

Software Effort Estimation using Hybridized Search Based Techniques

Dissertation

Submitted in partial fullfillment of the requirement for award of the degree of

MASTER OF TECHNOLOGY

IN

SOFTWARE TECHNOLOGY

Submitted by

MOHIT PRASAD

(Roll No: 2K13/SWT/08)

MAJOR PROJECT II

(Paper Code: CO 821)

Under the Esteemed Guidance of

Dr Ruchika Malhotra

Associate Head & Assistant Professor,

Department of Computer Science & Engineering

DELHI TECHNOLOGICAL UNIVERSITY

SHAHBAD DAULATPUR, MAIN BAWANA ROAD, DELHI 110042

INDIA

ii

DELHI TECHNOLOGICAL UNIVERSITY

NEW DELHI

DECLARATION

I hereby declare that the project work entitled “Software Effort Estimation using

Hybridized Search Based Techniques” done by me under the guidance of Dr Ruchika

Malhotra, Associate Head & Assistant Professor, Department Of Computer Science &

Eng., Delhi Technological University and this project work is submitted in the partial

fulfillment of the requirements for the award of the degree of M.Tech in Software

Technology. The results embodied in this thesis have not been submitted to any

other University or Institute for the award of any degree or diploma.

 Date:

 Signature:

Mohit Prasad

2K13/SWT/08

iii

DELHI TECHNOLOGICAL UNIVERSITY

NEW DELHI

CERTIFICATE

This is to certify that the thesis entitled, “Software Effort Estimation using Hybridized

Search Based Techniques”, is a bona fide work done by Mr. MOHIT PRASAD in partial

fulfillment of requirements for the award of Master of Technology Degree in Software

Technology at Delhi Technological University (New Delhi) is an authentic work carried out by

him under my supervision and guidance. The matter embodied in the thesis has not been

submitted to any other University / Institute for the award of any Degree or Diploma to the best of

my knowledge.

 Date:

 Signature:

 Dr. Ruchika Malhotra

Department of Computer Science and Engineering

 Delhi Technological University

iv

ACKNOWLEDGMENT

I am presenting my work on “Software Effort Estimation using Hybridized Search

Based Techniques” with a lot of pleasure and satisfaction. I take this opportunity to thank my

supervisor, Dr Ruchika Malhotra, for guiding me and providing me with all the facilities, which

paved way to the successful completion of this work. This thesis work was enabled and sustained

by his vision and ideas. His scholarly guidance and invaluable suggestions motivated me to

complete my thesis work successfully. I would like to express my deep gratitude to my parents.

Their continuous love and support gave me strength for pursuing my dream. I am thankful to my

friends and colleagues who have been a source of encouragement and inspiration throughout the

duration of this thesis. I am also thankful to the SAMSUNG who has provided me opportunity to

enroll in the M.Tech Program and to gain knowledge through this program. This curriculum

provided me knowledge and opportunity to grow in various domains of computer science. Last

but not least, I am thankful to all the faculty members who visited the Samsung premises to guide

and teach. Their knowledge and efforts helped me to grow and learn in the field of computer

science. I feel proud that their contribution helped me to bring out new ideas in my professional

life. This project has provided me knowledge in the area of Software Cost Estimation and helped

me in understanding the application of Neural Network & Genetic Algorithm Techniques for

Software Effort Estimation.

Mohit Prasad

 2K13/SWT/08

v

ABSTRACT

Prediction of resource requirements of a software project is crucial for the timely delivery of

quality-assured software within a reasonable timeframe. Software effort estimation is the process

of prognosticating the amount of effort required to build a software project. Most cost estimation

models attempts to generate an effort estimation, which can then be mapped into project duration

and cost. Many conventional (model-based) and Artificial Intelligence (AI) oriented (model-free)

resource estimators have been proposed in the recent past. In this thesis two search based Effort

Estimation techniques are discussed .Firstly we evaluates a genetically trained neural network

(NN) predictor trained on historical data. Secondly, Particle Swarm Optimization (PSO)

technique which operates on data sets clustered using the K-means clustering algorithm. Hence

PSO and Genetic Algorithm (GA) based search techniques are employed to perform optimized

search in solution space.

The comparison of this new predictor is established using n-fold cross validation and Student’s t-

test. The data is obtained on various partitions of merged COCOMO data set and Kemerer data

sets incorporating data from 78 real-life software projects. PSO is employed to generate

parameters of the COCOMO (Constructive Cost Model) model for each cluster of data values.

The clusters and effort parameters are then trained to a Neural Network by using Back

propagation technique, for classification of data. Here we have tested the model on the COCOMO

dataset and also compared the obtained values with standard COCOMO model. By making use of

the experience from Neural Networks and the efficient tuning of parameters by PSO operating on

clusters, the proposed model is able to generate comparable results and it can be applied

efficiently to larger data sets.

It goes without saying that a predictor trained on historical data can only be as accurate as the

data set itself. Hence, there is a need to continue collection of data on diverse projects with wide

range of attributes to construct a sizable historical database for training neural predictors. Using

search based techniques to train NN; we are looking to overcome this limitation to possible

extent.

vi

vii

Table of Contents

Chapter 1. Introduction ... 1

1.1 Introduction .. 1

1.2 Motivation of Work... 3

1.3 Basic Of Work .. 4

Chapter 2. Literature Survey ... 5

2.1 Software Effort Estimation: A Survey of Current Practices .. 5

2.2 New Estimation approaches using Machine learning Techniques ... 6
2.2.1 Genetic Algorithm ... 7
2.2.2 Neural Network ... 9
2.2.3 Analogy Based Estimation ... 10
2.2.4 Case Based Reasoning ... 11
2.2.5 Particle Swarm Optimization ... 12
2.2.6 Hybrid Methodology ... 14

2.3 Process of estimation ... 15

2.4 Estimation Methods .. 16
2.4.1 Non-algorithmic Methods .. 16
2.4.2 Algorithmic methods ... 18
2.4.3 Cost Factors .. 18
2.4.4 Multiplicative models .. 19
2.4.5 Power function models .. 20
2.4.6 Model calibration using linear regression ... 22
2.4.7 Discrete models ... 22
2.4.8 Other models ... 23

Chapter 3. Research Methodology .. 24

3.1 Neural Network Training... 24

3.2 Genetic algorithm— A global optimizer .. 26

3.3 Clustering PSO Based Neural Network ... 27

3.4 Performance of estimation models - Fitness functions and accuracy statistics....................... 28
3.4.1 Accuracy statistics ... 28

viii

3.4.2 Fitness functions .. 29

Chapter 4. Proposed Work .. 31

4.1 Methodology I – Genetically Trained Neural Network ... 31

4.2 Methodology II - Clustering PSO Neural Network... 36

Chapter 5. Results & Analysis .. 38

5.1 Results of Clustering PSO Neural Network: .. 38

5.2 Results of Genetically Trained Neural Network ... 40

Chapter 6. Conclusion & Future Scope ... 44

References ... 45

ix

List of Figures

Figure 4.1 A neural network to be trained genetically .. 32

Figure 4.2 Chromosome representation of neural network in Fig 4-1 ... 33

Figure 4.3 The MRX genetic operator used for evolving neural predictor 34

Figure 4.4: Flow Chart showing genetic evolution of NN predictor for development effort 35

Figure 5.1: The evolutionary neural network architecture used for prediction of man-months

using Boehem’s attributes. .. 41

Figure 5.2: CPN Vs GANN ... 42

List of Tables

Table 5.1 : Measured Effort (ME) and Estimated Effort(CPN-EE).(Training) 39

Table 5.2: Measured Effort(ME) and Estimated Effort(CPN-EE).(Testing)................................ 40

Table 5.3: Comparison of actual and predicted effort using CPN & GANN methods 42

file:///D:/Pallavi/mohit/Mtech/Sem%206/Major%202/Report/Version%207/Mohit_Prasad_2K13_SWT_08_V6.docx%23_Toc457561058

1

Chapter 1. Introduction

1.1 Introduction

Recently, the most expensive part of system software projects has been software. Human

effort is majority of this software development cost, and this aspect of most cost estimation

methods is main focus and provides estimates in terms of person-months.

It is very important for both customers and developers to have accurate cost estimates.

Contract negotiations, proposals, monitoring, scheduling, and control request can be generated

using it. Underestimation of the costs may result in management providing approval to proposed

systems that might exceed allocated budgets, with under-developed functions and inferior quality,

and it may fail to complete timely. Overestimating the software projects may lead to extra assets

allocated to the project, or, during bidding of contract, may results in losing the contract, which

can finally lead to job loss.

Accurate cost estimation is important because:

 It supports to prioritize and classify the development projects with respect to an

comprehensive business plan.

 It is used to identify the resources to be used for the project and how well these

assets will be utilized.

 Impacts of changes are assessed and re-planning is facilitated.

 Control and management of project is easier when resources are compatible to

actual needs.

 Customers expect least deviation between actual development costs and

estimated costs.

 Software cost estimation involves the identification of one or more of the

following parameters:

 Duration of projects in calendar time

 Effort which is usually measured in person-months

 Cost in dollars

Most cost estimation models attempts to generate an effort estimation, which can then be

mapped into project duration and cost. Even though effort and cost are closely related, they may

not be necessarily mapped by a simple equation. Effort is mostly measured in person-months of

2

the analysts, developers and project managers. The effort estimate can be mapped into a dollar

cost figure by evaluating an average salary per unit time of the staff involved, and then

multiplying this by the estimated effort needed.

Practitioners have struggled with three fundamental issues:

 Which software size metric to use – function points (FP), lines of code (LOC), or

feature point?

 Which Software cost estimation method or model should be used?

 What is measure of accuracy?

The widely followed cost estimation method is judgment of an expert. For many years,

project managers have been dependent on experience and the existing industry trends as a basis to

develop cost estimates. However, making estimates on expert judgment is error prone:

 It is tricky to find highly experienced estimators each time for a new project.

