"SEISMIC ANALYSIS OF REGULAR AND

IRREGULAR RC BUILDING FRAMES"

A Major Project Thesis

Submission in Partial Fulfillment of the

requirements for award of the Degree of

MASTER OF TECHNOLOGY IN STRUCTURAL ENGINEERING

Submitted By

SANJEEV ARORA

ROLL NO: 2K14/STE/14

Under the Guidance of

DR.NIRENDRA DEV

Professor & Head of Department

Department of civil Engineering

Delhi Technological University

Delhi-110042

Department of Civil Engineering

Delhi Technological University

Delhi - 110042

(2014-2016)

CERTIFICATE

This is to certify that the project entitled "SEISMIC ANALYSIS OF REGULAR AND IRREGULAR RC BUILDING FRAMES" is a record of bonafide dissertation work carried out by me, Sanjeev Arora, student of Master of Technology in civil (Structure) Engineering from Delhi technological university, Delhi 2014-2016 towards the partial fulfillment of the requirements of the award of degree of Master of Technology in Structural Engineering.

Sanjeev Arora

Roll no: 2K14-STE-14 M-tech 4th Semester Structural Engineering Department of Civil Engineering Delhi Technological University Delhi- 110042

This is to certify that the above statement laid by the candidates is correct to best of our knowledge.

Date:

DR.NIRENDRA DEV

Professor & Head of Department Department of civil Engineering Delhi Technological University

ACKNOWLEDGEMENT

Any accomplishment requires the efforts of many people and this work is no exception. I appreciate the contribution and support, which various individuals have provided for the successful completion of this study. It may not be possible to mention all by name but the following were singled out for their exception help.

It is with immense pleasure that I acknowledge my gratitude to Dr. Nirendra Dev (Professor & Head of Department) Delhi Technological University for their comments and suggestions in this research. His immense generosity and affection bestowed on us goes beyond his formal obligation as guide.

My special thanks to my parents who have given me strength, love, care to carry out this course successfully.

Sanjeev Arora

CONTENTS

CERTIFICATE	I
ACKNOWLEDGEMENT	II
CONTENTS	III
LIST OF FIGURES	VI
LIST OF SYMBOLS	VIII
ABSTRACT	VIII
CHAPTER 1	
INTRODUCTION	1
1.1 Overview	1
1.2 Objective and Scope	6
1.3 ORGANIZATION	7
CHAPTER 2	
LITERATURE REVIEW	8
CHAPTER 3	
STRUCTURAL MODELLING	10
3.1 Regular Structure(12storeys)	11
3.2 Mass Irregular Structure(12 storeys)	13
3.3 Stiffness Irregular Structure(12 storeys)	15
3.4 Vertical Geometric Irregular Structure(12 storeys)	16
3.5 Torsion Irregular Structure(12storeys)	
3.6 Re-entrant Corner Irregular Structure(12 storeys)	19
3.7 Diaphragm Irregular Structure(12 storeys)	25
3.8 Regular Structure with Shear wall(12 storeys)	26
3.9 Out-of-Plane Offsets Discontinuity structure with Shear wall(12 storeys)	27

3.10 Non-parallel Systems with Shear wall(12 storeys)	
3.11 In-Plane Discontinuity with Shear wall(12 storeys)	29
3.12 Discontinuity in Capacity with Shear wall(12 storeys)	30

CHAPTER 4

ANALYSIS AND RESULTS	
4.1 Results for Regular Structure(12storeys)	33
4.2 Results for Mass Irregular Structure(12 storeys)	35
4.3 Results for Stiffness Irregular Structure(12 storeys)	37
4.4 Results for Vertical Geometric Irregular Structure(12 storeys)	39
4.5 Results for Torsion Irregular Structure(12storeys)	41
4.6 Results for Re-entrant Corner Irregular Structure(12 storeys)	43
4.7 Results for Results for Diaphragm Irregular Structure(12 storeys)	49
4.8 Results for Regular Structure with Shear wall(12 storeys)	51
4.9 Results for Out-of-Plane Offsets Discontinuity structure with Shear wall(12 storeys)	53
4.10 Results for Non-parallel Systems with Shear wall(12 storeys)	55
4.11 Results for In-Plane Discontinuity with Shear wall(12 storeys)	57
4.12 Results for Discontinuity in Capacity with Shear wall(12 storeys)	59
CHAPTER 5	
COMPARISON AND CONCLUSION	61
5.1 Comparison Of Peak Storey Shear Of Regular And Irregular Structures In X Direction	61
5.2 Comparison Of Peak Storey Shear Of Regular And Irregular Structures In Z Direction	.63
5.3 Comparison Of Absolute Displacement Along X Direction Of Regular And Irregular	
Structures	65
5.4 Comparison Of Peak Storey Shear Of Regular And Irregular Structures With Shear Wall	In
X Direction	67
5.5 Comparison Of Peak Storey Shear Of Regular And Irregular Structures With Shear Wall	In
Z Direction	69

