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ABSTRACT 

 
In the recent years, the use of wireless technology has grown rapidly. This has led to increase 

in number of users and services. To meet Quality of Service (QoS) standards in reception and 

transmission and track a wider coverage area keeping in mind limited spectrum available, 

spatial processing was devised as a practical solution. Spatial processing technique is used to 

discriminate two signals on the basis of location with respect to an array of antennas using the 

knowledge of the attributes of the signal. In a multiple access system, some users may occupy 

the same frequency bands allotted to them, thus frequency domain filtering techniques cannot 

be used to separate signals coming from these users. Beamformers employ spatial processing 

technique to estimate the location of the desired and interfering signals and adjust their 

reception radiation pattern to provide maximum amplitude in the direction of desired signals 

and maximum rejection in the direction of interfering signals in the presence of Gaussian 

noise.  

Adaptive Algorithms are used to adjust the radiation pattern by tuning the weights of an 

antenna array. The most commonly used algorithm for tuning the weights is Least Mean 

Sqaures algorithm. It is least computationally complex but it suffers from slow convergence 

of the beamformer output to the desired output. Many alternatives have been devised in the 

past. One such alternative is using Discrete Cosine Transform and Discrete Fourier 

Transform to decorrelate the input data which leads to faster convergence. In this thesis, 

generalized transform architecture is proposed which uses these transforms as well as 

Discrete Sine Transform and Discrete Hartley Transform and employed with conventional 

LMS algorithm to study the convergence of beamformer output using these transforms. 

Mathematical analysis of Least Mean Square Algorithm and Transform Domain Least Mean 

Square Algorithm has been discussed. Both of these algorithms have been implemented in 

MATLAB and LabVIEW and the results have been analysed with varying input correlation 

parameters.  
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CHAPTER 1 

INTRODUCTION 

1.1 Basic overview   

In the recent years, the use of wireless technology has grown rapidly. This has led to increase in 

number of users and services. To meet Quality of Service (QoS) standards in reception and 

transmission and track a wider coverage area keeping in mind limited spectrum available, spatial 

processing was devised as a practical solution. Spatial processing may be defined as 

discriminating two signals on the basis of location with respect to an array of antennas using the 

knowledge of the attributes of the signal. In a multiple access system, some users may occupy 

the same frequency bands allotted to them, thus frequency domain filtering techniques cannot be 

used to separate signals coming from these users. This is where spatial discrimination idea is 

exploited. The desired and interfering signals have different spatial location origin, thus spatial 

filtering can be used at the receiver to separate these signals. 

Beamforming is based on the idea of spatial processing. Beamformers are powerful processors or 

Application Specific Integrated Circuits(ASICs) employ spatial processing techniques to 

estimate the location of the desired and interfering signals and adjust their reception radiation 

pattern to provide maximum amplitude in the direction of desired signals and maximum rejection 

in the direction of interfering signals in the presence of Gaussian noise. This maximizes the 

Signal to Interference plus Noise Ratio (SINR). This is achieved using an array of antennas 

separated at a physical distance. The discrete incoming signal data received at these antennas are 

then scaled and linearly combined using various techniques listed in the following sections to 

obtain maximum reception in desired direction. Adaptive array antennas have two main 

advantages as discussed below [1]. 

The physical aperture of an antenna determines the spatial discrimination capability. The size of 

spatial aperture in multiples of wavelengths is important rather than absolute aperture size. 

Considering the case of a single antenna with continuous spatial aperture, the discrimination is 

proportional to the physical size. For high frequencies, the antenna sensor is practically feasible 

since the wavelength is small. However, for low frequency signals, the antenna sensor is 

generally not practically feasible since the physical size required is very large. An array of 
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sensors can be used which gives a much larger spatial aperture size as compared to a single 

physical antenna.  

A second very important advantage of using an array of sensors is the flexibility of discrete 

spatial filtering. In real time systems, the spatial filtering function needs to be updated at regular 

intervals in order to maintain effective suppression of interfering signals. Changing the spatial 

filtering function for a continuous aperture antenna requires change in geometry or shape which 

is not feasible. 

For a better understanding of how adaptive antennas work, let us consider a practical example of 

adaptive antenna-human analogy [2]. Assume two people conversing in a room free of any other 

speakers and noises as shown in figure 1.1. If the speaker (analogous to desired source) amongst 

the two moves, then the listener is able to judge the movement of the speaker due to different 

arrival times at the ears of the listener (analogous to antenna array). This processing is done by 

the brain of the listener (analogous to beamformer processor). The brain processes the time-

delays between the voice received at each ear and constructively adds them to strengthen its 

amplitude and focus on its Direction Of Arrival (DOA). If additional speakers join the 

conversation, the brain of the listener can reject the other speakers and synchronize itself with the 

desired speaker. Also, since the listener has knowledge of direction of desired speaker, it can 

converse back by responding in the direction of desired speaker.  

Electrical adaptive antennas use antenna array instead of two ears and a digital signal processor 

instead of human brain to perform these tasks. The antenna arrays sample the incoming signals, 

and the beamformer, which is nothing but a digital signal processor, process these spatial 

samples to adjust the weights of the array to produce a radiation pattern that maximum amplitude 

in the direction of Signal Of Interest (SOI) and ideally rejecting all the other undesired speakers 

or Signal Not Of Interest (SNOI). 
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Fig 1.1 Adaptive Antenna-Human analogy 

Beamformers have several applications in fields of  

 Radar: synthetic aperture radar(SAR), phased array radar, air traffic control[3,4,5] 

 Sonar: source localization and classification[3,4]  

 Wireless Communications: cell sectoring, cell broadcasting, satellite communications, 

directional reception and transmission[5,6] 

 Seismology: Oil mapping, Earth crust mapping[7,8] 

 Imaging: Optical, Tomographic, Ultrasound, High Resolution Earth Imaging[9-11] 

 Bio-medical: Cancer detection[11], Heart Monitoring 

 Acoustics: Hearing Aids, Echo and Noise cancellation[12]  

There are different types of array geometries (1D, 2D and 3D). Some commonly used ones are 

linear, circular and planar as shown in figure 1.2. The linear geometry suffers from mirror image 

ambiguity since its radiation pattern is symmetrical to the axis of antenna which is also known as 

the end-fire axis. The other two do not have this disadvantage. The radiation pattern of the 
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antenna array depends mainly on geometry, inter-element spacing and the amplitude and phase 

of the feed. There are some basic criteria regarding the inter-element spacing. If the inter-element 

spacing increases, the number of grating lobes increases which are nothing but direction of 

maximum radiation. For uniform (constant) inter-element spacing, the maximum spacing 

between the elements is half wavelength[1]. This yields no grating lobes. Grating lobes result in 

‘aliasing’ where two distinct spatial location produces the same phase difference between 

consecutive elements of the array thus the array is not able to distinguish between the two 

distinct spatial locations. This ambiguity is shown in figure 1.2.d). Location here, in general, is a 

three dimensional quantity. We often are interested in DOA which may be a one dimensional (θ) 

or two dimensional quantity (θ, ϕ). 

 

 

 

 

 

 

 

 

 

 

    

 

 

 

 

 

 

 

d d d d d d 

y 

x 

y 

x 
θ 

d 

d 

θ 

y 

x 

d 

S1 

S1(image) 

θ 

Fig 1.2.a Linear geometry array Fig 1.2.b Circular geometry array 

Fig 1.2.c Planar geometry array Fig 1.2.d Linear array ambiguity 



5 
 

In the past, various schemes have been proposed to select the weights of beamformer. Each of 

these schemes has their own characteristics and schemes. The simplest beamformer, a 

conventional beamformer, also known as a delay and sum beamformer, has equal weights. The 

phases are electronically controlled to steer the array in a particular direction [13]. Another type 

of beamformer is null steering. It places nulls in the DOA of the interfering signals. It provides 

strong rejection and it may be repeated for multiple interfering signals [13]. Conventional and 

null-steering beamformers require the knowledge of DOA of signals. Also, they do not maximize 

the SINR by estimated weights. Adaptive beamforming overcomes these limitations. The 

weights are selected by minimizing a particular output signal while the SNR is maximized. 