 This approach is unrepeatable and the means of deriving an estimate are not very

specific.

 Relationship between system size and cost size is non linear. Cost tends to

increase exponentially with respect to size. The expert evaluation method is

relevant only in case of historical similarity of projects.

 Budget modifications by management targeted at minimizing over-estimates

make experience and data from previous projects questionable.

In the last few decades, several quantitative software cost estimation models have been

designed. It ranges from Analytical models such as those in [2] [3] to Empirical models such as

Boehm’s COCOMO models [1]. In empirical models, data from previous projects are used to

evaluate the current project and basic formulae are derived from analysis of the available

database. On the other hand, mathematical formulae based on global assumptions are used by

analytical model, like developer’s problem solving rate and the number of problems available.

Majorly size estimation is based on size measures such as LOC and FP, which are used to

derive cost models. Size estimation accuracy is proportional to cost estimation accuracy.

However there are common drawbacks of size measurements, an organization can make good use

of any one, as long as the counting method which is used is consistent.

A good software cost estimate should have the following attributes [4]:

3

 Based on a well-defined and tested software cost model.

 Supported and Conceived by the project manager and the software development

team.

 It is based on project experience of relevant databases (similar processes, similar

technologies, similar environments, similar people and similar requirements).

 All stakeholders accept it as realizable

 Defined in sufficient detail so that learning of related key risk areas is developed

and the possibility of success is objectively evaluated.

Historically, Software cost estimation has been a major challenge in software

development. Several points recognized for this difficulty are:

 Lack of cost measurement based historical database

 Software development involving many inter-related factors, which affect

development effort and productivity, and whose relationships are not well

understood

 Dearth of trained estimators with the required knowledge

 On poor estimate associated penalty is often little

1.2 Motivation of Work

Reasonably accurate prediction of software development effort has a profound effect on

all stages of the software development cycle. Underestimates of resource requirements for a

software project lead to:

(a) Underestimation of the cost;

(b) Unrealistic time schedule;

(c) Considerable work pressure on the engineers; and

(d) Compromises in development methodology, documentation and testing.

On the other hand, overestimates are likely to cause:

(a) A lost contract due to prohibitive costs;

(b) Over allocation of engineers to the project leading to constraints on other projects;

(c) Low productivity levels of engineers; and

(d) Easy-going work habit in the organization.

4

Resource requirement prediction for software projects is, therefore, an active research area.

Various conventional model-based methods have met with limited success, whereas, intelligent

prediction using neuro-computing has proven its worth in many diverse application areas [5].

McCullagh [6] have used neural network (NN) to estimate rainfall in Australia and have reported

results superior to conventional model-based approach. As compiled by [7] NN predictors are

playing major roles in diverse applications and are being successfully applied to load forecasting,

medical diagnosis, communications, robot navigation, software production etc.

Recently, software engineers have started using NNs in various stages of software production

with significant success.

1.3 Basic of Work

Two Hybrid Search Based Method of software cost estimation proposed in this thesis are

briefly summarized below:

A. This thesis explains a new genetically trained neural network (NN) predictor trained on

historical data. We demonstrate substantial improvement in prediction accuracy by the

neuro-genetic. The superiority of this new predictor is established using n-fold cross

validation and Student’s t-test on various partitions of merged COCOMO and Kemerer

data sets incorporating data from 78 real-life software projects.

B. In this methodology we have proposed a Particle Swarm Optimization (PSO) technique

which operates on data sets clustered using the K-Means clustering algorithm. PSO is

employed to generate parameters of the COCOMO model for each cluster of data values.

The clusters and effort parameters are then trained to a Neural Network by using Back

propagation technique, for classification of data. Here we have tested the model on the

COCOMO 81 dataset and also compared the obtained values with standard COCOMO

model. By making use of the experience from Neural Networks and the efficient tuning of

parameters by PSO operating on clusters, the proposed model is able to generate better

results and it can be applied efficiently to larger data sets.

5

Chapter 2. Literature Survey

2.1 Software Effort Estimation: A Survey of Current Practices

Before 1970, Trial and error thumb rules or some algorithms were used for effort

estimation [1]. Construction of Computerized Software estimation tools was done in1970 as it

was a crucial period to predict the expenses and plan for software development. When developing

large software systems many difficulties were experienced. Around mid 1970's the first

automated s/w approximation tool which was developed was flesh. The prototyping composite

model is COCOMO (Constructive Cost Model) developed by Barry Boehm and is portrayed in

book Software Engineering Economics [1]. In 1975, A new approach based on Function Point

Analysis was developed for size estimation and development effort [8], based on five different

features named as Inputs, Output, Logical Files, Inquires, Interfaces. Putnam [9] introduced

SLIM (Software Life Cycle Model) , based on Norden Rayleigh Curve ,to US-Market in 1979. In

1983, DOD (U.S. Department of Defense) introduced Ada Programming language to build Ada-

COCOMO model which reduced developing cost of large systems [10]. In 1981, Dr. Barry

Boehm, through his book ―Software Engineering Economics [1], introduced the essential

algorithms of Constructive Cost Model (COCOMO).

During the same period, an article on FPA method was published by Albrecht, which

emphasized the rules for rating the complexity of software. In 1982, Tom de Marco developed a

independent functional metric that inherited few of the features of Albrecht’s function point. He

published a book, controlling software projects, for introducing this metric. In 1983, British

software estimating researcher Symons [11] introduced a Mark II function point metric. In 1984

function point metric was revised majorly by IBM and the revised version became basis of

today’s function points. 1985, Jones [12] extended the concept of computationally complex

Function Point algorithms. In 1986, Fast developing utilization of Function Point Metrics, IFPUG

(International Function Point Users Group) was founded in Toronto, Canada. In 1990, Barry

Boehm, at college of Southern California started to revise and expand the idea of original

COCOMO model. In 1991, Due to expanding need of creating control program advancements,

various techniques and tools were created by Genuchten and Koolen [13]. In year 1993, newer

COCOMO 2.0 version was introduced which was popularized in 1994 [14]. In 1994, Banker et

al.[15], thought software development as a economic production process as that it was helpful for

expense estimation and profit assessment purposes. In 1996, from the early system specifications

6

Cockcroft [16] found accurate size estimations. In 1997, accuracy techniques were focused on

and there was review of existing models. In 1998, to give predictions of the resources (effort,

time, people and cost) [17], a new model called MARCS was constructed by Chatzoglou. In

1999, Genetic Programming (GP) was explored by Dolado [18] for possible cost functions. In

2001, new methodology was envisaged which was building on analogy based reasoning and it

utilized linguistic quantifiers for effort estimation [19].

2.2 New Estimation approaches using Machine learning Techniques

A variety of machine learning (ML) methods have been used to predict software

development effort. Good examples include Artificial Neural Nets (ANNs) [20] [21], Case Based

Reasoning (CBR) [22, 23] and Rule Induction (RI) [20]. Hybrids are also possible, e.g. Shukla

[24] reports better results from using an evolving ANN compared to a Standard back propagation

ANN. Dolado and others [18, 25] analyze many aspects of the software effort estimation problem

and present encouraging results for a genetic programming (GP) based estimation using a single

input variable. Burgess and Lefley [26] also had some success using GP based estimation. One

characteristic to all ML methods is the need for training data. However, recent software

engineering research has found that shared or public data sets are much less effective than

restricting the prediction system to potentially very few local cases [27, 28]. The issue at stake is

whether a company can improve prediction accuracy by incorporating results from other

companies. Generally the more data available to a learner, the better it can model behavior.

However, no matter how good the control, some metrics are likely to be measured differently

across companies and the working environments may have a marked difference. Thus there will

be some distortion of the models accuracy. The results reported by [27, 28] for non-evolutionary

models found the larger data sets to provide less accurate estimates. This suggests that companies

should only use their own data, assuming they have sufficient examples close to a new case to

make an estimate. Their research used models based on regression, robust regression,

Classification & Regression Tree (CART), stepwise Analysis of Variance (ANOVA) and analogy

based estimation. Genetic programming offers an evolutionary solution to estimation problems

that may better take into account the source of data. For example a variable indicating in house or

7

external could be used as a multiplier to ignore data from outside sources and so has the potential

to build a prediction system at least as accurate as one based on only internal data.

2.2.1 Genetic Algorithm

Darwin’s Natural Selection Theory shows that individuals that better adapt to the

environment have a greater chance of surviving and passing their genetic characteristics to their

offspring. Genetic Programming (GP) is the use of the Natural Selection Theory in computers, to

automatically generate programs. It was presented by Koza [29], based on the idea of Genetic

Algorithms introduced by Holland [30].

Instead of a population of beings, in GP there is a population of computer programs. The

main goal is to naturally select the program that better solves a given problem. In order to do that,

the algorithm starts with a random population and, generation after generation, applies genetic

operators that simulate the evolution process.

The first step of the evolution process is to randomly generate an initial population. Then,

the algorithm enters a loop that is executed, ideally, until a desired solution is found. This loop

consists of two major tasks:

 evaluation of each program, by the use of a special heuristic function that shows

how close each one is to the ideal solution; and

 creation of a new population by selecting individuals based on their fitness and

by applying the basic genetic operators: reproduction, crossover and mutation.

Each time this loop is executed, a new generation of computer programs is

created.

In real life, the evolution process is never-ending, but in computing, time and resources

are limited, making it necessary to establish a termination criterion that will interrupt the process.

The following topics focus on each major task of the algorithm.

 Program Structure: A tree is the most straightforward structure for representing

programs in GP. Each node within the tree can either be a function or a terminal.

A terminal has its own value, while a function has to be evaluated considering its

parameters. The user provides functions and terminals set according to the

problem.

8

 Fitness Function and Selection: In nature, individuals are selected based on how

well they fit to the environment. In GP the entity that reflects this degree of

adaptation is the fitness function. The programs that better solve the problem at

hand will receive a better fitness value, and will consequently have a better

chance of being selected. The choice of a fitness function and an evaluation

method depends on the problem. An adequate choice is essential to provide good

results.