5.6 Comparison Of Absolute Displacement Along X Direction Of Regular And Irregular	
Structures	
5.7 Conclusion	
References7	5

LIST OF FIGURE

Figure 1.1 Torsional Irregularity
Figure 1.2 Re-entrant corner Irregularity2
Figure 1.3 Diaphragm Irregularity
Figure 1.4 Out of plane offset Irregularity
Figure 1.5 Non-Parallel System Irregularity
Figure 1.6 Stiffness Irregularity
Figure 1.7 Mass Irregularity4
Figure 1.8 Vertical Geometric Iregularity when L ₂ >1.5 L ₁
Figure 1.9 In-Plane Discontinuity when b > a5
Figure 1.10 Weak Storey Fi < Fi+16
Figure 3.1 XY Plane of Regular structure11
Figure 3.2 YZ Plane of Regular Structure
Figure 3.3 3D View of Regular Structure (12 Storeys)
Figure 3.4 Loading Due To Water Pool At 4th Floor
Figure 3.5 Loading Due To Water Pool At 8th Floor14
Figure 3.6 Stiffness Irregular Structure (XY Plane) (12 Storeys)15
Figure 3.7 Vertical Geometric Irregular Frame (XY Plane)
Figure 3.8 3D Vertical Geometric Irregular Frame17
Figure 3.9 Loading diagram showing -10 Kn/m ² on one side of axis of symmetry
Figure 3.10 Plan of L shaped Re-entrant corner Structure(12 Storeys)19
Figure 3.11 3D view of of L shaped Re-entrant corner Structure(12 Storeys)20
Figure 3.12 Plan of T shaped Re-entrant corner Structure(12 Storeys)
Figure 3.13 3D view of T shaped Re-entrant corner Structure(12 Storeys)
Figure 3.14 Plan of + shaped Re-entrant corner Structure(12 Storeys)23
Figure 3.15 3D view of of + shaped Re-entrant corner Structure(12 Storeys)

Figure 3.16 Plan of Diaphragm Irregular structure
Figure 3.17 3D view of Diaphragm Irregular structure
Figure 3.18 3D view of of Regular Structure with Shear Wall(12 Storeys)26
Figure 3.19 3D view of Out-of-Plane Offsets Discontinuity structure with Shear wall(12 storeys)27
Figure 3.20 3D view of Non parallel System Irregular structure with Shear wall(12 storeys)28
Figure 3.21 3D view of Inplane Discontinuity Irregular structure with Shear wall(12 storeys)29
Figure 3.22 3D view of Discontinuity in Capacity with Shear wall(12 storeys)
Figure 5.1 Comparison Of Peak Storey Shear Of Regular And Irregular Structures In X Direction
Figure 5.2 Comparison Of Peak Storey Shear Of Regular And Irregular Structures In Z Direction
Figure 5.3 Comparison Of Absolute Displacement Along X Direction Of Regular And Irregular Structures
Figure 5.4 Comparison Of Peak Storey Shear Of Regular And Irregular Structures With Shear Wall In X Direction
Figure 5.5 Comparison Of Peak Storey Shear Of Regular And Irregular Structures With Shear Wall In Z Direction
Figure 5.6 Comparison Of Absolute Displacement Along X Direction Of Regular And Irregular Structures

List of Symbol

 K_i = Stiffness of *i*th Storey

- W_i = Seismic weight of floor *i*,
- F_i = Design lateral forces at the floor i due to all modes considered
- EI = Rigidity of Section
- V_b = Design base shear calculated using the approximate fimdamental Period T,
- V_B = Design seismic base shear

ABSTRACT

Several buildings in the current scenario have irregular configurations both in plan and elevation. This in future may subject to overwhelming earthquakes. In case, it is necessary to find the performance of the structures to withstand against disaster for both new and existing one. Structures experience lateral deflections under earthquake forces. Magnitude of these lateral deflections is related to many variables such as structural system, mass of the structure and mechanical properties of the structural materials. Reinforced concrete multi-storied buildings are very complex to model as structural systems for analysis. The current version of the IS: 1893 (part I) -2002 requires that practically all multistoried buildings be analyzed as three-dimensional systems. This is due to the irregularities in plan or elevation or in both. The thesis discusses the performance estimation of RC (Reinforced Concrete) Structures with irregularity. Structural irregularities are significant factors which decrease the seismic performance of the structures. The study as a whole makes an effort to evaluate the effect of vertical and plan irregularity on RC buildings, in terms of dynamic characteristics and the influencing parameters which can regulate the effect on Story Displacement, Drifts of adjacent stories, Excessive Torsion, Base Shear, etc.