
[i]

Disk Encryption using parallelization of Block Cipher

A dissertation submitted in the partial fulfillment for the award of Degree of

Master of Technology

In

Software Technology

By

Bappa Mondal

 (Roll no. 2K13/SWT/06)

Under the guidance of

Manoj Kumar

DEPARTMENT OF SOFTWARE ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

BAWANA ROAD, DELHI

[ii]

DECLARATION

I hereby want to declare that the thesis entitled ―Disk Encryption using parallelization of

Block Cipher” which is being submitted to the Delhi Technological University, in partial

fulfillment of the requirements for the award of degree in Master of Technology in Software

Technology is an authentic work carried out by me. The material contained in this thesis has not

been submitted to any institution or university for the award of any degree.

Bappa Mondal

Computer Science and Engineering Department,

Delhi Technological University, Delhi

[iii]

CERTIFICATE

Delhi Technological University

(Government of Delhi NCR)

Bawana Road, New Delhi-42

This is to certify that the thesis entitled “Disk Encryption using parallelization of Block

Cipher” done by BAPPA MONDAL (Roll Number: 2K13/SWT/06) for the partial fulfillment

of the requirements for the award of degree of Master of Technology Degree in Software

Technology in the Department of Computer Science and Engineering, Delhi Technological

University, New Delhi is an authentic work carried out by him under my guidance.

Project Guide:

Manoj Kumar

Associate Professor

Department of Computer Science and Engineering

Delhi Technological University, Delhi

[iv]

ACKNOWLEDGEMENT

I take this opportunity to express my deep sense of gratitude and respect towards my guide

Manoj Kumar, Associate Professor, Department of Computer Engineering.

I am very much indebted to him for his generosity, expertise and guidance which I received from

him while working on this project. Without his support and timely guidance the completion of

the project would have seemed a far –fetched dream. In this respect I find myself lucky to have

my guide. He has guided not only with the subject matter, but also taught the proper style and

techniques of documentation and presentation.

Besides my guide, I would like to thank entire teaching and non-teaching staff in the Department

of Computer Engineering, DTU for all their help during my tenure at DTU.

BAPPA MONDAL

M.Tech Software Technology

2K13/SWT/06

[v]

ABSTRACT

These days digital contents like contacts, emails, messages, images, videos, memo etc. are so

important that we don‘t want to compromise those data if we lost our phone or some

unauthorized access to our phone. In this paper, we will learn about Disk Encryption, why it is

important, proposal of a customized block cipher and how it would be efficient

Comparatively available block cipher.

Disk encryption is a process where all user data on a device using an encrypted key. In a

encrypted device, All data in write operation, encrypted before committing it to disk and all

reads automatically decrypted before returning it to the calling process, also known as on-the-fly

encryption. It means it always encrypt data in disk, just decrypt block when required and encrypt

for newly requested block.

‗Data at Rest‘ refers to data stored in persistent storage like Hard disk, eMMC, NandFlash where

‗Data in Use‘ generally refers to data being processed by a CPU or in memory like DRAM.

Disk Encryption is a process of DAR, where we protect data stored on disk.

[vi]

TABLE OF CONTENTS

DECLARATION.. [ii]

CERTIFICATE ... [iii]

ACKNOWLEDGEMENT ... [iv]

ABSTRACT ... [v]

TABLE OF CONTENTS .. [vi]