Adaptive array beamforming can be divided into two broad categories; element-space processing 

and beam-space processing [13]. The signal output of the elements is scaled to produce a desired 

output in element space processing while beam-space processing involves obtaining a beam 

output from each element and then scaling and combining these beams to produce desired array 

output. Beam-space antenna is less computational intensive but lack the versatility of element-

space processing. Various beam-space processors have been studied, including howell-

applebaum array[14,15] using the spread-spectrum technique which is based on the statistical 

approach of continuously varying the steering array to point the beam in the direction of desired 

signal and iteratively nullifying the jammers thus requiring a prior knowledge of DOA; multiple 

sidelobe canceller[16] where a main beam antenna is used with adaptive auxiliary elements to 

cancel the interference from different directions, which might lead to desired signal cancellation 

if the desired and interfering signals are correlated; partially adaptive array[17] where some 

elements are adaptively weighted whereas the rest are fixed weighted thus reducing complexity 

at the cost of degrading performance; digital beamforming[18,19] using conjugate gradient 

methods instead of stochastic gradient methods but requiring a prior knowledge of DOA; 

partitioned processor[20,21], multibeam antennas[22] where the inputs are decoupled to increase 

convergence rate of howell applebaum arrays; regenerative hybrid array[23] where a desired 

signal is used additionally to that of an applebaum array; generalized side-lobe cancellor [24] 

which is also known as linearly constrained minimum variance(LCMV) beamformer. It was first 

proposed by frost [25] and implemented by Griffith and jim[24]. More commonly, Least Mean 

Square (LMS) adaptive filter is used with discrete transforms to adapt weights and to increase 

the convergence rates by decorrelating the input data [26]. The degrees of freedom are directly 
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proportional to number of unwanted signals, rather than number of weights in element-space 

methods. Recently, robust arrays have been developed to deal with errors in input signals. In this 

thesis, the conventional beamformer has been used and an adaptive transform domain 

LMS(TDLMS) filter is employed to increase the convergence rate. The complexity of TDLMS is 

similar to that of original LMS schemes.  

1.2 Beamformer System Model 

Let us consider the example of a uniform linear array (ULA). The input signal x(n) and output 

signal y(n) is modeled. Consider an array of L elements as shown in figure 1.3, with an inter-

element distance d and angle of arrival (AOA) of desired signals θd1 and for interference source 

θt1 and θt2. The elements are placed along the x-axis (axis of antenna) and first element is taken to 

be the reference element. 

 

Fig 1.3 System model for ULA 

 

The inter-element phase shift can be found out mathematically. First, time delay between two 

consecutive elements    is found out. It is given by equation 

            (1.1) 

Where   is the speed of signal (sound or electromagnetic waves) 

The corresponding phase shift    is given by equation 
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         (1.2) 

               (1.3) 

According to [27], the array output vector is given by 

                (1.4) 

Where       is steering vector and given by 

      

 
 
 
 
 
 
 

 
          

           
 
 
 

                
 
 
 
 
 
 

   

 (1.5) 

And       is the incoming signal with M samples. For P sources, the total output vector is given 

by  

                

 

   

 (1.6) 

Assuming the environment to be noisy, we add white Gaussian noise to the signal. Hence, we get 

the signal model used in array processing 

                

 

   

       

Where      is white Gaussian noise . 

(1.7) 

The dimensions of x(n) is L×M. 

The array output is given by 

             (1.8) 

The array factor is given as 

                             

 

   

 (1.9.a) 

      (1.9.b) 
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1.3  Beamformer classification 

On the basis of how weights are chosen, beamformers are typically classified as data 

independent and data dependent. As the name suggests, the weights of a data independent 

beamformer does not depend on the spatially sampled input data and are specified for all signal 

and interference sources scenarios. The weights in a data dependent beamformer are chosen 

based on second order statistics (correlation matrix) of the input data to optimize the array 

response so as to maximize the SINR ratio at beamformer output. The interferers are suppressed 

by placing nulls in their direction. 

Determining the second order statistics is a tedious computational task, but if the signal can be 

assumed using the probability density function (PDF), the statistics and the optimum weights can 

be determined from the available data. Now, since these statistics vary temporally due to moving 

signal and interfering sources, the weights can be adapted accordingly at regular intervals either 

by Block adaptation or by Continuous adaptation [26]: 

 Block adaptation[28]: the weights are determined from statistics estimated using a block 

of data updated at regular time intervals. 

 Continuous adaptation[26]: the weights are determined from statistics estimated using 

every new data sample 

For a non-stationary environment, block adaptation is preferred. However, if number of adaptive 

weights is large (more than 50) or data is time-varying, continuous adaptation is preferred. 

In the next section, we discuss about various adaptive algorithms used in adaptive beamforming. 

1.4  Adaptive Algorithms 

Various beamforming algorithms have been proposed in the literature, that include LMS based 

algorithms [71, 29] and Recursive Least Square (RLS) based algorithms [71]. The LMS 

algorithm finds the filter coefficients by minimizing the square of error signal which is nothing 

but difference between desired signal and the output signal. The RLS, on the other hand, reduces 

a weighted linear least square function. The LMS algorithm is less computationally complex 

[29], but its convergence rate is slow as compared to RLS algorithm when the input signals are 

correlated. Many variants have also been proposed in the past [30-32, 26]. The improved 

convergence rate comes at the cost of increased computational complexity. One such proposed 

method is transform domain LMS algorithm. The TDLMS employs orthogonal transforms that 
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reduces the correlation between the input signals thus trying to improve the convergence rate 

[26]. Power normalization is done on the transformed inputs to reduce eigen value spread of the 

input signal correlation matrix. The common orthogonal transforms that are used are Discrete 

Sine Transform (DST), Discrete Cosine Transform (DCT), Discrete Hartley Transform (DHT), 

Discrete Fourier Transform(DFT), Discrete Wavelet Transform(DWT), Slant Transform, Haar 

Transform. Among these transforms, DST, DCT, DHT, DFT are the least complex. The TDLMS 

was first proposed by Narayan et. al [26], in which DFT and DCT were employed In this thesis, 

the work has been concentrated on these transforms which have been implemented using a 

unified architecture. The transforms are employed to the conventional LMS algorithms for 

various input signals have different correlation coefficient values (ρ) where         and the 

convergence is analyzed for each transform. The advantage of a unified architecture is that we 

can switch between the mentioned transforms for varying input, thus providing optimum 

performance for input signals whose statistics may change over time.   

1.5 Thesis Objective 

This thesis is aimed at  

 Developing a unified architecture for above mentioned transforms and their inverse as well 

and implementing the same in MATLAB and LabVIEW. 

 Implementing the conventional LMS algorithm in MATLAB and LabVIEW and analyzing 

the convergence of the algorithm in multiple simulated environments with input signals 

having different correlation coefficient values 

 Employing the unified architecture with the conventional LMS algorithm for different 

environment and analyze the convergence of these algorithms for each transform. 

 

1.6 Thesis Organization 

The rest of the thesis has been organized has been organized as follows 

Chapter 2 aims at developing a unified architecture for DST, DCT, DHT, DFT and their inverse 

as well and comparing the performance with previously developed unified architectures.  
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Chapter 3 includes the mathematical analysis of LMS algorithm. LMS algorithm has been 

studied and formulated. An iterative approach is followed to minimize the optimal cost function. 

The TDLMS algorithm has also been discussed and formulated.    

Chapter 4 analyzes the simulation results of proposed beamformer system model using LMS 

adaptive algorithm and TDLMS adaptive algorithm in MATLAB and LabVIEW. 

Chapter 5 summarizes the conclusion and future scope.  
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CHAPTER 2 

IMPLEMENTATION OF UNIFIED ARCHITECTURE 

2.1 Introduction 

In the digital domain, various types of discrete trigonometric transforms such as DFT [33], Z 

Transform, DCT [34], DST [35], DHT [36-37], Walsh Transform, Discrete Hadamard Transform 

and slant transform are used. These transforms have played a significant role in signal processing 

for a number of years, and therefore, transform coding continues to be a topic of interest in 

theoretical as well as for applied work in this field. DHT has been established as a potential tool 

for signal processing and communication applications e.g computation of convolution and 

deconvolution [38-39], interpolation of real valued signal [40], Optical Orthogonal Frequency 

Division Multiplexing (OFDM) [41], multicarrier modulation [42] and many other applications. 

