

Department of Computer Engineering, DTU

A DISSERTATION

ON

 AUGMENTATION IN UCON MODEL

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENT

FOR THE AWARD OF THE DEGREE OF

MASTER OF TECHNOLOGY

IN

COMPUTER SCIENCE AND ENGINEERING

SUBMITTED BY:

NIDHI JOSHI

2K13/CSE/27

UNDER THE GUIDANCE OF:

MR. MANOJ KUMAR

(ASSOCIATE PROFESSOR)

DEPARTMENT OF COMPUTER ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

 JUNE 2016

Department of Computer Engineering, DTU

A

Dissertation

On

 Augmentation in UCON Model

Submitted in Partial Fulfillment of the Requirement

For the Award of the Degree of

Master of Technology

In

Computer Science & Engineering

Submitted By:

Nidhi Joshi

2K13/CSE/27

Under the Esteemed Guidance of:

Mr. Manoj Kumar

(Associate Professor)

DEPARTMENT OF COMPUTER ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

 JUNE 2016

Department of Computer Engineering, DTU

ABSTRACT

In this dissertation, we have presented a new architecture of UCON access control model for e-

healthcare domain. This enhanced UCON model can scale effectively as per user demand, perform

isolation of sensitive data from non-sensitive data and data transmission between different modules is

via secure model and thus helps in achieving high availability, performance, scalability, resilience and

security. Features of Cloud computing have also been explored and used to achieve some of the

features listed above. Existing implementation of UCON for e-healthcare domain do not cater for all

of these requirements, for an e-healthcare system it is imperative to have an access control model

which fulfills all of these.

New architecture comprises of a client application, user platform on local network and policy server

on cloud platform. Sensitive and Non-sensitive data has been segregated to maintain data isolation.

Sensitive data is kept on local network of hospital and non-sensitive data on cloud. Multiple UCON

policy servers are available on cloud to cope with component failures and to provide resilience.

Data communication from user platform to cloud is through SSL to maintain data security. Feature of

Sun XACML has been used in the implementation of policy server. All features of UCON model

related to authorization, condition, obligation, continuity and attribute mutability has been

incorporated in the proposed model.

Department of Computer Engineering, DTU

ACKNOWLEDGEMENT

First and foremost I would like to thank the Lord Almighty for showering his

blessing in all endeavours.

 With immense pleasure I take this opportunity to express my indebtedness

gratitude to our beloved Vice chancellor Prof. Yogesh Singh who is enriching keen

interest in academic pursuits.

 I convey my sincere thanks to our HOD Prof. O.P. Verma, Department of

CSE for his kind encouragement and motivation to complete this Project successfully.

 I profoundly thank our respected Associate Professor Mr. Manoj Kumar

Department of CSE, for his full-fledged support and guidance throughout the Project.

 Last but not least I render my heartiest complements to all my Staff

Members, Librarian, Family and Friends for giving their valuable suggestions,

encouragement and support for completing my project successfully.

NIDHI JOSHI

University Roll no.: 2K13/CSE/27

M. Tech (Computer Science & Engineering)

Department of Computer Engineering

Department of Computer Engineering, DTU

Department of Computer Engineering

DELHI TECHNOLOGICAL UNIVERSITY
Shahabad Daulatpur, Main Bawana Road,

Delhi-110042

CERTIFICATE

This is to Certify that the dissertation titled “Augmentation in UCON

Model ” is a bonafide record of work done by NIDHI JOSHI, ROLL NO.:

2K13/CSE/27 at Delhi Technological University for partial fulfilment of the

requirement for the degree of Master of Technology in Computer Science &

Engineering. This project was carried out under my supervision and has not

been submitted elsewhere, either in part or full, for the award of any other

degree or diploma to the best of my knowledge and belief.

 Sh. Manoj Kumar

Date: ____________

Associate Professor & Project Guide

Department of Computer Engineering

 Delhi Technological University

Department of Computer Engineering, DTU

Table of Contents

Chapter 1 ... 1

Introduction ... 1

1.1 Fundamentals of Access Control System .. 2

1.2 Types of Access Control Model .. 2

1.3 Introduction to Cloud Computing ... 4

1.4 Research Motivation ... 5

1.5 Goal, Scope and Objective of Research .. 5

1.6 Thesis Structure .. 6

Chapter 2 ... 7

Literature Survey of UCON Model .. 7

2.1 OASIS XACML .. 7

2.2 Existing Solution Architecture .. 8

2.3 Challenges in existing Architecture .. 9

2.4 Related Research in UCON .. 10

Chapter 3 ... 14

Proposed Work.. 14

3.1 Problem Statement .. 14

3.2 Proposed Solution ... 14

3.3 New Architecture and its components .. 15

Chapter 4 ... 18

Implementation, Testing and Results Analysis ... 18

4.1 Software Details of Implemented System ... 18

4.2 Database Schema .. 19

4.3 Messaging Schema .. 21

4.4 User Platform .. 33

4.5 Policy Server and Obligation Timer ... 34

4.6 Load Sharing ... 38

4.7 Client Application ... 39

4.8 Glance at the Working Model ... 39

4.9 Final Result ... 42

Chapter 5 ... 49

Department of Computer Engineering, DTU

Conclusion and Future Work .. 49

References ... 50

Table 1: Technology Detail .. 18

Table 2: Test Values Taken .. 43

Table 3: Single Node Test Results .. 44

Table 4: Multi Node Test Results ... 47

Figure 1: Existing Architecture of UCON Model ... 8

Figure 2: Architecture of Obligation Handler ... 9

Figure 3: Proposed Architecture of UCON Model ... 15

Figure 4: Resource DB Schema .. 19

Figure 5: Policy DB Schema ... 20

Figure 6: Components of Obligation Handler ... 37

Figure 8: Microsoft Azure Load Balancer .. 38

Figure 9: Login Page ... 39

Figure 10: Hospital Patient Query System .. 40

Figure 11: UCON Request Processing .. 41

Figure 12: Obligation Handler .. 41

Figure 13: Result of Patient Query Request Processing ... 42

Figure 14: Single Node Batch Processing Time ... 45

Figure 15: Single Node Avg Request Service Time ... 45

Figure 16: Single Node Failure Count .. 46

Figure 17: Multi Node Total Batch Processing Time ... 47

Figure 18: Multi Node Avg Request Service Time .. 47

Figure 19: Multi Node Failure Count ... 48

Figure 20: Single Node vs Multi Node Request Time Processing Comparison 48

Department of Computer Engineering, DTU
1

Chapter 1

Introduction

Nowadays, computing environment is dynamically changing which demands for new technical

approaches to cope with the increasing security challenges. Access control is one of the earliest

computer securities and it still remains a continuing challenge. There are many traditional access

control models available but some of them uses static authorization decisions which implies subjects

have pre-assigned permission on objects, so it is more of a closed system and hence not suitable in a

dynamic environment. In very large distributed open systems such identity based models do not work

because relationship between subject and object is dynamic. System demands usage of attributes or

characteristics in access control models. There are many models like ABAC, RABAC developed on

this concept but each one has its own challenges. Distributed system requires an access control model

which excels in following parameters:

1. User’s convenience – access mechanism should be transparent to the user and access decision

making model should be faster and have low latency

2. Performance & Scalability – Access control model should be able to scale up easily and

sustainably with increase in number of operations or number of users. With an increase in

aforementioned parameters (operations/users) system should exhibit minimum deviation from

the average time to respond

3. Security – Sensitive user data should remain confidential and protected against unwanted

threats. This can be achieved by using some cryptographic methods in the Access Control

model used. Cryptographic methods chosen should ensure less overhead in key distribution

and data management

4. Attribute Mutability and Continuity – Continuity caters to continuous access re-evaluation

during the course of usage and mutability ensures any changes that may impact access

decision are enforced in the same window. These two features are imperative in a dynamic

computing environment

Department of Computer Engineering, DTU
2

1.1 Fundamentals of Access Control System

 Access Control is a technique to control who or what can use or view resources in a computing

world. It limits access to a system or to a virtual or to a physical resource. Access control mainly

comprises of two entities – subject and object. Subject is an entity making the request; it can be a user

or a program or a process operating on behalf of the user. Subject interacts with the system and

accesses the desired resources. Objects are resources which subject wishes to access; it could be

anything like mp3 file, image, document etc. Access control system grants or revokes the access to the

object based on the information provided and authorization policies defined.