CHAPTER 1: INTRODUCTION ... viii

1.1. GENERAL ... viii

1.2. MOTIVATION .. x

1.3. PROBLEM STATEMENT .. xi

1.4. SCOPE OF THE THESIS ... xii

1.5. THESIS ORGANIZATION .. xii

CHAPTER 2: LITERATURE REVIEW .. viiiv

2.1. Symmetric Encryption: .. xiv

2.2. Asymmetric Encryption: ... xiviv

2.3. Advanced Encryption Standard (AES): ... xvvi

2.4. Block Cipher mode of operation: ... xvii

CHAPTER 3: METHODOLOGY .. xxii

a. Disk Encryption at block level. ... xxii

b. Disk Encryption System ... xxiii

c. Block level encryption of CBC ... xxiv

d. Proposed Parallelizable modes of cipher block. ... xxiv

e. Proposed Parallelizable modes of cipher block. .. xxv

f. Encryption Code in CBC mode:.. xxvi

g. Encryption Code in parallelizable mode: ... xxvi

h. Hash function in parallelizable mode: ... xxvii

[vii]

i. Multi Thread to realize parallelization:.. xxvii

j. Dummy file system... xxvii

k. Integrity Checking .. xxix

l. Output to show execution time and integrity check result... xxix

CHAPTER 4: SIMULATION, RESULTS AND DISCUSSIONE xxx

4.1. Data Comparison of CBC and Proposed Block Cipher. .. xxx

4.2. Graph calculation from performance evaluation .. xxxi

CHAPTER 5: CONCLUSION & FUTURE WORK ... xxxii

REFERENCES ... xxxiii

[viii]

CHAPTER 1

 INTRODUCTION

Disk encryption uses an encryption algorithm to convert every bit of data that goes to disk to

Cipher text, ensuring that data cannot be read from the disk without the decryption key. Full-disk

encryption (FDE) promises that everything on disk is encrypted, including operating system

files, cache, and temporary files. In practice, a small part of the OS, or a separate OS loader,

must be kept unencrypted so that it can obtain the decryption key and then decrypt and mount the

disk volume(s) used by the main OS. The disk decryption key is usually stored encrypted and

requires an additional key encryption key (KEK) in order to be decrypted. The KEK can either

be stored in a hardware module, such as a smart card or a TPM, or derived from a passphrase

obtained from the user on each boot. When stored in a hardware module, the KEK can also be

protected by a user-supplied PIN or password.

This report proposes the methods which should be applied for faster encryption and less power

consumption.

1.1. GENERAL

Disk Encryption: is a technology which protects information by converting it into unreadable

code that cannot be deciphered easily by unauthorized people.

Data at rest (DAR): is an information technology term referring to inactive data which is stored

physically in any digital form (e.g. databases, data warehouses, spreadsheets, archives, tapes, off-

site backups, mobile devices etc.).

[ix]

Types of DAR:

 Disk encryption

Full-disk encryption (FDE) is encryption at the hardware level. FDE works by

automatically converting data on a hard drive into a form that cannot be understood by

anyone who doesn‘t have the key to ―undo‖ the conversion. Without the proper

authentication key, even if the hard drive is removed and placed in another machine, the

data remains inaccessible. FDE can be installed on a computing device at the time of

manufacturing or it can be added later on by installing a special software driver.

The advantage of FDE is that it requires no special attention on the part of the end user

after he initially unlocks the computer. As data is written, it is automatically encrypted.

When it is read, it is automatically decrypted. Because everything on the hard drive is

encrypted, including the operating system, a disadvantage of FDE is that the

encrypting/decrypting process can slow down data access times, particularly when virtual

memory is being heavily accessed.

 Filesystem level encryption :

Filesystem-level encryption, often called file/folder encryption, is a form of disk

encryption where individual files or directories are encrypted by the file system itself.

This is in contrast to full disk encryption where the entire partition or disk, in which the

file system resides, is encrypted.

 Types of filesystem-level encryption include:

 the use of a 'stackable' cryptographic filesystem layered on top of the main file system

 a single general-purpose file system with encryption

 The advantages of filesystem-level encryption include:

[x]

flexible file-based key management, so that each file can be and usually is encrypted with

a separate encryption key individual management of encrypted files e.g. incremental

backups of the individual changed files even in encrypted form, rather than backup of the

entire encrypted volume. access control can be enforced through the use of public-key

cryptography, and the fact that cryptographic keys are only held in memory while the file

that is decrypted by them is held open.