DHT uses the transform kernel similar to that of DFT, except that it is a real valued transform. All 

the properties applicable to DFT such as convolution and shifting theorem apply to DHT as well. 

Due to energy compaction property, DCT and DST are most widely used transform in speech and 

image processing applications such as block filtering [43], transform domain adaptive filtering 

[44], digital signal interpolation [45], adaptive beamforming [46,47], image resizing [35,48,49], 

speech enhancement [50] and so forth. Both DST and DCT are good approximation to the 

statically optimal Karhunen-Louve Transform (KLT) [35]. It is found that in case of signal with 

high correlation coefficient, DCT based coding results in better performance but for low 

correlation signal, DST gives lower bit rate [35]. The above mentioned transforms (DFT/ DHT/ 

DST/ DCT) are also used in Computational Electromagnetics (CEM) in modeling radiation 

problems using Method of Moments (MoM) [51, 52, 66]. 

In the literature, there are many implementation methods proposed for unified discrete 

trigonometric transform computation [55-64]. Liu et. al. proposed a unified parallel lattice 

structure and an IIR filter structure for time recursive DXT [55]. In [57], a hardware efficient 

unified systolic architecture for sliding window DXT is designed based on CORDIC arithmetic 

unit. In [59, 60], a unified arrays for DXT computation are either based on one time even-odd 

portion of frequency samples or Clenshaw’s recurrence formula. Hsiao et. al. presented the 

unified architecture based on systolic mapping of the common kernel operation with fewer 
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processing elements[58]. Cyclic convolution approach has been used in [61] for obtaining unified 

structure. In most of the developed unified methods, implementation of inverse transform in the 

unified form has not been shown. In this paper, we have proposed unified recursive structure that 

can be used for the computation of discrete trigonometric transforms (DFT/ DHT/ DST/ DCT) as 

well as their inverse. 

The motivation of this work is to propose a simple architecture which can compute all these 

transforms can serve the purpose of a general purpose DSP chip. The proposed unified 

architecture can be used in applications such as High Speed Optical Networking (HSON)[69], 

Multitone-systems where high SNR is required[68], adaptive beamforming applications [46,47], 

bio-medical applications where real time spectral analysis of signals like ECG, EEG, digital 

ultrasonography, EMG, EGG can be done using DFT and DHT and data obtained can be archived 

and stored in compressed format using DCT and DST. A single FPGA chip that can perform all 

the above applications would be highly resource-efficient. The main advantage of this architecture 

is that the same FPGA chip can be used for inverse transformation as well. The above unified 

approach can be extended for other transforms to get a generalized orthogonal transform FPGA 

chip. 

The basic structure of all the transforms DST/DHT/DST and DCT are almost equivalent and 

this property has been exploited in the design of unified architecture. Each of the transform has a 

unique data arrangement format. To address this problem, array-indexing architecture has been 

adopted for implementation. 

2.2 Derivation of Forward Transforms 

2.2.1 Discrete Sine Transform 

The recursive structure for DST as shown in figure 2.1 has already been proposed by Jain et. 

al.[54]  
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Fig 2.1.a Lattice structure implementation of DST odd coefficients 

 

Fig 2.1.b Lattice structure implementation of DST even coefficients 

2.2.2 Discrete Cosine Transform 

The recursive structure for DCT as shown in figure 2.2 has already been proposed by Wang et. 

al.[55]  

 

Fig 2.2.a Lattice structure implementation of DCT even coefficients 
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Fig 2.2.b Lattice structure implementation of DCT odd coefficients 

2.2.3 Discrete Fourier Transform 

The one dimensional DFT is given by 

       
 

  
        

  

   

   

               (2.1.a) 

Where  

   
       

    

 
  (2.1.b) 

or 

       
 

  
         

    

 
     

    

 
 

   

   

               (2.2) 

Assuming N is a multiple of 2 to get recursive structure. We fold the input sequence around N/2 

and combine the n
th

 term and (n+N/2)
th

 term in eq. (2.2). It can be rewritten as 

       
 

  
          

    

 
     

    

 
 

 
 
  

   

               (2.3.a) 

Where  

                      
 

 
  (2.3.b) 

It can be observed that we require only half the summation terms in eq. (2.3.a) as compared to eq. 

(2.2) 
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    (2.4.a) 

Where  

                        θ             θ   

 

   

 (2.4.b) 

And  

θ  
   

 
               (2.4.c) 

On solving eq. (2.4.b) as shown in Appendix A, we get the following recursive form. 

          θ                  θ      θ                    

              
(2.5) 

Thus,   

 
  

    is available when switches SW1, SW2, SW3 and SW4 as shown in Fig. 2.3 are 

closed at n = N/2. The output coefficients are obtained as real and imaginary part through the 

structure.  

 

 

 

 

 

 

 

 

 

Fig 2.3 Lattice Structure implementation of DFT coefficients  
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For one specific value of k = k1, say, the computation of DFT coefficient X[k1] takes N/2 clock 

cycles. Therefore, we can calculate first N/2 + 1 coefficients of DFT using eq. (2.5) and the 

remaining coefficients (N/2 +1,…,N-1) can be obtained by using conjugate symmetry property of 

DFT [35]. 

2.2.4 Discrete Hartley Transform 

The one dimensional DHT given by Bracewell [36] is given by 

       
 

  
         

    

 
 

   

   

             (2.6.a) 

Where  

    θ     θ    θ (2.6.b) 

or 

       
 

  
          

    

 
    

    

 
 

   

   

             (2.7) 

Assuming N is a multiple of 2 to get recursive structure. We fold the input sequence around N/2 

and combine the n
th

 term and (n+N/2)
th

 term in eq. (2.7). It can be rewritten as 

       
 

  
          

    

 
    

    

 
 

 
 
  

   

               (2.8.a) 

Where  

                      
 

 
  (2.8.b) 

It can be observed that we require only half the summation terms in eq. (2.8.a) as compared to eq. 

(2.7) 

                
 

 
                              

       
     

  
  

 
  

    (2.9.a) 

Where  
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                        θ            θ   

 

   

 (2.9.b) 

And  

θ  
   

 
               (2.9.c) 

Again, from eq. (2.9.b) as shown in Appendix A, we get the following recursive form 

          θ                  θ     θ                   

            
(2.10) 

Switches SW1, SW2 and SW3 as shown in Fig. 2.4 are closed at n=N/2. Two such filter 

structures are used in parallel in proposed architecture to obtain two consecutive output 

coefficients at simultaneously. Thus, so all the coefficients for DHT are obtained after (N/2).(N/2) 

= N
2
/4 clock cycles. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2.4 Lattice Structure implementation of DHT coefficients 

2.3 Derivation of Inverse Transforms 

2.3.1 Inverse Discrete Sine Transform 

The recursive structure for IDST as shown in figure 2.5 has already been proposed by Jain et. 

al.[54]  
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Fig 2.5 Lattice Structure implementation of IDST coefficients 

 

2.3.2 Inverse Discrete Cosine Transform 

The recursive structure for IDCT as shown in figure 2.6 has already been proposed by Wang et. 

al.[55]  

 

Fig 2.6 Lattice Structure implementation of IDCT coefficients 

2.3.3 Inverse Discrete Fourier Transform 

The formula for IDFT is given by 
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(2.11.a) 

Where  

   
       

    

 
  (2.11.b) 

Rewriting eqn. (2.11) using eqn. (2.11a) 

     
 

  
           

    

 
     

    

 
 

   

   

             (2.12) 

Assuming, N is a multiple of 2 to get recursive structure. We fold the input sequence around N/2 

and combine the k
th

 term and (k+N/2)
th

 term in eq. (2.12). It can be rewritten as 
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(2.13.b) 

And  

                                (2.13.c) 

Wn[k] is complex. It can be observed that we require only half the summation terms in eq. (2.13.a) 

as compared to eq. (2.12) 
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Where  
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 (2.14.b) 

And  
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                               θ  

 

   

 (2.14.c) 

And  

θ  
   

 
               (2.14.d) 

Using symmetry property of IDFT [37], we can say that  

             
     

  
   

 
  

      
 
  

     (2.15) 

On solving eq. (2.14.b), eq. (2.14.c) and eq. (2.14.d) as shown in Appendix A, we get the 

following recursive form. 

