATE

This is to certify that thesis entitled “DEVELOPMENT OF SOFTWARE

PREDICTION MODELS USING VARIOUS MACHINE LEARNING

TECHNIQUES”, is a bonafide work done by Mr. Abhishek Sharma (Roll No:

2K13/SWT/02) in partial fulfilment of the requirements for the award of Master of

Technology Degree in Software Technology at Delhi Technological University, Delhi,

is an authentic work carried out by him under my supervision and guidance. The content

embodied in this thesis has not been submitted by him earlier to any University or

Institution for the award of any Degree or Diploma to the best of my knowledge and

belief.

DATE:

SIGNATURE:

Dr. RUCHIKA MALHOTRA

ASSOCIATE HEAD & ASSISTANT PROFESSOR,

DEPARTMENT OF COMPUTRE SCIENCE & ENGINEERING.

DELHI TECHNOLOGICAL UNIVERSITY, DELHI 110042

iv | P a g e

ACKNOWLEDGEMENT

I am presenting my work on “DEVELOPMENT OF SOFTWARE

PREDICTION MODELS USING VARIOUS MACHINE LEARNING

TECHNIQUES” with lot of pleasure and satisfaction. I take this opportunity to express

my deep sense of gratitude and respect towards my guide Dr. Ruchika Malhotra. I am

very much indebted to her for his generosity, expertise and guidance I have received from

her while working on this project. Without her support and timely guidance the

completion of the project would have seemed a far –fetched dream. In this respect I find

myself lucky to have my guide. She have guided not only with the subject matter, but

also taught the proper style and techniques of documentation and presentation. Besides

my guides, I would like to thank entire teaching and non-teaching staff in the Department

of Computer Science & Engineering, DTU for all their help during my tenure at DTU.

Kudos to all my friends at DTU for thought provoking discussion and making stay very

pleasant. I am also thankful to the SAMSUNG who has provided me opportunity to

enroll in the M.Tech Programme and to gain knowledge through this programme. This

curriculum provided me knowledge and opportunity to grow in various domains of

computer science.

ABHISHEK SHARMA

2K13/SWT/02

v | P a g e

ABSTRACT

In current world, all information systems development follows well defined

development process based on requirements & business needs. Every stake holder‟s

expectation is to get best product with zero or minimum defects also cost effective. So, In

order to achieve best product in given time, it is necessary to uncover most defects as

early as possible in development life cycle.

In spite of thorough planning, well documentation and proper process control

during software development, occurrences of certain defects are inevitable. These defects

may leads to poor software quality which may hamper the brand image & lead to

business failure. In today‟s competitive world it‟s necessary to make world class product

with minimum defects, high in quality & cost effective.

 Cost of defects finding is directly proportional to time of its finding in

development cycle. Later are defects found, more is the cost of fixing them leads higher

development cost. Hence it‟s necessary to identify defective classes in early phase of

software development to reduce the testing cost. This may guide the product planning

team for efficient resource planning for testing. Software metrics have been used to

describe the complexity of the program and, to estimate software development time.

Software metrics can be used in simultaneity with defect data to develop models

for predicting defective classes. The development of predictive models to predict fault

classes can help & guide the stakeholders in predicting faulty classes in early phase of

software development. Hence, it is vital to analyse and compare the predictive accuracy

of machine learning classifiers. Various Machine Learning Techniques were used to

understand & analyse the core relationships of classes and fetching useful information

from problems.

The objective of this thesis is to evaluate the performance & comparison of

Machine Learning Techniques over unpopular data sets. The evaluation is performed

with an intention to identify which algorithm suits best for prediction of defect prone

classes in software based on software quality metrics. Chidamber & Kemerer Java

matrices [4] were generated over 4 subsequent releases of Android „Contact‟ Module.

Jelly Bean to KitKat to Lollypop to Marshmallow. 7 Machine Learning techniques were

vi | P a g e

compared to evaluate the relationship of Chidamber & Kemerer Java matrices on

defective classes.

 The result shows the predictive capability of Machine Learning Techniques &

suggested model. The results of work were based on data sets obtained from popular

open source mobile software Android “Contacts” module.

vii | P a g e

TABLE OF CONTENTS

DECLARATION... ..ii

CERTIFICATE .. .iii

ACKNOWLEGEMENT... iv

ABSTRACT.. v

TABLE OF CONTENTS... vii

CHAPTER 1. INTRODUCTION ..2

CHAPTER 2. LITERATURE REVIEW ...4

CHAPTER 3. RESEARCH BACKGROUND...6

3.1 Data Set Generation: ...6

3.1.1 Defect Collection and Reporting System (DCRS) Tool:7

3.1.2 Generating Change Logs: ...10

3.1.3 Generating Metrics: ..11

3.2 Chidamber and Kemerer Java Metrics: ...13

3.2.1 Weighted Methods Per Class (WMC): ..13

3.2.2 Depth of Inheritance Tree (DIT): ...13

3.2.3 Number of Children (NOC): ..13

3.2.4 Coupling between Object Classes (CBO) ..14

3.2.5 Response for a Class (RFC) ...14

3.2.6 Lack of Cohesion of Methods (LCOM) ...14

3.3 Dependent & Independent Variables: ...15

CHAPTER 4. RESEARCH METHODLOGY...16

4.1 Preprocessing of Data: ..16

4.2 Machine Learning Techniques Selection ..17

4.2.1 Bayes Net ...17

4.2.2 Naive Bayes ...18

4.2.3 Logistics Regression ..19

4.2.4 KStar ..20

4.2.5 Bagging ..21

4.2.6 Logit Boost ...21

viii | P a g e

4.2.7 Random Forest ...22

4.3 Application of Algorithms ..23

4.4 Performance Evaluation ..25

4.5 Model Evaluation Results: ..26

4.5.1 Bayes Net ...27

4.5.2 Naïve Bayes ...27

4.5.3 Logistic Regression ..27

4.5.4 KStar ..28

4.5.5 Bagging ..28

4.5.6 Logit Boost ...28

4.5.7 Random Forest ...29

CHAPTER 5. CONCLUSION ...30

BIBLIOGRAPHY ..31

ix | P a g e

LIST OF TABLES

Table 3.1 ... 7

Table 3.2 Android - Contacts .. 11

Table 3.3 Object Oriented Metrics .. 12

Table 4.1 ROC Value .. 26

Table 4.2 Evaluation Results for Bayes Net ... 27

Table 4.3 Evaluation Results for Naïve Bayes ... 27

Table 4.4 Evaluation Results for Logistic Regression .. 28

Table 4.5 Evaluation Results for KStar .. 28

Table 4.6 Evaluation Results for Bagging .. 28

Table 4.7 Evaluation Results for Logit Boost ... 29

Table 4.8 Evaluation Results for Random Forest ... 29

Table 5.1 Result Summary .. 30

LIST OF FIGURES

Figure 3.1 DCRS Tool .. 9

Figure 3.2 DCRS – Change Logs ... 10

Figure 4.1 WEKA - Preprocess .. 24

Figure 4.2 WEKA - Classify ... 24

1 | P a g e

2 | P a g e

Chapter 1. Introduction

In current time software development have reached to another level from

standalone systems to multiple interactive systems like Internet of Things, Robotics,