 Cipher Mode:

Secondary storage like eMMC is divided into blocks. A block is the smallest readable or writable

unit which can be addressed, typically size of 4KB. Disk Encryption uses same key for

encrypting each blocks with AES algorithm (Symmetric Algorithm). Assume two separate

blocks having same plain text, as we use same disk encryption key for all blocks, cipher text on

those blocks will be same. This expose to Malleability attack, where plaintext is known to the

adversary, it is possible to change every 2nd plaintext block to a value chosen by the attacker,

while the blocks in between are changed to random values, which does not ensure integrity of the

encrypted data.

To avoid such compromise on data integrity, Disk Encryption uses block cipher based modes,

such as CBC (Cipher-block chaining), where previous block's cipher text is x-or ed with the

current block's plaintext before encryption. Therefore for same plain test in different block,

cipher test will be different.

1.2. MOTIVATION

With CBC cipher block, we solved malleability attack, but again it creates a problem when

encrypting/decrypting a particular block, because blocks are accessed non-sequentially, it need to

encrypt / decrypt whole disk. Disk access cannot depend on the contents of their

preceding/succeeding sectors.

To avoid such re-work of encryption, CBC algorithm requires initialization vector (IV). Each

sector need to be independent of each other and somehow random in nature and unpredictable.

Therefore each block requires a separate IV to support random block read/write. The usual

[xi]

methods for generating IVs are predictable sequences of numbers, for example, time stamp or

sector number and permit certain attack such as a watermarking attack. Watermarking attack is

an attack on disk encryption methods where the presence of a specially crafted piece of data can

be detected by an attacker without knowing the encryption key. If these IVs are predictable by an

attacker (and the file system reliably starts the content at the same offset to the start of each

sector, and files are likely to be largely contiguous), then there is a chosen plaintext attack which

can reveal the existence of encrypted data.

With the proposed paper, we will see how we can generate IV for each individual block and how

we can achieve parallelization on it. With the advancement of Multi-processor, we can achieve

significant amount of faster encryption as well as save power consumption.

1.3. PROBLEM STATEMENT

From the forgoing section we can see that for Disk Encryption, we generally use symmetric key

encryption like AES and since its works on block level, we need to use some block cipher. One

of the widely used block cipher is CBC (Cipher-block chaining), where previous block's cipher

text is x-or ed with the current block's plaintext before encryption.

Problem with CBC is during encryption, whole disk need to encrypt at the same time, also

parallelization is not possible here.

This leads to the approach of detailed study of block cipher used in disk encryption and how to

achieve parallelization for faster speed and independent block encryption.

This thesis aims at studying various block cipher and provide some way to achieve

parallelization.

To establish the performance, a statistical technique used to find relationships between the

amount of data to encrypt and time spent on it during both CBC and proposed parallel block

cipher.

[xii]

More specifically, In CBC mode, decryption is independent of each block, therefore.

Parallelization can be achieved; therefore, performance evaluation is performed during

encryption only.

1.4. SCOPE OF THE THESIS

The scope of this thesis is to study the Disk Encryption, related block cipher and AES algorithm.

Thesis proposes combination of block cipher and AES encryption in disk encryption. With

exiting block cipher, we can‘t find parallelization, here, we will see with modification of block

cipher, how we can achieve parallelization in disk encryption.

During encryption, encryption block size taken as 512 bytes, where as standard Linux file system

block size(EXT4) is 4KB. Therefore, we can expect better performance/faster performance in

4KB block size. This paper has some basic details of AES encryption algorithm, but details

about Block cipher and its comparison, Proposal of new block cipher and its implementation and

advantages.

Reason we tool encryption block size as 512 bytes, as reference with Android Disk Encryption.

1.5. THESIS ORGANIZATION

Chapter 1 Begins with General introduction and related work. It addresses the topics like

Motivation, Problem Statement, Scope, Related work and thesis organization.

