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1. Abstract 

Metabolism is an important cellular process and its malfunction is a significant reason behind 

different human diseases. Metabolic Network is the system of connected chemical reactions. It is 

the interconnection between the different metabolites and physical processes determining 

physiological and biochemical properties in the particular metabolic pathway. Connections 

between biochemical responses through substrate and product metabolites produce complex 

metabolic networks that may be studied with the help of network theory, stoichiometric analysis, 

and information on protein structure or function and metabolite properties. Metabolic networks 

are complex and highly interconnected and hence it needs system level computational approach 

to identify the genotype - phenotype relationship. Many diseases are caused by failures of 

metabolic enzymes. These enzymes exist in the perspective of networks well characterized by 

the static topology of enzyme-metabolite interactions and by the reaction fluxes that are possible 

at steady state. Flux balance analysis (FBA) is based on the linear programming algorithm. It has 

developed as a powerful method for the in silico analyses of metabolic networks. Here I present 

the Flux balance analysis of the genomic scale metabolic models of the four microorganisms i.e. 

Microbacterium tuberculosis, Staphylococcus aureus, Helicobacter pylori, and Salmonella 

typhimurium. Using this approach Gene Essentiality and Synthetic Lethality of the metabolic 

pathway of the given metabolic models has been performed with the help of Fast-SL algorithm. 

Synthetic lethal genes are the pairs of non-essential genes whose simultaneous deletion limits 

growth. These attributes helps to find out some of the important factors for the comparative 

analysis like essential genes and reactions. The study of synthetic lethality plays a crucial role in 

explaining functional links between genes and gene function predictions. Metabolite connectivity 

provides a major insight into basic structure of the metabolite networks  
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2. Introduction 

As a complex interactive nonlinear system, much attention has been gained by the study related 

to the metabolic networks in recent years. Efforts have also been made for the analysis of the 

structure of whole metabolic networks (Adam M Feist and Bernhard Ø Palsson, 2008). The use 

of flux balance analysis in order to predict the flux distribution in an entire metabolic network 

under certain physiological conditions is to analyze and compare the metabolic networks related 

to different organisms. There is already the availability of genome scale reconstructed models of 

the different organisms like H.pylori, M. tuberculosis etc. These metabolic networks are obtained 

from different metabolic models databases (Joshua J. Hamilton, Jennifer L. Reed, 2012). Flux 

Balance Analysis (FBA) is a widely used constraint based approach for studying biochemical 

metabolic networks, mainly the genomic scale metabolic network that have been reconstructed in 

the past decade. It uses the concept of linear programming. Linear programming obtains the 

maximum potential of the objective function that we are looking at, and therefore, when using 

flux balance analysis, a single solution is obtained for the optimization problem (Karthik Raman 

and Nagasuma Chandra, 2009). FBA calculates the flow of metabolites taking place in the 

metabolic network, hence making it possible to predict the growth speed of an organism or the 

rate of production of a biochemically important metabolite ((Jeremy S Edwards and Bernhard O 

Palsson, 2002). Essential genes comprise of genes whose specific deletion is lethal under a 

specific environmental condition. Identification of essential genes in the metabolic network of 

microorganisms helps to identify potential drug targets and in understanding of minimal 

requirements for a synthetic cell. However, experimental assessment of essentiality of the coding 

genes of metabolic network is resource intensive and not viable for all bacterial organisms, in 

particular if they are infective (Kitiporn Plaimas et al, 2009; Costas D. Maranas et al, 2015). A 

constraint-based analysis of reconstructed metabolic networks has proved to be quite useful in 

various applications such as metabolic engineering prediction of outcomes of gene deletions, 

drug-target identification and in the elucidation of cellular regulatory networks (Karthik Raman 

et al, 2005). By analogy, Synthetic Lethals (SLs) refer to the pair of non-essential genes whose 

simultaneous deletion is proved to be lethal. Synthetic gene lethality can arise for different types 

of reasons. For example, two protein products can be interchanged with respect to an essential 

function that act in similar pathway or function in two distinct pathways with redundant or 

complementary essential functions. The study of synthetic lethality plays an important role in 
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explaining functional links between genes and the prediction of the gene functions (Karthik 

Raman et al, 2015; Patrick F Suthers et al, 2009; Costas D. Maranas et al, 2015). Occurrence of 

synthetic lethality can be seen between genes and small molecules, and it can be used to explain 

the mechanism of action of drugs. The true potential of synthetic lethality has been widely 

studied in yeast (Sebastian M.B. Nijman, 2011). Biological systems are prone to mutation, to the 

variation in environmental conditions and to random variations in the abundance of component 

molecules of the biological systems. Many physiological and developmental systems are robust 

to such disturbances and hence immune to any such fluctuations (Joanna Masel and Mark L. 