          θ                         θ                           

             
(2.16.a) 

 and  

          θ                         θ                          

              
(2.16.b) 

Switches SW1, SW2 and SW3 as shown in Fig. 2.7 are closed at n=N/2. Two output coefficients 

x(n) and x(N-n) are obtained after N/2 clock cycles. 

 

 

 

 

 

 

 

 

Fig 2.7 Lattice Structure implementation of IDFT coefficients 
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2.3.4 Inverse Discrete Hartley Transform 

The one dimensional IDHT given by Bracewell [36] is given by 

     
 

  
           

    

 
 

   

   

               (2.17.a) 

Where  

    θ     θ    θ (2.17.b) 

We know DHT is self-invertible transform so the structure shown in fig. 2.8 can be used for 

computation of inverse transform with a modification that 

                         
 

 
  (2.18) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2.8 Lattice Structure implementation of IDHT coefficients 

2.4  Unified Architecture of Discrete Trigonometric Transforms 

Fig. 2.9 shows the proposed unified architecture to compute N point 

DST/DCT/DFT/DHT/IDST/IDCT/IDFT/IDHT. The input matrix, X1 and X2 are of dimension 

N, and consist of same data in case of DST, IDST, DCT, IDCT, DHT, IDHT and DFT since all 

of these transforms involve only real values. For IDFT, X1 consists of real coefficients and X2 

 

 

SW2 n = N/2 

       SW1  

      n= N/2 

 

 

-1 

      

       

     

  
 

z
-1

 

z-1 

 

    
   

 
 

              

x(n) 

     

       

-1 

SW4 n = N/2 

       SW3  

      n= N/2 

 

 

-1 

      

       

     

  
 

z
-1

 

z-1 

 

    
   

 
 

              

x(n) 

     

       

-1 



22 
 

consists of imaginary coefficients. The mode selection is done using 3 bit choice switch which 

selects mode as shown in table 2.1. It may be the observed that the block diagram is modular and 

consists of pre-processing unit, filter bank and post processing unit. Pre-processing has four sub-

blocks namely, ‘Mul1’, ‘Mul2’, ‘Mul3’, ‘angle θ ’. 

 

Fig. 2.9 Unified architecture of trigonometric transforms and their inverse 

These sub-blocks are the logic boxes used to find the values of multipliers and angle coefficient 

for different modes. The filter bank is executed for input values of n, k = 0,1,2…(N/2-1) for DST, 

DCT, DHT, IDST, IDCT, IDHT and for input values of n, k = 0,1,2…(N/2-1) for DFT and IDFT. 

The output of filter bank is given as input to the post-processing unit to get output coefficients of 

the transforms and their inverse. The unified architecture yields two output coefficients in one 

clock. The post-processing and post-processing blocks have been explained in detail.  

Here, Mux11 is used to select corresponding output manipulation as shown in table 2.2 and 

Mux12 is used to select iteration value of k. For every clock cycle and ‘input k’ value, the output 

coefficients are X[2k] and X[2k+1] for DCT, DHT, IDHT  and for IDCT, the output coefficients 
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are x(n) and x(N-n-1) are obtained from post-processing output 1 and output 2 respectively. For 

DST, output coefficients X[2k+1] and X[2k+2] are obtained. For IDST, the output coefficients 

are x(n+1) and x(N-n) are obtained from post-processing output 1 and output 2 respectively. In 

the case of DFT, the filter structure1 gives the first (N/2+1) real coefficients of X [k] and second 

filter structure 2, gives the first (N/2+1) imaginary coefficients. The rest of the coefficients 

((N/2+2), (N/2+3), (N/2+4),…,(N-1)) are found out using the symmetry property of DFT. 

TABLE 2.1    TABLE 2.2 

MODE DESCRIPTION    DECISION TABLE FOR MUX 11 AND MUX 12 

 

 

 

 

 

 

 

 

In the case of IDFT, the output coefficients x(n) and x(N-n) are obtained from post-processing 

output 1 and output 2 respectively. The additional hardware used is 2 Mux, 2 Multiplier, 2 

Adder. A lookup table can be used to compute the value of cos and sin blocks.  Gain blocks of 

gain ‘2’ can be modeled using right shift and left shift operations. The filter blocks consist of 

recursive structure shown in figures 2.1-2.8. Now, In the following section unified filter structure 

has been defined, which can compute all the transforms in a signal structure. 

2.4.1  Recursive Filter Structure 

Fig. 2.10 shows the filter block for proposed unified structure. X1 and X2 are the input arrays. A 

serial to parallel converter is used to obtain the input in an array form. The Mux9 and Mux10 are 

used to select input data for each section of parallel filter structure i.e. Wn1 and Wn2. For every 

Choice 
Mux 11 Mux12 

S2 S1 S0 

0 0 0 X(2k+1) = εkOut1, X(2k+2) = εkOut2 k = 0…N/2-1 

0 0 1 X(2k) = εkOut1, X(2k+1) = εkOut2 k = 0…N/2-1 

0 1 0 
X(k)=Out1 + jOut2, X(N-1-t) = X*(t+1) for 

t=0…N/2-2 
k = 0…N/2 

0 1 1 X(2k) = Out1, X(2k+1) = Out2 k = 0…N/2-1 

1 0 0 x(k+1) = Out1 + Out2, x(N-k) = Out1 - Out2 k = 0…N/2-1 

1 0 1 x(k) = Out1 + Out2, x(N-1-k) = Out1 - Out2 k = 0…N/2-1 

1 1 0 x(k) = Out1 + Out2, x(N-k) = Out1-Out2 k = 0…N/2 

1 1 1 x(2k) = Out1, x(2k+1) = Out2 k = 0…N/2-1 

Choice 
Mode 

S2 S1 S0 

0 0 0 DST 

0 0 1 DCT 

0 1 0 DFT 

0 1 1 DHT 

1 0 0 IDST 

1 0 1 IDCT 

1 1 0 IDFT 

1 1 1 IDHT 
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iteration of n i.e. n = 0,1,2…N/2-1, data value is selected corresponding to the mode as shown in 

table 2.3.  

     TABLE 2.3 

DECISION TABLE FOR MUX 9 AND MUX 10 

Fig. 2.10 Recursive filter structure for unified architecture 

 

 

 

After N/2 iterations, the switches SW1, SW2, SW3  and SW4 are closed and the final value is 

obtained as Y1 and Y2 after N/2 clock cycles In other words, full vector x(k) is computed in 

(N/2).(N/2) =N
2
/4 clock cycles for DST, DCT, DHT, IDST IDCT, IDHT. Similarly for DFT and 

IDFT, N/2 computation cycles are needed for each coefficient and full vector x(k) is computed in 

(N/2).(N/2+1) =N
2
/4 + N/2 clock cycles.   

2.4.2  Block for calculating Angle θk 

Fig. 2.11 shows the logic block for calculation of angle θk. Mux1 and Mux2 are used to select 

logic for calculation of angle for corresponding mode as shown in table 2.4. It may be observed 

that the above block uses 2 adders, 4 multipliers and 2 Mux. Gain blocks of gain ‘2’ can be 

modeled using right shift and left shift operations. 

 

Choice 
Wn1 Wn2 

S2 S1 S0 

0 0 0 
x1(n)+x1(N-n-

1) 

x2(n)-x2(N-n-

1) 

0 0 1 
x1(n)+x2(N-n-

1) 

x2(n)-x2(N-n-

1) 

0 1 0 
x1(n)+(-1)

k 

x1(N/2+n) 

x2(n)+(-

1)
k
x2(N/2+n) 

0 1 1 
x1(n)+x1(N/2+

n) 

x2(n)-

x2(N/2+n) 

1 0 0 εkX1(2*n) εkX2(2n+1) 

1 0 1 εkX1(2*n) εkX2(2n+1) 

1 1 0 
X1(n)+(-

1)
k
X1(N/2+n) 

X2(n)+(-

1)
k
X2(N/2+n) 

1 1 1 
X1(n)+X1(N/2

+n) 

X2(n)-

X2(N/2+n) 
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TABLE 2.4 

DECISION TABLE FOR MUX 1 AND MUX 2 

 

 

 

 

 

 

 

Fig. 2.11 Block for calculation of angle θk 

 

2.4.3  Block for calculating Mul1 

Fig. 2.12 shows the logic block for calculation of multiplier m1 and m5. Mux3 and Mux4 are used 

to select appropriate logic for calculation of multipliers for corresponding mode as shown in table 

2.5. A lookup table can be used to compute the value of cos and sin blocks. The additional 

hardware used is 2 adder blocks. 