Chapter 2 Provides a detailed description about various encryption techniques and gives a

details about present block cipher and brief of various attacks.

Chapter 3 Presents the proposed research methodology which explains the detailed model of

modes of blocks cipher used in disk encryption. how parallelization can be achieve.

 Chapter 4 presents the results and analysis part of the proposed methodology.

Chapter 5 concludes the thesis.

[xiii]

[xiv]

CHAPTER 2

LITERATURE REVIEW

2.1. Symmetric Encryption:

Symmetric encryption is the oldest and best-known technique. A secret key, which can be a

number, a word, or just a string of random letters, is applied to the text of a message to change

the content in a particular way. This might be as simple as shifting each letter by a number of

places in the alphabet. As long as both sender and recipient know the secret key, they can

encrypt and decrypt all messages that use this key.

Popular symmetric algorithms include Twofish, Serpent, AES (Rijndael), Blowfish, CAST5,

Grasshopper, RC4, 3DES, Skipjack, Safer+/++ (Bluetooth), and IDEA.

2.2. Asymmetric Encryption:

The problem with secret keys is exchanging them over the Internet or a large network while

preventing them from falling into the wrong hands. Anyone who knows the secret key can

decrypt the message. One answer is asymmetric encryption, in which there are two related keys--

a key pair. A public key is made freely available to anyone who might want to send you a

message. A second, private key is kept secret, so that only you know it. Any message (text,

binary files, or documents) that are encrypted by using the public key can only be decrypted by

applying the same algorithm, but by using the matching private key. Any message that is

encrypted by using the private key can only be decrypted by using the matching public key.

Popular symmetric algorithms include RSA.

[xv]

2.3. Advanced Encryption Standard (AES):

The Advanced Encryption Standard (AES), also known as Rijndael, is a specification for the

encryption technique by the U.S. National Institute of Standards and Technology (NIST). AES is

a subset of the Rijndael cipher developed by two Belgian cryptographers, Joan Daemen and

Vincent Rijmen. For AES, each with a block size of 128 bits, but three different key lengths:

128, 192 and 256 bits. The algorithm described by AES is a symmetric-key algorithm, meaning

the same key is used for both encrypting and decrypting the data.

High-level description of the algorithm:

 KeyExpansions—round keys are derived from the cipher key using Rijndael's

key schedule. AES requires a separate 128-bit round key block for each round

plus one more.

 InitialRound

 AddRoundKey—each byte of the state is combined with a block of the

round key using bitwise xor.

 Rounds

 SubBytes—a non-linear substitution step where each byte is replaced with

another according to a lookup table.

 ShiftRows—a transposition step where the last three rows of the state are

shifted cyclically a certain number of steps.

 MixColumns—a mixing operation which operates on the columns of the

state, combining the four bytes in each column.

 AddRoundKey

 Final Round (no MixColumns)

 SubBytes

 ShiftRows

 AddRoundKey.

[xvi]

2.4. Block Cipher mode of operation:

In cryptography, a mode of operation is an algorithm that uses a block cipher to encrypt

messages of arbitrary length in a way that provides confidentiality or authenticity. A

block cipher by itself is only suitable for the secure cryptographic transformation

(encryption or decryption) of one fixed-length group of bits called a block. A mode of

operation describes how to repeatedly apply a cipher's single-block operation to securely

transform amounts of data larger than a block.

 Common modes:

1. Electronic Codebook (ECB)

The simplest of the encryption modes is the Electronic Codebook (ECB) mode. The

message is divided into blocks, and each block is encrypted separately.

[xvii]

Encryption parallelizable: Yes

Decryption parallelizable: Yes

Random read access: Yes

The disadvantage of this method is that identical plaintext blocks are encrypted into identical

cipher text blocks.

2. Cipher Block Chaining (CBC)

Each block of plaintext is XORed with the previous ciphertext block before being

encrypted. This way, each ciphertext block depends on all plaintext blocks processed up

to that point.