Siegal, 2009). Biological systems that have been experimentally proved of being robust to the 

significant changes in their environmental conditions need mathematical models for robustness 

analysis of the metabolic network. These mathematical models should themselves be robust. The 

necessary condition for the model robustness is that the dynamics of the model should be 

insensitive to small variations in the parameters of the model. The model dynamics may be very 

much sensitive to simultaneous parameter variations (Kim J et al, 2006). Phenotype phase plane 

analysis can study the optimal utilization of the metabolic network as a function of the 

constraints. At present metabolic flux maps are typically calculated for the single growth 

condition, hence gives a limited view of the metabolic phenotype – genotype relation. But 

phenotypic phase plane analysis maps all the growth conditions characterized by two 

environmental variables presented in the single plane (Edwards JS et al, 2002). Fast-SL is an 

algorithm which computes combinations of reactions, which when deleted, leads to the 

elimination of the growth of the organism due to the modification in the metabolic pathway. It 

achieves this by a combination of limiting the search space and exhaustively iterating through the 

remaining combinations (Karthik Raman et al, 2015). The functional in silico model of 

Mycobacterium tuberculosis, iNJ661, contains 661 genes, 1025 reactions and 826 metabolites. 

Genome scale models can be used as hypothesis generating tools and also for analysis and 

discovery which will expectantly support the rational drug development process (Neema 

Jamshidi1 and Bernhard Ø Palsson, 2007). The functional in silico model of bacterium 

Staphylococcus aureus, iSB619, consists of 619 genes by which 640 metabolic reactions are 

catalysed. The reaction list is the most complete till date for this pathogen (Scott A Becker and 

Bernhard Ø Palsson, 2005; Matthias Heinemann, Anne Kummel, Reto Ruinatscha, Sven Panke, 

2005). The reconstructed network, iIT341 represents a detailed review of the current literature 
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about Helicobacter pylori as it integrates biochemical and genomic data in a comprehensive 

framework. In total, it contains 341 metabolic genes, 476 intracellular reactions, 78 exchange 

reactions, and 485 metabolites (Bernhard Ø. Palsson et. al, 2005; Christophe H et al, 2002). 

Salmonella enterica subspecies I serovar Typhimurium is a human pathogen which causes 

different diseases and its increasing antibiotic resistance poses many public health problems. The 

functional in silico model of Salmonella typhimurium, STM_v1_0, consists of 1271 genes, 1802 

metabolites and 2545 reactions (Thiele I et al, 2011; McClelland M et al, 2001). Methods of 

COnstraint Based Reconstruction and Analysis (COBRA) have been successfully applied in the 

field of microbial metabolic engineering and are being extended to model transcriptional and 

signaling networks and in the field of public health. The COBRA approach focuses on using 

physicochemical and biological constraints to analyse the set of feasible phenotypic states of a 

reconstructed biological network under a given condition (Jan Schellenberger et. al, 2011). 

SBMLToolbox, a toolbox that facilitates importing and exporting models presented in the 

Systems Biology Markup Language (SBML) format in the MATLAB environment. It also 

provides functionality that helps an experienced user of either SBML or MATLAB to combine 

the computing power of MATLAB with the exchangeability and portability of an SBML model. 

SBMLToolbox supports all levels and versions of SBML (Sarah M. Keating et al, 2006). In this 

work, we describe the similarities and dissimilarities of metabolic networks of Salmonella 

typhimurium (STM_v1_0), Helicobacter pylori (iIT341), Mycobacterium tuberculosis (iNJ661) 

and Staphylococcus aureus (iSB619) by pairwise comparison with the help of flux balance 

analysis and gene deletion method. 
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3. Literature Review 

Mycobacterium tuberculosis continues to be a major pathogen in the third world, killing almost 2 

million people a year by the most recent estimates. The functional in silico bacterium, iNJ661, 

contains 661 genes, 1025 reactions and 826 metabolites can produce many of the complex 

compounds characteristic to tuberculosis, such as mycolic acids and mycocerosates. Genome-

scale models can be used for analysis, discovery, and as hypothesis generating tools, which will 

hopefully assist the rational drug development process. These models need to be able to 

assimilate data from large datasets and analyze them (Neema Jamshidi1 and Bernhard Ø Palsson, 

2007). Staphylococcus aureus is a pathogenic bacterium that has evolved resistance to many 

antibiotics, representing a significant health care concern. The functional in silico bacterium, 

iSB619, consists of 619 genes that catalyze 640 metabolic reactions. The reaction list is the most 

complete to date for this pathogen (Scott A Becker and Bernhard Ø Palsson, 2005). Helicobacter 

pylori is a human gastric pathogen infecting almost half of the world population. This 

reconstruction network, iIT341 GSM/GPR, represents a detailed review of the current literature 

about H. pylori as it integrates biochemical and genomic data in a comprehensive framework. In 

total, it accounts for 341 metabolic genes, 476 intracellular reactions, 78 exchange reactions, and 