Spacecraft‟s etc. Hence the complexity of software system is increasing day by day

leading to more defects prone. It‟s been almost impossible to produce software systems

without defects. Therefore Software testing is considered as one of the key phase of

software development. It consumes at least half the development resources & still error

free or 100% correctness of software system is a dream. Testing phase should be

considered as critical area while software development to minimise the cost & maintain

the market trust. The cost of finding defects is directly proportional to time of its

occurrence. The cost of fixing a defect increases exponentially if defects are uncovered

towards the end of software development or after product delivery. Market reputation is

also hits badly if product is not correct or having defects. Hence finding & fixing most

software defects as early as possible is always recommended.

Software defect prediction can play a very vital role in this regards. Software

defect prediction is good practise in reducing testing efforts also help in proper test

planning. Early detection of defects may results in delivering the high quality & cost

effective software product. The challenges of effective testing leads to research area of

identifying faulty classes in early phase & aligning the test activity accordingly. This

predictive model helps to guide & produce defect free/cost effective software using

object oriented metrics for predicting fault classes. These software matrices which

capture various properties (like Coupling, Cohesion, Encapsulation, Inheritance, No. of

classes etc.) Of software shall be used for developing models for predicting defective

classes in software. Often these metrics have been used as an early indicator of these

externally visible attributes, because the externally visible attributes could not be

measures until too late in the software development process. The software metrics

collected from a similar project or past release (Android subsequent releases Jellybean to

Marshmallow) can be used for developing defect prediction model. The developed defect

3 | P a g e

 Prediction model can then be subsequently used for classifying classes of current

projects as defective or not defective.

Various machine learning techniques are available which may be used to predict

faulty classes. We have used 7 machine learning techniques over the object oriented

matrices generated from open source software Android subsequent releases. Machine

learning techniques used are Bayes Net, Naive Bayes, Logistic, Kstar, Bagging, Logit

Boost and Random Forest. The performance of these techniques varies with different

datasets and it‟s difficult to determine which technique is superior to another.

In this work we have compared the performance of 7 machines learning

techniques on 5 releases of „Contacts‟ application package of popular mobile operating

system Android. This enables the investigation whether one technique outperforms others

and also provides insights on the selection of a particular ML technique. We have used

object oriented metrics for predicting the defect prone classes. The results were evaluated

based on Receiver operating Characteristics.

4 | P a g e

Chapter 2. Literature Review

Several studies were done in the past to relate software metrics with defect

proneness. Some of the key studies are discussed below.

Malhotra R, Raje R [1] addressed four issues (i) comparison of the machine

learning techniques over unpopular used data sets (ii) use of inappropriate performance

measures for measuring the performance of defect prediction models (iii) less use of

statistical tests and (iv) validation of models from the same data set from which they are

trained. To resolve these issues, we have compared 18 machine learning techniques for

investigating the effect of Object-Oriented metrics on defective classes. The results are

validated on six releases of the open source android operating system „MMS‟ application

package. The overall results of the study indicate the predictive capability of the machine

learning techniques and an endorsement of one particular ML technique to predict

defects.

Malhotra R, Singh Y [2], proposed to find the relation of object oriented metrics

and fault proneness of a class. They used seven machine learning and one logistic

regression method in order to predict faulty classes. The results of work are based on data

set obtained from open source software. The results show that the predictive accuracy of

machine learning technique Logit Boost is highest with Area under Curve of 0.806.

Kaur A., Malhotra R, Singh Y [3], proposed Support Vector Machine (SVM)

model to find the relationship between object-oriented metrics given by Chidamber and

Kemerer [4] and fault proneness. The proposed model is empirically evaluated using

public domain KC1 NASA data set. The performance of the SVM method was evaluated

by Receiver Operating Characteristic (ROC) analysis. Based on these results, it is

reasonable to claim that such models could help for planning and performing testing by

focusing resources on fault-prone parts of the design and code. Thus, the study shows that

SVM method may also be used in constructing software quality models.

5 | P a g e

Kaur A, Kaur I [5], Used six machine learning models for software quality

prediction on five open source software. Varieties of metrics have been evaluated for the

software including Chidamber and Kemerer [4], Henderson & Sellers, McCabe etc.

Results show that Random Forest and Bagging produce good results while Naïve Bayes

is least preferable for prediction

Gyimothy T, Ference R, Siket I [6] showed how to calculate the object-oriented

metrics given by Chidamber and Kemerer [4] to illustrate how fault-proneness detection

of the source code of the open source Web and e-mail suite called Mozilla can be carried

out. He checked the values obtained against the number of bugs found in its bug database

- called Bugzilla - using regression and machine learning methods to validate the

usefulness of these metrics for fault-proneness prediction. He also compared the metrics

of several versions of Mozilla to see how the predicted fault-proneness of the software

system changed during its development cycle.

Zhou, Y., Leung, H. [7], distinguish among faults according to the severity of

impact. It would be valuable to know how object-oriented design metrics and class fault-

proneness are related when fault severity is taken into account. In this paper, we use

logistic regression and machine learning methods to empirically investigate the

usefulness of object-oriented design metrics, specifically, a subset of the Chidamber and

Kemerer suite [4], in predicting fault-proneness when taking fault severity into account.

Our results, based on a public domain NASA data set, indicate that 1) most of these

design metrics are statistically related to fault-proneness of classes across fault severity,

and 2) the prediction capabilities of the investigated metrics greatly depend on the

severity of faults. More specifically, these design metrics are able to predict low severity

faults in fault-prone classes better than high severity faults in fault-prone classes

6 | P a g e

Chapter 3. Research Background

In this section we will see the Data collection process, tools used, Object Oriented

Metrics generation etc.

3.1 Data Set Generation:

In this study, Object Oriented Metrics were obtained using open source mobile

Operating System – Android. “Contact” package is considered for generating the data

sets. We have downloaded the 4 latest released of Android Operating System from

KitKat (version 4.4 to) to Marshmallow (version 6.0.0). Android is most widely used &

leading phone Operating system.