1.2 Types of Access Control Model

Some of the access control models have been listed below:

1. Discretionary Access Control – In this model, identity of subject is used to control the

access. Owner of object decides its access permission for other users and accordingly sets

them. Hence, it provides flexibility of usage on information. Example of such model is the

UNIX operating system - the subject/user can specify what permissions (read/write/execute)

members in the same group may have and also what permissions all others may have.

In such systems, unauthorized users can easily access the information because there is no

control on copies of resources and no control on flow of information. Consistency of

information is hampered in this model. These models are typically used only with legacy

applications and will incur considerable management overhead in the modern multi-user and

multi-application environment.

2. Mandatory Access Control – In this model, access decisions are controlled by the attaching

security level on subject and object. This helps in solving the information flow problem. All

users need to obtain certain clearance to access objects, a relationship should exist between

two. An individual doesn’t have the authority to change the access, the access permissions are

decided by the administrator of the system, and not by the subject. Mainly MAC takes

hierarchical approach to control the access; hierarchy depends on the security levels e.g.,

Unclassified, Classified, Secret and Top Secret. Security labels are assigned to all subjects

based on the object they request for. Labels propagate to derivative objects, including their

copies. Information integrity is increased as information flow from lower level to higher level.

It is mostly used in military and government applications where multilevel security is

required. Drawback in MAC is that once the security level is defined for a particular subject

in the hierarchy it doesn’t modify it. MAC and DAC are fixed access control models as their

policies are hard to change.

Department of Computer Engineering, DTU
3

3. Role Based Access Control – In this model, access decisions are made based on the roles and

responsibilities of subject. Roles are defined based on the job functions; it can be set of

objects or actions that are associated with a subject. It can be managed centrally. Permissions

are defined based on job authorities and responsibilities of the subject. Actions/Operations on

an object are driven by the permissions assigned to the subject. This model is more scalable

than DAC and MAC models and is suitable for cloud computing environment where

relationship between users and services is dynamic. Roles can be assigned based on least

privilege to minimize the risk of intrusion. At times it is hard to reach which privilege is

associated with which user for a particular role. Permissions associated with each role can be

deleted or modified based on the privilege of role change. It doesn’t take into consideration

contextual information while making access decision, in order to achieve that more roles

might need to be created and creating excessive number of roles creates a problem called role

explosion.

4. Attribute Based Access Control – In this model, access control is determined based on the

attributes of the entities involved. For example: department is a user attribute, createTime and

size are object attributes. Fine grained access policies which is required by most of the

applications can be easily defined with the help of ABAC. Role based access control has a

problem of assigning privileges to the subject; this is solved by ABAC as it uses a set of

subject’s attributes. ABAC allows more comprehensive rules/policies to be formed as

compared to traditional models. In ABAC, once the authorization policies are defined,

authorization is computed at the time of request and there is no need for pre-assignment of

permissions to the users. This model is more flexible and scalable in comparison to the

models stated above. However, using an organizational hierarchical data it is difficult to

implement ABAC model. Its major challenge is just-in-time policy evaluation which does not

factor in change in condition of attributes which require re-evaluation of authorization

decision. Hence, disconnect between the rule based policies and the resources.

5. Usage Control Model – It is the next generation access control model because of its unique

property of decision continuity. It is an attribute based model, thus permissions are based on

attributes of subjects, object or environments and policies defined in the form of

authorization, condition and obligation. Two vital properties of UCON are attribute mutability

and continuity. Change in subject’s or object’s attribute as a side effect of usage comes under

attribute mutability and continuity refers to repeatedly checking the validity of subject’s right

Department of Computer Engineering, DTU
4

on the object. Authorization may lead to performing update on subject or object attribute. To

enforce mutability, there can be pre-updates, post updates or on-going updates. For continuity

properties, there can be three parts – on-going usage, before and after usage. Based on these,

different cases of UCON models can exist.

1.3 Introduction to Cloud Computing

Cloud Computing is a computing model which provides infrastructure, applications and platform as

per pay-per-user cost model. Most of the organizations are moving towards using cloud due to the

numerous capabilities and features provided by it. There are three main models in cloud computing:

1. Software as a service (SaaS) – In this cloud providers enables users to access the

applications hosted on cloud using web browser. Users do not need to install the application

on their local machine

2. Infrastructure as a service (IaaS) – In this cloud providers provide resources like storage,

network, processing etc to install and run the applications and operating system

3. Platform as a service – In this cloud providers provide platforms to develop applications.

Client can create their applications using cloud platform and the languages provided by cloud

With the increase in usage of cloud, the attacks on cloud computing has also been increased. Access

control is one of vital security solution for the data in cloud. There are different types of cloud

available, based on an individual’s or organization requirement the type of cloud to be used can be

chosen. Some of the clouds available are:

1. Public Cloud – All clients on public cloud share same infrastructure pool with limited

security protections and configuration options. It is beneficial when you need to test and

develop an application code, when you are doing a collaboration project. Some of public

cloud providers are Amazon , Google and Microsoft

2. Private Cloud – Such clouds are dedicated to an organization and allow them to host their

applications on cloud taking into consideration data security and control. Such clouds are not

shared by other clients. They are further classified into two types:

i. On Premise Private Cloud: Cloud is hosted inside the organization and it

would incur the capital and operational cost of the physical resources in this

model.

ii. Externally Hosted Private Cloud: Cloud is hosted by a third party which

ensure full guarantee of privacy

It is generally opted by organization where data control is crucial or organizations want to set

up a data centre of their own

Department of Computer Engineering, DTU
5

3. Hybrid Cloud – It is formed by combining two or more types of cloud. In this type, client

can leverage the cloud provider in either partial or full manner for eg: secured data can be

kept in on premise private cloud and application can be hosted in public cloud.

4. Community Cloud – It is a variation of private cloud which is built for targeted group. It is

governed, managed and secured either by participating organizations or by the cloud service

provider. It can be used by organizations like a state government bodies that need to share the

resources among themselves.

As part of this project we have used the Microsoft cloud Azure to host the policy server of UCON

model. This has enabled us to separate the non-sensitive data from the sensitive data and has helped in

achieving resilience by using the replication mechanism to ensure that services are not impacted in the

scenarios where a policy server has broken down. Policy Database will also be maintained in cloud

and any hospital specific sensitive data has been kept in local network to maintain data security.

Cloud load balancing concept has also been used here for effective management of incoming traffic.

Load Balancer uses round robin algorithm to route the traffic to respective virtual machines. It

provides stickiness within the session which means traffic from a specific session will be sent to the

same member of the load balanced set.

1.4 Research Motivation

In today’s’ ever changing computing environment, there is a need to have a high performance access

control model which is resilient and is secure. We have chosen UCON model since in comparison to

other traditional access model it provides distinguishing features of continuous evaluation and

mutable attributes. Features of cloud have also been explored with respect to scalability, data isolation

and pay as you use functionality.