485 metabolites (Bernhard Ø. Palsson et. al, 2005). Metabolic reconstructions are common 

denominators in systems biology and represent biochemical, genetic, and genomic (BiGG) 

knowledge-bases for target organisms by capturing currently available information in a 

consistent, structured manner Salmonella enterica subspecies I serovar Typhimurium is a human 

pathogen, causes various diseases and its increasing antibiotic resistance poses a public health 

problem. The functional in silico bacterium, STM_v1_0, consists of 1271 genes, 1802 

metabolites and 2545 reactions (Bernhard Ø. Palsson et. al, 2011). Flux balance analysis (FBA) 

is a mathematical approach for analyzing the flow of metabolites through a metabolic network. 

FBA calculates the flow of metabolites through this metabolic network, thus making it possible 

to predict the growth rate of an organism or the rate of production of a biotechnologically 

important metabolite. FBA does not require kinetic parameters and can be computed very 

quickly even for large networks. This makes it well suited to studies that characterize many 

different perturbations such as different substrates or genetic manipulations (Thiele et. al, 2010). 

Biological systems that have been experimentally verified to be robust to significant changes in 
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their environments require mathematical models that are themselves robust. A necessary 

condition for model robustness is that the model dynamics should not be sensitive to small 

variations in the model‟s parameters. The concept of robustness has been proposed as a key 

indicator of validity for models of many types of biological systems (J. Kim et. al, 2006). 

Synthetic lethal sets are sets of reactions or genes where only the simultaneous removal of all 

reactions or genes in the set inhibits growth of an organism. Fast-SL enables an efficient 

enumeration of higher order synthetic lethals in metabolic networks, which may help uncover 

previously unknown genetic interactions and combinatorial drug targets (Karthik Raman et. al, 

2015). Microbial cells operate under governing constraints that limit their range of possible 

functions. With the availability of annotated genome sequences, it has become possible to 

reconstruct genome-scale biochemical reaction networks for microorganisms. A substantial and 

growing toolbox of computational analysis methods has been developed to study the 

characteristics and capabilities of microorganisms using a constraint-based reconstruction and 

analysis (COBRA) approach. This approach provides a biochemically and genetically consistent 

framework for the generation of hypotheses and the testing of functions of microbial cells 

(Bernhard Ø. Palsson et. al, 2004). COnstraint-Based Reconstruction and Analysis (COBRA) 

methods have been successfully employed in the field of microbial metabolic engineering and 

are being extended to modeling transcriptional and signaling networks and the field of public 

health. COBRA methods have been used to guide metabolic pathway engineering, to model 

pathogens and host-pathogen interactions and to assess the impact of disease states on human 

metabolism. The COBRA approach focuses on employing physicochemical, data-driven, and 

biological constraints to enumerate the set of feasible phenotypic states of a reconstructed 

biological network in a given condition (Jan Schellenberger et. al, 2011). FBA is a constraint-

based modeling approach in which the stoichiometry of the underlying biochemical network 

constrains the solution. FBA assumes that metabolic networks will reach a steady state 

constrained by the stoichiometry. The stoichiometric constraints lead to an underdetermined 

system, however, a bounded solution space of all feasible fluxes can be identified (Kenneth J 

Kauffman et. al, 2003). SEED project, initiated in 2003 as an integration of genomic data and 

analysis tools, now contains > 5,000 complete genomes, a constantly updated set of curated 

annotations embodied in a large and growing collection of encoded subsystems, a derived set of 

protein families, and hundreds of genome-scale metabolic models. RAST annotation server, and 
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provide access to a growing collection of metabolic models that support flux balance analysis. 

The SEED servers offer open access to regularly updated data, the ability to annotate prokaryotic 

genomes, the ability to create metabolic reconstructions and detailed models of metabolism, and 

access to hundreds of existing metabolic models (Ramy K. Aziz et al, 2012). BiGG Models is a 

completely redesigned Biochemical, Genetic and Genomic knowledge base. BiGG Models 

contains more than 75 high quality, manually curated genome-scale metabolic models. On the 

website, users can browse, search and visualize models. BiGG Models connects genome-scale 

models to genome annotations and external databases. Reaction and metabolite identifiers have 

been standardized across models to conform to community standards and enable rapid 

comparison across models. Furthermore, BiGG Models provides a comprehensive application 

programming interface for accessing BiGG Models with modeling and analysis tools (Zachary 

A. King et al, 2015). Comparative analysis of the well-curated networks is now possible. Pairs of 

metabolites often appear together in several network reactions, linking them topologically. This 

co-occurrence of pairs of metabolites in metabolic reactions is termed as metabolite coupling. 