Source code is fetched from Google GIT* Repository [8]

(https://android.googlesource.com/platform/packages/apps/Contacts/) for Contact

Application package. Android source code contains JAVA files. First Android code is

compiled to generate the Class files from the JAVA Files. For Compiling the Android

code we require multiple .jar files (firmware etc.), Resource files to compile Source code

successfully. Once Class files are generated, Defect Collection and Reporting System

(DCRS) tool [6] is used to generate the reports having Object Oriented Metrics. DCRS

have CKJM tool integrated which calculates Chidamber and Kemerer object-oriented

metrics [4] by processing the bytecode of compiled Java files. The program calculates for

each class & generated the Object Oriented Metrics mentioned in Table 3.1. And displays

them in a standard output format.

To generates the reports. We give the path of App package compiled code path

having class files & run the tool to generate Object Oriented metrics with respect to each

Class files.

7 | P a g e

Characteristics of Contact Application package with respect to different releases

are mentioned in Table 3.1.

Table 3.1

Data Set : Android App Package - "Contacts"

Google GIT Repository :

https://android.googlesource.com/platform/packages/apps/Contacts/

Android OS

Release

Code

 Name

Total

LoC

Total

Class

Defective

Count

Defective

%

4.4 KitKat (KK) 49,040 210 28 13%

5.0.0 Lollipop (LL) 36,969 177 115 65%

5.1.1 Lollipop (LL) 37,257 139 48 35%

6.0.0 Marshmallow (M) 41,012 138 49 36%

*GIT is a version control system used for software development & version control

task for Google Android source code. GIT as a distributed revision control system is

aimed at speed, data integrity and support for distributed, non-linear workflows.

Table 3.1 contains Android App Packages – Contacts Data Sets with Total LoC,

Total Class, Defective/Non Defective Classes w.r.t. each Android release for Contact

Application Package. Defects were generated using DCRS Tools (Defect Collection &

Reporting System) developed by Delhi Technical University (DTU) Students. LoC is

generated using LoC Metrics freeware tool.

3.1.1 Defect Collection and Reporting System (DCRS) Tool:

The Defect Collection and Reporting System (DCRS) [6] is a JAVA based

automated tool which collects and reports various defects, bugs or issues which were

present in a given Version of Android OS, and have been fixed in the subsequent

Version. The System caters to only two consecutive versions of Android OS.

Studies have shown that defect data collected from open source projects (like

Android) can be used in research areas such as defect prediction. Some commonly

https://en.wikipedia.org/wiki/Distributed_revision_control

8 | P a g e

traversed areas of defect prediction include Analysis and Validation of the effect of given

metric suite, (Like Metrics) on fault proneness; and applicability of such metric suites for

the prediction of fault proneness models.

DCRS determining the deleted source files, newly added source files, defects

fixed, etc. It efficiently collects defect data and can be used research areas.

DCRS first obtain the defect logs of android source code and filter them to obtain

the defects which were present in a given version of Android Operating System and have

been fixed in the subsequent version. Then, the system process the filtered defect logs to

extract useful defect information such as unique defect identifier and defect description,

if any.

DCRS also associates defects to their corresponding source files (java code files,

or simply class files in the android OS source code). Then, it performs the computation of

total number of fixed defects for each class, i.e., the number of defects which have been

associated with that class. Finally, the corresponding values of different metric suites are

obtained by the system for each class file in the source code of previous version of

Android OS.

Install & Configure Git software installed, for extracting the change-logs for

source code of each version of Android OS. Download „Android Manifest File‟ from Git

repository to get the list of Android Source Code components/ projects available at „Git‟

repository (https://android.googlesource.com). Source code of both the versions is

required to generate the change logs. The system will guide user to download the same.

9 | P a g e

Figure 3.1 DCRS Tool

We can fetch information using DCRS as per below procedure. It process two

versions of source code to retrieve Change-Logs. Change log provides information

regarding the modifications that have been made in the source code. These Change Logs

are further processed to get Bug-Logs (i.e. changes w.r.t. bug-fixes only). We can retrieve

Bug-Ids and Description from the Bug-Logs. These Bug-Ids were mapped to Classes in

the source code. Based on the above gathered information, the DCRS generates the

following Reports:

a. Bug-Report –Contains details of each bug, class-wise (Bug-ID and description)

b. Bug-Count report - Contains Bug-count (class-wise), Chidamber and Kemerer Java

Matrics and other Metrics data for each class

c. Change Report – Contains total LOC inserted and deleted, class-wise, for all the

incurred changes

We can collect defects from the Android OS defects logs as per below steps:

10 | P a g e

3.1.2 Generating Change Logs:

We can obtain Change logs using DCRS tool which processes the Git repository

and obtains change logs of two predetermined consecutive releases (like Android-4.4_r1,

Android-5.0.0_r1). The change is due to defect fixation, addition of new functionality,

refactoring or other related enhancements. Each change constitutes a single change

record. A change logs consists of various information like timestamp of committing,

unique identifier, change description (optional) and list of changed lines of source code.

The change logs of four releases of Android Contact App Package were

obtained.

Figure 3.2 DCRS – Change Logs

11 | P a g e

 Table 3.2 Android - Contacts

3.1.3 Generating Metrics:

Object Oriented Metrics are being used to evaluate & predict the Software

Quality. Object Oriented Metrics are usually used for defect prediction & as an early

indicator of externally visible attributes (like coupling, cohesion, inheritance,

Encapsulation etc.) as these cannot be measures until too late in software development

lifecycle. Chidamber & Kemerer metrics are the most popular used Object Oriented

Metrics. Another comprehensive set of metrics is Mood metrics [13, 14, 17].

Object Oriented Metrics were generated using DCRS tool on each Java file.

Downloaded Android Packages is first compiled to generate Class files used to generate

Object Oriented Metrics. Android code is compiled using the ADT (Android

Development Tools). Object Oriented Metrics are collected for each of the classes

mentioned in Table 3.1 w.r.t each Android release. Object Oriented Metrics generated

using DCRS are described below in Table 3.3:

Android

OS Release
Code Name

4.4 KitKat (KK)

5.0.0 Lollipop (LL)

5.1.1 Lollipop (LL)

6.0.0 Marshmallow (M)

12 | P a g e

Table 3.3 Object Oriented Metrics

WMC Weighted Methods Per Class
Count of sum of complexities of number of

methods in a class.

NOC Number Of Children Number of sub classes of a given class.

DIT Depth of Inheritance
Tree Provides the maximum steps from the root

to the leaf node.

LCOM Lack of Cohesion
Among Methods of a Class Null pairs not having

common attributes.

CBO Coupling Between Objects Number of classes to which a class is coupled.

RFC Response For a Class
Number of external and internal methods in a

class.

DAM Data Access Metric

Ratio of the number of private (and/or protected)

attributes to the total number of attributes of a

class.

MOA Measure Of Aggression
Percentage of data declarations (user defined) in

a class.

MFA
Method of Functional

Abstraction

Ratio of total number of inherited methods to the

number of methods in a class.

CAM
Cohesion Among the Methods

of a Class

Computes method similarity based on their

signatures.