 Existing implementation of UCON model do not cater for scenarios where high availability,

performance and resilience is required. The objective of this research is to create an enhanced UCON

model that can scale effectively as per user demand, perform isolation of sensitive data from non-

sensitive data and data transmission between different modules should be via secure model. The

model should also be flexible to component failures. E-Healthcare system is one of the most vital

areas where such access control system should be implemented since it demands for higher security

with respect to patient data, higher availability, capability to cope with node failures etc. Cloud

computing has enabled us to achieve these features.

1.5 Goal, Scope and Objective of Research

Goal of research is to enhance the UCON model by adding the following features to it:

1. High Availability

Department of Computer Engineering, DTU
6

2. Resilience

3. Data Isolation

4. High Performance

5. Data transmission security

Implementation of aforementioned features has been considered as part of this thesis. We have also

implemented all the distinguishing features of UCON like obligation handling, re-evaluation of

authorization decisions, continuous evaluation, mutability of attributes etc. Separate components have

been developed to achieve the desired functionalities.

Developed Access control model has been implemented in e-healthcare domain. Existing

implementation of UCON model for this domain is not robust in terms of performance, availability

and security. As part of this research, we have developed an enhanced model which caters for all these

requirements.

1.6 Thesis Structure

The thesis contains six chapters. Chapter one describes the introduction of different access control

models available. This chapter also explains the motivation of Research and focus on important goal,

scope and objective of study. Here we have discussed about the distinguishing features of UCON

model and improvements required in existing implementations of it.

Chapter 2 describes OASIS XACML along with its usage in existing implementation and structure of

existing model with its challenges. This chapter also covers the related research done so far in the

field of UCON

Chapter 3 describes the proposed work to overcome the challenges of availability and security in

existing implementation. This will cover new architecture proposed which will also include

introduction of Microsoft cloud Azure in the new design and all other related components

Chapter 4 contains details of software used for implementing UCON in e-healthcare system. Database

schema details along with details of policy server, obligation timer, load balancer and client

application. It will also show the final results and comparison of the performance improvement

Chapter 5, describe the conclusion and future work.

Department of Computer Engineering, DTU
7

Chapter 2

Literature Survey of UCON Model

2.1 OASIS XACML

XACML stands for extensible access control mark-up language, it is an OASIS standard. It is a policy

language used to explain general access control requirements and has standard extension points which

are used to define new functions, different data types, combining logic etc. The request/response

language helps you form a query to check whether given action should be allowed or not and interpret

the outcome. The response always includes an answer to the query, it has one of the four values:

Permit, Deny, Indeterminate (an error occurred or some required value was missing, hence a decision

cannot be made) or Not Applicable (the request can't be answered by this service). PDP (Policy

Decision Point) and PEP (Policy Enforcement Point) are two main components of XACML model.

PDP is a processing engine that evaluates policies based on the request received. PEP enforces access

to a request physically and generates request for policy decision point. PDP and PEP may exist in the

same system or may be distributed. An example describing the communication between PDP and

PEP-

A subject wants to take an action on an object; it will make a request to suppose a file system or web

server which is actually protecting the resource, which we call as policy enforcement point (PEP).

Policy enforcement point forms the request using subject’s attributes, resource’s attribute, action to be

performed and other information related to it. Once request is formed, PEP sends it to Policy Decision

Point (PDP). PDP analyzes the request and searches for a policy that applies to it, based on the policy

applied it returns an answer whether access should be granted or not.

Sun has implemented XACML using a set of JAVA classes that understand XACML language and its

rules. Policies are defined using Policy and PolicySet references. A custom class called “finder

module” has been used which can be plugged into Policy Decision Point, it helps in retrieving the

policies, attribute values etc. Our project implementation adapts this framework for UCON ABC

authorization.

XACML advantages over other access control policy languages:

 It is a standard access control policy language that is platform and technology agnostic and

can be integrated with any application or language using XML

Department of Computer Engineering, DTU
8

 Saves time and money for both administrators and developers because there is no need to

rewrite their policies in different languages and existing code can be reused.

 XACML allows for easy modifications to support most access control policy use cases and

can be extended to cater to new requirements.

 A single XACML policy can provide coverage for multiple resources and thus allows

administrators to have a consolidated view of access control policies across the estate.

 XACML supports policy combining algorithms, which allows multiple policy constraints to

be applied to create a single, non-conflicting decision based on an input set of parameters.

2.2 Existing Solution Architecture

Below diagram shows the existing architecture for an e-healthcare implementation utilising UCON

model. In this model UCON has been implemented using cloud infrastructure. The user platform is on

local network, which interacts with the UCON model for making any access control decisions. There

are various components of UCON model each with its distinct feature which enables the system to

make decisions by applying policies corresponding to the request raised by the subject. The model

caters to handling pre and ongoing obligations via the obligation handler, obligations received from

Policy decision point are processed here and appropriate commands are issued to interacting modules.

 Figure 1: Existing Architecture of UCON Model

Below diagram shows the inner architecture of Obligation Handler

Department of Computer Engineering, DTU
9

Figure 2: Architecture of Obligation Handler

2.3 Challenges in existing Architecture

Some of the challenges observed in existing architecture are listed below:

1. Restricted performance due to single policy server: In the current architecture, a single

node is used as a policy server. This reference design does not scale well, as with increase in

user and application load, the number of access decisions that require processing would

increase exponentially and introduce a higher than desirable waiting time in the process.

2. System Resilience: In the event of failure of the policy server or any component within the

execution environment, policy decisions can no longer be evaluated, thus creating a system

with low resilience to failures. Further, there might be instances where it is desirable to bring

one part of the system down for planned maintenance without impacting the overall

availability of access control systems.

Department of Computer Engineering, DTU
10

3. Security Issues during data transit and at rest: The existing architecture is implemented in

the cloud. Messages from client applications to execution environment and vice-versa

containing decision information and potentially confidential resource data traverses

organization boundaries when travelling to/from cloud to organization network. This exposes

such data to exploitation by maleficent entities.

4. Data Security Issues: The current implementation of execution environment does not

segregate resources/organizational data from policy data, both being stored in the same cloud

environment. In scenarios where tighter control is required on resource data not leaving

organizational boundaries, this can pose a challenge.

2.4 Related Research in UCON

Lili Sun and Hua Wang [1] have proposed a usage control model with purpose control to handle

private data in e-healthcare system. Purpose is required to access or collect private data in access

management system, type of access should change as the purpose changes. Along-with existing

components - subject, object, rights, obligations, conditions, authorizations; a new component called

purpose was added. Purpose hierarchies were added to the model where upper layer are more general

and lower layer are more specific. For eg: “Given Treat” is an upper layer and its lower layer can be

“Write Prescription” and “Refer Patients to do X-ray test”. They proposed two versions one for pre-

authorization and other for ongoing authorization. For usage control in pre-authorization model

following predicate must be true – “if subject s is allowed to access object o with right r based on

purpose pu, then the specified condition preA must be true”.

Tina Tanvi, Mehdi Shajari and Peyman Dodangeh [2] have proposed a usage control based

architecture for cloud environment. They have proposed a new architecture to perform obligation

handling and a new approach for handling attribute mutability using Sun’s OASIS XACML

Implementation. The new architecture covers all UCON components and caters to all real world usage

control scenarios. This has been done by extending XACML policy language to handle on-going and

pre-authorization, re-evaluation of authorization policies, on-going and pre-checks for conditions.