TABLE 2.5        

DECISION TABLE FOR MUX 3 AND MUX 4 

 

 

 

 

 

 

 

Fig. 2.12 Block for calculation of Mul1 

Choice 
y1 y2 

S2 S1 S0 

0 0 0 2k+1 2k+2 

0 0 1 2k 2k+1 

0 1 0 2k 2k 

0 1 1 4k 2(2k+1) 

1 0 0 2k+1 2k+1 

1 0 1 2k+1 2k+1 

1 1 0 2k 2k 

1 1 1 4k 2(2k+1) 

Choice 
m1 m5 

S2 S1 S0 

0 0 0 1 1 

0 0 1 1 1 

0 1 0 cosθk1 sinθk2 

0 1 1 cosθk1-sinθk1 cosθk2-sinθk2 

1 0 0 1 1 

1 0 1 1 1 

1 1 0 cosθk1 sinθk2 

1 1 1 cosθk1-sinθk1 cosθk2-sinθk2 
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2.4.4  Block for calculating Mul2 

Fig. 2.13 shows the logic block for calculating multiplier m2 and m6. Mux5 and Mux6 are used to 

select appropriate logic for calculation of multiplier for corresponding mode as shown in table 

2.6. A lookup table can be used to compute the value of cos block. No additional hardware is 

used. 

TABLE 2.6  

DECISION TABLE FOR MUX 5 AND MUX 6 

 

 

 

 

 

 

Fig. 2.13 Block for calculation of Mul2 

 

2.4.5  Block for calculating Mul3 

Fig. 2.14 shows the logic block for calculating multiplier m2 and m6. Mux7 and Mux8 are used to 

select appropriate logic for calculation of multiplier for corresponding mode as shown in table 7. 

A lookup table can be used to compute the value of cos and sin blocks. The additional hardware 

used is 2 Mux and 6 Multipliers. Gain blocks of gain ‘2’ and ‘0.5’ can be modeled using right 

shift and left shift operations. 

 

 

 

 

 

 

 

Choice 

m2 m6 S

2 
S1 S0 

0 0 0 -1 1 

0 0 1 -1 1 

0 1 0 -1 0 

0 1 1 -1 -1 

1 0 0 -1 -cosθk2 

1 0 1 0 1 

1 1 0 -1 0 

1 1 1 -1 -1 
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TABLE 2.7  

DECISION TABLE FOR MUX 7 AND MUX 8 

 

 

 

 

 

 

 

 

 

Fig. 2.14 Block for calculation of Mul3 

 

The proposed structure is simulated in Simulink and coded in the MATLAB. 

2.5  Implementationof Unified Architecture in Simulink 

Fig. 2.14 shows the implementation of unified architecture in MATLAB Simulink. 

Choice 
m3 m7 

S2 S1 S0 

0 0 0  
 

 
          

   

 
  

 

 
          

   

 
 

0 0 1  
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 Fig. 2.15 Simulink implementation of proposed unified architecture 

2.6 Performance Analysis 

The proposed unified architecture has been presented with the aim of realizing the trigonometric 

transform (DFT/ DHT/ DST/ DCT) and their inverse. It can be seen from fig. 2.10 that after pre-

processing, basic structure of all the transforms and their inverse are almost similar and requires 

only real multiplication per sample in the feedback path and one real multiplication in the feed-

forward path(m1, m5) as m2 and m6 are unity, except for IDFT where two multiplications are 

involved. The constant multiplication with m1, m5, m2, m6, m3, m7 is required after N/2 clock 

cycles and it is multiplied once per sample. Hence, total real multiplications for DHT/IDHT and 

DFT/IDFT are (N/2 + 2) and (N + 4) respectively. In case of DST/ DCT/ IDCT, value of m1, m5, 

m2, m6 is unity hence only (N/2 + 1) multiplications are required. In case of IDST, (N/2 + 2) 

multiplications are required as m6 is not unity. In table 2.8, the number of multipliers and adders, 

throughput and latency and other aspects are compared with other existing architectures. It is seen 

from fig 2.10 that the structure constitutes resonance with poles at    θ , i.e. the conjugate poles 

are lying on the unit circle.  
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TABLE 2.8  

COMPARISON OF DIFFERENT UNIFIED STRUCTURES  

 

 

No. of 

multiplier

s 

No. of 

adders 
Latency 

Throughpu

t 
Type 

Limitation 

on 

Transform 

size N 

Commu

nicatio

n 

I/O 

operation 

Proposed 10 8 N/2 
1 for DFT  2 

for others 

DST, DCT, 

DFT, DHT, 

IDST, IDCT, 

IDFT, IDHT 

Even Local PISO 

Chiper et. al., 

2005[64] 
2 2N+3 - 2 

DCT,DST, 

IDCT, IDST 

Prime 

Number 

greater than 

2 

- - 

Das and 

Banerjee, 

2002[62] 

- 2N(N-1) - - 
DST, DCT, 

DFT, DHT 
- Local - 

Maharatna et. 

al, 2001.[56] 
- 4N(N-1) - - 

DST, DCT, 

DFT, DHT 
- Global - 

Hsiao, 2000[58] 

log2N log2N+2 

2N 
1 for DFT  2 

for others 

Radix-2 DST, 

DCT, DFT, 

DHT 

Power of 2 

Global PISO 

log4N 3log4N+2 

Radix-4 DST, 

DCT, DFT, 

DHT 

Power of 4 

Fang and Wu, 

1997[59] 
N/2 + 4 N + 3 

2N for 

DFT 

3N for 

DST/DCT 

1 
DST, DCT, 

DFT, DHT 
Even - - 

Pan and Park, 

1997[60] 
N 2N N 2 

DCT, DST, 

DHT 
Even - - 

Kar and Rao, 

1996[57] 
0 2N - 2 

DST, DCT, 

DFT, DHT 
- - - 

Liu-Chiu1, 

1993[55] 
6N-4 5N-1 N 2 DST, DCT No Local SIPO 

Liu-Chiu2, 

1993[55] 
4N 5N-1 2N 2 DST, DCT No Local SISO 
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TABLE 2.9 TABLE 2.10 

 COMPARISON OF NUMBER OF MULTIPLIERS/ ADDERS    COMPARISON OF NUMBER OF 

MULTIPLICATIONS/ ADDITIONS 

 

 

 

These resonators are having resonance frequency of θ  and sharper peak at resonances [65]. It can 

be seen from table 2.8 that the proposed unified architecture is efficient in terms of hardware. 

Table 2.10 shows the comparison of computational complexity of the proposed unified 

architecture with other algorithms. It can be seen that the proposed algorithm not only reduces the 

number of multiplication but also reduces the total number of operations. The main advantage of 

the proposed architecture is that it can also compute the inverse of transforms in a unified 

structure form which have not been computed in the existing papers.  Moreover, any desired 

output coefficient is computed independently. 