AMC Average Method Complexity
Computed using McCabe‟s Cyclomatic

Complexity method.

LCOM3
Lack Of Cohesion Revision of LCOM metric given by Henderson

sellers Among Methods of a Class

LOC Line Of Code Number of lines of source code of a given class.

NPM Number of Public Methods Number of public methods in a given class.

Ca Afferent Couplings Number of classes calling a given class.

Ce Efferent Couplings Number of other classes called by a class.

IC Inheritance Coupling
Number of parent classes to which a class is

coupled.

Defects Defect Count
Binary variable indicating the presence or

absence of the defects.

We have used six CKJM metrics in our research mentioned below :

13 | P a g e

3.2 Chidamber and Kemerer Java Metrics:

Chidamber and Kemerer [4] define the so called C&K metric suite. This metric

suite offers informative insight into whether developers are following object oriented

principles in their design. These metrics collectively helps managers and designers to

make better design decision. C&K metrics have generated a significant amount of interest

and are currently the most well-known suite of measurements for Object Oriented

software. Chidamber and Kemerer proposed six metrics; the following discussion shows

their metrics.

3.2.1 Weighted Methods Per Class (WMC):

This metric represents number of methods defined in class. It measures the

complexity of a class. Complexity of a class can for example be calculated by the

cyclomatic complexities of its methods. High value of WMC indicates the class is more

complex than that of low values. So class with less WMC is better. As WMC is

complexity measurement metric, we can get an idea of required effort to maintain a

particular class.

3.2.2 Depth of Inheritance Tree (DIT):

This metric shows maximum inheritance path from the class to the root class.

DIT metric is the length of the maximum path from the node to the root of the tree. So

this metric calculates how far down a class is declared in the inheritance hierarchy. This

metric also measures how many ancestor classes can potentially affect this class. DIT

represents the complexity of the behaviour of a class, the complexity of design of a class

and potential reuse. The deeper a class is in the hierarchy. The more methods & variables

it is likely to inherit, making it more complex. A high DIT has been found to increase

faults. A recommended DIT is 5 or less.

3.2.3 Number of Children (NOC):

This metric shows total Number of immediate sub-classes of a class. This metric

measures how many sub-classes are going to inherit the methods of the parent class. The

14 | P a g e

size of NOC approximately indicates the level of reuse in an application. If NOC grows it

means reuse increases. On the other hand, as NOC increases, the amount of testing will

also increase because more children in a class indicate more responsibility. So, NOC

represents the effort required to test the class and reuse.

A high NOC, a large no. of Child class, indicates following:

1. High reuse of base class. Inheritance is a form of reuse.

2. Base class may require more testing

3. Improper abstraction of parent class.

4. Misuse of sub-classing.

5. High NOC indicates fewer faults.

3.2.4 Coupling between Object Classes (CBO)

This metric shows number of classes to which a class is coupled. The idea of this

metrics is that an object is coupled to another object if two object act upon each other. A

class is coupled with another if the methods of one class use the methods or attributes of

the other class. An increase of CBO indicates the reusability of a class will decrease.

Thus, the CBO values for each class should be kept as low as possible

3.2.5 Response for a Class (RFC)

RFC is the number of methods that can be invoked in response to a message in a

class. Since RFC increases, the effort required for testing also increases because the test

sequence grows. If RFC increases, the overall design complexity of the class increases

and becomes hard to understand. On the other hand lower values indicate greater

polymorphism. The value of RFC can be from 0 to 50 for a class12, some cases the

higher value can be 100- it depends on project to project.

3.2.6 Lack of Cohesion of Methods (LCOM)

This metric uses the notion of degree of similarity of methods. LCOM measures

the amount of cohesiveness present, how well a system has been designed and how

15 | P a g e

complex a class is. LCOM is a count of the number of method pairs whose similarity is

zero, minus the count of method pairs whose similarity is not zero

3.3 Dependent & Independent Variables:

The binary dependent variable in our study is fault proneness and the independent

variables are object oriented metrics. The objective of our study is to explore empirically

the relationship between Object Oriented metrics and fault proneness. We have used

CKJM Object Oriented metrics as independent variables. Fault proneness is defined as

the probability of fault detection in a class. We use machine learning methods to predict

the probability of fault proneness. Our dependent variable will be predicted based on the

faults found during software development life cycle. The metrics given by [4] are

summarized in Table 3.3.

16 | P a g e

Chapter 4. Research Methodlogy

In a quest for answers for our research questions, we have conducted an empirical

validation of various techniques on the four releases of the Android Mobile OS given in

Table 3.2 using the following steps.

1. Pre-processing of collected data sets.

2. Selection of various ML Techniques for defect prediction.

3. Selection of performance measures and model validation techniques for analysing

the Performance of the models developed using Android data sets.

4. Selection of relevant Object Oriented metrics

5. Model development for defect prediction using ML techniques in step 2.

4.1 Preprocessing of Data:

We have used six Object Oriented Metrics for defect prediction. The uncorrelated

and best attributes are selected out of a set of Object Oriented metrics using correlation

based feature selection [24] technique. This technique is simple, fast and widely used

method in for sub selecting attributes using the ML techniques. In order to predict models

using machine learning techniques, it is important to identify relevant and important

features. A relevant feature is one that is correlated to the class and is less related to other

features. The correlation based feature selection technique searches all the combinations

of attributes to find the best combination of the independent variables. The correlation

based feature selection is a heuristic technique that evaluates the correlation between the

independent variables and the dependent variable. The correlation based feature selection

technique is based on the principle that good attributes are highly correlated with the

dependent variables and less correlated amongst themselves. An attribute is selected if

the correlation with the dependent variable is higher than the highest correlation amongst

the attributes. The aim is to select individual variables that are correlated with the

dependent variable and uncorrelated with other independent variables. Thus, the

correlation based feature selection technique handles both redundant and irrelevant

attributes.

17 | P a g e

4.2 Machine Learning Techniques Selection

In this study, we have used seven Machine Learning Techniques namely Bayes

Net, Naive Bayes, Logistic Regression, KStar, Bagging, Logit Boost, Random Forest.

4.2.1 Bayes Net

A Bayesian network [9] is computer technology that deals with probabilities in

Artificial Intelligence; Bayesian networks (BNs) are graphical models for reasoning

under uncertainty, where the nodes represent variables (discrete or continuous) and arcs

represent direct connections between them. These direct connections are often causal

connections. In addition, BNs model the quantitative strength of the connections between

variables, allowing probabilistic beliefs about them to be updated automatically as new

information becomes available

Bayesian networks (BNs), also known as belief networks (or Bayes nets for

short), belong to the family of probabilistic graphical models (GMs). These graphical

structures are used to represent knowledge about an uncertain domain. In particular, each

node in the graph represents a random variable, while the edges between the nodes

represent probabilistic dependencies among the corresponding random variables. These

conditional dependencies in the graph are often estimated by using known statistical and

computational methods. Hence, BNs combine principles from graph theory, probability

theory, computer science, and statistics.