Encryption parallelizable: No

Decryption parallelizable: Yes

Random read access: Yes

[xviii]

Its main drawbacks are that encryption is sequential (i.e., it cannot be parallelized),

and that the message must be padded to a multiple of the cipher block size. One way to

handle this last issue is through the method known as cipher text stealing. Note that a

one-bit change in a plaintext or IV affects all following cipher text blocks.

3. Propagating Cipher Block Chaining (PCBC)

In PCBC mode, each block of plaintext is XORed with both the previous plaintext block

and the previous cipher text block before being encrypted.

On a message encrypted in PCBC mode, if two adjacent cipher text blocks are

exchanged, this does not affect the decryption of subsequent blocks.

 Encryption parallelizable: No

 Decryption parallelizable: Yes

 Random read access: Yes

[xix]

4. Cipher Feedback (CFB)

The Cipher Feedback (CFB) mode, a close relative of CBC, makes a block cipher into a

self-synchronizing stream cipher. Operation is very similar; in particular,

CFB decryption is almost identical to CBC encryption performed in reverse.

Encryption parallelizable: No

Decryption parallelizable: Yes

Random read access: Yes

Like CBC mode, changes in the plaintext propagate forever in the cipher text, and

encryption cannot be parallelized.

CFB shares two advantages over CBC mode with the stream cipher modes OFB and

CTR:

the block cipher is only ever used in the encrypting direction, and the message

[xx]

does not need to be padded to a multiple of the cipher block size.

5. Output Feedback (OFB)

It generates keystream blocks, which are then XORed with the plaintext blocks to get the

cipher text. Just as with other stream ciphers, flipping a bit in the cipher text produces a

flipped bit in the plaintext at the same location.

Each output feedback block cipher operation depends on all previous ones, and so cannot

be performed in parallel

Encryption parallelizable: No

Decryption parallelizable: No

Random read access: No

[xxi]

6. Counter (CTR)

The Output Feedback (OFB) mode makes a block cipher into a synchronous stream

cipher. It generates keystream blocks, which are then XORed with the plaintext blocks to

get the cipher text. Just as with other stream ciphers, flipping a bit in the cipher text

produces a flipped bit in the plaintext at the same location.

Note that the nonce in this diagram is equivalent to the initialization vector (IV) in the

other diagrams. However, if the offset/location information is corrupt, it will be

impossible to partially recover such data due to the dependence on byte offset.

Encryption parallelizable: Yes

Decryption parallelizable: yes

Random read access: Yes

[xxii]

CHAPTER 3

 METHODOLOGY

a. Disk Encryption at block level.

In this section, we will see one case of disk encryption and what problem exists within it and

then how to solve problem.

For case study, we have taken Disk Encryption technology used in Android OS. Android is a

mobile operating system developed by Google and has the largest installed base of all operating

systems of any kind.

Disk encryption methods aim to provide three distinct properties:

a. The data on the disk should remain confidential.

b. Data read/write should be fast after encryption, no matter where on the disk the data is

stored.

c. The encryption method should not waste disk space.

eMMC are divided into blocks. A block is the smallest readable or writable unit which can be

addressed, typically size of 4KB. Disk Encryption uses same key for encrypting each blocks with

AES algorithm (Symmetric Algorithm). Assume two separate blocks having same plain text, as

we use same disk encryption key for all blocks, cipher text on those blocks will be same. This

expose to Malleability attack, where plaintext is known to the adversary, it is possible to change

every 2nd plaintext block to a value chosen by the attacker, while the blocks in between are

changed to random values, which does not ensure integrity of the encrypted data.

[xxiii]

b. Disk Encryption System

To avoid compromise on data integrity, Disk Encryption uses block cipher-based modes, such as

CBC (Cipher-block chaining), where previous block's cipher text is xored with the current

block's plaintext before encryption. Therefore for same plain test in different block, cipher test

will be different.