Arlindo Luis Marcon Jr., Altair Olivo Santin, Maicon Stihler, and Juliana Bachtold Jr. [3] have

proposed a UCONABC resilient authorization evaluation for cloud computing. This aims at providing

resilience to authorization re-evaluation by dealing with individual exception conditions while

maintaining an access control in dynamic cloud environment. Proof of concept of this was done on an

e-commerce application. The proposed approach uses contextual information to enable

reconfiguration of usage policies and for monitoring of usage SLAs. It ensures when client’s SLA is

nearing the contracted amount and additional quota should be added to avoid any SLA breach. It has

made the attribute related to authorization of each user more flexible.

Department of Computer Engineering, DTU
11

Mounira Mshali and Ahmed Serhrouchni [4] have proposed an access control in probative cloud.

They have work towards the problem of protecting data from unauthorised access to Cloud. This has

been implemented in a government safe project using Hadoop distributed file system. gSafe project

deals with externalization of enterprises electronic file system. They have used a new cloud service

called Safebox which is used for archiving sensitive documents after a defined period of time. A new

actor called Proof Manager has been introduced to manage proof between cloud user and cloud

provider. Main objective here is to reduce the risk of malicious access to the sensitive data stored, this

has been reduced by encrypting the data using cloud user public key. Encrypted data will also have a

security policy in XML form which contains metadata of the stored file and access rights on that file.

Feasibility and effectiveness of this model has also been validated.

Dongliango Jiao, Liu Lianzhing, Li Ting and Ma Shilong [5] have presented realization of UCON

model based on extended XACML. They have extended PDP and storage mode of policy using

extended UCON model (eXUCON). Access request will now not only depend on authorization but

also on obligations and conditions. The results of request will now not only return grant or deny but

also include the mutable attributes that have changed as a result of the access. They have described

the operation of model using components like PAP, PDP, PEP etc; this has also been tested by taking

few scenarios.

Fang Pu, Daoquin Sun, Qiying Cao, Haibin Cai and Fan Yang [6] have proposed a pervasive

computing context access control based on UCONABC model. This model not only focuses on

authorization but also includes obligations and conditions taking into considerations pre-

authentication, pre-condition, pre-obligation, active right and passive right models. They have taken

into account contextual information in pervasive computing environment and focused on immutable

attributes to produce a CACM model (Context Access Control Model). CACMpreA model has pre-

authorization that are to be satisfied for usage allowance. CACMpreB model has pre-obligations that are

to be fulfilled for making a usage decision. CACMpreC model has pre-conditions that are to be

evaluated before requested rights are given; conditions are associated with environmental conditions

that are to be satisfied for usage control. In this paper, this model has been applied in a healthcare

scenario

Yonggang Ding and Junhua Zou [7] have presented the application of DRM in UCONABC. In

commercial DRM solutions, usage decisions use user-defined, application level, payment based

security policies. This can be realised using UCON model for eg: DRM pay per use using UCONpreA

payment which is a payment based authorization. In such system user’s credit will reduce as per usage

and post updates will be required in it. Similar to this there are other scenarios which can be covered

via UCON models and hence it proves to have potential for next generation access control.

Department of Computer Engineering, DTU
12

Tamleek Ali, Mohammad Nauman, Fazl-e-Hadi, Fahad bin Muhaya [8] have described usage control

of multimedia content in and through cloud computing paradigm. In this paper, they have presented a

new architecture for fine-grained control over usage of protected objects by using the cloud

computing environment. They have also worked towards the secure dissemination of multimedia

content i,e. if a third party is releasing the data to cloud they need assurance that data is not

compromised. Their framework allows resource owner to specify policies related to number of times a

resource can be used, time taken per each use etc.

Fengying Wang and Fei Wang [9] have presented the research and application of resource

dissemination based on credibility and UCON. It focuses on the distribution of usage rights for digital

information. Concept of fuzzy set theories has been used to calculate credibility. This approach gives

more control over the level of resource distribution making authorization and revocation process more

flexible. A notion called trust degree has been introduced here which evaluates to a number between 0

and 1 based on which grades like complete trust, special trust , general trust and distrust are decided.

A trust vector is generated based on five factors and resultant credibility value is calculated. To gain

access of a resource subject’s credibility should be greater than equal to the credibility of a resource.

This is a better approach than certificate based dissemination of usage rights as its provides more

flexibility and prevents multi level verifications of certificates.

Zhang Guoping and Gong Wentago [10] have presented the research of access control based on

UCON in the Internet of things. Role of UCON in IoT is to provide privacy and authorization

flexibility. Through obligations and conditions, decisions will be controlled like usage of resources.

IoT has three layered architecture where the top layer is application layer it provides people the

application services like logistics monitoring, middle layer is the data transmission network layer such

as cloud computing platform or internet and the third layer is data sensing layer consisting of devices

like RFID sensors/tags, Smart terminals etc. The Access Control architecture proposed has a trust

management centre along with access control model. Trust management centre is used to control the

threshold limits defined for devices and services. Access control policies are used to control the

access between the device and service. Assessment model based on the concept of IoT is used and

many examples have been demonstrated to verify the usage control model.

Jaheong Park and Ravi Sandhu [11] paper on The UCONABC Usage Control Model. This paper

introduces UCON and its concepts. Usage Control is a generalization of access control and covers

obligations, conditions, authorizations, mutability and continuity. UCONABC is considered as next

generation access control model which integrates diverse concepts into a unified framework. UCON

encompasses traditional access control, trust management and DRM and achieves fine grained access

control on digital resources even after their dissemination. This model can be used for both client side

Department of Computer Engineering, DTU
13

and server side control architectures. There are eight core components of UCONABC model: subject,

subject attributes, object, object attributes, conditions, authorizations and obligations. ABCs’ are

functional predicates that are evaluated for making usage decisions. Paper discusses more on each of

the core component.

Department of Computer Engineering, DTU
14

Chapter 3

Proposed Work

3.1 Problem Statement

Let us consider a scenario wherein policy server architecture implemented on a single node is being

stressed by multiple requests per second for authorization decisions. The latency caused by system

performance in such instances would have a significant impact downstream in the consuming

applications. The absence of multiple worker nodes to share the request load is a limiting factor in

system performance.

Furthermore, in the event of failure of any component in the policy server, the entire decision

framework suffers downtime resulting in crucial outage.

Considering that the authorization decision system is deployed in the cloud, significant measures have

to be taken to ensure that the confidential user data is not compromised in the event of a breach. This

is only possible if data isolation is in place with user/resource data being kept at a separate layer. This

data is never exposed to the cloud infrastructure.

 The main objective of the proposed solution is to address some of the constraints to improve the

system in the below mentioned aspects

1. Multi node architecture and Peak Load Performance

2. High availability

3. Data Security and Isolation

3.2 Proposed Solution

As part of this project, we have studied and implemented UCON in the context of e-healthcare

domain. Below is the list of entities of the system:

 Subject – Doctor, Visiting Doctor

 Subject’s Attributes – Doctor ID , Home Hospital (Hospital ID)

 Object – Patient

 Object’s Attribute – Patient’s Hospital (Hospital ID)

 Pre-Authorization – Doctors can only see details of Patients of their hospital or they can see

details of patient of visiting hospital if obligations are met

 Pre-Obligation - Consent form should be filled by the Visiting doctor in order to access the

visiting hospital’s patient data

Department of Computer Engineering, DTU
15

 Ongoing-Obligation - Forms validity is only for 15 days, it needs to be refilled once the

tenure ends

 Ongoing-Condition – User’s current session validity is constantly re-evaluated once the

session is invalid any ongoing and new authorization request from the user are denied

 Pre-Condition – Above condition relating to session validity is also reinforced as a pre-

condition which is evaluated by the PDP during access request evaluation.

3.3 New Architecture and its components

The figure below depicts the new architecture proposed for our solution. As shown in the figure, we

have redesigned the architecture to split the components into two separate layers.