 A Bayesian network is a graphical structure that allows us to represent and reason

about an uncertain domain. BNs correspond to directed acyclic graph that is popular in

the statistics, the machine learning, and the artificial intelligence societies. BNs are both

mathematically rigorous and intuitively understandable. They enable an effective

representation and computation of the joint probability distribution over a set of random

variables Bayes network or probabilistic directed acyclic graphical model is a

probabilistic graphical model (a type of statistical model) that represents a set of random

variables and their conditional dependencies via a directed acyclic graph.

18 | P a g e

Formally, Bayesian networks are directed acyclic graphical whose nodes

represent random variables in the Bayesian sense: they may be observable quantities,

latent variables, unknown parameters or hypotheses. Edges represent conditional

dependencies; nodes that are not connected represent variables that are conditionally

independent of each other. Each node is associated with a probability function that takes

as input a particular set of values for the node's parent variables and gives the probability

of the variable represented by the node.

Efficient algorithms exist that perform inference and learning in Bayesian

networks. Bayesian networks that model sequences of variables (e.g. speech

signals or protein sequences) are called dynamic Bayesian networks. Generalizations of

Bayesian networks that can represent and solve decision problems under uncertainty are

called influence diagrams.

4.2.2 Naive Bayes

The Naive Bayes [10] Classifier technique is based on the so-called Bayesian

theorem and is particularly suited when the dimensionality of the inputs is high. Despite

its simplicity, Naive Bayes can often outperform more sophisticated classification

methods. Naive Bayes is a simple but important probabilistic model.

The Bayesian Classification represents a supervised learning method as well as a

statistical method for classification. Assumes an underlying probabilistic model and it

allows us to capture uncertainty about the model in a principled way by determining

probabilities of the outcomes. It can solve diagnostic and predictive problems.

 This Classification is named after Thomas Bayes [10], who proposed the Bayes

Theorem. Bayesian classification provides practical learning algorithms and prior

knowledge and observed data can be combined. Bayesian Classification provides a useful

perspective for understanding and evaluating many learning algorithms. It calculates

explicit probabilities for hypothesis and it is robust to noise in input data

https://en.wikipedia.org/wiki/Inference
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Speech_recognition
https://en.wikipedia.org/wiki/Speech_recognition
https://en.wikipedia.org/wiki/Peptide_sequence
https://en.wikipedia.org/wiki/Dynamic_Bayesian_network
https://en.wikipedia.org/wiki/Influence_diagram

19 | P a g e

In machine learning, naive Bayes classifiers are a family of simple probabilistic

classifiers based on applying Bayes' theorem with strong

(naive) independence assumptions between the features.

Naive Bayes has been studied extensively since the 1950s. It was introduced

under a different name into the text retrieval community in the early 1960s and remains a

popular (baseline) method for text categorization, the problem of judging documents as

belonging to one category or the other (such as spam or legitimate, sports or politics, etc.)

with word frequencies as the features. With appropriate pre-processing, it is competitive

in this domain with more advanced methods including support vector machines. It also

finds application in automatic medical diagnosis.

Naive Bayes classifiers are highly scalable, requiring a number of parameters

linear in the number of variables (features/predictors) in a learning problem. Maximum-

likelihood training can be done by evaluating a closed-form expression which takes linear

time, rather than by expensive iterative approximation as used for many other types of

classifiers.

4.2.3 Logistic Regression

Logistics Regression [20] is a regression model where the dependent variable is

categorical. Logistic Regression is a type of regression model where the dependent

variable (target) has just two values, such as (1/0, Y/N, F/T). Involves a more

probabilistic view of classification. The binary logistic model is used to estimate the

probability of a binary response based on one or more predictor (or independent)

variables (features). As such it is not a classification method. It could be called

a qualitative response/discrete choice model in the terminology of economics.

Logistic regression measures the relationship between the categorical dependent

variable and one or more independent variables by estimating probabilities using

a logistic function, which is the cumulative logistic distribution. Thus, it treats the same

set of problems as probit regression using similar techniques, with the latter using a

cumulative normal distribution curve instead. Equivalently, in the latent variable

interpretations of these two methods, the first assumes a standard logistic distribution of

errors and the second a standard normal distribution of errors.

https://en.wikipedia.org/wiki/Bayes%27_theorem
https://en.wikipedia.org/wiki/Statistical_independence
https://en.wikipedia.org/wiki/Information_retrieval
https://en.wikipedia.org/wiki/Text_categorization
https://en.wikipedia.org/wiki/Spam_filtering
https://en.wikipedia.org/wiki/Bag_of_words
https://en.wikipedia.org/wiki/Support_vector_machine
https://en.wikipedia.org/wiki/Medical_diagnosis
https://en.wikipedia.org/wiki/Maximum-likelihood_estimation
https://en.wikipedia.org/wiki/Maximum-likelihood_estimation
https://en.wikipedia.org/wiki/Closed-form_expression
https://en.wikipedia.org/wiki/Linear_time
https://en.wikipedia.org/wiki/Linear_time
https://en.wikipedia.org/wiki/Iterative_method
https://en.wikipedia.org/wiki/Regression_analysis
https://en.wikipedia.org/wiki/Discrete_choice
https://en.wikipedia.org/wiki/Economics
https://en.wikipedia.org/wiki/Logistic_function
https://en.wikipedia.org/wiki/Probit_regression
https://en.wikipedia.org/wiki/Logistic_distribution
https://en.wikipedia.org/wiki/Normal_distribution

20 | P a g e

Logistic regression can be seen as a special case of the generalized linear

model and thus analogous to linear regression. The model of logistic regression, however,

is based on quite different assumptions (about the relationship between dependent and

independent variables) from those of linear regression. In particular the key differences of

these two models can be seen in the following two features of logistic regression. First,

the conditional distribution is a Bernoulli distribution rather than a Gaussian distribution,

because the dependent variable is binary. Second, the predicted values are probabilities

and are therefore restricted to (0, 1) through the logistic distribution function because

logistic regression predicts the probability of particular outcomes.

Logistic regression is an alternative to linear discriminate analysis. If the

assumptions of linear discriminant analysis hold, the conditioning can be reversed to

produce logistic regression. The converse is not true, however, because logistic

regression does not require the multivariate normal assumption of discriminant analysis

4.2.4 KStar

KStar [11] is an instance based learning algorithm that uses entropy distance

measure. The use of entropy as a distance measure has several benefits. Amongst other

things it provides a consistent approach to handling of symbolic attributes, real valued

attributes and missing values. We describe K* [12], an instance-based learner which uses

such a measure. The algorithm has a loose relationship to the k-nearest neighbor

classifier, a popular machine learning technique for classification that is often confused

with k-means because of the k in the name. One can apply the 1-nearest neighbor

classifier on the cluster centers obtained by k-means to classify new data into the existing

clusters. K* is a simple, instance based classifier, similar to K-Nearest Neighbor (K-NN).