These metabolite pairs can be directly computed from the stoichiometric matrix, S. Metabolite 

coupling is derived from the matrix ŜŜ^T (product of binary form of S and transpose of binary 

form of S), whose off-diagonal elements indicate the number of reactions in which any two 

metabolites participate together, where Ŝ is the binary form of S. Metabolites with high 

individual metabolite connectivity also tended to be those with the highest metabolite coupling, 

as the most connected metabolites couple more often (Scott A Becker et al, 2006). MATLAB 

(The MathWorks, Inc.) is a general-purpose technical computing language and development 

environment that is widely used in scientific and engineering applications. The Bioinformatics 

Toolbox for MATLAB is a library of functions that adds bioinformatics capabilities to the 

MATLAB environment. SBMLToolbox, a toolbox that facilitates importing and exporting 

models represented in the Systems Biology Markup Language (SBML) in and out of the 

MATLAB environment and provides functionality that enables an experienced user of either 

SBML or MATLAB to combine the computing power of MATLAB with the portability and 

exchangeability of an SBML model. SBMLToolbox supports all levels and versions of SBML 

(Sarah M. Keating et al, 2006). 
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4. Materials and methods 

The comparative study of metabolic network for finding the similarity and dissimilarities is 

conducted for the following four pathogenic bacteria.  

1. Mycobacterium tuberculosis (iNJ661) 

2. Staphylococcus aureus (iSB619) 

3. Salmonella typhimurium (STM_v1_0) 

4. Helicobacter pylori (iIT341) 

The genome scale metabolic networks of the four pathogenic organisms were collected from 

different sources like BiGG database, BioModel database and TheModelSeed database. BiGG 

database is a knowledgebase of biochemically, genetically and genomically structured and 

reconstructed genome scale metabolic network models. BiGG integrates several published 

genome scale metabolic networks into one source with typical nomenclature which allows 

components to be compared across different organisms. BioModels Database is a repository of 

computational models of biological processes. Models defined from literature are manually 

curated and supplemented with cross-references. The SEED servers offer open access to 

frequently updated data, the facility to interpret prokaryotic genomes, the ability to create 

metabolic reconstructions and comprehensive models of metabolism. It also provides access to 

hundreds of current metabolic models. The MATLAB files of the four given organisms were 

downloaded from the database from the BiGG Database. 

4.1 Flux Balance Analysis 

The constraints in FBA have the form α ≤ vi ≤ β where α and β are the lower and upper limits. 

Thermodynamic constraints according to the reversibility and irreversibility of a reaction can be 

applied by setting the lower limit (α) for the equivalent flux to 0 if the reaction is irreversible and 

-1000 if the reaction is reversible. The upper limit is set to 1000 for reversible and irreversible 

reactions. The COBRA toolbox was used to run the FBA. COBRA toolbox is a collection of 

MATLAB scripts for constraint based modeling that are run from within the MATLAB 

environment. The SBML files were read in COBRA toolbox. A particular metabolic flux 

distribution within the feasible set was found by using linear programming (LP). The Gurobi 



16 
 

Solver package was used to solve linear programming in cobra toolbox. The fluxes of all reaction 

were obtained and the growth rate of the organism was calculated by setting the biomass reaction 

as the objective function. The biomass is usually represented as a stoichiometrically balanced 

reaction, describing the formation of the biomass from various cellular constituents, as well as 

various co-factors, which are required to drive the process. There are separate commands in the 

COBRA toolbox for each of the functions performed for the metabolic model. The detailed 

codes for performing FBA using the COBRA Toolbox in the MATLAB environment are as 

follows:- 

Command to load the MATLAB file: load („filename.mat‟); 

Command to find out the objective function for the growth of the organism:  

objective = checkObjective(model); 

Command to change reaction bounds: 

model = changeRxnBounds(model, „rxnNameList‟, value, „boundType‟); 

Command to change the Objective Function: 

model = changeObjective(model, „rxnNameList‟, [objectiveCoeff]) ; 

Command to calculate the growth rate: 

FBAsolution = optimizeCbModel (model, [osenseStr]); 

where osenseStr is either „max‟ or „min‟ to maximize or minimize the value of objective 

respectively. 

FBAsolution.f;  

4.2 Simulating Gene Knockouts 

The GPR associations are included in the MATLAB files. Gene-protein-reaction associations are 

embodied in rxnGeneMat matrix in the MATLAB files, which is a matrix with as many rows as 

there are reactions in the model and as many columns as there are genes in the model. The ith 

row and jth column comprises 1 if the jth gene in genes is associated with the ith reaction in rxns 

entry of the model and 0 otherwise. The Cobra toolbox has a function called singleGeneDeletion 
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that performs single gene deletion. The function ―singleGeneDeletion performs the single gene 

deletion analysis using FBA. The below given command performs the single gene deletion: 

[grRatio, grRateWT, grRateKO, hasEffects, delRxns] =  singleGeneDeletion(model); 

Where grRatio = grRateWT/grRateKO 

           grRateWT = growth rate of the wild type  

           grRateKO = growth rate of the knock outs 

           hasEffect= contains value 1 for each gene whose deletion affects the growth rate. 

           delRxns = contains a list of all the reactions whose value is set to 0 for each gene deletion. 