 Genetic Operators: Once the individuals are selected, it is time to apply one of

the three basic genetic operators:

1) Reproduction: an individual is replicated to the next generation;

2) Crossover: two programs are recombined to generate two offspring potentially

different; and

3) Mutation: a new sub-tree replaces a randomly selected part of a program.

 Parameters: The behavior of the algorithm is determined by a set of parameters

that, among other things limit and control how the search is performed. Some of

them are: genetic operators rates (crossover rate, mutation rate), population size,

selection rate (tournament size), maximum depth of the individual, etc.

Application of GP in various types of Cost Estimation

A) Analogy weights Optimization [31] by genetic algorithm for software effort estimation: An

analogy-based software effort estimation model is the process of identifying one or more

historical projects which are similar to the project to be developed, and then deriving an

estimate from them.

B) Dolado [18] applied an extension of GA to the problem of software size estimation to

investigate software size functions. Equations derived from this evolutionary method can be

considered an alternative to multiple linear regressions.

C) Dolado [32] also applied this method to the problem of software cost estimation for exploring

possible software cost functions. The GA explores a larger set of potential equations without

9

some assumptions about data distribution, instead deriving equations according to fitted

values only.

D) Burgess and Lefley [26] extended this idea to richer models, requiring larger populations and

much longer learning lifetimes. The proposed method provides significant improvements in

accuracy when compared to other methods

E) Shukla [24] applied GA to neural network predictor in order to improve estimation capability.

The hybrid method is less sensitive to weight initializations in neural network and has

excellent generalization ability when trained with historical data.

2.2.2 Neural Network

Neural networks techniques are a mathematic model inspired in the neural structure of

intelligent organisms that acquire knowledge by the experience. The network is composed by

processing units, neurons, that are linked by communication paths. This connection is associated

with a synaptic strength or weight value. In a neural network, the program is distributed across

the network and stored at the synapses of each neuron. During the learning phase, synaptic

weights and threshold values are adjusted until they yield the de- sired outputs. At the end, the

obtained weight and threshold value of each neuron constitute the network’s program and the

solution to the problem.

 Topology: a typical topology for structuring the neurons is called as multi-

layer neural network. Based on this topology, the layer from which the output

response is obtained is the output layer. Intermediate layers are called hidden layers

because their outputs are not readily ob- servable. In this kind of net, the information

flows from the input layer to the output layer without return cycles (feed-forward

topology).

 Learning algorithm: there are different learning algorithms; the most known is

the back-propagation learning algorithm. This algorithm has two major steps:

The input is presented to the input layer and propagated until to the output layer, and

the output is compared to the desired one and the error is calculated. The error is then

used to update the weights in the output layer.

Then the algorithm continues calculating the error and com-putting new weight values,

moving layer by layer backward, toward the input. The steps mentioned are repeated for each

10

available input and constitute an epoch. Several epochs may be necessary to reach a steady state

and to obtain the solution.

 Parameters: the user has to choose the topology of the net, that is, to determine the

number of layers and neurons by layer and the function associated to them. Other

parameters are related to the learning algorithm and are: a termination criterion, the

learning rate, the initial weight values. To start the process a set of training patterns

(input and desired outputs) is necessary.

Current work using NN in various types of Effort & Cost Estimation:

A) The proposed approach consists of a hybrid artificial neuron based on framework of

mathematical morphology (MM) with algebraic foundations in the complete lattice theory

(CLT), referred to as Dilation-Erosion Perceptron (DEP) [33].

B) An evolutionary morphological approach for software development cost estimation by

Araújo, Oliveira [33]

C) Neuro-genetic prediction of software development effort by N N Shukla [24].

D) Exploring Machine Learning Techniques for Software Size Estimation by Araújo, Oliveira

[34].

2.2.3 Analogy Based Estimation

An analogy-based software effort estimation model is the process of identifying one or

more historical projects which are similar to the project to be developed, and then deriving

an estimate from them. A study of nearly 600 organizations reported that analogy is the most

widely used estimation method in the software industry [35]. Users may be more willing to accept

solutions from analogy-based systems since they are derived from a form of reasoning which is

more akin to human problem solving as opposed to the somewhat arcane chains of neural nets.

This advantage is particularly important if the systems are to not only be deployed but also be

analyzed to determine the reasoning processes behind them. Most of the existing analogy-based

software effort estimation models adopt unweighted similarity measures for each effort driver

[36, 37]. Essentially, the relevant effort drivers should be given significant weights in similarity

measures. Nevertheless, applying analogy to estimate software development effort poses a

problem in determining what effort drivers are available and which ones are significant. When

designing a new analogy-based system, a model builder should first identify the effort drivers of a

11

software project that are believed to be significant when determining the similarity of software

projects [38]. The weight of an effort driver needs to be increased when such an effort driver is

significant in the process of determining the similarity between a pair of projects. In this regard,

one strategy for specifying significant effort drivers is to build a learning mechanism whose

algorithm can derive the optimal importance of various effort drivers.

Genetic algorithm (GA) is a searching technique based on the mechanism of natural

evolution of species. It has been used for solving optimization problems in many fields [39]. In

the present paper, we evaluate the potential benefits of applying GA to analogy-based software

effort estimation models. GA is used in analogy learning processes to derive suitable effort driver

weights for similarity measures. The present paper investigates three different weighted analogy

methods—the unequally weighted, the linearly weighted and the nonlinearly weighted, to

compare the effect on the accuracy of the software effort estimates. The unequally weighted

analogy method uses GA in order to derive different values for the similarity measure weights for

effort drivers.

The linearly weighted analogy method uses GA to derive the similarity measure weights

using various linear equations for effort drivers. The nonlinearly weighted analogy method uses

GA to examine the diverse nonlinear equations of the similarity measure weights for effort

drivers. These methods are applied to derive the similarity measure weights for effort drivers in

analogy-based software effort estimation models.

Related Work using Analogy Based Methodology are:

1. Optimization of analogy weights by genetic algorithm for software effort estimation

By Chui & Huang [40].

2. The adjusted analogy-based software effort estimation based on similarity distances

By Chui & Huang [31].

.

2.2.4 Case Based Reasoning

A number of research groups have been investigating applying CBR to software project

12

prediction since the mid 1990s [41, 42]. The basic approach is that each completed project is

considered as a separate case and added to a case base. Each case is characterized by n features

which might be continuous, discrete or categorical. Example features might include the number

of interfaces, the level of code reuse and the design method employed. Clearly, a restriction is

that these features must be known (or reliably estimated) at the time of prediction. A new project,

for which a prediction is required (known as the target case), is also characterized by the same

feature set and plotted in standardized n-dimensional feature space. Distance, usually a modified

form of Euclidean distance is used to identify the most similar cases to the target and these, since

they have known values for effort, etc., are used as the basis of the prediction. For a thorough

review of CBR the reader is referred to [43]. There have been some differences in approach, for

instance Prietula et al. make substantial use of adaptation rules whilst our work is closer to a k

nearest neighbor (k-NN) method. We believe our approach to have the advantage of being more

flexible since we are not restricted to a particular set of features which is a requirement for

adaptation rules. This flexibility enabled us to develop ANGEL, a software estimation CBR tool

that has a shell structure that can deal with arbitrary sets and types of features. Features are re-

scaled so that the influence of a feature is not related to the choice of unit. This is achieved by

normalizing the using the difference between maximum and minimum observed values as a

denominator. For more details [42]. In general the results have been sufficiently encouraging —

we found that ANGEL performed as well or better than a stepwise regression model across 9 data

sets [42] to generate significant interest.

Related Work using CBR Based Methodologies are:

1) Integration of the grey relational analysis with GA for software effort estimation by Chui

& Hwang [44]

2) Search Heuristic, CBR & Software Project Effort Prediction by Krissop[45]

3) A study of mutual information based feature selection for case based reasoning in

software cost estimation by Y.F. Li *, M. Xie & T.N. Goh [46]

2.2.5 Particle Swarm Optimization

Particle swarm optimization (PSO) belongs to evolutionary computation technology, in

1995, Eberhaet and. Kennedy proposed it [49], and this algorithm was derived from researching

13

on the predation of bird flock. Besides, PSO is a research based on population, and this

population includes lots of particles where each particle represents a solution of an optimization

problem. Like other evolution computation technology, these particles are always initialized

randomly. This algorithm optimizes the search of swarm intelligence guidance through the

collaboration and competition between particles. The equation of motion of particle insides the d

dimension is showed below.

Equation (a)

(in the original method, c0=1, but many researchers now play with this parameter)

Equation (b)

The first term on the right hand side of the equation above is corresponding to the

momentum which represents the particles‟ current status. The second and third terms are

corresponding to the intensification during the searching process. Particles are moving to the

target point by analyzing self-information and group information until it satisfied the terminal

condition.

The steps of PSO shows below: first, initialize the particle population randomly and

initialize the location and velocity of each particle. Second, define the fitness function based on

the goal of optimization problem, evaluate the fitness of all particles and update the optimal

location of each particle from the population. Third, update the new population optimal location

according to the fitness value. Finally, iterate the location and velocity of each particle, redo the

steps above until it satisfy the iteration terminal condition of this algorithm and give the output of

group optimal location.

However, when solving some complex optimal problems, PSO also has the phenomenon

of premature convergence. Hence scholars try to improve the evolutionary mechanism and the

optimal performance of PSO recent years. Naka proposed a HPSO method which can be applied

into distribution state estimation. It uses the mechanism of natural selection, replacing the

particles whose fitness values are low by using those are high in order to make them enter a more

14

efficient searching area. This can estimate the state of target system more precisely by comparing

with the traditional PSO algorithm, and even if there may still have some measuring errors, this

method can estimate the system state better than others. Huang and Mohan [50] proposed a

simple and convenient micro particle swarm algorithm (μPSO), it can be competent a kind of

PSO algorithm which has a huge group data by only using a small number of population when

considering some high-dimensional optimization problems. Experiments indicate that its

calculated amount is less than traditional PSO algorithm significantly when calculating the fitness

functions. [10] Ren proposed a method which combines PSO algorithm with BP algorithm, that

defines elite particles, and trains the neural network by using a hybrid cross method to give higher

accuracy and faster convergence speed of network learning process.