The core computational modules, which benefit for scaling, are implemented on cloud using

Microsoft Azure platform. Enabling modules which help communicate to cloud infrastructure, secure

and distribute requests and provide oversight are implemented in the corporate network.

Figure 3: Proposed Architecture of UCON Model

 Components parts of the architecture are as follows:

Department of Computer Engineering, DTU
16

1. Client application: Client application is the end user interface which will be consumed by end

users of the system. This allows users to query for data/resources present inside the corporate

network. How and where the policy decisions that take place to permit access does not affect the

functionality of the application and user experience remains unchanged from the original

architecture

2. User Platform: User platform is the gateway for client application to secure access to the

resources requested by the user. User platform is responsible for making access as seamless as

possible, while acting as a firewall to prohibit invalid requests.

3. Resource Manager: Resource Manager is the module which is invoked by user platform to

garner requested resources and in turn provide them back to the client application in a common

messaging format.

4. Secured Resources: These are the resource for which access needs to be controlled. Secured

resources can represent any kind of resources (like files, table data etc.) and can be persisted on

file systems, databases, table storage. For our implementation, we have used relational database

to persist secured resources.

5. Load Balancer: Load balancer is required to distribute incoming access evaluation requests and

access evaluation response requests from the user platform to cloud infrastructure. We have

implemented load balancing using an Azure Cloud Load Balancer device with sticky session

affinity.

6. Policy Server: A policy server represents a single, replicable unit that can be scaled up or down

as required in the cloud. Policy server internally comprises multiple modules, listed below. Each

of these modules in turn has implicit sub modules. Policy server will be described in further

details in the following sections, a brief synopsis of each sub-module is as follows

7. UCON Service: A load balanced service to distribute access request load across the cloud

environment. UCON Service is hosted using IIS Server, installed on each Policy Server.

8. Policy Execution Environment: Core Policy evaluation environment implemented by extending

SUN XACL framework. This comprises the below sub-components:

 PEP

 PDP

 Obligation Handler

 Policy Manager

 Context Handler

 Attribute Handler

Department of Computer Engineering, DTU
17

9. Cloud Storage: This is a common locally replicated storage for persisting policies used by the

cloud policy server environment. Cloud storage provides for saving both policy data as well as

table data used by Policy execution environment.

Department of Computer Engineering, DTU
18

Chapter 4

Implementation, Testing and Results Analysis

4.1 Software Details of Implemented System

In our implementation, we have used a mix of technologies and platforms as per functional

applicability. At a high level, below platforms are used

Server OS: Windows Server 2012

Database: MS SQL Server

Programming Languages: C#.NET, Java

Frameworks: .NET 4.5, SUN XACML, WCF, ASP.NET, XML

Service Hosting: IIS

Cloud Platform: Microsoft Azure

Below table lists specific details for platform against each component:

Component Implementation Platform Details

Client Application C#.NET

User Platform C#.NET

Service Proxy C#.NET

Event Hander C#.NET

Resource Manager C#.NET

Secured Resources MS SQL Server

Load Balancer Azure Load Balancer

Policy Server Azure Virtual Machine with Windows 2012 Data Centre

Edition

UCON Service .NET WCF Service

Application Server (Service Host) IIS

PEP Java

PDP Java

Obligation Handler C#.NET

Policy Manager Java

Context Handler Java

Attribute Handler Java

Policy Storage Azure File Storage

Table Storage Azure Database

Table 1: Technology Detail

Department of Computer Engineering, DTU
19

4.2 Database Schema

Resource Database: The below figure represents a simplistic view of structure required to hold patient

case details.

Figure 4: Resource DB Schema

Department of Computer Engineering, DTU
20

Policy Database: The below figure depicts the database schema for holding policy specific details,

augmented by bare minimum details for subjects to help make evaluation decisions. Note that the

patient details are not part of this schema, and have been kept as a secured resource under resource

database.

Figure 5: Policy DB Schema

Department of Computer Engineering, DTU
21

4.3 Messaging Schema

Client to User Platform:

1. Request Schema

<xs:schema attributeFormDefault="unqualified" elementFormDefault="qualified"

xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="AccessRequest">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="_action">

 <xs:complexType>

 <xs:sequence>

 <xs:element type="xs:string" name="ActionId"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element type="xs:string" name="_requestId"/>

 <xs:element name="_resource">

 <xs:complexType>

 <xs:sequence>

 <xs:element type="xs:string" name="PatientId"/>

 <xs:element type="xs:string" name="ResourceId"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="_subject">

 <xs:complexType>

 <xs:sequence>

 <xs:element type="xs:string" name="HomeHospital"/>

 <xs:element type="xs:string" name="SubjectId"/>

Department of Computer Engineering, DTU
22

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

2. Response Schema

<xs:schema attributeFormDefault="unqualified" elementFormDefault="qualified"

xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="ClientResponse">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Obligations">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Obligations">

 <xs:complexType>

 <xs:sequence>

 <xs:element type="xs:string" name="DoctorId"/>

 <xs:element type="xs:string" name="Obligation"/>

 <xs:element type="xs:string" name="Status"/>

 <xs:element type="xs:string" name="DueBy"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

Department of Computer Engineering, DTU
23

 </xs:element>

 <xs:element type="xs:string" name="AuthorizationResponse"/>

 <xs:element type="xs:string" name="RequestID"/>

 <xs:element name="PatientDetails">

 <xs:complexType>

 <xs:sequence>

 <xs:element type="xs:string" name="PatientName"/>

 <xs:element type="xs:string" name="PatientId"/>

 <xs:element type="xs:string" name="PatientAddress"/>

 <xs:element type="xs:byte" name="PatientAge"/>

 <xs:element type="xs:long" name="PatientPhone"/>

 <xs:element name="CaseHistoryData">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="PatientCaseHistory" maxOccurs="unbounded"

minOccurs="0">

 <xs:complexType>

 <xs:sequence>

 <xs:element type="xs:string" name="PatientId"/>

 <xs:element type="xs:string" name="DoctorId"/>

 <xs:element type="xs:string" name="HospitalId"/>

 <xs:element type="xs:dateTime" name="VisitDate"/>

 <xs:element type="xs:string" name="CaseSynopsis"/>

 <xs:element type="xs:string" name="CaseDetails"/>

 <xs:element type="xs:dateTime" name="NextVisitOn"/>

 <xs:element type="xs:string" name="CaseClosed"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

Department of Computer Engineering, DTU
24

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

3. PDP Response Schema

<xs:schema attributeFormDefault="unqualified" elementFormDefault="qualified"

xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="authorizationDecision">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="PendingObligations">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="doctorObligations">

 <xs:complexType>

 <xs:sequence>

 <xs:element type="xs:string" name="DoctorId"/>

 <xs:element type="xs:string" name="Obligation"/>

 <xs:element type="xs:string" name="Status"/>

 <xs:element type="xs:string" name="DueBy"/>

 </xs:sequence>

Department of Computer Engineering, DTU
25

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element type="xs:string" name="AuthorizationStatus"/>

 <xs:element type="xs:string" name="SubjectId"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

4. Policy Schema

<xs:schema attributeFormDefault="unqualified" elementFormDefault="qualified"

targetNamespace="urn:oasis:names:tc:xacml:2.0:policy:schema:os"

xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="Policy">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Target">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Subjects">

 <xs:complexType>

 <xs:sequence>

 <xs:element type="xs:string" name="AnySubject"/>

 </xs:sequence>

 </xs:complexType>

Department of Computer Engineering, DTU
26

 </xs:element>

 <xs:element name="Resources">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Resource">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="ResourceMatch">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="AttributeValue">

