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Shailesh Kumar Singh 
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E-mail ID: shailesh.muz@gmail.com 

 
1. ABSTRACT 

Huntington’s disease (HD) is an inherited progressive and severe neurodegenerative disorder that 

commonly starts in mid age, predominantly in striatum and is described by involuntary movements, 

personality changes and dementia. The mutated gene responsible for expression of polyglutamine 

repeats in huntingtin proteins, Contains a trinucleotide CAG repeat expansion within its coding region. 

The molecular mechanisms involved in cell death due to the toxic effect of mutant huntingtin is 

unknown, but a strong body of evidence shows that mutant protein in HD misfolds and accumulate 

into aggregate and the huntingtin protein is fragmented in affected individuals, htt exon1, a fragment 

of huntingtin which forms amyloid fibril aggregates, that might be cause of toxicity. Tetrabenazine 

(TBZ) is the only US Food and Drug approved drug for HD patient. The objective of this study is to 

identify newer antipsychotic biomolecules with adequate efficacy and more favorable adverse effect 

than tetrabenazine. Some natural products like Curcumin, Berberine, Aripiprazole, Clozapine, 

Olanzapine, Pridopidine, Quetiapine, Rilmenidine and Tiapride are shown to be effective in relieving 

the adverse effect of accumulated misfolded proteins in several neurodegenerative diseases. Hence, 

these natural products can be promising therapeutic approach to Huntington’s disease (HD). Here, in 

silco molecular docking was performed against huntingtin gene (htt) using antipsychotic biomolecules 

and furthermore docking results was compared with docking result of tetrabenazine. 
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2. INTRODUCTION 

Huntington’s disease (HD) is an autosomal dominant disorder of the nervous System caused by 

mutation in the htt gene located at chromosome no 4. It is characterized by progressive motor, 

cognitive, dementia and behavioral impairment. The defective gene produces mutant huntingtin 

protein containing repeat of glutamine amino acid expansion in the N-terminal portion. In the brain, htt 

is mainly expressed in neurons, predominantly in striatum (Sapp et al., 1997). The main site of 

deterioration in person with HD is the striatum; although other parts of brain are also affected at later 

stages (Vonsattel et al., 1995).symptoms of HD commonly appear in middle stage of life. However, 

disease can start in early stages, and around 6% of HD patients acquire this disease in early ages 

(Foroud et al., 1999).The primary symptoms vary from person to person but disease onset is generally 

noticed by uncontrolled movements of the finger, face, thorax or feet (Folstein et al., 1996). As HD 

develops, the affected person develops overt choreiform movements of the head, neck, arms and legs. 

Individual with HD also show cognitive decline such as impairments of language comprehension and 

memory and its severity depends upon disease progression (Craufurd, D. 2001). Weight loss is a 4
th

 

symptom of the disease and may be due to dysphagia as well as degeneration of hypothalamic orexin-

positive neurons (Bachoud et al., 2001; Petersen et al., 2005). After few years of the disease 

progression, individual becomes completely rigid and akinetic. They also present severe dementia, 

eventually become unable to talk and can’t care for themselves. The patient usually dies 10–20 years 

after the first symptoms appear as there is currently no treatment available to check or delay disease 

progression. The neuropathology of HD involves the selectively loss of function and death of specific 

neuron within the central nervous system. The most affected cells are neurons of the striatum that 

releases gamma-amino butyric acid (GABA), the subcortical brain structure that controls different 

cognitive process and, to a lesser extent, neurons within the cerebral cortex (Li et al., 2003). The first 

degenerating subpopulation of GABAergic neurons express encephalin and are enriched in the 

dopamine receptor D2 (Vonsattel et al., 1985; Graveland et al., 1985). As the disease grows older, 

there is general neuronal loss in different brain region like the globus pallidus, the substantia nigra, 

the subthalamic nuclei, the cerebellum and the thalamus. Glial proliferation is also observed Together 

with the neuronal loss (Li et al., 2003; Sapp et al., 1995), but the region is still not clear. 
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3. LITERATURE REVIEW 

 