Related Work using PSO are:

1) Applying Particle Swarm Optimization to Estimate Software Effort by Multiple Factors

Software Project Clustering by Lin & Tzeng [51]

2) CPN-A Hybrid Model for Software Cost Estimation by Hari [52]

3) Improving the Accuracy in Software Effort Estimation Using ANN Model Based on PSO

by Zhang Dan [53]

4) Evaluating software cost estimation models using PSO and fuzzy logic for

NASA projects: a comparative study by Sheta, Ayesh & Rine

2.2.6 Hybrid Methodology

 Recent years, the software industry is growing rapidly and people pay more attention on

how to keep high efficiency in the process of software development and management. In the

process of software development, time, cost, manpower are all critical factors. At the stage of

software project planning, project managers will evaluate these parameters to get an efficient

software develop process. Software effort evaluate is an important aspect which includes amount

of cost, schedule, and manpower requirement. Hence evaluate the software effort at the early

phase will improve the efficiency of the software develop process, and increase the successful

rate of software development.

Many models are developed with combination of one of the above ML methods

15

A) ANN with PSO

Artificial neural network (ANN) prediction model that incorporates with Constructive

Cost Model (COCOMO) which is improved by applying particle swarm optimization (PSO),

PSO-ANN-COCOMO II, to provide a method which can estimate the software develop effort

accurately. The modified model increases the convergence speed of artificial neural network and

solves the problem of artificial neural network’s learning ability that has a high dependency of the

network initial weights.

B) ANN with GP

The idea is to obtain an equation to estimate LOC for each mentioned approach (FP and

NOC), using Genetic Programming (GP) and Neural Networks (NN). The main motivation to

choose these techniques for this task is their capability of learning from historical data,

discovering a solution with different variables and operators, being robust with respect to noisy

data.

2.3 Process of estimation

Effort estimation is an important part of the planning process. For example, the project

plan is derived using cost estimate in the top-down planning approach:

1. The project manager build a description of the overall functionality, size, process,

environment, people, and quality required for the project.

2. Using software cost estimation model, a macro-level estimate of the total effort and

schedule is designed.

3. Partitioning of the effort estimate into a top-level work breakdown structure is done by

project manager. In order to form a project plan, he also partitions the schedule into

major milestone dates and identifies a profile of its manpower.

The real cost estimation process is defined in seven steps [5]:

1. Objectives of cost-estimation is established

2. A project plan is developed for required data and resources

3. Software requirements are freeze

16

4. All feasible Details about Software system was worked out.

5. Various independent cost estimation techniques were applied collectively to capitalize

on their overall strengths

6. Measure the similarity between different estimates and repeatedly iterate the estimation

process

7. After the project has started, monitor its actual cost and progress, and feedback results to

project management

Irrespective of which estimation model is chosen, attention must be paid by the users to the

following points to get the best results:

 coverage of the estimate (some models generate effort for the full life-cycle, while others

do not include effort for the requirement stage)

 tuning and assumptions of the model

 Influence of the estimates to the different parameters of models

 deviation of the estimate with respect to the actual cost

2.4 Estimation Methods

Two major types of cost estimation methods are non-algorithmic and algorithmic.

Algorithmic models vary extensively in mathematical sophistication. Some are based on simple

arithmetic formulas using such summary statistics as standard deviations and means [9]. Others

are based on regression models [38] and differential equations [30]. To improve the accuracy of

algorithmic models, there is a need to adjust or calibrate the model to local circumstances. These

models can’t be used over-the-shelf. Even with calibration the accuracy can be mixed quietly.

Non-algorithmic methods are briefed below:

2.4.1 Non-algorithmic Methods

Analogy costing: This method need one or more projects which are completed and are

similar to the new project and derives the estimation using the actual costs of previous projects

through reasoning by analogy. Analogy based estimation can be done either at the total project

level or at each subsystem level. The total project level has the advantage that all cost

components of the system will be considered while the subsystem level has the advantage of

17

providing a more detailed assessment of the differences and similarities between the new project

and the completed projects. The key strength of this process is that estimate is based on real

project experience. However, it is not very clear up to what extend the previous project is actually

effective on the constraints, environment and functions to be performed by the new system. In

[33] Positive results and a definition of project similarity in term of features were reported.

Expert judgment: This method includes consulting experts. The experts provide

estimates applying their indigenous methods and experience. Expert-consensus mechanisms such

as Delphi technique or PERT will be used to resolve the inconsistencies in the estimates.

The Delphi technique works as follow:

1) The coordinator provides each expert with a specification and a form to make estimation

records.

2) Form is filled by each expert individually (without discussing with others) and questions are
allowed to coordinator only.

3) A summary of all estimates provided by experts is prepared (including mean or median) on a

form requesting another round of the experts’ estimates and the objective for the estimates.

4) Repeat steps 2)-3) as many rounds as appropriate.

A derivation of the Delphi technique proposed by Boehm and Farquhar [5] seems to be

more effective: Before the estimation, a group meeting involving the coordinator and experts is

arranged to discuss the estimation issues. In step 3), the experts do not need to give any rationale

for the estimates. Instead, after each round of estimation, the coordinator calls a meeting to have

experts discussing those points where their estimates varied widely.

Price-to-win: The software cost is calculated to be the best price to get the project. The

estimation basis is customer's budget instead of the software functionality. For example, if an

approximate estimation for a project costs 100 person-months but the customer can only afford

60person-months, it is norm that the estimator is asked to modify the estimation to fit 60 person-

months’ effort in order to win the project. This is again not a good practice since it is very likely

to will lead to a delay of delivery or cause overtime for the development team.

Parkinson: Using Parkinson's principle “work expands to fill the available volume” [28],

Available resources determine the cost (not estimated) instead of an objective assessment. In case

software has to be delivered in 11 months and 5 people are allocated, the calculated effort is

18

estimated to be 55 person-months. Although it sometimes gives good estimation, this method is

not recommended as it may provide very unrealistic estimates. Also, this method does not

promote good software engineering practice.

Top-down: An overall cost estimate for the system is derived from global properties,

using either algorithmic or non-algorithmic methods. The total cost can then be split up among

the various components. This approach is more suitable for cost estimation at the early stage.

Bottom-up: This approach is the opposite of the top down method. In this approach,

each software system component is estimated separately and the results aggregated to produce an

overall system estimate. The requirement for this approach is that an initial design must be in

place that indicates how the system is decomposed into different components.

2.4.2 Algorithmic methods

The algorithmic methods are based on mathematical models that develop cost estimate as

a function of a number of variables, which are considered to be the major cost factors. Any

algorithmic model has the form:

Effort = f(x1, x2, …, xn)

where {x1, x2, …, xn} denote the cost factors.

The existing algorithmic methods differ in two aspects: the form of the function f and the

selection of cost factors. Firstly cost factors used in these models are discuss, then characterize

the models according to the form of the functions and whether the models are empirical or

analytical.

2.4.3 Cost Factors

In addition to software size, there are many other cost factors. The most comprehensive

set of cost factors are proposed and used by Boehm et al in the COCOMO II model [14]. These

cost factors can be divided into four types:

19

Product factors: required reliability; database size used; product complexity; required

reusability; documentation match to life-cycle needs;

Computer factors: execution time constraint; main storage constraint; computer

turnaround constraints; platform volatility;

Personnel factors: analyst capability; programming capability; application experience;

platform experience; personnel continuity; language and tool experience;

Project factors: multisite development; use of software tool; required development

schedule. The above factors are not necessarily independent, and most of them are hard to

quantify. In many models, some of the factors appear in combined form and some are simply

ignored. Also, some factors take discrete values, resulting in an estimation function with a piece-

wise form.

2.4.4 Multiplicative models

These models use the coefficient values that are best for the completed project data. Following

models are considered to be multiplicative model.

Walston & Felix Model This model was developed by Walston and Felix at IBM Federal

Systems to measure the rate of production of lines of code. The model estimates the total man-

months of effort as a function of the line of code to be produced [58] and also estimates pages of

documentation, duration of development in calendar months, average staff size and cost of

development with respect to computer time [59]. The model was a result of statistical analysis of

historical data derived from a database of 60 different projects that ranged from “…4,000 to

467,000 LOC, and from 12 to 11,758 person-month effort… 28 high-level languages, and 66

computer systems and were classified as small less-complex, medium less-complex, medium

complex, and large complex systems”[81].

Based on their collected data they investigated 68 variables that may affect the

productivity measures. Out of those 68 variables, they selected most significant 29 factors that are

associated with productivity. These factors were used to calculate the productivity index, which

was computed in a linearly regression fashion to obtain an equation for estimating productivity of

new projects [81][31]. Out of the nine equations used by this model, one relationship of the form

20

E = aL
b

was used to estimate effort, where L is the number of lines of code, in thousands, and E

is the total effort required in person-months. The equation obtained after deriving values for

parameters a and b was [11][31]. E = 5.2 L
0.91

This model has not provided a distinction between comments and program instructions,

consequently the effort for both was assumed to be same. Limited availability of this model has

restricted its use or recalibrations across the organizations. The reliability of this model is

questioned by different researchers and due to other weaknesses this model is probably not in

practice any more.

Doty Model associates with US air force sponsor ship incorporated this manual model in

1976/77 [11] [59]. This model is used to compute total person-months of development effort,

development cost, and time, overhead cost of computer time, documentation and travel. Four

application areas (i) command and control (ii) scientific (iii) business (iv) and utility are covered

with the help of different equations. 14 environmental factors are also proposed in this model

[table III in [72]], however their use is optional [59]. The expression used to compute effort in

man Months MM for any general application is discussed as [72].