New data instances, x, are assigned to the class that occurs most frequently amongst the

k-nearest data points, yj, where j = 1,2…k (Hart, 1968). Entropic distance is then used to

retrieve the most similar instances from the data set. Using entropic distance as a metric

has a number of benefits including handling of real valued attributes and missing values.

https://en.wikipedia.org/wiki/Generalized_linear_model
https://en.wikipedia.org/wiki/Generalized_linear_model
https://en.wikipedia.org/wiki/Linear_regression
https://en.wikipedia.org/wiki/Bernoulli_distribution
https://en.wikipedia.org/wiki/Gaussian_distribution
https://en.wikipedia.org/wiki/Logistic_function
https://en.wikipedia.org/wiki/K-nearest_neighbor
https://en.wikipedia.org/wiki/K-nearest_neighbor

21 | P a g e

4.2.5 Bagging

Bagging or Bootstrap [21] Aggregating is a machine learning ensemble meta-

algorithm designed to improve the stability and accuracy of machine learning algorithms

used in statistical classification and regression. Leo Breiman proposed this technique in

1996. It also reduces variance and helps to avoid overfitting. Although it is usually

applied to decision tree methods, it can be used with any type of method. Bagging is a

special case of the model averaging approach. It improves the performance of

classification models by creating various sets of the training sets. The aim is to create

numerous similar training sets and train a new function for each of these sets. In the case

of class prediction the result of majority voting is considered. In order to construct

multiple versions we create bootstrap duplicates of the learning set. These sets are then

used as the new learning set. Bagging has the following advantages:

1. It can improve classification accuracy over other classification models.

2. It reduces variance.

3. It avoids overfitting

If we are given a training set Rn, with N samples from a population P, a bootstrap

set Bi would also contain N samples. For each sample of Bi we can draw any sample

from R independently and with replacement from R. Hence we would obtain some

samples being repeated in Bi and some samples being present in R but not in Bi. Hence

the dataset Bi is as plausible as Rn but is drawn from R rather than P. The bootstrap

datasets are combined by taking the average output and hence we get an aggregated

prediction result. In this work we use Bag Size Percent of 100, 10 iterations and REP tree

as classifier. These are the default setting provided by the WEKA tool

4.2.6 Logit Boost

In machine learning and computational learning theory, LogitBoost is

 boosting algorithm formulated by Jerome Friedman, Trevor Hastie, and Robert

Tibshirani [18, 19]. The original paper casts the AdaBoost algorithm into a statistical

framework. Specifically, if one considers AdaBoost as a generalized additive model and

https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Statistical_classification
https://en.wikipedia.org/wiki/Regression_analysis
https://en.wikipedia.org/wiki/Variance
https://en.wikipedia.org/wiki/Ensemble_learning
https://en.wikipedia.org/wiki/Computational_learning_theory
https://en.wikipedia.org/wiki/Boosting_(meta-algorithm)
https://en.wikipedia.org/wiki/Jerome_H._Friedman
https://en.wikipedia.org/wiki/Trevor_Hastie
https://en.wikipedia.org/wiki/Robert_Tibshirani
https://en.wikipedia.org/wiki/Robert_Tibshirani
https://en.wikipedia.org/wiki/AdaBoost
https://en.wikipedia.org/wiki/Generalized_additive_model

22 | P a g e

then applies the cost functional of logistic regression, one can derive the LogitBoost

algorithm. Logit Boost performs additive logistic regression. It use decision stump

(creates binary one-level decision tree algorithm) classification algorithm designed to be

used for boosting algorithms

4.2.7 Random Forest

Random forests are an ensemble learning method for classification (and

regression) that operate by constructing a multitude of decision trees at training time and

outputting the class that is the mode of the classes output by individual trees. The

algorithm for inducing a random forest was developed by Leo Breiman and Adele Cutler

[15, 16], and "Random Forests" is their trademark. The term came from random decision

forests that were first proposed by Ho of Bell Labs in 1995 [15, 16]. The method

combines Breiman's "bagging" idea and the random selection of features, introduced first

by Ho and later by Amit and Geman [25] in order to construct a collection of decision

trees with controlled variance.

Random Forest constructs a forest of multiple trees and each tree depends on the

value of a random vector. For each of the tree in the forest, this random vector is sampled

with the same distribution and independently. Hence, random forest is a classifier that

consists of a number of decision trees. The resultant output class is the mode of classes

output by the individual trees.

The algorithm for constructing the tree is as follows: For M training sets, N

variables in the classifier and the variable n (n << N) where n indicates the number of

independent

Variables that determine the decision at the terminal node of the tree. A bootstrap

training sample is selected. The best split is based on these n variables in the training set.

Each tree is allowing growing fully and is not pruned. RFs have the following benefits:

1. RFs are simple and Runs efficiently on large data bases. It can handle thousands

of input variables without variable deletion

2. RFs are comparatively robust to outliers and noise.

https://en.wikipedia.org/wiki/Logistic_regression

23 | P a g e

3. RFs provide give useful internal estimates of error, strength, correlation and

Variable importance. It gives estimates of what variables are important in the

classification.

4. RFs may produce a highly accurate classifier for various data sets. It has an

effective method for estimating missing data and maintains accuracy when a large

proportion of the data are missing

5. RFs provide fast learning. Generated forests can be saved for future use on other

data.

6. It computes proximities between pairs of cases that can be used in clustering,

locating outliers or (by scaling) give interesting views of the data.

7. It offers an experimental method for detecting variable interactions.

4.3 Application of Algorithms

WEKA tool is for implementing algorithms. Correlation based feature selection

technique is applied as preprocessing technique using the Object Oriented Metrics

attributes- WMC, DIT, NOC, CBO, RFC, LCOM, LOC.

In Figure 4.1, WEKA is used to pre-process the selected data set. WEKA is

capable of reading „.csv‟ format files. Data is loaded into WEKA, We have performed a

series of operations using WEKA's attribute. We have used the GUI interface for WEKA

Explorer.

In Figure 4.2, we have used WEKA for executing different Machine Learning

Techniques & generating results with respect to each Android release. Results shows

performance measures like Sensitivity, Precision, F Measure, ROC etc.