The command for performing the single reaction deletion: 

[grRatio, grRateWT, grRateKO, hasEffects, delRxns] =  singleRxnDeletion(model); 

The command for performing the double gene deletion: 

[grRatio, grRateWT, grRateKO] = doubleGeneDeletion(model); 

4.3 Performing Synthetic Lethality Analysis 

It was performed using the Fast – SL algorithm that is implemented using the MATLAB. 

It was performed using the Fast – SL algorithm that is implemented using the MATLAB.  

Code to perform the synthetic lethal reaction analysis - fastSL (model, cutoff, order, eliList, atpm) 

Code to perform the synthetic lethal gene  analysis - fastSLgenes (model, cutoff, order, flag) 

 where model is metabolic network file, cutoff is cutoff percentage value for lethality and have 

default value of 0.01, order is order of synthetic lethals and have default value of 2 and 

maximum value 3, eliList is the list of the reactions to be excluded from the analysis, flag is set 

to 1 for rigorous search and have default value 0, atpm is ATP Maintenance Reaction Id in 

model.rxns if other than ATP Maintenance Reaction. 
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4.4 Robustness analysis  

Robustness analysis uses the FBA to analyze the metabolic network properties. In this step, the 

flux was varied through one reaction and the optimal objective value was calculated as a function 

of this value. This tells about the sensitivity of the objective value to a particular reaction. We 

have checked the effect of varying glucose and oxygen uptake on the growth rate. 

COBRAToolbox has the built in function robustnessAnalysis to perform this method. 

4.5 Phenotypic phase plane analysis 

While performing the Robustness analysis, we varied one parameter and made one parameter to 

be constant. However, in phenotypic phase plane analysis, we varied two parameters glucose and 

oxygen uptake rate simultaneously and the results were plotted as phenotypic phase plane. It 

revealed the interaction between two reactions. COBRA Toolbox has the built in function 

phenotypePhasePlane to perform this step. 

4.6 Metabolite Connectivity 

Metabolite connectivity is the number of reactions in which the metabolites occur in. In this step 

the Stoichiometric matrix S of the metabolic model was converted into the binary matrix Sbin. It 

replaces all non-zero elements in the matrix S with „1‟ in the binary matrix. Then all „1s‟ in each 

row of the Sbin was added up to determine the number of reactions the metabolites occur in. 

4.7 Reaction Essentiality and Metabolite Connectivity 

Correlation between reaction essentiality and metabolite connectivity can be calculated in the 

metabolic network. In this step, all the reactions which were associated with the metabolites were 

deleted and checked whether it could still produce the biomass or not. Reactions associated with 

the metabolites could be found out by scanning through the corresponding rows in the 

Stoichiometric S matrix. After then all the associated genes were knocked out and FBA was used 

to predict the possibility of the growth. Lethality fraction was calculated based on the above 

result. The semi log graph was plotted with this lethality fraction vs. metabolite connectivity. 
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5. Results and discussion 

5.1 Calculation of Growth rate Using FBA 

The growth rates of the four organisms were calculated with help of Flux Balance Analysis. The 

maximization of biomass was set as the objective function to calculate the growth rate. The 

growth rate is calculated in the unit millimole/hour/gramDryWeight (mmol gDW
-1

 hr
-1). The 

growth rates of four organisms are shown in Table 1. 

TABLE 1 Growth rate of all the four organisms using FBA. 

Organism Number of 

Reactions 

Number of 

Metabolites 

Number of 

Genes 

Growth Rate 

Mycobacterium 

tuberculosis 

1025 826 661 0.0522 

Staphylococcus 

aureus 

743 655 619 0.0687 

Salmonella 

typhimurium 

1076 982 801 0.4779 

Helicobacter 

pylori 

554 485 339 0.6928 

 

The table showing growth rates, are the growth rates calculated for the wild type strain of each of 

the model organism. The objective function for each of the organism was different. Apart from 

this, growth rates under the alternative substrates like glucose, succinate, pyruvate etc. were also 

calculated. The calculation of growth rates was done under both aerobic and anaerobic 

conditions. The growth rates calculated under the alternative substrates were different compared 

to the wild type ones. For most of the substrate, growth rate under the anaerobic condition was 

found to be 0 for each of the organism studied. Alternative substrates under which growth rates 

were calculated are the important substrates that are involved in the major metabolic pathways 

like glycosis, TCA cycle, oxidative phosphorylation, amino acid metabolism etc. The growth 
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rates calculated under alternative substrates are shown in the given below tables for each of the 

organism separately. The maximum substrate uptake rate was set to -20 mmol gDW
-1

 hr
-1 for every 

substrate. 