Figure 1: Disk Encryption System on Android

Password

PKDF2

Key + IV

(Key Encryption Key)

Salt (128 bit)

Master key (Random 128 bit)

AES 128

CBC

Encrypted Masterkey Encrypted partition

/data

Dm-crypt

[xxiv]

c. Block level encryption of CBC

In case of Cipher Block Chaining, to make each message unique, an initialization vector must be

used in the first block. Its main drawbacks are that encryption is sequential (i.e., it cannot be

parallelized), and that the message must be padded to a multiple of the cipher block size.

d. Proposed Parallelizable modes of cipher block.

With proposed parallelizable modes of block cipher, we pass block number that we are going to

encrypt and keys (supplied by user password) and pass it to HMAC method(keyed-hash

message authentication code) to produce a 16 bytes unique random number , that can be used as

IV per block. Since IV‘s in this case is independent in all blocks, parallelization can be achieve

and well suited to operate on a multi-processor machine where blocks can be encrypted in

parallel.

[xxv]

 Figure 2: Parallelizable modes of cipher block

e. Proposed Parallelizable modes of cipher block.

 Expression for HMAC :

HMAC C(K, m) = H ((K' OR opad) || H ((K' OR ipad) || m))

Where,

H is a cryptographic hash function,

K is the secret key (password in this case)

m is the message to be authenticated (Block Number in this case)

K' is another secret key, derived from the original key K (by padding K to the right with

 extra zeroes to the input block size of the hash function, or by hashing K if it is

longer than that block size),

|| denotes concatenation,

opad is the outer padding (0x5c5c5c…5c5c, one-block-long hexadecimal constant),

 ipad is the inner padding (0x363636…3636, one-block-long hexadecimal constant).

AES 128

Plain Text 0

HMAC

Password

Plain Text N

Block 0 Block N

HMAC

AES 128

Plain Text 0 Plain Text 0

IV N IV 0

[xxvi]

f. Encryption Code in CBC mode:

―dtu_mtech_aes_crypt_cbc‖ method is called for AES encryption with CBC mode.

At the end, method to calculate time of execution also calculated.

 start = clock();

 newLen = ReadCurrentBlock(fp1,plain_input, true); // Read Plain text

 dtu_mtech_aes_setkey_enc(&ctx, key, 256); // Prepared key for encryption

 verify_size = CHECK_INTEGRITY_SIZE;

 while(newLen)

 {

 memset(cipher_output, '/0',MAXBUFLEN);

 remainders = dtu_mtech_aes_crypt_cbc(&ctx, false, DTU_MTECH_AES_ENCRYPT, newLen, iv1,

plain_input, cipher_output); // Call AES Encryption

 if(remainders)

 newLen+= (16-remainders);

 verify_size-= newLen;

 if(verify_size > 0)

 {

 WriteCurrentBlock(fp2, cipher_output, newLen);

 }

 newLen = ReadCurrentBlock(fp1,plain_input, true);

 }

 DeinitFS(fp1);

 DeinitFS(fp2);

 end = clock();

 cpu_time_used = ((double) (end - start)) / CLOCKS_PER_SEC; // Check Execution time for encryption only in CBC

mode.

g. Encryption Code in parallelizable mode:

―dtu_mtech_aes_crypt_cbc‖ method is called for AES encryption with CBC mode.

At the end, method to calculate time of execution also calculated.

dtu_mtech_aes_setkey_enc(&ctx, key, 256); // Prepared key for encryption

 while(newLen)

 {

 WaitForSingleObject(ghMutex, INFINITE);

 newLen = ReadCurrentBlock(fpgbl,plain_input, true); // Read Plain text

 MoveNextBlock();

 BN=GetCurrentBlockNumber(); // Get Block size

 ReleaseMutex(ghMutex);

 if(!newLen)

 break;

[xxvii]

 hmac_md5((unsigned char *) &BN, sizeof(BN), (unsigned char *)key, sizeof(key), iv); // main

function to receive Block Number and Keys (User password) and return 16 bytes random number (IV per Sector)

 dtu_mtech_aes_crypt_parallelizable(&ctx, true, DTU_MTECH_AES_ENCRYPT, newLen, iv,

plain_input, cipher_output); // Call to custom parallelizable modes of cipher.