 <xs:complexType>

 <xs:simpleContent>

 <xs:extension base="xs:string">

 <xs:attribute type="xs:anyURI"

name="DataType" use="optional"/>

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

 </xs:element>

 <xs:element name="ResourceAttributeDesignator">

 <xs:complexType>

 <xs:simpleContent>

 <xs:extension base="xs:string">

 <xs:attribute type="xs:string"

name="AttributeId" use="optional"/>

 <xs:attribute type="xs:anyURI"

name="DataType" use="optional"/>

 </xs:extension>

 </xs:simpleContent>

Department of Computer Engineering, DTU
27

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 <xs:attribute type="xs:string" name="MatchId"

use="optional"/>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="Actions">

 <xs:complexType>

 <xs:sequence>

 <xs:element type="xs:string" name="AnyAction"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="Rule">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Target">

 <xs:complexType>

 <xs:sequence>

Department of Computer Engineering, DTU
28

 <xs:element name="Subjects">

 <xs:complexType>

 <xs:sequence>

 <xs:element type="xs:string" name="AnySubject"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="Resources">

 <xs:complexType>

 <xs:sequence>

 <xs:element type="xs:string" name="AnyResource"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="Actions">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Action">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="ActionMatch">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="AttributeValue">

 <xs:complexType>

 <xs:simpleContent>

 <xs:extension base="xs:string">

 <xs:attribute type="xs:anyURI"

name="DataType" use="optional"/>

Department of Computer Engineering, DTU
29

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

 </xs:element>

 <xs:element name="ActionAttributeDesignator">

 <xs:complexType>

 <xs:simpleContent>

 <xs:extension base="xs:string">

 <xs:attribute type="xs:string"

name="AttributeId" use="optional"/>

 <xs:attribute type="xs:anyURI"

name="DataType" use="optional"/>

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 <xs:attribute type="xs:string" name="MatchId"

use="optional"/>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

Department of Computer Engineering, DTU
30

 <xs:element name="Condition">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Apply" maxOccurs="unbounded" minOccurs="0">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Apply">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="SubjectAttributeDesignator">

 <xs:complexType>

 <xs:simpleContent>

 <xs:extension base="xs:string">

 <xs:attribute type="xs:anyURI"

name="DataType" use="optional"/>

 <xs:attribute type="xs:string"

name="AttributeId" use="optional"/>

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 <xs:attribute type="xs:string" name="FunctionId"

use="optional"/>

 </xs:complexType>

 </xs:element>

 <xs:element name="AttributeValue">

 <xs:complexType>

 <xs:simpleContent>

 <xs:extension base="xs:string">

Department of Computer Engineering, DTU
31

 <xs:attribute type="xs:anyURI" name="DataType"

use="optional"/>

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 <xs:attribute type="xs:string" name="FunctionId"

use="optional"/>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 <xs:attribute type="xs:string" name="AuthorizationType"

use="optional"/>

 <xs:attribute type="xs:string" name="FunctionId" use="optional"/>

 <xs:attribute type="xs:byte" name="ReEvaluationTimePeriod"

use="optional"/>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 <xs:attribute type="xs:string" name="Effect" use="optional"/>

 <xs:attribute type="xs:string" name="RuleId" use="optional"/>

 </xs:complexType>

 </xs:element>

 <xs:element name="Obligations" minOccurs="0">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Obligation" maxOccurs="unbounded" minOccurs="0">

 <xs:complexType>

 <xs:simpleContent>

 <xs:extension base="xs:string">

Department of Computer Engineering, DTU
32

 <xs:attribute type="xs:string" name="ObligationId"

use="optional"/>

 <xs:attribute type="xs:string" name="FulfillOn"

use="optional"/>

 <xs:attribute type="xs:string" name="PolicyType"

use="optional"/>

 <xs:attribute type="xs:string" name="ObligationType"

use="optional"/>

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 <xs:attribute type="xs:string" name="AuthorizationType" use="optional"/>

 <xs:attribute type="xs:string" name="PolicyId" use="optional"/>

 <xs:attribute type="xs:string" name="ReEvaluationProcess" use="optional"/>

 <xs:attribute type="xs:byte" name="ReEvaluationTimePeriod" use="optional"/>

 <xs:attribute type="xs:string" name="RuleCombiningAlgId" use="optional"/>

 <xs:attribute type="xs:byte" name="Version" use="optional"/>

 </xs:complexType>

 </xs:element>

</xs:schema>

Department of Computer Engineering, DTU
33

4.4 User Platform

User platform is the gateway for client application to secure access to the resources requested by the

user. User platform is responsible for making access as seamless as possible, while acting as a firewall

to prohibit invalid requests. The client application connects to user platform, which is implemented in

the secure internal network. User platform is responsible for following key functions

1. Message routing: User platform listens to request messages from Client applications and

forwards requests to Cloud service.

2. Event Handling: User platform is responsible for time bound processing of events that are

raised by client sensors or external sensors which impact authorization decisions

3. Cloud Service Invocation: User platform invokes cloud service in a seamless manner,

abstracting the multi node complexities from downstream service consumers (client

applications)

4. Resource Handling: User platform encapsulates resource handling, for performing CRUD

operations on resource data.

User platform encapsulates the below components. Each component is briefly described

Service Proxy:

Service Proxy module is responsible for communication between user platform and Cloud service

(UCON Service). Service Proxy abstracts the service connectivity details from user platform and

helps create service oriented architecture. Since the connection bindings are configuration driven, they

can easily be modified on the fly to redirect to a new instance in the event of planned

downtime/maintenance window. Service Proxy connects to UCON Service through a WCF proxy

class over HTTPS binding.

Event Handler:

Over the lifetime of user request and user session, various events might happen which impact

authorization decisions either directly or indirectly. Any change in state that raises such events needs

to be handled in a time bound manner and impacted components be notified of the same such that

decisions re-evaluations or amendments take place. Event handler is responsible for implementing

such changes based on event notifications by the Client Side Event Sensors or external sensors. When

a new event is raised, event handler would take a pre-determined action on the event.

Resource Manager:

Department of Computer Engineering, DTU
34

Resource Manager is responsible for taking care of resource fetch and save requests. Once a

authorization decision is received by User Platform which would allow resource details to be shared

with the requesting user, the User Platform invokes resource manager with necessary information to

fetch the required resource details. These details are then passed downstream to the consuming

application to be presented to the requesting user. Client application by itself has no access to the

resource data. Using a modular architecture, the resource manager can be swapped/upgraded in the

event of change in storage strategy.

Secured Resources:

Secured resources represent the end data that is being protected from unauthorized access. This data

can be accessed only via resource manager, which is called by user platform to from CRUD (Create,

Read, Update, Delete) operations, based on a valid authorization token being received from Policy

Execution environment following a resource request made from a client application.

4.5 Policy Server and Obligation Timer

In the architecture diagram depicted in the preceding section, Policy server represents a scalable and

pluggable entity. This architecture enables the policy infrastructure to scale out in a cost effective and

time bound process. Furthermore, the architecture provides for in-built resilience to node failures,

zero downtime for any planned/unplanned maintenance and improved peak load performance.

The below sections describe each component of the Policy server in some detail:

UCON Service:

UCON Service is a load balanced Windows Communication Foundation (WCF) service that creates a

messaging channel between PEP and User Platform. This service is load balanced to distribute access

request load across the cloud environment. UCON Service is hosted using IIS Server, installed on

each Policy Server. UCON Service utilises SSL over HTTP to create a secure channel for

communications between Cloud infrastructure and User platform.