MM = 5.288 (KDSI)
1.047

 for KDSI ≥ 10

MM = 2.060 (KDSI)
1.047

 x (effort Multipliers Fi) for KDSI < 10.

2.4.5 Power function models

Power function models have the general form:

 Effort = a×S x b ---- Equation 1

where S is the code-size, and a, b are (usually simple) functions of other cost factors. This class

contains two of the most popular algorithmic models in use, as follows:

COCOMO (Constructive Cost Model) models

This family of models was proposed by Boehm [4, 5]. The models have been widely accepted in

practice. In the COCOMOs, the code-size S is given in thousand LOC (KLOC) and Effort is

in person-month.

21

 Basic COCOMO. This model uses three sets of {a, b} depending on the complexity of the

software only:

(1) for simple, well-understood applications, a = 2.4, b = 1.05;

(2) for more complex systems, a = 3.0, b = 1.15;

(3) for embedded systems, a = 3.6, b = 1.20.

The basic COCOMO model is simple and easy to use. As many cost factors are not considered, it

can only be used as a rough estimate.

Intermediate COCOMO and Detailed COCOMO. In the intermediate COCOMO, a nominal

effort estimation is obtained using the power function with three sets of {a, b}, with

coefficient a being slightly different from that of the basic COCOMO:

(1) for simple, well-understood applications, a = 3.2, b = 1.05

(2) for more complex systems, a = 3.0, b = 1.15

(3) for embedded systems, a = 2.8, b = 1.20

Then, fifteen cost factors with values ranging from 0.7 to 1.66 (see Table 1) are determined [5].

The overall impact factor M is obtained as the product of all individual factors, and the estimate is

obtained by multiplying M to the nominal estimate.

While both basic and intermediate COCOMOs estimate the software cost at the system level, the

detailed COCOMO works on each sub-system separately and has an obvious advantage for large

systems that contain non-homogeneous subsystems.

COCOMO II. Perhaps the most significant difference from the early COCOMO models is that

the exponent b changes according to the following cost factors: precedentedness, development

flexibility, architecture or risk resolution, team cohesion, and process maturity. Other differences

include newly added cost factors and models for solidifying software architecture and reducing

risk.

Putnam's model and SLIM

22

Putnam derives his model based on Norden /Rayleigh manpower distribution and his finding in

analyzing many completed projects [30]. The central part of Putnam's model is called software

equation as follows:

S = Ck *K
1/3

 td
4/3

where td is the software delivery time; E is the environment factor that reflects the development

capability, which can be derived from historical data using the software equation. The size S is in

LOC and the Effort is in person-year. Another important relation found by Putnam is

Effort = D0 × td
3

Where Do is a parameter called manpower build-up which ranges from 8 (entirely new software

with many interfaces) to 27 (rebuilt software).

Putnam's model is also widely used in practice and SLIM is a software tool based on this model

for cost estimation and manpower scheduling.

2.4.6 Model calibration using linear regression

A direct application of the above models does not take local circumstances into

consideration. However, one can adjust the cost factors using the local data and linear regression

method. We illustrate this model calibration using the general power function model: Effort

= a×Sb. Take logarithm of both sides and let Y = log(Effort), A = log(a) and X = log(S). The

formula is transformed into a linear equation:

Y = A + b×X

Applying the standard least square method to a set of previous project data {Yi, Xi: i =1, …,k},

we obtain the required parameters b and A (and thus a) for the power function.

2.4.7 Discrete models

Discrete models have a tabular form, which usually relates the effort, duration, difficulty and

other cost factors. This class of models contains Aron model [3], Wolverton model [39], and

Boeing model [4]. These models gained some popularity in the early days of cost estimation, as

they were easy to use.

23

2.4.8 Other models

Many other models exist and the following have been used quite successfully in practice.

Price-S is proprietary software cost estimation model developed and maintained by RCA, New

Jersey [27]. Starting from an estimate of project size, type and difficulty, the model computes

project cost and schedule.

SoftCost relates size, effort and duration to address risk using a form of the Rayleigh probability

distribution [36]. It contains heuristics to guide the estimators in dealing with new technology and

complex relations among the parameters involved.

24

Chapter 3. Research Methodology

3.1 Neural Network Training

For effort prediction we have used a multi-layered feed forward NN with 39 input

neurons, each neuron corresponding to one of Boehm’s features [1], hidden layers of neurons to

develop the desired mapping and 1 output neuron corresponding to the predicted effort in person-

months. Our NN model uses a weight vector W, indexed over the arcs A of the network N. .V;

A.; which contains no directed cycles. Here V and A are the set of vertices and arcs in the graph

defining the NN. We consider real-valued weights, thresholds and exemplars, and sigmoid

activation function. The NN must learn to compute a vector-to-vector mapping H (W), defined as

follows:

When the immediate predecessors of a node v have computed their outputs, then v

computes its output according to the rule:

 (1)

.

We use a pseudo node with output fixed at +1, and weights connecting it to all hidden

and output units to model the neuron threshold parameter. With this arrangement, the dimension

of the input vector is increased by one, the last component being +1. When the neurons compute

the weighted sum of inputs, the threshold effect is modeled by the last element of the weight

vector, which is the weight of the link connecting the pseudo node to neuron. Thus, the

augmented weight vector W includes the threshold parameters.

Our notations generally follow Ref. [54] . Given a network N .= (V;A). and weight vector

W defined on the arcs A, we use N(W) to denote a network with weight vector W, and N to

denote the family (or all architectures) of possible networks N(W) indexed over all possible

weight vectors W. V denotes the set of nodes in the input layer. V1, V2, V3,…, etc. denote sets of

nodes in higher layers (hidden, or output layers).

Training set Ƭ for an architecture N is defined as a finite set of ordered pairs:

Ƭ = {(Xt ;Yt.)| t . 1; 2; 3;…; T} (2)

Here, Xt is the input vector and Yt is the corresponding output vector.

25

In general, Xt and Yt may have different dimensions. For example, in the present case,

software effort prediction input vector has dimension 39, while the output vector has dimension 1,

(i.e. it is a scalar). The training set contains the input–output patterns from a historical database of

past projects.

Let Yt = H.(Xt ;W) denote the output actually computed by the network corresponding

to the input vector Xt. We define a residual vector with respect to t as:

R(W) = (Rt(W)|t = 1; 2; 3;…; T. (3).

Rt(W) = . Yt - t for t = 1; 2; 3;…; T . (4)

We define an error function using L2 norm of the residue:

 (5)

This is our performance metric or objective function. The subscript 2 in expression (5) denotes

the fact that we are using L2 or Euclidean norm to formulate the prediction error. The supervised

learning problem for our NN model then becomes:

min E(W) (6)

 W

That is, minimize E(W) with respect to W; or, find an optimum weight vector W* that globally

minimizes E(W) over the training set. If N contains sufficient number of hidden units to develop

the required internal representation, then we say that W* is exact with respect to the training set t.

Then, E(W) = 0; or, equivalently,

H.(Xt ,W*) = Yt ; t . 1; 2; 3;…; T . (7)

To efficiently solve the global optimization problem (Eq. (6)), and thereby train the NN to predict

development effort accurately, we utilize genetic algorithm (GA), which is a time-tested global

optimize so successfully used by nature for the evolution of species. In the next section, the basic

26

principle of genetics-based optimization algorithm is presented. This is followed by a section

describing the use of GAs to train NN to learn the diagnosis problem.

3.2 Genetic algorithm— A global optimizer

GA are based on biological evolutionary theories to solve optimization problems . GA comprises

of a set of individual elements (the population) and a set of biologically inspired operators.

According to evolutionary theories, only the most suited elements in a population are likely to

survive and generate offspring’s, and transmit their biological heredity to the new generations .

GAs are much superior to conventional search and optimization techniques in high-dimensional

problem spaces due their inherent parallelism and directed stochastic search implemented by

recombination operators.

GA operates through a simple cycle of three stages:

1. Randomly create an initial population of individuals.

2. Perform the following sub steps iteratively for each generation until a termination condition is

fulfilled:

2.1. Evaluate the fitness of each individual in the population and save the best individual of all

preceding populations.

2.2. Create a new population by applying the genetic operators:

2.2.1. Selection;

2.2.2. Crossover;

2.2.3. Mutation;

2.3. Replace the current population by the new population.

3. Output the individual with the best fitness as the optimum solution.

Selection is based on fitness, i.e. the fitter an individual the greater the chance for this individual

to get selected for reproduction and contribute offspring for the next generation.

Crossover operator takes two chromosomes and swaps part of their genetic information to

produce new chromosomes.

27

Mutation is implemented by occasionally altering a random bit in a string before the offsprings

are inserted into the new population.

Control parameters: We can visualize the functioning of GAs as a balanced combination of

exploration of new regions in the search space and exploitation of already sampled regions.

The balance, which critically controls the performance of GAs is determined by the right choice

of control parameters: the crossover and mutation probabilities and population sizes. The trade-

offs that arise are:

 Increasing the crossover probability increases the recombination of building blocks, but

it also increases the disruption of good strings.

 Increasing the mutation probability tends to transform the genetic search into a random

search, but it also helps reintroduce lost genetic material.

 Increasing the population size increases its diversity and reduces the probability that the

GA will prematurely converge to a local optimum, but it also increases the time required

for the population to converge to the optimal regions in the search space.

The reader is referred to Ref. [55] for several aspects of GA implementation details.

3.3 Clustering PSO Based Neural Network

The COnstructive COst MOdel (COCOMO) proposed by Boehm, is the most famous

Cost Estimation Model .The COCOMO model defines the relationship between the software

effort given in person-months, the size of the project given in thousands of lines of

code(KDLOC) and the Effort Adjustment Factor(EAF)(Equation 3).