24 | P a g e

Figure 4.1 WEKA - Preprocess

Figure 4.2 WEKA - Classify

25 | P a g e

4.4 Performance Evaluation

A variety of performance measures have been used in the literature to examine the

strength of the developed models using different ML techniques. The data having

disproportionate ratio of defective and not defective classes is often known as unbalanced

data. Given the imbalanced nature of the datasets, the ROC analysis is a commonly used

performance measure. The ROC curve depicts the percentage of correctly predicted

defective classes (sensitivity) on the y-axis versus the one minus the percentage of

correctly predicted non-defective classes (1- specificity) on the x-axis at various cut-off

points. Hence, in ROC analysis the sensitivity and 1-specificity of the developed model is

calculated at each cut-off point. To compare various ML techniques the ROC curves are

drawn for each ML technique. The Area Under Curve (AUC) computed using ROC

analysis lies between 0 and 1 and higher the value of the AUC better is the predictive

capability of the developed model. The advantage of using AUC for evaluating

performance of the models is that it can deal with noisy and unbalanced data as it is

insensitive to changes in class distribution.

In order to validate the predicted models we use the following performance

measures:

1. Sensitivity: Also known as True Positive Rate (TP Rate) or Recall measures the

proportion of positives that are correctly identified. It is defined as the ratio of

classes predicted as faulty to the total number of classes actually faulty.

2. Specificity: It Measures the proportion of negatives that are correctly identified.

It is defined as the ratio of classes predicted as non-faulty to the total number of

classes actually non faulty.

3. Precision: It is defined as the ratio of classes predicted correctly as faulty and non-

faulty to the total number of classes.

4. ROC analysis: The output of the predicted models can be analyzed using ROC

analysis. ROC curve is a plot of sensitivity (on the y-axis) and 1-specificity (on

the x-axis). Many cut off points are selected between 0 and 1 while the

construction of ROC curves. AUC is a measure obtained using ROC analysis.

This gives optimal cut off point that maximizes both sensitivity and specificity.

26 | P a g e

This measure is very effective in measuring the quality of the predicted models

and is popularly being used in machine learning research. The following rules can

be used to categorize AUC:

Table 4.1 ROC Value

ROC Value Remarks

=< 0.5 No Discrimination

0.7 =< ROC < 0.8 Acceptable Discrimination

0.8 =< ROC < 0.9 Excellent Discrimination

ROC => 0.9 Outstanding Discrimination

We have used AUC as a measure to evaluate and assess the models predicted

using machine learning techniques.

4.5 Model Evaluation Results:

In this section we will discuss about performance evaluation of various ML

Techniques for defect prediction on generated data set OO metrics indicated above and

the outcome of the prediction model based on our work. Below are the evaluation

parameters for used Machine Learning Algorithms with respect to four Android OS

release. The results of models predicted using machine learning techniques were

predicted using WEKA tool. The predicted models are validated using 10-fold cross

validation.

After this we empirically compared the ML techniques and the results were

evaluated in terms of the AUC. The AUC has been advocated as a primary indicator of

comparative performance of the predicted models. The AUC measure can deal with noisy

and unbalanced data and is insensitive to the changes in the class distributions. The ML

technique yielding best AUC for a given release was highlighted.

27 | P a g e

Table 4.2 to Table 4.8 shows results for different performance parameters TP rate,

FP Rate, Precision, Recall, F Measure, and ROC Area with respect to various Machine

Learning Techniques.

4.5.1 Bayes Net

Table 4.2 shows the evaluation results for Bayes Net ML technique:

Table 4.2 Evaluation Results for Bayes Net

ML

Technique

Android

OS Version

TP

Rate

FP

Rate
Precision Recall

F

Measure

ROC

Area

Bayes Net

4.4 0.78 0.43 0.84 0.78 0.8 0.71

5.0.0 0.68 0.31 0.71 0.68 0.69 0.68

5.1.1 0.75 0.41 0.75 0.75 0.73 0.71

6.0.0 0.59 0.43 0.59 0.59 0.59 0.58

4.5.2 Naïve Bayes

Table 4.3 shows the evaluation results for Naïve Bayes ML technique:

Table 4.3 Evaluation Results for Naïve Bayes

Attributes Android
TP

Rate

FP

Rate
Precision Recall

F

Measure

ROC

Area

Naïve

Bayes

4.4 0.85 0.57 0.84 0.85 0.85 0.75

5.0.0 0.61 0.27 0.74 0.61 0.6 0.68

5.1.1 0.75 0.39 0.74 0.74 0.73 0.76

6.0.0 0.7 0.48 0.69 0.7 0.66 0.66

4.5.3 Logistic Regression

Table 4.4 shows the evaluation results for Logistic ML technique:

28 | P a g e

Table 4.4 Evaluation Results for Logistic Regression

Attributes Android
TP

Rate

FP

Rate
Precision Recall

F

Measure

ROC

Area

Logistic

4.4 0.86 0.75 0.82 0.86 0.83 0.74

5.0.0 0.65 0.45 0.64 0.65 0.64 0.7

5.1.1 0.78 0.34 0.77 0.77 0.77 0.76

6.0.0 0.7 0.41 0.69 0.7 0.69 0.72

4.5.4 KStar

Table 4.5 shows the evaluation results for KStar ML technique:

Table 4.5 Evaluation Results for KStar

Attributes Android
TP

Rate

FP

Rate
Precision Recall

F

Measure

ROC

Area

K Star

4.4 0.82 0.6 0.82 0.82 0.82 0.68

5.0.0 0.66 0.34 0.66 0.66 0.66 0.69

5.1.1 0.7 0.42 0.69 0.7 0.69 0.72

6.0.0 0.66 0.4 0.66 0.66 0.66 0.67

4.5.5 Bagging

Table 4.6 shows the evaluation results for Bagging ML technique:

Table 4.6 Evaluation Results for Bagging

Attributes Android
TP

Rate

FP

Rate
Precision Recall

F

Measure

ROC

Area

Bagging

4.4 0.87 0.78 0.84 0.87 0.83 0.78

5.0.0 0.71 0.37 0.7 0.7 0.7 0.75

5.1.1 0.7 0.43 0.7 0.7 0.7 0.7

6.0.0 0.72 0.39 0.71 0.72 0.71 0.7

4.5.6 Logit Boost

Table 4.7 shows the evaluation results for Logit Boost ML technique:

29 | P a g e

Table 4.7 Evaluation Results for Logit Boost

Attributes Android
TP

Rate

FP

Rate
Precision Recall

F

Measure

ROC

Area

Logit

Boost

4.4 0.85 0.78 0.8 0.85 0.82 0.75

5.0.0 0.72 0.31 0.73 0.72 0.73 0.73

5.1.1 0.76 0.37 0.76 0.76 0.75 0.71

6.0.0 0.72 0.43 0.71 0.72 0.69 0.7

4.5.7 Random Forest

Table 4.8 shows the evaluation results for Random Forest ML technique:

Table 4.8 Evaluation Results for Random Forest

Attributes Android
TP

Rate

FP

Rate
Precision Recall

F

Measure

ROC

Area

Random

Forest

4.4 0.84 0.69 0.81 0.84 0.82 0.68

5.0.0 0.68 0.38 0.68 0.68 0.68 0.73

5.1.1 0.73 0.4 0.72 0.73 0.71 0.71

6.0.0 0.66 0.43 0.65 0.65 0.66 0.7

30 | P a g e

Chapter 5. Conclusion

In Our work we have found relationship between CKJM Metrics & Fault

Proneness of a class. In Table 5.1, AUC results for most of the models predicted using

various Machine Learning techniques on Android App Package „Contacts‟ is 0.7 which

depicts the predictive capability of ML techniques. Bagging, Naïve Bayes & Random

Forest shows best prediction with AUC value 0 .75. ML Techniques with AUC 0.7 &

above is highlighted in bold.