Policy Execution Environment:

Policy execution environment is the set of modules which are responsible for evaluation of incoming

access requests against stipulated policies and communicating the end response back to requester. In

our application architecture, the requests come from user platform; however the same architecture can

serve any other application which requires capability for access control to be implemented. Policy

execution environment comprises these sub-modules:

1. Policy Enforcement Point (PEP)

Department of Computer Engineering, DTU
35

2. Policy Decision Point (PDP)

3. Context Handler

4. Policy Manager

5. Attribute Handler

6. Obligation Handler

Functionality for each module is described below

Policy Enforcement Point (PEP)

The Policy Enforcement point is the entry point to access the policy evaluation capabilities. PEP

intercepts any evaluation requests and issues decision requests to the Policy Decision Point.

Furthermore, PEP is responsible for applying any policy specific customizations to the decisions

evaluated and sent by PDP.

Policy Decision Point (PDP)

The Policy Decision Point is responsible for evaluating access requests and deliver authorization

decisions. As depicted in the application architecture, Policy Decision Point evaluates incoming

access requests receive from the Policy Enforcement Point against the Access Control Policies that

are applicable for the specific request. These policies include constraints for Conditions and

obligations which can impact the authorization decision. During the policy evaluation, the Policy

Decision point communicates with Attribute Manager as required to gain access to attributes relating

to Subject, Object and Environment properties. These attributes may be part of the incoming request

(like user id, hospital id etc.) or may be environment/system attributes (like System Date Time etc.).

Once PDP has sufficient data to evaluate the request, it creates a response and sends the response to

PEP for further action.

Context Handler

Context Handler is the component in SUN Implementation of OASIS proposed XACML

architecture. This component handles inter module communication and provides a duplex

conversion capability for the messages being passed. Context handler is implicitly invoked by

Policy Enforcement Point, Policy Decision Point and other modules when passing messages

Department of Computer Engineering, DTU
36

during access request evaluation lifecycle. The messages passed are type safe objects which

are cast implicitly by Context Handler.

Policy Manager

Policy Manager is responsible for discovering, loading and unloading policies in the

execution environment. This is several pluggable sub-components that provide for policy

storage utilising disparate storage mechanisms. These components can discover applicable

policies during run time based on configuration and provide them to the Policy execution

environment for loading. Policy Manager also determines the attribute set which is present in

policies and is responsible for communicating this to Policy attribute manager; so that the

required attribute infrastructure can be initialised to serve attribute query requests.

Attribute Handler

Attribute handler is responsible for creating an infrastructure that can service requests for

attribute information relating to subject, resource and environment. Attribute handler

provides an extensible framework that can be amended to involve additional attribute query

sources as per requirements. Attribute handler receives updates to information about these

attributes from event sensors and is responsible for persisting these changes to storage.

Attribute handler is also responsible for ensuring that these changes are communicated to the

other modules which require these in evaluating decisions. For sensitive attributes, Attribute

handler must inform Decision Point in the event that there is a change is attribute value. For

low sensitivity attributes, Decision Point will directly request Attribute handler for updated

attribute value as re-evaluation takes place.

Obligation Handler

This component receives obligations from Decision Point and processes them, then issue

appropriate commands to the related modules. Obligation handler consists of several

subsystems which are described as follows

Department of Computer Engineering, DTU
37

Figure 6: Components of Obligation Handler

A. Event Handler: This is an external component which is part of user platform that

communicates with obligation handler whenever an event occurs. These events can cause an

obligation to be fulfilled or reopen.

B. Event Analyser: Event Analyser checks whether there is an obligation in the pending

obligations database to be fulfilled because of this event or not. If occurrence of one event

implies that one or more obligations will be fulfilled, the Event Analyser deletes the

obligation from the pending obligations database.

C. Obligation Analyser and Convertor: After analysing the received obligations from the

Decision Point, this module sends a description of subject obligations to the user and also

system obligations to the system. Before PEP grants privilege to the user, it must intercept

results from Obligation Handler if there is an obligation in it. After analysing obligations, if

there were no pending obligations with zero deadlines, the grant command will be sent to the

user.

D. Obligation Timer: Obligation timer is responsible for obligation maintenance in the pending

obligation database.

Department of Computer Engineering, DTU
38

Cloud Storage:

Cloud storage consists of two main components hosted on Azure to save data. Both these components

are configured to provide implicit redundancy, so that in the event of a failure at any level, decision

making is not impacted.

1. Policy Storage: Policy storage uses Azure File Storage to save and read policy

definition files. These files are created by policy administrators and are secured from

external access. Only Policy servers have access to these files.

2. Table Storage: Relational data required in policy evaluation process is stored in

Azure DB.

4.6 Load Sharing

Our architecture utilizes multiple Policy Servers to distribute load of policy evaluation requests and a

messaging service for enabling communication between policy servers and user platform. To enable

request routing and load sharing, we have implemented load balancing using an Azure Load Balancer.

Figure 7: Microsoft Azure Load Balancer

Session Types: We have configured Azure Load Balancer to use a 2 tuple (Source IP, Destination IP)

routing configuration for traffic routing to all policy server nodes. By using Source IP affinity, this

ensures that any requests initiated from one client are directed to the same policy server node

throughout the session lifecycle unless the node is down.

Availability set: Each policy server in the cloud infrastructure is part of the same availability set. This

ensures that at all given instances, at least one policy server is up to serve requests. Note that such

downtime for remaining servers is only a by-product of any maintenance activity and not a usual

Department of Computer Engineering, DTU
39

scenario. Availability set negates any overall downtime by keeping at least one server in the set

available throughout the downtime.

Backend Pool: Each Policy server in the availability set is part of a backend pool. The backend pool

is the set of machines that are load balanced by the azure load balancer.

Http Probes and Heartbeat Monitoring: the load balancer constantly monitors each policy server

note and in the event of a server being non responsive or not available, stops routing requests to that

node.

4.7 Client Application

Client Interface comprise of a client used by end users to perform data queries and various event

sensors that relate event information to user platform for processing. We have created a sample client

application to simulate patient data queries performed by doctors on the secured resource data. We

have also created a sample testbed to measure performance of the scalable policy server architecture.

4.8 Glance at the Working Model

Client Application login Page – Page used by doctor for logging into the client application

Figure 8: Login Page

Hospital Patient Query System – This page is used to fetch patient data. In case of pending obligation,

a prompt like the one mentioned below will appear

Department of Computer Engineering, DTU
40

Figure 9: Hospital Patient Query System

Policy Server – Below Screenshot shows the request processing by UCON Policy Server.

Department of Computer Engineering, DTU
41

Figure 10: UCON Request Processing

Obligation Handler – Below screenshot shows the processing of pending and completed obligation

Figure 11: Obligation Handler

Department of Computer Engineering, DTU
42

Figure 12: Result of Patient Query Request Processing

4.9 Final Result

In this paper, we have extended the existing implementation of UCON architecture to create a

significantly scalable and resilient Augmented UCON platform. The augmented UCON architecture

caters to our core requirements of access control, pre and ongoing authorizations and obligations,

while augmenting the model with capabilities to overcome challenges identified in Section:

Challenges in existing Architecture, re-iterated below.

1. Restricted performance due to single policy server: In the current architecture, a single

node is used as a policy server. This reference design does not scale well, as with increase in

user and application load, the number of access decisions that require processing would

increase exponentially and introduce a higher than desirable waiting time in the process.

2. System Resilience: In the event of failure of the policy server or any component within the

execution environment, policy decisions can no longer be evaluated, thus creating a system

with low resilience to failures. Further, there might be instances where it is desirable to bring

Department of Computer Engineering, DTU
43

one part of the system down for planned maintenance without impacting the overall

availability of access control systems.