Table 2 Growth rates of Mycobacterium tuberculosis under the alternative substrates 

Substrate Aerobic Anaerobic 

Glucose 0.3060 0 

Succinate 0.1393 -2.0512e-26 

Aspartate 0.0680 3.9109e-20 

Phosphate 0.1440 -1.7094e-27 

Glycerol 0.3060 6.9372e-26 

Pyruvate 0.3060 -9.6864e-27 

   

Table 3 Growth rates of Staphylococcus aureus under the alternative substrates 

Substrate Aerobic Anaerobic 

Glucose 0.0141 2.2559e-26 

Succinate Absent Absent 

Aspartate 0.0123 0 

Phosphate 0.0103 0 

Glycerol -9.6865e-18 -4.1655e-18 

Pyruvate Absent Absent 
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Table 4 Growth rates of Helicobacter pylori under the alternative substrates 

Substrate Aerobic Anaerobic 

Glucose 4.1510 0 

Succinate 5.3325 0 

Aspartate 5.2489 0 

Phosphate 4.1510 0 

Glycerol Absent Absent 

Pyruvate 4.9698 1.5179e-29 

 

Table 5 Growth rates of Salmonella typhimurium under the alternative substrates 

Substrate Aerobic Anaerobic 

Glucose 1.9317 0.4500 

Succinate 1.5507 0.0525 

Aspartate 1.4971 0.2959 

Phosphate 0.4779 0.0525 

Glycerol 1.1227e-12 -9.3396e-13 

Pyruvate 1.1584e-12 -4.6855e-13 

 

5.2 Retrieving Essential Reactions and Essential Genes from Gene Knockouts 

If a single gene is associated with multiple reactions, the deletion of that gene will result in the 

removal of all associated reactions. On the other hand, a reaction that can be catalyzed by 

multiple non-interacting gene products will not be removed in a single gene deletion. The 

essential reactions were extracted by reaction knockout method. The essential genes were 

extracted by gene knockout method. By the aid of the COBRA toolbox, we can retrieve the 
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essential reactions in the metabolic network. After gene knockout, a mutant strain of the 

organism is generated and it also provides the gene-reaction ratio (grRatio) of the mutant strain 

and wild type of the organisms. The grRatio is the ratio between the grRatio of wild type strain 

and grRatio of the mutated strain. If the grRatio is less than 0.05, those genes and reactions are 

the essential genes and essential reactions of the organisms. Numbers of essential reactions and 

essential genes present in metabolic network of each organism have been shown in Table 6. 

TABLE 6 Essential Genes and Essential Reactions 

Organism S. aureus M. tuberculosis S. typhimurium H. pylori 

Number of 

Essential 

Reactions 

244 314 345 256 

Number of 

Essential Genes 

168 188 201 186 

The essential reactions thus obtained for each of the organism can be compared pairwise with 

essential reactions of each of the organism. The pairwise comparison was performed with the 

help of Compare plugin in the Notepad++. Common essential reactions thus obtained by the 

pairwise comparison are shown in the below given table 7 

Table 7 Common Essential Reactions. 

Pairwise 

Combination 

of Organisms 

M. tuberculosis M. tuberculosis M. tuberculosis S. aureus S.aureus S. typhimurim 

S. typhimurium S. aureus H. pylori S. typhimurim H.pylori H. pylori 

No. of 

Common 

Essential 

Reactions 

48 47 96 60 93 58 
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Gene knockout performed on each of the organism can be visualized using the MATLAB. 

Double gene deletion was performed for all the genes present in each of the organism. The 

lethality of double gene deletion can be visualized where the scale of lethality varies from 0 to 1. 

Scale of 1 refers to highly lethal deletion for the particular two genes and scale of 0 refers the 

lethal effect to be normal as shown in figure 1 to figure 4. 

 

Figure 1 Gene knockout of Mycobacterium tuberculosis metabolic network using double gene deletion. 
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Figure 2 Gene knockout of Staphylococcus aureus metabolic network using double gene deletion. 

 

 

Figure 3 Gene knockout of Helicobacter pylori metabolic network using double gene deletion method. 
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Figure 4 Gene knockout of Salmonella typhimurium metabolic network using double gene deletion 

method. 

 

5.3 Synthetic Lethality Analysis  

It was performed using the algorithm Fast–SL algorithm which is implemented in the MATLAB 

using the COBRAToolbox. The synthetic gene lethality and the synthetic reaction lethality were 

performed separately. For synthetic gene lethality, both single and double gene lethality was 

performed. Similarly for synthetic reaction lethality, both single and double reaction lethality 

was performed. In single gene lethality there was deletion of single gene and similarly in double 

gene lethality pair of genes were deleted. Similar procedure were followed for reaction lethality 

also. The result for gene lethality has been shown in the Table 8. 
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Table 8 Synthetic Gene Lethality 

Organisms Number of Genes for Single 

Lethality 

Number of Genes for Double 

Lethality 

Mycobacterium tuberculosis 188 188 

Staphylococcus aureus 168 168 

Salmonella typhimurium 202 204 

Helicobacter pylori 168 168 

 

The result for reaction lethality has been shown in the Table 9. 