N 8 16 32 64 128 

Proposed 10/8 10/8 10/8 10/8 10/8 

Hsiao, 

2000[58] 

3/5 4/6 5/7 6/8 7/9 

-/- 2/8 - 3/11 - 

Fang and 

Wu, 

1997[59] 

8/11 12/19 20/35 36/67 68/131 

Kar and Rao, 

1996[57] 
0/16 0/32 0/64 0/128 0/256 

Liu-Chiu1, 

1993[55] 
44/39 92/79 188/159 380/319 764/639 

Liu-Chiu2, 

1993[55] 
32/39 64/79 128/159 256/319 512/639 

Pan and 

Park, 

1997[60] 

8/16 16/32 32/65 64/128 128/256 

Chiper et. 

al., 2005[64] 
2/19 2/35 2/67 2/131 2/259 

Das and 

Banerjee, 

2002[62] 

-/112 -/480 -/1984 -/8064 -/32512 

Maharatna 

et. al, 

2001.[56] 

-/224 -/960 -/3968 -/16128 -/65024 

Transf

orm 
Proposed 

Proposed N 

= 8 

Prots’ko, 

2014[61] 

 

Mult

iplic

ation 

Addi

tion 

Mult

iplic

ation 

Addi

tion 

Mult

iplic

ation 

Addi

tion 

DST 
N/2 

+ 2 
N 6 8 8 37 

DCT 
N/2 

+ 2 
N 6 8 8 33 

DHT/I

DHT 

N/2 

+ 2 
N 6 8 - - 

DFT N + 4 
2N - 

2 
12 14 - - 

IDST 
N/2 

+ 3 
N 7 8 8 37 

IDCT 
N/2 

+ 2 
N 6 8 8 37 

IDFT N + 4 
2N - 

1 
12 15 - - 
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CHAPTER 3 

LMS ALGORITHM 

 

3.1 Mathematical Derivation of LMS Algorithm 

According to wiener filter theory, under the assumptions of linearity, time invariance and 

additive white Gaussian noise, the mean square error provides optimum estimate of cost 

function. Most of the adaptive algorithms work on the principle of minimization of mean square 

error (MMSE) for adaptation of weights. The weights are adjusted iteratively to minimize the 

square of error function.  

The LMS is the most basic adaptive algorithm. It was first proposed by Widrow and hoff [29] 

based on the steepest descent approach. The weights are adjusted using a step size factor and the 

gradient of error signal. It is the least computationally intensive algorithms but it suffers from a 

major disadvantage of slow convergence [70]. A large value of step size leads to faster 

convergence but also yields large residual errors and can make the system unstable sometimes. A 

small value of step size leads to low residual errors but it also slows the convergence. The 

optimum value of step size is dependent on the eigenvalue spread variance of incoming signal 

[29, 71, 72].  

 

Fig. 3.1 Beamformer system model using conventional LMS algorithm 
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Let us consider the example shown in figure 3.1. We assume an L element array. The error 

function is given by[70] 

               (3.1) 

d(n): reference signal 

y(n): beamformer output 

we know that the output of beamformer is given as  

               (3.2) 

x(n): L×M received signal 

H: Hermitian operator(conjugate transpose) 

The optimal cost function is given as 

              (3.3) 

E[]: Expectation operator 

                  
 
  (3.4) 

                       
 
  (3.5) 

                                        
 
  (3.6) 

                                           (3.7) 

                                                (3.8) 

 

r(n): cross-correlation matrix of desired signal d(n) and received signal x(n) i.e. d*(n)x(n) 

R(n): auto-correlation matrix of received signal x(n) i.e. x(n)x
H
(n) 

To minimize the equation 3.8, we differentiate with respect to w
H
(n) and then equate it to zero 

       

      
                           (3.9) 

This gives 
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                   (3.10) 

Thus, computation of optimal weights requires knowledge of cross-correlation matrix and auto-

correlation matrix. The calculation of inverse of auto-correlation matrix is computationally 

intensive when the system comprises of large number of weights or when weights are complex. 

Therefore, instead of computing the weight vector using the above, we calculate it iteratively 

using training algorithms. The weights are adjusted according to the equation 

              
       

      
 (3.11) 

μ: step size 

Substituting equation 3.9 in equation 3.11 

                                   (3.12) 

                                            (3.13) 

                                        (3.14) 

                         (3.15) 

Where  

                    (3.16) 

LMS is the least computational intensive algorithm. However, it is not possible to improve the 

convergence rate and lower the steady state error at the same time. Thus the basic LMS 

algorithm requires some modifications. One such modification is variable size LMS in which a 

large step size is used in the beginning of the iterations so as to achieve faster convergence and 

then, it is gradually reduced when the error signal reduces to small value so as to minimize the 

steady state error signal. However, it is fairly complex to keep a track of varying step size.  

Another way of improving the convergence speed and steady state error simultaneously is by 

using Transform Domain Least Mean Square (TDLMS). The eigen values of correlation matrix 

are related to power spectral density of the frequency bins of the received signal. More the 

excitation of PSD, faster will be the convergence [71]. The orthogonal transforms partitions the 

input signal into different frequency bands and normalization process equalizes the energy 
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content in these bands. The input signal is transformed and then normalized. We see the 

mathematical formulation of TDLMS in next section 

3.2 Mathematical Derivation of TDLMS Algorithm 

In this section, we modify the conventional LMS algorithm. The inputs are first transformed 

using an N×N orthogonal transform and then the transformed inputs are normalized by the 

square root of their estimated power. The block diagram is depicted in fig. 3.2. It can be seen that 

the antenna inputs are first decorrrelated using an orthogonal transform. The conventional LMS 

is modified to account for power normalization. In further sections, we analyze the convergence 

of some transform domain LMS algorithms which include DFT-LMS, DCT-LMS, DHT-LMS, 

DST-LMS for inputs having different values of ρ where 0< |ρ|<1.   

Fig. 3.2 Beamformer system model using TDLMS algorithm 

The forward orthogonal transforms that have been studied are  
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 (3.18) 

 

The transformation TN is applied to every column of input matrix. It results in output vector un.  

               (3.19) 

The transformed input is then normalized. The power normalization matrix can be obtained using 

the following equation 

                             (3.20) 

Here,       is the individual estimated power of i
th

 element for each antenna’s transformed 

input. It is obtained using the following equation. 

                           (3.21) 

γ: smoothening factor used to obtain power matrix. 

The modified LMS equation is given as [26, 73] 



36 
 

                        
       (3.22) 

Where  

            
         (3.23) 

wT are the transformed weights 

Modifying the above equation so that it can be obtained in the form of conventional LMS 

algorithm, we do the following assumption 

          
   

      (3.24) 

       
    

     (3.25) 

The final LMS equation thus obtained is 

                             (3.26) 

Where 

             
         (3.27) 

The solution of the above equation converges to        which is given by  

          
   

         (3.28) 

Thus, the weiner solution in time domain is obtained as 

        
    

             (3.29) 

In the next chapter, we simulate the block diagrams shown in figure 2.3, figure 3.1, 3.2 and 

compare the results with previous work. 
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CHAPTER 4 

RESULTS AND ANALYSIS 

 

4.1  Overview 

In this chapter, the implementation and analysis of the block diagrams shown in figures 2.9, 3.1, 

and 3.2 has been discussed. Since LabVIEW provides faster execution results and more 

versatility in other features, we shift our work to LabVIEW. Firstly, we implement and simulate 

the unified architecture of discrete trigonometric transforms in LabVIEW. After that, the 

conventional beamformer has been implemented and analyzed in both MATLAB and LabVIEW 

to verify the results from both the tools. Lastly, the implementation and analysis of conventional 

beamformer using TDLMS algorithm has been discussed in detail for different inputs and other 

parameters.  

4.2  Implementation of Unified Architecture for Discrete Transforms in 

LabVIEW  

Figure 5.2 shows the LabVIEW implementation of unified architecture already discussed in 

chapter 2 figure 2.9. The other blocks have been shown subsequently.  

 

Fig. 4.1 LabVIEW implementation of unified architecture for discrete transforms 
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Fig. 4.2 Main sub block 

 

Fig. 4.3 Qk sub block 

 

 

Fig. 4.4 Mul1 sub block 
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Fig. 4.5 Mul2 sub block 

 

Fig. 4.6 Mul3 sub block 

 

Fig. 4.7 Filter1 sub block 
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Fig. 4.8 Filter2 sub block 

 

The simulation results have been verified with the results obtained in chapter 2 and have been shown in 

subsequent figures. 