3. Security Issues during data transit and at rest: The existing architecture is implemented in

the cloud. Messages from client applications to execution environment and vice-versa

containing decision information and potentially confidential resource data traverses

organization boundaries when travelling to/from cloud to organization network. This exposes

such data to exploitation by maleficent entities.

4. Data Security Issues: The current implementation of execution environment does not

segregate resources/organizational data from policy data, both being stored in the same cloud

environment. In scenarios where tighter control is required on resource data not leaving

organizational boundaries, this can pose a challenge.

We have tested our multi node augmented UCON architecture and charted a demonstrable

improvement in system efficiency and accuracy. The system was tested in both conventional (single

node) and load balanced multi node configurations. We will describe the results in the below sections.

As part of test run, we created a test bed to accurately load the system and determine performance.

The test bed is driven by the following parameters from the system:

1. Batch Start size: Each parallel run starts with a minimum batch size and ramps up to a

maximum batch size. The batch size determines the count of parallel requests being invoked.

2. Batch Step Size: Once all parallel requests are serviced, batch size is increased in a pre-

determined increment determined by the step size

3. Batch Maximum Size: For a test run, maximum size caps the batch size increments to a

ceiling level.

The following values were chosen for the above parameters during test run

Test ID Batch Start Size Batch Step Size Batch Max Size

1 10 10 100

2 100 100 1000

3 500 500 5000

Table 2: Test Values Taken

For each run, the test bed captures and persists the below information

1. Start Time: Time when the request was sent to Policy Execution environment by the test bed

2. End Time: Time when a response was received by the test bed for request

3. Number of parallel requests: Number of parallel requests being sent to Policy environment

4. Average Response Time: Average response time across all parallel requests in the batch

Department of Computer Engineering, DTU
44

5. Request Status (Serviced/Delayed): Response status for the request. In instance where Policy

execution environment is operating at its threshold capacity, servicing of request is delayed

pending resource availability

Single Node Results

The below tabular data demonstrates the performance of the UCON model in a single node

configuration. These figures will serve as a baseline to measure improvements in the following

sections

Count Success Failure Total Time Average Time

20 20 0 20984 1049.2

30 30 0 34170 1139

40 40 0 51989 1299.725

50 50 0 67913 1358.26

60 60 0 91494 1524.9

70 70 0 110693 1581.329

80 80 0 138969 1737.113

90 90 0 193054 2145.044

300 300 0 754493 2514.977

400 400 0 1071216 2678.04

500 500 0 2330865 4661.73

500 500 0 2143435 4286.87

600 600 0 2584060 4306.767

700 700 0 4193378 5990.54

800 799 1 10730294 13412.87

900 823 5 30921998 34357.78

1500 1499 7 18125425 12083.62

2000 1968 32 37706156 18853.08

2500 2449 51 54024498 21609.8

3000 2929 69 83665085 27888.36

3500 3466 71 80148064 22899.45

4000 3927 73 114277956 28569.49

4500 4442 80 110713780 24603.06

Table 3: Single Node Test Results

Department of Computer Engineering, DTU
45

Figure 13: Single Node Batch Processing Time

Figure 14: Single Node Avg Request Service Time

Department of Computer Engineering, DTU
46

Figure 15: Single Node Failure Count

Multi Node Results

The below tabular data demonstrates the performance of the UCON model in a multi-node

configuration.

Count Success Failure Total Time Average Time

10 10 0 7968 1593.6

20 20 0 8222 822.2

30 30 0 16227 1081.8

40 40 0 20261 1013.1

50 50 0 27013 1080.5

60 60 0 35576 1185.9

70 70 0 40681 1162.3

80 80 0 50478 1262.0

90 90 0 55366 1230.4

100 100 0 159971 3199.4

200 200 0 191455 1914.6

300 300 0 305450 2036.3

400 400 0 480862 2404.3

500 496 4 909142 3636.6

600 594 6 1357933 4526.4

700 700 0 1722289 4920.8

800 800 0 2979013 7447.5

900 898 2 3985406 8856.5

1000 1000 0 1501454 3002.9

1500 1500 0 3124257 4165.7

2000 2000 0 5933025 5933.0

Department of Computer Engineering, DTU
47

2500 2500 0 10996193 8797.0

3000 3000 0 15284630 10189.8

3500 3498 2 24185084 13820.0

4000 3974 26 39666117 19833.1

Table 4: Multi Node Test Results

Figure 16: Multi Node Total Batch Processing Time

Figure 17: Multi Node Avg Request Service Time

Department of Computer Engineering, DTU
48

Figure 18: Multi Node Failure Count

Multi Node Vs Single Node Request Time Variance

Figure 19: Single Node vs Multi Node Request Time Processing Comparison

Department of Computer Engineering, DTU
49

Chapter 5

 Conclusion and Future Work

An augmented UCON model for e-healthcare system has been developed which overcomes the

shortcomings of existing implementation of this access control model. Proposed model has features of

high availability, resilience, high performance and security. Sun’s XACML policy server along with

Microsoft Cloud Azure has been used for the implementation of proposed model. All features of

UCON related to authorization, obligation, condition, continuous evaluation and attribute mutability

have been incorporated.

As part of future work we tend to work more towards the data security. Encryption of data that is

being stored and transmitted will be explored further. There are many existing algorithms that have

used for data encryption in other models like Attribute Based Access Control, Role Based Access

Control. Analysis of current encryption algorithm, feasibility to implement it in UCON and any

enhancements to it will be part of future work.

Department of Computer Engineering, DTU
50

References

[1] Lili Sun and Hua Wang. A Purpose Based Usage Access Control Model for EHealthcare Services,

IEEE, 2011

[2] Tina Tanvi, Mehdi Shajari and Peyman Dodangeh. A usage control based architecture for cloud

environments, IEEE 26th International Parallel and Distributed Processing Symposium Workshops &

PhD Forum, 2012

[3] Arlindo Luis Marcon Jr., Altair Olivo Santin, Maicon Stihler, and Juliana Bachtold Jr. A

UCONABC resilient authorization evaluation for cloud computing, IEEE TRANSACTIONS ON

PARALLEL AND DISTRIBUTED SYSTEMS, 2014

[4] Mounira Mshali and Ahmed Serhrouchni. Access control in probative cloud, The 8th International

Conference for Internet Technology and Secured Transactions (ICITST-2013), 2013

[5] Dongliango Jiao, Liu Lianzhing, Li Ting and Ma Shilong. Realization of UCON model based on

extended XACML, International Conference on Future Computer Sciences and Application, 2011

[6] Fang Pu, Daoquin Sun, Qiying Cao, Haibin Cai and Fan Yang. Pervasive computing context

access control based on UCONABC model, International Conference on Intelligent Information Hiding

and Multimedia Signal Processing (IIH-MSP'06), 2006

[7] Yonggang Ding and Junhua Zou. DRM Application in UCONABC, Advanced Software

Engineering & Its Applications, 2008

[8] Tamleek Ali, Mohammad Nauman, Fazl-e-Hadi, Fahad bin Muhaya. On Usage Control of

Multimedia Content in and through Cloud Computing Paradigm, IEEE, 2010

[9] Fengying Wang and Fei Wang. The Research and Application of Resource Dissemination Based

on Credibility and UCON, International Conference on Computational Intelligence and Security

[10] Zhang Guoping and Gong Wentago. Research of access control based on UCON in the Internet

of things, JOURNAL OF SOFTWARE, VOL. 6, NO. 4, APRIL 2011

[11] Jaehong Park and Ravi Sandhu. The UCONABC Usage Control Model, ACM Transactions on

Information and System Security, Vol. 7, No. 1, February 2004