 }

h. Hash function in parallelizable mode:

/*

unsigned char* text; Pointer to Block Number Stream

int text_len; length of data stream

unsigned char* key; pointer to Authentication key (Password)

int key_len; length of Authentication key

unsigned char* digest; Per Sector IV

*/

void hmac_md5(const unsigned char *text, int text_len,

 const unsigned char *key, int key_len,

 unsigned char *digest)

i. Multi Thread to realize parallelization:
Taken 8 thread to run parallel to support encryption process and its well suited to operate on a

multi-processor machine where blocks can be encrypted in parallel.

#define MAX_THREAD_NO 8

 for (i = 0; i < MAX_THREAD_NO; i++)

 handle[i] = CreateThread(NULL, 0, CryptThread, (LPVOID)i, 0, NULL);

 WaitForMultipleObjects(MAX_THREAD_NO, handle, TRUE, INFINITE);

j. Dummy file system

Dummy file system has been used, where large single text files and be read/write is possible.

Since File system mount and unmount operation has complex operation and out of scope of

proposed solution, we have taken a dummy file system methods to support block wise read and

write operation.

FILE * initFS(char * path)

{

 mCurrentBlockNumber=0;

[xxviii]

 mWriteBlockNumber = 0;

 FILE *fp = fopen(path, "ab+");

 stat("file.txt", &st);

 steps=0;

 return fp;

}

void DeinitFS(FILE * fp)

{

 fclose(fp);

 fp=0;

 mCurrentBlockNumber=0;

}

int GetCurrentBlockNumber()

{

 return mCurrentBlockNumber;

}

int ReadCurrentBlock(FILE * fp, unsigned char source[MAXBUFLEN], bool showprogress)

{

 size_t newLen;

 if (fp != NULL)

 {

 newLen = fread(source, sizeof(char), MAXBUFLEN, fp);

 if (newLen == 0)

 {

 return 0;

 }

 else

 {

 steps+=newLen;

 if(showprogress)

 printProgress(steps /(5244218151));

 }

 }

 return newLen;

}

int WriteCurrentBlock(FILE * fp, unsigned char source[MAXBUFLEN], size_t Len)

{

 size_t newLen=0;

 if (fp != NULL)

 {

 newLen = fwrite((unsigned char*)source, 1, Len, fp);

 }

[xxix]

 if (newLen == 0)

 return -1;

 else

 return newLen;

}

k. Integrity Checking

Integrity is important property of encryption and should not corrupt data. Data has been

encrypted and decrypted for initial 2 blocks and verified if matches with original plain text.

Integrity checking block has been made for CBC and proposed parallelizable mode block cipher.

check = memcmp ((char*)plain_input, (char*)plain_output, newLen);

if(0!=check)

 {

 printf("\n\nError: Integrity fails in CBC mode\n");

 }

l. Output to show execution time and integrity check result.

[xxx]

CHAPTER 4

 SIMULATION, RESULTS AND DISCUSSION

Disk Encryption and Parallelizable modes of block cipher performance analysis have been done

with CBC modes of block cipher. Measurement has been made with amount of data to encrypt

and time required completing encryption. With Demo program, we have run and tested it on Intel

Core i7 (2.4GHZ) , 8GB of RAM and Windows 7 Enterprise N version.

4.1. Data Comparison of CBC and Proposed Block Cipher.

Program has been tested to establish to evaluate amount of performance can be achieved with

parallelization.