 

Fig. 4.9 Simulation output for DST 

 

Fig. 4.10 Simulation output for DCT 
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Fig. 4.11 Simulation output for DFT 

 

 

Fig. 4.12  Simulation output for DHT 

 

 

Fig. 4.13 Simulation output for IDST 
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Fig. 4.14 Simulation output for IDCT 

 

 

 

Fig. 4.15 Simulation output for IDFT 

 

 

 

Fig. 4.16 Simulation output for IDHT 

 

 



43 
 

 

4.3 Implementation of Conventional and Adaptive TDLMS Beamformer in 

MATLAB 

In this section, we examine the simulation results through modeling the block diagram shown in 

figure 3.1 and 3.2 in MATLAB. Sampling frequency is set as 3300Hz and distance between each 

antenna is set such that the corresponding phase difference is of pi radians. The input signals 

‘signal1’ and ‘singal2’ are assumed to be sinusoidal and a white Gaussian noise is added to the 

system such that the resulting SNR is 20 dB. The conventional LMS algorithm stated in equation 

3.15 and equation 3.16 have been implemented. The step-size chosen was 0.004. Also, different 

adaptive TDLMS algorithm has been implemented to compare the simulation results. The value 

of gamma lies in the range of 0 to 0.1 and is assumed to be 0.04. The unified architecture for 

discrete transform is used to decorrelate the input data. The resulting array factor for 

conventional LMS and adaptive TDLMS algorithm has been plotted as shown in figure 4.17 for 

two different values of correlation coefficient between input signals with the application of each 

transform discussed in chapter 2.  Also, the learning curve for conventional LMS algorithm and 

adaptive TDLMS has been plotted as shown in figure 4.18.  

4.3.1 MATLAB Code 

clc; 
clear all; 
close all; 

  

  
f=3300;    
v=330; 
lamda=v/f; 
d=lamda/2; 
phi=d*2*pi*f/v; 
N=10; 
n_b=100 ; % number of samples 
thetad1=80 ; %AoA 
thetad2=155 ; %AoA 
theta_d1=thetad1*pi/180; 
theta_d2=thetad2*pi/180; 
sv1=exp(-1i*phi*cos(theta_d1)* [0:N-1]).' ;  %steering vector for the desired 

signal 
sv2=exp(-1i*phi*cos(theta_d2)*[0:N-1]).' ; 
%svn=exp(1i*phi*cos(70*pi/180)*[0:N-1])' ; 
signal1 = cos(1200*[0:n_b-1]); 
signal2 = 0.2*cos(1200*[0:n_b-1])+0.8*sin(1200*[0:n_b-1]); 
x1 = sv1*signal1; 
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x2 = sv2*signal2; 
signal = awgn(x1 + x2,20); 

  

  
%---------------------------LMS 1------------------------------------------ 
mu = 0.004; 
e1 = zeros(N,n_b); 
w1 = zeros(N,n_b); 
d = cos(1200*[0:n_b-1]); 
dd = ones(N,1)*d; 
for k = 1:n_b 
    e1(:,k) = dd(:,k)-(w1(:,k).')*signal(:,k); 
    w1(:,k+1)=w1(:,k)+2*mu*e1(:,k).*conj(signal(:,k)); 
end 
%-------------------------------------------------------------------------- 

  
%signal_dct = dct2(signal); 
corr_coeff = corr(signal1.', signal2.') 
choice = 3; 
signal_dct = zeros(N,n_b); 
for i = 1:n_b 
signal_dct(:,i) = my_code(signal(:,i),choice); 
end 

  
%---------------------------LMS 2------------------------------------------ 
mu = 0.004; 
e2 = zeros(N,n_b); 
w2 = zeros(N,n_b); 
power = zeros(N,1); 
beta = 0.05; 
d=cos(1200*[0:n_b-1]); 
powersqrt = zeros(1,N); 
dd = ones(N,1)*d; 
for k = 1:n_b 
    power = beta*(signal_dct(:,k).*conj(signal_dct(:,k))) + (1-beta)*power; 
    for i=1:N 
        powersqrt(i) = sqrt(power(i)); 
    end 
    e2(:,k) = dd(:,k)-(w2(:,k).')*(signal_dct(:,k)./transpose(powersqrt)); 
    

w2(:,k+1)=w2(:,k)+2*mu*e2(:,k).*(conj(signal_dct(:,k))./transpose(powersqrt))

; 
end 
%-------------------------------------------------------------------------- 

  
w11 = w1(:,n_b+1); 
w2(:,n_b+1) = w2(:,n_b+1).*transpose(powersqrt); 
w3 = my_code(w2(:,n_b+1),(choice+4)); 
theta = pi/n_b:pi/n_b:pi; 

  

  
AF1 = zeros(1,length(theta)); 
e11 = zeros(1,n_b); 
for i = 1:N 
    AF1 = AF1 + w11(i)'.*exp(1j*(i-1)*phi*cos(theta)); 
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    e11 = e11 + e1(i,:); 
end 
e11 = e11/N; 

  
AF2 = zeros(1,length(theta)); 
e22 = zeros(1,n_b); 
for i = 1:N 
    AF2 = AF2 + w3(i)'.*exp(1j*(i-1)*phi*cos(theta)); 
    e22 = e22 + e2(i,:); 
end 
e22 = e22/N; 

  
hold; 
plot(theta*180/pi,abs(AF1),'-r'); 
plot(theta*180/pi,abs(AF2),'--b'); 
xlabel('AOA (deg)'); 
ylabel('|AF_n|'); 
figure; 
hold on; 
plot(abs(e11), '-r'); 
plot(abs(e22), '--b'); 
xlabel('iterations'); 
ylabel('|Error_n|'); 
hold off; 

 
 

4.3.2 Performance Analysis of Conventional Beamformer vs Adaptive TDLMS 

Beamformer 

4.3.2.1 Array Factor 

Array factor can be described as the gain of the antenna plotted against a scan angle which is 

Angle of Arrival (AOA) in our case. It can also be termed as the radiation pattern. For a ULA, 

the radiation pattern obtained is 1-D. Figure 4.17 illustrates the array factor for conventional 

beamformer and adaptive TDLMS beamformer for two different values of correlation coefficient 

ρ. The desired signal is set to ‘signal 1’, hence the maximum gain should be at the direction of 

‘signal 1’, i.e. 80 degrees. We first discuss the results obtained for low auto-correlation value of 

input signal i.e. ρ 0.2302. 
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Fig 4.17.a Array Factor for DST-LMS for ρ 0.2302 

 

From figure 4.17.a, we observe that for both conventional and DST-LMS algorithm, the maximum gain is 

at the right angle. However, the gain obtained using weights computed by conventional LMS is more as 

compared to the gain obtained using weights computed by DST-LMS. The side-lobe level is lower for 

DST-LMS. 

 

Fig 4.17.b Array Factor for DCT-LMS for ρ 0.2302 
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From figure 4.17.b, we observe that for both conventional and DCT-LMS algorithm, the maximum gain 

is at the right angle. Also, the gain provided by both the algorithms is the same. However, the side-lobe 

level is more in the case of DCT-LMS. 

 

 

Fig 4.17.c Array Factor for DFT-LMS for ρ 0.2302 

From figure 4.17.c, we observe that for DFT-LMS algorithm, the maximum gain is at an angle that is 

equal to 180-desired arrival angle. This can be adjusted using additional processing block. The gain 

obtained using DFT-LMS is more as compared to conventional LMS. However, the side-lobe level is 

much more as compared to conventional LMS. 

From figure 4.17.d, we observe that for both conventional and DHT-LMS algorithm, the maximum gain 

is at the right angle. Also, the gain provided by both the algorithms is the same. However, the side-lobe 

level is more in the case of DHT-LMS. 

We now discuss the results obtained for high auto-correlation value of input signal i.e. ρ 0.9693. 
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Fig 4.17.d Array Factor for DST-LMS for ρ 0.2302 

 

 

Fig 4.17.e Array Factor for DST-LMS for ρ 0.9693 

Similar to the results obtained from figure 4.17.a, we observe from figure 4.17.e that for both 

conventional and DST-LMS algorithm, the maximum gain is at the right angle. However, the gain 

obtained using weights computed by conventional LMS is more as compared to the gain obtained using 

weights computed by DST-LMS. The side-lobe level is lower for DST-LMS. 
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Fig 4.17.f Array Factor for DCT-LMS for ρ 0.9693 

From figure 4.17.f, we observe that for both conventional and DST-LMS algorithm, the maximum gain is 

at the right angle. The overall gain is the same for both the algorithms. 