Table 9 Synthetic Reaction Lethality 

Organism Number of Reactions for 

Single Lethality 

Number of Reactions for 

Double Lethality 

Mycobacterium tuberculosis 314 314 

Staphylococcus aureus 244 244 

Salmonella typhimurium 346 346 

Helicobacter pylori 135 244 

 

5.4 Robustness Analysis 

Robustness analysis was performed to study the effect of the glucose and oxygen uptake on the 

growth rates. This analysis was performed for the metabolic network of each of the organism. 

The sensitivity of the growth of the metabolic network was checked against the varying glucose 

and oxygen uptake rate. To determine the effect of varying glucose uptake on growth, oxygen 

uptake rate was fixed at -17 mmol gDW
-1

 hr
-1 which is a realistic uptake of oxygen. To determine 

the effect of varying oxygen uptake on growth, glucose uptake rate was fixed at 10  
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mmol gDW
-1

 hr
-1 which is a realistic uptake of glucose. Results for the robustness analysis for 

each of the organism have been shown in the below given figures. 

 

Figure 5 Robustness analysis of Mycobacterium tuberculosis metabolic network for maximum growth 

rate while varying glucose uptake rate with oxygen uptake fixed at 17 mmol gDW
-1

 hr
-1

. 

 

Figure 6 Robustness analysis of Mycobacterium tuberculosis for maximum growth rate while varying 

oxygen uptake rate with glucose uptake fixed at 10 mmol gDW
-1

 hr
-1

. 
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Figure 7  Robustness analysis of Staphylococcus aureus metabolic network for maximum growth rate 

while varying glucose uptake rate with oxygen uptake fixed at 17 mmol gDW
-1

 hr
-1  

 

Figure 8 Robustness analysis of Staphylococcus aureus metabolic network for maximum growth rate 

while varying oxygen uptake rate with glucose uptake fixed at 10 mmol gDW
-1

 hr
-1

. 
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Figure 9 Robustness analysis of Helicobacter pylori metabolic network for maximum growth rate while 

varying glucose uptake rate with oxygen uptake fixed at 17 mmol gDW
-1

 hr
-1

. 

 

Figure 10 Robustness analysis of Helicobacter pylori  metabolic network for maximum growth rate while 

varying oxygen uptake rate with glucose uptake fixed at 10 mmol gDW
-1

 hr
-1

. 
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Figure 11 Robustness analysis of Salmonella typhimurium  metabolic network for maximum growth rate 

while varying glucose uptake rate with oxygen uptake fixed at 17 mmol gDW
-1

 hr
-1

. 

 

Figure 12 Robustness analysis of Salmonella typhimurium  metabolic network for maximum growth rate 

while varying oxygen uptake rate with glucose uptake fixed at 10 mmol gDW
-1

 hr
-1

. 
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5.5 Phenotypic Phase Plane Analysis 

Phenotypic phase plane analysis was performed by varying two substrates simultaneously. In this 

study phenotypic phase plane analysis is done by varying the glucose and oxygen uptake rate 

simultaneously. It assesses the effect of the simultaneous variation of the uptake rate of the 

glucose and oxygen on the growth rate. The effect was plotted on the 2-D graph as well as on the 

3-D graph. The plot is divided into different phases with different color-coding. The 3-D plot 

was created using the MATLAB function surfl. The results for the phenotypic phase plane 

analysis for each of the different organism are given below in the figure 13 to figure 16. 

 

Figure 13 Glucose and oxygen phenotype phase plane for Mycobacterium tuberculosis genotype. 
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Figure 14 Glucose and oxygen phenotype phase plane for Staphylococcus aureus genotype. 

 

Figure 15 Glucose and oxygen phenotype phase plane for Helicobacter pylori genotype. 
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Figure 16 Glucose and oxygen phenotype phase plane for Salmonella typhimurium genotype. 

5.6 Metabolite Connectivity 

For each of the four networks, the number of reactions in which each possible metabolite is 

occurs was determined. It is the measure of individual connectivity of each of the metabolite in 

the metabolic network. This metabolite connectivity was plotted on the log-log scale for each of 

the four metabolic networks. The approximate linear appearance of the curve relates to the power 

law distribution of the metabolic networks. The plots of four different metabolic networks show 

that there are very few metabolites, which are highly connected. Most of the metabolites occur 

only in a few reactions. The highly connected metabolites are the „global factors‟ similar to the 

hub protein in the protein-protein interaction network. The least connected metabolites are the 

„local factors‟ which occur in linear pathway. The power law distribution shows that the 

networks are scale-free. Metabolite connectivity in the metabolic networks of each of the 

organisms is shown in below given figures.    
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Figure 17 Metabolite connectivity of Mycobacterium tuberculosis ((loglog plot). 