The mathematical formulation of the COCOMO model is given below:

Effort =a * (size)
b
 * EAF + c. (8)

Here a, b and c are the statistical parameters [56, 57] .

These parameter values were previously estimated by using regression analysis applied

on historical data .However to account for the unpredictability in the data values, several soft

computing techniques were proposed. Some of these models used fuzzy logic, neural networks,

Genetic algorithms, etc. PSO is one such soft computing technique which is based on the

28

movements of intelligent swarms. It was implemented by observing the movements of agents

(particles) in the problem space which was provided for training and then using the experience of

the swarms for further testing. K means algorithm has been proposed for clustering of data values

into related clusters based on the relationships between them. Neural networks is also a soft

computing technique which can be used for classification of data sets. The Back propagation

algorithm applied on neural networks can efficiently classify data sets based on previous learning.

In our model-CPN we have implemented a hybrid technique for estimating the

COCOMO parameter values. The input data set is clustered using the K-means clustering

algorithm and then PSO is applied to each cluster to find the values. The resulting training is

given to a Neural Network which is then able to classify testing data into the appropriate cluster

to be further evaluated by PSO.

3.4 Performance of estimation models - Fitness functions and accuracy

statistics

This section describes the accuracy statistics used to evaluate models in this study, and the

fitness functions used to build the models.

3.4.1 Accuracy statistics

These accuracy statistics were used to evaluate estimation models in this study:

R
2
: The square of the coefficient of correlation between estimated and actual values.

MSE: Mean squared error — used as an accuracy statistic by [25].

StDev: Standard deviation of error. Recommended by as an accuracy statistic; almost

identical to root mean squared error, used as an accuracy statistic in [58].

MMRE: Mean magnitude of relative error. Widely used as an accuracy statistic since its

description in [59]. Median MRE is also reported here.

MMER: Mean magnitude of error relative to the estimate. Proposed in [60], argued as

intuitively preferable to MMRE since at the time of estimation one wants to know what errors to

expect relative to the estimate. Median MER is also reported here.

Mean: Kitchenham et al [60] recommended that accuracy should be measured in terms

of z=(estimate/actual). It is asymmetric and favours models that minimize overestimates (which

could be a problem since over- estimates are usually less serious than underestimates). The full

29

distribution of z should be considered when comparing prediction systems. Median of is also

reported here, as well as the mean of

1/z=(actual/estimate).

Pred(l): The proportion of estimates that are within a given percentage of the actual

value. Widely used as an ac-curacy statistic since its description in [59], particularly in

conjunction with MMRE. Pred(0.25) and Pred(0.50) are reported here.

 Means and medians of absolute errors are also reported. Foss et al [58] recommend

LSD and RSD as accuracy statistics. These are intended as estimates of the standard deviation of

the error term. Neither could be used here. LSD involves logarithms of estimated values, so

cannot be computed for any model that generates any negative estimates; several such models

emerge in this study. RSD can only be used if estimates are based o a single predictor variable.

3.4.2 Fitness functions

The fitness functions chosen for study were selected either because they are commonly

used in building estimation models, or they are commonly used in evaluating estimation models.

The functions chosen were:

MSE: since it underpins ordinary regression, and is related to and SD.

LAD (least absolute deviation): an obvious alternative to ordinary regression, proposed

centuries ago but overshadowed by least-squares regression because it was harder to compute and

lacked theoretical under- pinning’s — both addressed now [1].

MRE: because it is so common as an accuracy statistic, and has also been used elsewhere

as a fitness function [26].

MER and Z: since they are proposed as better alternatives to MRE.

Pred(l), since it is so widely used as an accuracy statistic.

Writing a fitness function consists of specifying how the error term is calculated for a

single data point, given its known and estimated values. The GP software used here always tries

to minimize the overall fitness value, so the fitness function needs to be written so that smaller

values are better.

Functions are easily written for differences between estimated and actual values:

MSE: error = (estimate - actual)

30

LAD: error = abs (estimate - actual)

MRE: error = abs ((estimate - actual) / actual)

MER: error = abs ((estimate - actual) / estimate)

Z is trickier, since its optimum value is 1, not zero. Computing and subtracting 1 does not

work, since negative values are possible and minimization will do the wrong thing. abs(z-1) is no

help, as that is MRE. As an approximation, the following function was used:

Z: error = max(estimate, actual)/min(estimate, actual)

This is always at least 1, and it makes sense to minimize it: the closer it is to 1, the closer

the estimate and actual values are to each other.

31

Chapter 4. Proposed Work

4.1 Methodology I – Genetically Trained Neural Network

Application of GA to NN training requires binary representation of synaptic weight

parameters so that genetic operators can be readily applied. Here, two broad possibilities exist.

One can use a strong representation that specifies exactly each connection, neuron etc. This will

result in a large search space. On the other hand a weak representation uses an abstract

description of an artificial NN, which must be translated to yield a network phenotype. This result

in a much smaller search space and the NN can be restructured according to the application

requirements. Strong representation schemes are good at capturing connectivity patterns within

small networks and are more useful for evolution of compact architectures.

Extensive simulation results show that NN training using GAs is very sensitive to the

representation schemes used. If chromosomes represent individual weights of an NN, the

crossover operator may cause several good weight values to be destroyed due to string exchanges.

On the other hand, if a chromosome represents all the weights in the NN then the crossover

operator may exchange bits between weights belonging to different layers, which will again

destroy some desirable computation properties learnt by a layer previously. We have introduced a

new multipoint restricted crossover operator (MRX) to alleviate this problem. The details are

given in the below section.

The software development effort prediction problem involves making an NN learn the

underlying correlations between the 39 project features identified by Boehm and the person-

month requirement of the project, as well as the correlation that may exist among the predictor

variables.

Using historical data to form the training set Ƭ , the fitness function is taken as:

f =

 (9)

Where, E(W) is given by Eq. (5).

32

Figure 4.1 A neural network to be trained genetically

The GA proceeds to maximize the above fitness function resulting in minimization of

mean square output error. A suitable range of GA parameters like population size, crossover

probability and mutation probability, has been found by multiple simulation runs for the software

development effort prediction problem. In simulations we add a small positive constant to the

denominator of the fitness function (8) to avoid overflow as the error approaches zero.

NN to be trained genetically is shown in Fig. 1. This NN consists of 30 weights

connecting various layers. The bias weights have not been shown for clarity. These 30 weights

are encoded in a chromosomal string shown in Fig. 2.

A) Encoding: A resolution of around 10 bits per weight is necessary for acceptable

performance. We have also obtained encouraging results with 10 bits per weight

resolution. Each weight wij in the example of Fig. 4.2 is encoded as a 10-bit string,

33

representing weights in the range [-5,5] thus giving a total chromosome length of 300 bits

for this example.

Figure 4.2 Chromosome representation of neural network in Fig 4-1

B) Crossover: randomly selected multiple crossover sites equal to the number of weights in

the chromosomes are used but bit exchange is restricted to corresponding weights only.

Same is explained in Fig 4.3.

C) Mutation: The crossover is followed by multi-bit mutation equal to the number of

weights. As usual, the mutation probability is kept very low in comparison to crossover

probability

D) Selection: Hybridization of ELITIST and ROULETTE WHEEL selection strategies. The

elitist policy encourages preserving the best chromosomes in the subsequent generations.

The first two places in the next generation were reserved for the fittest string of the

current generation. The rest of the strings were generated using weighted roulette wheel

selection scheme. Each individual of the population receives a part of the roulette wheel

proportional to its fitness. Selecting an individual means spinning the roulette wheel.

Individuals that occupy a bigger part of the roulette wheel have a greater chance to get

selected. While the elitist component increases the selective pressure so that the search

focuses on the top ranking individuals, the roulette wheel policy, being probabilistic in

nature, provides population diversity.

One Chromosome (300 bits)

W
9,

1

W
9

,2

W
9

,3

W
9

,4

W
9

,5

W
9

,6

W
1

0
,1

W
1

0
,2

W
1

0
,3

W
1

0
,4

W
1

0
,5

W
1

0
,6

W
1

1
,9

W
1

1
,1

0

W
1

2
,9

W
1

2
,1

0

W
1

3
,1

1

W
1

3
,1

2

W
1

4
,1

1

W
1

4
,1

2

W
1

5
,1

1

34

Figure 4.3 The MRX genetic operator used for evolving neural predictor

 W1

a a a a a

a

 W2

b b b b b

a

 W3

 c c c c c

c

 W4

d d d d d

W1’

e e e e e

a

W2’

f f f f f

 W3’

g g g g g

a

Chromosome 1

Chromosome 2 W4’

h h h h h

h

g g c c c f f f bb e e a a a d d h h h

MRX Multipoint Crossover restricted

within corresponding weights

35

Figure 4.4: Flow Chart showing genetic evolution of NN predictor for development effort

END

USE ROULETTE WHEEL

SELECTION PROCEDURE

RUN NN SIMULATION TO FIND SE

AT OUTPUT

INITIALIZE NN WEIGHTS

RANDOMLY

FITNESS = I / MSE

MUTATE

APPLY SPECIAL MULTIPOINT

CROSSOVER

RUN NN SIMULATION TO FIND

MSE AT OUTPUT

FITNESS = I/MSE

IS MSE < e ?

36

4.2 Methodology II - Clustering PSO Neural Network

Here the methodology employed for the CPN model is described. The model uses K- means

algorithm for clustering of input data set. It then implements PSO on these clusters to obtain the

parameter values of the COCOMO model. The description follows:

Algorithm CAK():The steps described below lists out the implementation of the K-means

clustering algorithm.

INPUT: Data sets consisting of N values of size, measured effort and EAF.

OUTPUT: K clusters of data values.

Step 1: Choose K values out the given N values to be the initial centroids.