 

 

Fig 4.17.g Array Factor for DFT-LMS for ρ 0.9693 
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Similar to the results obtained from figure 4.17.c, we observe from figure 4.17.g that for DFT-LMS 

algorithm, the maximum gain is at an angle that is equal to 180-desired arrival angle. This can be adjusted 

using additional processing block. The gain obtained using DFT-LMS is more as compared to 

conventional LMS. However, the side-lobe level is much more as compared to conventional LMS. 

 

 

Fig 4.17.h Array Factor for DHT-LMS for ρ 0.9693 

 

From figure 4.17.f, we observe that for both conventional and DST-LMS algorithm, the maximum gain is 

at the right angle. The overall gain is the same for both the algorithms. 

4.3.2.2 Learning Rate 

Learning rate can be described as how fast the error signal converges to zero value, i.e. how fast 

the output of beamformer converges to the desired output. Figure 4.18 illustrates the learning 

curve for conventional beamformer and adaptive TDLMS beamformer for two different values 

of correlation coefficient ρ. We first discuss the results obtained for low auto-correlation value of 

input signal i.e. ρ 0.2302. 
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Fig 4.18.a Learning curve for DST-LMS for ρ 0.2302 

From figure 4.18.a, we observe that the learning curve for DST-LMS converges faster than that of 

conventional LMS. Also, the steady state error for both the algorithms is similar. 

 

Fig 4.18.b Learning curve for DCT-LMS for ρ 0.2302 

From figure 4.18.b, we observe that the learning curve for DCT-LMS converges similar to that of 

conventional LMS. However, the steady state error is more in case of DCT-LMS. 
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Fig 4.18.c Learning curve for DFT-LMS for ρ 0.2302 

From figure 4.18.c, we observe that the learning curve for DST-LMS converges faster than that of 

conventional LMS. However, the steady state error is much more for DFT-LMS algorithm. 

 

Fig 4.18.d Learning curve for DHT-LMS for ρ 0.2302 

From figure 4.18.d, we observe that the learning curve for DHT-LMS is similar to that obtained using 

DCT-LMS shown in figure 4.18.b. The steady state error is similar or both conventional-LMS and DHT-

LMS. 
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We now discuss the results obtained for low auto-correlation value of input signal i.e. ρ 0.2302. 

 

Fig 4.18.e Learning curve for DST-LMS for ρ 0.9693 

From figure 4.18.e, we observe that the learning curve for DST-LMS converges similar to that of 

conventional LMS. However, the steady state error for DST-LMS is more as compared to conventional 

LMS. 

 

Fig 4.18.f Learning curve for DCT-LMS for ρ 0.9693 

From figure 4.18.f, we observe that the learning curve for DCT-LMS converges faster than that of 

conventional LMS. However, the steady state error for DCT-LMS is more as compared to conventional 

LMS. 
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Fig 4.18.g Learning curve for DFT-LMS for ρ 0.9693 

From figure 4.18.g, we observe that the learning curve for DFT-LMS converges faster than that of 

conventional LMS. However, the steady state error for DFT-LMS is much more as compared to 

conventional LMS. 

 

Fig 4.18.h Learning curve for DHT-LMS for ρ 0.9693 

From figure 4.18.h, we observe that the learning curve for DHT-LMS converges almost similar to that of 

conventional LMS. However, the steady state error for DHT-LMS is much more as compared to 

conventional LMS. 
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4.4 Implementation of Conventional Beamformer and Adaptive TDLMS 

Beamformer in LabVIEW 

In this section, we model the block diagram shown in figure 3.1 and 3.2 in MATLAB. The 

sampling frequency is set as 3300Hz. The input signals, ‘signal1’ and ‘signal2’ are assumed to 

be sinusoidal and white Gaussian noise is added such that resulting SNR is 10 dB. The 

conventional LMS algorithm stated in equation 3.15 and equation 3.16 have been modeled in 

figure 4.19. The step size used is 0.004. The simulation results for conventional LMS algorithm 

have been shown in figure 4.20. The different adaptive TDLMS algorithms have been modeled 

in figure 4.21 in addition to conventional LMS algorithm and the corresponding results are 

shown in figure 4.22. 

 

 

Fig. 4.19.a LabVIEW implementation of Conventional Beamformer 
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Fig. 4.19.b LabVIEW implementation of Conventional Beamformer(contd.) 

 

 

Fig. 4.20 Simulation output of Conventional Beamformer 
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Fig. 4.21.a LabVIEW implementation of tdlms beamformer 

 

 

Fig. 4.21.b LabVIEW implementation of tdlms beamformer(contd.) 

 

 

Fig. 4.21.c LabVIEW implementation of tdlms beamformer(contd.) 



58 
 

 

Fig. 4.21.d LabVIEW implementation of tdlms beamformer(contd.) 

 

The simulation results are as follows 

 

Fig. 4.22 Simulation results of tdlms beamformer vs conventional beamformer 
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CHAPTER 5 

CONCLUSION AND FUTURE SCOPE 

 

5.1 Conclusion 

The problem of optimizing the learning curve in a beamformer has been discussed a lot in the literature. 

Numerous adaptive algorithms have been theorized and implemented based on some criteria like MMSE 

or the least-square. The LMS, which was implemented on the basis of MMSE criteria, suffered from slow 

convergence issues and trade-off between convergence and steady state error. Much research work has 

been done in this area to improve the convergence rate without increasing the complexity of the 

computation. One such algorithm i.e. TDLMS was proposed since it has a similar complexity to that of 

conventional LMS algorithm, and it provided better convergence results. 

In this thesis, we first proposed a unified architecture for discrete trigonometric transforms that is efficient 

in terms of hardware and computations as discussed in chapter 2 for DST, DCT, DFT and DHT. A unified 

architecture was chosen since these transforms are least computationally complex, and moreover, each 

one of have them have their own advantages. The DCT yields better decorrelation results for large values 

of ρ (0< ρ<1) whereas, DST results in better decorrelation for small values of ρ. The DFT is the 

basic transform that has been used since a long time. The DHT provided an alternative to DFT 

since it did not involve complex coefficients.  

Next, we implemented TDLMS beamformer using the unified architecture. Since the input signal 

varies continuously thus resulting in different values of ρ at different instants, we used the 

unified architecture for transforms. The DCT-LMS can be used when the autocorrelation in the 

input signal is high. The DST-LMS can be used when the autocorrelation in the input signal is 

low. Thus, we exploit the properties of different transforms to obtain the best resulting for 

different values of autocorrelation coefficient. Also, the DFT-LMS provides more gain when 

compared to other algorithms, however the convergence is slow and steady state error is high, 

thus it is not that useful for most applications. The DHT-LMS yields the same results in terms of 

array factor gain as DCT-LMS except for slow convergence and high steady state error, thus it 

also isn’t useful for most applications. 
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5.2 Future Scope 

The research in the field of transform domain adaptive algorithms has great scope. To conclude, 

we would like to discuss a number of areas that still need further investigation. 

 In this thesis, we have discussed the conventional LMS algorithm and employed discrete 

transforms to the conventional LMS algorithm to study the convergence performance. 

Many robust algorithms have been proposed in the past that has not been studied in this 

thesis. These robust algorithms can deal with errors in input signal which might yield 

accurate results in the implementation of beamformer. 

 The step size used in the LMS algorithm was not variable. A variable step size can be 

used with transform domain LMS which might lead to better and more accurate results. 

 A practical implementation of beamformer has also not been discussed. We believe that 

practical demonstration of the system would lead to more accurate results. 
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APPENDIX-A 

 

A. FORMULA FOR RECURSIVE STRUCTURE FOR DFT 

From eq. (4a), we have 

                                          

 

   

 (A.1) 

Using identities eq. (A2a) and (A2b) in eq. (A1) 
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(A.3) 

Redistributing the terms in eq. (A.3), we get 

      

                
 
              

                
 
                       

 
                 

          
 
                 

(A.4) 

 

 

Replacing n by n-1 in the first two terms of eq. (A.4) and n by n-2 in the last two terms of eq. (A.4) 
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