Hence, we can conclude our work as ML models for defect prediction developed

can be used for identifying defective classes in subsequent releases of Android OS Data

Sets(like Android KitKat to Lollipop to Marshmallow). Developed Models can be also

applied in future to different projects that are similar in nature.

Table 5.1 shows 10-fold Cross Validation Results of 7 ML Techniques with

respect to AUC.

Table 5.1 Result Summary

Android

OS Release

Bayes

Net

Naïve

Bayes
Logistic Kstar Bagging

Logit

Boost

Random

 Forest

4.4 0.71 0.75 0.74 0.68 0.78 0.75 0.74

5.0.0 0.68 0.68 0.7 0.69 0.75 0.73 0.7

5.1.1 0.71 0.76 0.76 0.72 0.7 0.71 0.76

6.0.0 0.58 0.66 0.72 0.67 0.7 0.7 0.72

In future we have planned to enhance scope of our work to larger data sets &

more Machine Learning techniques. Current work is focused only on one Android

module „Contacts‟. In future we can consider more than one modules to understand the

relationship of Chidamber & Kemerer Java matrices on defective classes.

31 | P a g e

Bibliography

[1] R. Malhotra and R. Raje, "An Empirical Comparison of Machine Learning

Techniques for Software Defect Prediction," in ICST, Brussels, Belgium, 2014.

[2] Y. Singh, A. Kaur and R. Malhotra, "Software Fault Proneness Prediction Using

Support Vector Machines," in World Congress on Engineering, WCE 2009, London,

U.K, 2009.

[3] A. Kaur and I. Kaur, "An empirical evaluation of classification algorithms for fault

prediction in open source projects," in Journal of King Saud University - Computer

and Information Sciences, 2016.

[4] T. Gyimothy, R. Ferenc and I. Siket, "Empirical validation of object-oriented metrics

on open source software for fault prediction," IEEE Transactions on Software

Engineering, vol. 31, no. 10, pp. 897-910, 2005.

[5] Y. Zhou and H. Leung, "Empirical analysis of object oriented design metrics for

predicting high severity faults" IEEE Transactions on Software Engineering, vol. 32,

no. 10, pp. 771-784, 2006.

[6] R. Malhotra, K. Nagpal, P. Upmanyu and N. Pritam, "Defect Collection and

Reporting System for Git Based Open Source Software" International Conferenc on

Data Mining & Intellegent Computing(ICDMIC)New Delhi,India, 2014. pp. 1-7

[7] S. R. Chidamber and C. F. Kammerer, "A Metrics Suite for Object Oriented

Design," IEEE Transactions on Software Engineering, vol. 20, no.6, pp. 20, 6, 476-

493., 1994.

[8] R. Malhotra and Y. Singh, "On the Applicability of Machine Learning Techniques

for Object Oriented Software Defect Prediction," An International Journal (SEIJ),

vol. 1, no. 1, pp. 24-37, 2011.

[9] T. M. Mitchell, "Machine Learning," McGraw Hill, 2015, pp. 1-17.

[10] J. G. Cleary and L. E. Trigg, "K*: An Instance-based Learner Using an Entropic

32 | P a g e

Distance Measure," University of Waikato, New Zealand, 2001.

[11] S. Vijayarani and M. Muthulakshmi, "Comparative Analysis of Bayes and Lazy

Classification Algorithms," International Journal of Advanced Research in

Computer and Communication Engineering, vol. 2, no. 8, pp. 3118-3124, 2013.

[12] M. JURECZKO and D. D. SPINELLIS, "Using Object-Oriented Design Metrics to

Predict Software Defects," Proceedings of RELCOMEX 2010: Fifth International

Conference on Dependability of Computer Systems DepCoS, p. 69–81, 2010.

[13] J. Bansiy and C. G. Davis, "A Hierarchical Model for Object Oriented Design

Quality Assessment," IEEE, vol. 28, no. 1, pp. 4-16, 2002.

[14] F. Ruggeri, F. Faltin and K. R, "Bayesian Networks," in Encyclopedia of Statistics in

Quality & Reliability, Wiley & Sons, 2007.

[15] G. Biau, "Analysis of a Random Forests Model," Journal of Machine Learning

Research, pp. 1063-1095, 2012.

[16] L. Breiman, " Random forests," in Machine Learning, 2001, vol. 45, no. 1, pp. 5–32.

[17] S. Chawla, "Review of MOOD and QMOOD metric sets," International Journal of

Advanced Research in Computer Science and Software Engineering, vol. 3, no. 3,

pp. 448-451, 2013.

[18] R. E. Schapire, "The Boosting Approach to Machine Learning," Nonlinear

Estimation and Classification, pp. 1-16, 19 December 2001.

[19] S. B. Kotsiantis and P. E. Pintelas, "Logitboost of Simple Bayesian Classifier,"

Informatica 29, pp. 53-59, 30 November 2004.

[20] J. Yan, M. Koç and J. Lee, "A prognostic algorithm for machine performance

assessment and its application," Taylor & Francis Online, vol. 15, no. 8, pp. 796-

801, 2007.

[21] L. Breiman, "Bagging predictors," Machine Learning, vol. 24, pp. 123-140, 1996.

[22] R. Malhotra, "Comparative Analysis of statistical and machine learning methods for

predicting faulty modules," Appl. Soft Computing, vol. 21, pp. 286-297, 2014.

[23] R. Malhotra, A. Kaur and Y. Singh, "Empirical validation of object-oriented metrics

33 | P a g e

for predicting fault proneness at different severity levels using support vector

machines," Int. J. Systems Assurance Eng. and Management, vol. 1, no. 3, pp. 269-

281, 2010.

[24] Hall, M. 2007. Correlation-based feature selection for discrete and numeric class

machine learning. In Proceedings of the 17th Int. Conference on Machine Learning. pp.

359–366.

[25] Amit, Yali and Donald, Geman , "Shape quantization and recognition with

randomized trees" Neural Compuatation, MIT Press, vol. 9, no. 7, pp. 1545-1588,

1997.