Step 2: Assign each value of the data set to the cluster for which the distance between the

value and the corresponding centroid is minimum. Euclidian distance formula is used for the

distance evaluation.

The distance is given by the formula:

 D(sizei,EAFi) = √ (| sizei - sizec|
2
 + | EAFi - EAFc |

2
) --- (10)

Here sizei and EAFi denote the value being evaluated and sizec and EAF c denote the centroids

of cluster c.

Step 3:Calculate the new centroid of the cluster by finding the mean of all the data values in the

cluster as:

 - (11)

-

Step 4: Repeat steps 2- 4 until the values obtained denote stable cluster values .These clusters

are the obtained clusters.

Step 5: Stop.

Algorithm PSOIW():The steps described below represent the implementation of PSO on the

clusters of data values obtained from the above K means algorithm.

37

INPUT: K clusters of data values containing the software project size, EAF and the measured

effort.

OUTPUT: Optimized COCOMO parameter values for each cluster.

Step 1: Initialization: Initialize particles with random positions and velocity vectors of tuning

parameters. Specify the range of velocity between [- Vmax, Vmax].

Step 2: Evaluation of Fitness Function: For each particle position evaluate the fitness function.

The fitness function here is Mean Absolute Relative Error (MARE). The objective in this

method is to minimize the MARE by selecting appropriate values from the ranges

specified in step 1.

Step 3: Finding the Pbest – Personal best: If fitness (x) better than fitness (Pbest) then: Pbest =

x. Here the P best is determined for each particle by evaluating and comparing measured and

estimated effort values of the current and previous parameters values.

Step 4: Finding the Gbest (global best): Set the best of ‘P best’ as global best – Gbest. The particle

value for which the fitness function shows the best values is chosen as the Gbest particle.

Step 5: Update values: Update the velocity and positions of the tuning parameters with

equations (a) & (b) in Section 2.2.5.

Step 6: Repeat steps 2 to step 5 until “particles exhaust”.

Step 7: Give the Gbest values as the optimal solution.

 Step 8: Stop.

38

Chapter 5. Results & Analysis

Results of both methodologies are explained below and also comparison of GANN &

CPN methodology is described:

5.1 Results of Clustering PSO Neural Network:

For the purpose of experimentation initially 35 values were used for training. These

values are clustered by using the algorithm CAK(). These training data values are shown in Table

1.Once the clusters were generated the PSOIW() was applied to each of the cluster to obtain the

effort estimation parameters a, b and c. The cluster wise parameter values obtained are given

below.

Cluster 0: a=1.145552; b=1.468810 ; c= -9.406167.

Cluster 1: a= 0.058581; b=2.214696; c= -2.090077.

Cluster 2: a= 4.297179 ; b=0.956393 ; c= -1.595891.

From these parameter values, the estimated efforts were calculated by using the equation

(3). The estimated effort values(CPN-EE), standard COCOMO effort values (COCOMO)

,size(S),Cluster number (Cl.No.) ,Measured Effort(ME) and EAF values are listed out in Table

5.1.

The training is applied to the Neural Network as described in CPN-SCE algorithm in Chapter 4.2.
The testing is now carried out by using the 9 values as given in Table 5.2.

Neural Networks determine the cluster to which the values belong to and the corresponding
parameters give the estimated effort. These values are given in Table 5.2.

39

Cl.No S EAF ME COCOMO CPN-EE

0 16 0.66 33 39 34.973383

0 18 2.38 321 214 180.854615

0 20 2.38 218 243 212.698845

0 24 0.85 79 108 94.275643

0 22 1.76 230 201 179.519985

0 13 2.63 82 161 120.953225

0 12 0.68 55 33 20.560369

0 15 0.35 12 20 11.999961

0 19.5 0.63 45 46 47.240168

0 24 1.52 176 193 176.001306

0 15 3.32 237 239 193.646248

1 46 1.17 240 212 327.856469

1 30 2.39 423 327 259.443218

1 50 3.14 1063 962 1063

1 40 2.26 605 529 465.579244

1 34 0.34 47 44 47

1 28 0.96 83 102 88.075523

1 30 1.14 87 130 122.658022

1 32 0.82 106 100 101.428441

1 37 1.12 201 238 192.922529

2 4 2.22 43 30 34.324587

2 3 5.86 73 60 70.414683

2 9.4 2.04 88 89 73.135978

2 2.14 1 7.3 7 7.299985

2 1.98 0.91 5.9 5.9 5.919528

2 6.2 0.39 8 8.4 8.000005

2 2.5 0.96 8 8.1 8.313376

2 5.3 0.25 6 4.7 3.698494

2 10 3.18 122 114 121.999739

2 8.2 1.9 41 55 59.4845

2 5.3 1.15 14 22 22.758279

2 4.4 0.93 20 14 14.888

2 6.3 0.34 18 7.5 6.898763

2 6.7 2.53 57 60 65.447466

2 3.9 3.63 61 52 55.733833

2 6.7 2.53 57 60 65.447466

2 3.9 3.63 61 52 55.733833
Table 5.1 : Measured Effort (ME) and Estimated Effort(CPN-EE) (Training)

40

Cl.No S EAF ME COCOMO CPN-EE

0 25 1.09 130 145 131.7661

0 21 0.87 70 68 77.8152

0 23 0.38 36 33 34.1368

0 13 2.81 98 133 129.8749

1 28 0.45 50 47 40.1753

1 48 1.16 387 239 357.3719

2 9.1 1.15 38 42 39.2456

2 6.9 0.4 8 9.8 9.3063

2 3.7 2.81 40 38 40.6043
Table 5.2: Measured Effort (ME) and Estimated Effort(CPN-EE) (Testing)

5.2 Results of Genetically Trained Neural Network

We conducted a simulation experiment in Matlab with feed forward NN model described

in the previous sections using, Back Propagation (BP) and genetically trained NNs (GANN). The

COCOMO data set comprising 63 projects and Kemerer data set comprising 15 projects were

randomly merged to form a single dataset of 78 projects. These two data sets are, in fact, disjoint,

and we can always obtain a higher prediction performance by using them separately to train two

different NNs. However, in this work it was decided to merge them for two reasons:

(a) to form a common basis for comparison against the latest results reported in Ref. [7];

(b) application of n-fold cross validation using the merged data is a more stringent test for

the neural estimator.

 For n-fold cross validation, 80% of this historical data was used for training and the

remaining for testing the person-month prediction accuracy. The experiments were repeated with

different draws or folds of 80–20% partition to assess the generalization ability of the NN.

Topology of NN is 39 input neurons, 1 hidden layer of 10 neurons and 1 output neuron

interconnected in a feed forward architecture, with weights from pseudo nodes modeling biases at

hidden and output layer neurons as shown below in Fig. 5.1.

41

Figure 5.1: The evolutionary neural network architecture used for prediction of man-

months using Boehem’s attributes.

 PROJECT ATRRIBUTES

1 2

 1

3 . . . 39

Neuron Model with Sigmoid activation function

Input Node are value holder, do not peform computation

Pseudo node with constant +1 output models threshold

42

The experiments were repeated with different folds of data. A fold consists of a random draw of

63 data for training, and the remaining 15 data for testing the prediction accuracy. The
comparison results for one such fold with CPN are given below in Table 5.3

Actual Predicted

 GANN CPN

287 235.85 234.8

82.5 77.42 70.5

1107.31 1000.21 1200

86.9 88.02 87

336.3 341.23 325.6

84 81.33 82.3

23.2 41.24 30.7

130.3 122.43 150.3

116 125.03 130

72 69.56 80.2

258.7 261.64 300.5

230.7 222.79 250.8

157 168.22 190.4

246.9 202.37 180.1

69.9 62.5 80

Table 5.3: Comparison of actual and predicted effort using CPN & GANN methods

Figure 5.2: CPN Vs GANN

43

Here it is observed that the values obtained exhibit lesser error even though the MARE in the

training phase was high. Hence the predicted GANN model produces more accurate results than

CPN on given data set when given enough training. A comparison of the estimated efforts is

depicted in the above graph. The Fig. 5.2 depicts the proximity of the measured effort and the

estimated efforts using the GANN model and its comparison with CPN Model.

44

Chapter 6. Conclusion & Future Scope

The importance of accurately predicting the software development effort (person-month)

requirement of a software project cannot be overemphasized. Through a large number of

simulation experiments, it has been amply demonstrated that GANNs can be excellent predictors

of software development effort when trained on historical data. Neuro-genetic predictors are less

sensitive to weight initializations and have excellent generalization ability as established through

n-fold cross validation. In this study we have kept the NN topology fixed at 39-10-1 for having a

common platform for comparison of different learning algorithms. In the near future we plan to

evolve both the topology and weight matrix of the NN to arrive at a structurally and

parametrically optimum neuro-genetic predictor. It is obvious that a predictor trained on historical

data can only be as accurate as the data set itself. Hence, there is a need to continue collection of

data on diverse projects with wide range of attributes to construct a sizable historical database for

training neural predictors—since it not the predictor technology, but the lack of historical data

that will limit the design of accurate software development effort predictors. Further research is

required to assess which attributes and combinations of attributes are more influential in

determining the resource requirement.

In addition we proposed a cluster based PSO technique for software cost estimation and

trained the values to a neural network for classification of values encountered during testing .The

CPN model proposed here can be applied effectively to large data sets and PSO tuning is more

accurate if the data sets contain projects belonging to similar genres. PSO is a probabilistic model

and hence cannot generate exact values. However if enough historical data is provided for

training, efficient results can be obtained. Given sufficient amount of data from an organization

this model can be useful to make accurate estimations. In future, Using the proposed model we

are planning to develop a social web portal in which the user can enter the available data for

training and then can use the software based on one of these CPN models for estimating the

software costs from the input parameters. The user can train the model and following sufficient

training the software could be used for future projects.

45

References

[1] B. Boehm, Software Engineering Economics, New Jersey: Prentice-Hall, 1981.