Table 1 Performance Evaluation Result

SN Block

Size

Time taken

in CBC (Sec

)

Time taken in Parallel

Block Cipher (Sec)

1 100 MB 6.675 5.01

2 200 MB 13.245 10.28

3 300 MB 19.675 15.595

4 400 MB 31.68 20.4

5 500 MB 34.58 26.085

6 600 MB 39.965 31.1

7 700 MB 46.97 36.607

8 800 MB 53.541 41.371

9 900 MB 64.186 48.796

10 1GB 68.801 52.311

11 2 GB 135.515 107.182

12 3 GB 327.286 154.279

13 4 GB 335.606 220.531

14 5 GB 374.791 269.629

[xxxi]

4.2. Graph calculation from performance evaluation

From the table 1, we can see that in case of Parallelizable modes performance has been in terms

of time taken to encrypt. It can be observed with below graph that with increase of size of data,

Time differences also increases; therefore, it can be ideal solution and can provide significant

output for disk encryption for longer disk size for several GB or TB. With above proposed

method , we can see average 30% higher encryption speed as compared to CBC.

Figure 3 Performance Graph of CBC and Custom penalization mode

0

50

100

150

200

250

300

350

400

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

7
0

0

8
0

0

9
0

0

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

5
0

0
0

AES CBC

Parallelizable modes

[xxxii]

CHAPTER 5

CONCLUSION & FUTURE WORK

5.1 CONCLUSION:

In this project, AES and block cipher has been used for disk encryption. For reference, we have

taken Disk Encryption methodology from Android Disk Encryption and simulation has been

done in Windows 7 machine. With output, we can see approx., 30% higher performance, then

CBC block cipher mode.

Approx. 30% higher performance in average and large data size and bigger block size (1 ~

4 KB) will give best results for disk encryption.

To verify the encryption ability of the proposed method, simulation is done to do encryption

along with CBC. The results thus obtained from the simulation show that the proposed method

used for disk encryption, which proposes the use of independent IV per block.

5.2 Future work

This may form the future work on Disk Encryption and block cipher. The method to be followed

for Disk Encryption is as follows. Bigger encryption blocks size (Currently used 512 bytes) to

give encryption results. Here, 512 bytes encryption block has been taken as reference used in

Android Disk Encryption. For bigger encryption block, there will be a single IV for single block.

Therefore, there could be security hole for water marking attacks. Other side, for small

encryption block, need to generate IV for small block means more IV, therefore, more HMAC

call, where more HMAC is expensive method in terms of execution time.

[xxxiii]

REFERENCES

[1] Like Chen, Runtong Zhang, Runtong Zhang : A Fast Encryption Mode for Block Cipher with

Integrity Authentication

[2] Razvi Doomun*, Jayramsingh Doma, Sundeep Tengur : AES-CBC Software Execution

Optimization

[3] M.Vaidehi, Dr. B.Justus Rabi : Design and Analysis of AES-CBC Mode for High Security

Applications

[4] Zhaohui Wang, Rahul Murmuria, Angelos Stavrou : Implementing and Optimizing an

Encryption Filesystem on Android.

[5] Akshay Desai, Krishna Ankalgi, Harish Yamanur, Siddalingesh S. Navalgund: Parallelization

of AES algorithm for Disk Encryption Using CBC and ICBC modes

[6] Peter Gutmann, David Naccache, Charles C. Palmer : XTS: A Mode of AES for Encrypting

Hard Disks

[7] Cryptography library with source code by MBED TLS https://tls.mbed.org/

[8] Android Disk Encryption process and latest updates

https://source.android.com/security/encryption/

[9] Blogs for Anroid Security and Disk Encryption by Nelenkov

http://nelenkov.blogspot.in/2014/10/revisiting-android-disk-encryption.html

[10] Blogs for Android Disk Encryption and Various attack by Bappa Mondal

https://bappamondalblog.wordpress/2015/12/26/android-disk-encryption

https://tls.mbed.org/
https://source.android.com/security/encryption/
http://nelenkov.blogspot.in/2014/10/revisiting-android-disk-encryption.html