 

Figure 18. Metabolite connectivity of Staphylococcus aureus (loglog plot). 
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Figure 19 Metabolite connectivity of Helicobacter pylori ((loglog plot) 

 

Figure 20 Metabolite connectivity of Salmonella typhimurium ((loglog plot) 

Reaction participation for each of the reaction in the network was also calculated. It is nothing 

but the number of metabolites per reaction. The most common type of reaction in the metabolic 
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network of each of the organism is the bi-linear reaction involving two substrates and two products. 

Average of the reaction participation in each of the network is shown in the table 10. 

Table 10 Average Reaction Participation. 

Organism Average reaction participation 

Mycobacterium tuberculosis 4.6576 

Staphylococcus aureus 5.1427 

Helicobacter pylori 3.8523 

Salmonella typhimurium 4.1796 

 

5.7 Reaction Essentiality and Metabolite Connectivity 

In order to correlate the reaction essentiality and the metabolite connectivity in each of the 

metabolic networks, metabolite associated reactions were found out and finally they are deleted. 

After then FBA was used to predict the growth if possible. This step was performed for the 

metabolic networks of each of the four organisms. The results were plotted on the semi-log scale 

with metabolite connectivity and lethality of the network. The results for the metabolic network 

of four different organisms show that some less connected metabolites have a higher lethality 

fraction than highly connected metabolites. For the H. pylori core model, the average lethality 

fraction lies between 0.3 and 0.6 for the majority of the metabolites, regardless of their 

connectivity as shown in figure 23. For the M. tuberculosis core model, the average lethality 

fraction lies between 0.3 and 0.6 for the majority of the metabolites, regardless of their 

connectivity as shown in figure 21. For the S. aureus core model, the average lethality fraction 

lies between 0.2 and 0.6 for the majority of the metabolites, regardless of their connectivity as 

shown in figure 22. For the S. typhimurium core model, the average lethality fraction lies 

between 0.2 and 0.5 for the majority of the metabolites, regardless of their connectivity as shown 

in figure 24. 
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Figure 21 Correlation between average lethality fraction and metabolite connectivity for Mycobacterium 

tuberculosis. 

 

Figure 22 Correlation between average lethality fraction and metabolite connectivity for Staphylococcus 

aureus 
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Figure 23 Correlation between average lethality fraction and metabolite connectivity for Helicobacter 

pylori. 

 

Figure 24 Correlation between average lethality fraction and metabolite connectivity for Salmonella 

typhimurium 
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6. Conclusion 

All the four metabolic network files are the reconstructed models of these organisms. 

Maximization of growth is very important compartmental objective to find out good FBA 

estimation using the kind of objective function explored. While performing the FBA analysis, 

growth was possible both aerobically and anaerobically for each of the four organisms. In this 

study, the variation in flux values were generally associated with important metabolic pathways 

like Glycolysis, Oxidative Phosphorylation, and Amino Acid Biosynthesis etc. In the flux 

variability analysis, sub-system or pathways comes out to have the high flux variability and 

essential sub-systems resulted from the gene knockout analysis are similar. Single gene deletion 

and single reaction deletion functions estimate the amount of essential genes and reactions by 

deleting the certain genes and reactions and analyzing the impact of the deletion. These essential 

genes and reactions are the major players in the regulation of important pathways of the 

organisms. These genes and reactions are also involved in the signal transduction pathways. 

These genes and reactions serve as the candidate for the potential drug target against diseases 

caused by these organisms. The identification of synthetic lethals in organisms can be used to 

understand complex genetic interactions between genes and identify drug targets for 

combinatorial therapy. Fast – SL algorithm exploits the structure of the metabolic network better 

than previous algorithms, to eliminate combinations of reactions/genes that are guaranteed not to 

produce a lethal phenotype under the conditions considered. This algorithm also identifies 

synthetic lethal gene sets rigorously, by carefully considering the GPR associations in the 

metabolic model. In this study, it has been found that the highly connected metabolites 

contributed an uneven percentage of the enriched coupling interactions in that highly connected 

metabolites are more connected to each other than would be expected from their individual 

connectivities alone. Metabolite connectivity enables us to understand the basic structure of these 

metabolic networks of four different organisms. The correlation study between metabolite 

connectivity and reaction essentiality gives the major insight into the lethality fraction of the 

metabolic networks. The lethality fraction is computed as the ratio between metabolite 

connectivity and reaction essentiality. The average lethality fraction of all the four organisms 

studied, ranged from 0.2 to 0.6.   
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