[2] L. H. Putnam, "A general empirical solution to the macro software sizing and estimating,"

IEEE Trans. Soft. Eng, pp. 345-361, July 1978.

[3] A. C. a. U. D. C. G. Cantone, "A comparison of models for software cost estimation and

management of software projects," Elisevier Science Publishers B.V, 1986.

[4] W. Royce, Software project management: a unified framework, Addison Wesley, 1998.

[5] R. Schalkoff, Artificial Neural Networks, New York: McGraw-Hill, 1997.

[6] K. B. E. E. J. McCullagh, "A neural network model for rainfall estimation," IEEE Computer

Society Press, p. 389–392, 1995.

[7] E. P.K. Simpson, Neural Network Applications, IEEE Technology, 1996.

[8] A. J. A. a. J. E. Gaffhey, Software Function, Source Lines of Code and Development Effort

Prediction, IEEE transactions on Software Engineering, 1983.

[9] L. H. Putnam, "A General Empirical Solution to the Macro Software Sizing and Estimating

Problem," IEEE transactions on Software Engineering, Vols. SE-4, pp. 345-361, 1978.

[10] R. C. Tausworthe, "Deep Space Network Estimation Model," 1981.

[11] C. Symons, Software Sizing and Estimation Mark II function Points (Function Point

Analysis),, Wiley , 1991.

[12] C. Jones, How Software Estimation Tools Work. Version 5, Software Productivity Research

LLC, 2005.

[13] B. W. a. P. N. P. Boehm, "Understanding and controlling software costs," IEEE

Transactions on Software Engineering, vol. 14, no. 10, pp. 1462-1477, 1988.

[14] B. d. E. H. C. W. R. M. a. R. S. Barry W. Boehm, "Cost Models for Future Software

Lifecycle Processes: COCOMO 2.0 Annals of Software Engineering," in Ninth International

46

COCOMO Estimation Meeting, L.A, 1995.

[15] R. D. H. C. e. a. Banker, "Evidence on economies of scale in software development,"

Information and Software Technology, vol. 36, no. 5, pp. 275-282, 1994.

[16] S. Cockcroft, "Estimating CASE development size from outline specifications," Information

and Software Technology, vol. 38, no. 6, pp. 391-399, 1996.

[17] P. D. a. L. A. M. Chatzoglou, "A rule-based approach to developing software development

AA prediction models.," Automated Software Engineering 5(2): 211-243, vol. 5, no. 2, pp.

211-243, 1998.

[18] J. J. Dolado, "A validation of the component-based method for software size estimation,"

IEEE Transactions on Software Engineering, vol. 26, no. 10, pp. 1006-1021, 2000.

[19] A. A. T. M. K. (. Ali Idri, "Fuzzy Analogy- A New Approach for Software Cost

Estimation.," in IWSM‟01, 2001.

[20] J. Bode, "Neural networks for cost estimation," Cost Engineering, vol. 40, pp. 25-30, 1998.

[21] G. W. a. G. Finnie, "Estimating software development effort with connectionists,"

Information & Software Technology, vol. 39, p. 469–476, 1997.

[22] G. E. W. a. J.-M. D. G. R. Finnie, "Estimating software development effort with case-based

reasoning," in 2nd Intl. Conf. on Case-Based Reasoning, 1997.

[23] C. S. a. B. A. K. M. J. Shepperd, "Effort estimation using analogy," in 18th Intl. Conf. on

Softw. Eng, Berlin, 1996.

[24] K. Shukla, "Neuro-genetic prediction of software development effort," Information and

Software Technology,vol 42, p.701–713, 1999.

[25] R. M. C. L. D. E. Y. Shan, "Software Project Effort Estimation Using Genetic

Programming," in School of Computer Science, UC, University of New South Wales, 1999.

[26] M. L. Colin, J. Burgess, "Can GP improve Software Effort Estimation ? A Comparative

Evaluation," Information and Software Technology, vol. 43, pp. 863-873, 2001.

47

[27] M. R. a. I. W. R. Jeffery, "Using public domain metrics to estimate software," in 7th IEEE

Intl. Metrics Symp, London, 2001.

[28] L. V. W. a. S. D. K. Maxwell, "Performance evaluation of general and company specific

models in software development effort estimation," Management Science, vol. 45, p. 787–

803, 1999.

[29] J. Koza, Genetic Programming: On the Programming of Computers by Natural Selection.,

MIT Press, 1992.

[30] J. Holland, Adaptation in Natural and Artificial Systems, Ann Arbor, MI: University of

Michigan Press, 1975.

[31] N.-H. C. Sun-Jen Huang, "The adjusted analogy-based software effort estimation based on

similarity distances," The Journal of Systems and Software 80 (2007) , no. 80, p. 628–640,

2007.

[32] J. Dolado, "On the problem of the software cost function," Information and Software

Technology, vol. 43, p. 61–72, 2001.

[33] A. L. O. S. S. S. M. Ricardo de A. Araújo , "An evolutionary morphological approach for

software development cost estimation," Elsevier, vol. 32, pp. 285-291, 2012.

[34] G. A. d. S. R. T. P. R. V. Evandro N. Regolin, "Exploring Machine Learning Techniques for

Software Size Estimation," in International Conference of the Chilean Computer Science

Society, Curitiba, Brazil, 2003.

[35] F. Heemstra, "Software cost estimation," Information and Software Technology, vol. 34, no.

10, p. 627–639, 1992.

[36] M. Jorgenson, "A review of studies on expert estimation of software development effort,"

Journal of Systems and Software, no. 70, pp. 37-60, 2004.

[37] C. S. M. Shepperd, "Estimating software project effort using," IEEE Transactions on

Software Engineering, vol. 23, no. 12, p. 736–743, 1997.

[38] K. K. E. Rich, Artificial Intelligence, New York,: McGraw-Hill, 1995.

48

[39] D. Goldberg, Genetic Algorithms in Search Optimization and Machine Learning, Reading,

MA: Addison-Wesley, 1989.

[40] N.-H. C. Sun-Jen Huang *, "Optimization of analogy weights by genetic algorithm for

software effort estimation," Information and Software Technology, no. 48, p. 1034–1045,

2006.

[41] S. V. M. P. T. Mukhopadhyay, "Examining the feasibility of a case-based reasoning model

for software effort estimation," MIS Quarterly, vol. 16, pp. 155-171, 1992.

[42] C. S. M. Shepperd, "Estimating software project effort using analogies," IEEE Transactions

on Software Engineering, vol. 23, no. 12, p. 736–743, 1997.

[43] J. L. Kolodner, Case-Based Reasoning, Morgan-Kaufmann, 1993.

[44] N.-H. C. b. L.-W. C. Sun-Jen Huang a, "Integration of the grey relational analysis with

genetic algorithm for software effort estimation," European Journal of Operational

Research, vol. 188, pp. 898-909, 2008.

[45] M. S. J. H. Colin Kirsopp, "Search Heuristics, Case-Based Reasoning and Software Project

Effort Prediction," in Empirical Software Engineering Research Group, 2006.

[46] M. X. T. G. Y.F. Li *, "A study of mutual information based feature selection for case based

reasoning in software cost estimation," Expert Systems with Applications, vol. 36, p. 5921–

5931, 2009.

[47] A. L. I. O. R. L. M. Petronio L. Braga, "A GAbased Feature Selection and Parameters

Optimization for Support Vector Regression Applied to Software Effort Estimation," in

AC’08, Fortaleza, Ceara', Brazil, 2008,.

[48] A. S. a. B. SchÄolkopf, "A tutorial on support vector regressioN," Statistics and Computing,

vol. 14, no. 3, p. 199{222, 2004.

[49] J. Kennedy and R. Eberhart, "Particle Swarm Optimization," Proceedings of IEEE

International Conference on Neural Networks, pp. 1942-1948, 1995.

[50] T. H. a. A. S. Mohan, "Micro–particle swarm optimizer for solving high dimensional

49

optimization problems," Applied Mathematics and Computation, vol. 181, no. 2, pp. 1148-

1156, 2006.

[51] H.-Y. T. Jin-Cherng Lin, "Applying Particle Swarm Optimization to Estimate Software

Effort by Multiple Factors Software Project Clustering," IEEE, pp. 1039-1044, 2010.

[52] S.-J. H. Nan-Hsing Chiu, "The adjusted analogy-based software effort estimation," The

Journal of Systems and Software, vol. 80, p. 628–640, 2007.

[53] CH.V.M.K.Hari, "CPN-A Hybrid Model for Software Cost Estimation," IEEE, pp. 902-906,

2011.

[54] Z. Dan, "Improving the Accuracy in Software Effort Estimation Using Artificial Neural

Network Model Based on Particle Swarm Optimization," IEEE, pp. 180-184, 2013.

[55] M. S. E. Y. N. Chalapati, "Maximally fault tolerant neural networks," IEEE Transactions on

Neural Networks, vol. 3, pp. 14-23, 1992.

[56] L. Davis, Handbook of Genetic Algorithms, New York: Van Nostrand Reinhold, 1991.

[57] A. F. Sheta, "Estimation of the COCOMO Model Parameters Using Genetic Algorithms for

NASA Software Projects," Journal of Computer Science, vol. 2, pp. 118-123, 2006.

[58] D. R. a. A. A. A. Sheta, "Development of Software Effort and Schedule Estimation Models

Using Soft Computing Techniques," in IEEE Congress on Evolutionary Computation, 2008.

[59] E. S. B. K. a. I. M. T. Foss, "A simulation study of the model evaluation criterion MMRE,"

IEEE Transactions on Software Engineering, vol. 29, no. 11, pp. 985-995, 2003.

[60] H. D. a. V. S. S. Conte, Software Engineering Metrics and Models., Benjamin-Cummings,

1986.

[61] L. P. a. S. M. B. Kitchenham, "What accuracy statistics really measure," IEE Proceedings –

Software, vol. 148, pp. 81-85, 2001.