3.1 Huntington’s Disease 

Huntington’s disease (HD) is hereditary neurological disorder characterized by behavioral impairment, 

abnormal involuntary movement, psychiatric disorders and intellectual deterioration (Martin et al., 

1986). The post-mortem examination of tissues from HD patients revealed that striatum is 

predominantly affected, although neuropathological changes have also been detected in other areas of 

the brain such as the cerebellar cortex, thalamus and cerebellum (Reiner et al., 1988; Rosas et al., 

2003). HD is caused by abnormal CAG expansion in the huntingtin gene (htt) located on chromosome 

4. In healthy humans, typically 6 to 35 CAG repeats are found at the exon-1 of htt gene, whereas in 

HD patients CAG repeats are described more than 40 trinucleotides. In most of the cases, an 

intermediate CAG repeats (36–40) causes a slower progression of the pathology as a result of the 

inadequate penetrance of the mutant allele. Essentially, the onset and severity of the pathology directly 

depends upon the number of CAG repeats in htt gene, although the real function of the trinucleotide 

stretch is not clear yet (Andrew et al., 1993; Rubinsztein et al., 1993). Recent findings reported that 

size of the CAG repeats stretch might be important in the translation of the mRNA transcript of htt, 

due to result of association with a ribosome-containing complex7. The htt gene encodes a protein of an 

approximately 350 kDa, containing several subdomains. The polyglutamine (polyQ) stretch present at 

the N-terminus of htt gene, encoded by the CAG repeats works as potential membrane association 

signal (Atwal et al., 2007). In mammals, polyproline sequence followed the polyQ containing domain 

that stabilizes protein functional conformation. The N-terminal section of htt gene is followed by three 

clusters of HEAT repeats; HEAT repeats are very vital for the binding with interacting proteins. Along 

with these important motifs, htt gene contains many different sites for posttranslational modifications. 

Gene encoding htt protein has been identified in the nucleus, mitochondria, Golgi and endoplasmic 

reticulum of the cell and can be found in the neuronal body, dendrites and synapses (DiFiglia et al., 

1995; Trottier et al., 1995). There is evidence that htt gene interacts with a range of proteins at 

molecular level, such as cytoskeleton proteins and transcriptional factors (Zuccato et al., 2010). htt 

gene is ubiquitously expressed at the time of embryonic growth and at very high levels in testis and in 

mature postmitotic neurons in adult human brain (Strong et al., 1993). 
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3.2 Epidemiology 

Huntington’s disease is mostly seen in European populations at prevalence rate of 4–8 cases per 

100,000, and it is commonly found in India and other parts of Central Asia (Harper, PS. 1992). This 

prevalence rate has confirmed by current studies in other European nations (Morrisone et al., 1995; 

Peterlin et al., 2009). HD is rarely found in some countries like Finland and Japan, but adequate data is 

not available for Eastern Asia and African countries. A recent study revealed, Mexico has slightly 

higher percentage of juvenile cases and higher prevalence rate of other form of HD than expected 

(Alonso et al., 2009). Scotland and the Lake Maracaibo region of Venezuela have large populations of 

HD patients (Simpson et al., 1989; Penney et al., 1990). 

 

3.3 Proteolytic Cleavage of htt 

htt is liable to proteolysis by numerous proteases (Figure 1). Initially, htt was recognized as a 

substrate of caspase and it was the first protein known linked to neurodegenerative disorder which 

cleaved during apoptosis (Goldberg et al., 1996). Caspases are cysteine-aspartic conserved proteases, 

associated mainly with apoptotic cell death and vital for the processing of enormous substrates 

(Orrenius et al., 2003). Fragments generated and processed by caspases are noticeable in brains of HD 

individual and HD mice before neuronal loss in the region of striatum (Wellington et al., 2000). The 

efficiency of cleavage depends upon the length of polyQ stretch (Goldberg et al., 1996). Use of site-

directed mutagenesis or any other pharmacological approaches to block htt cleavage minimize toxicity 

in cultured cells (Wellington et al., 2000). Mice expressing a caspase-6 and non-cleavable mutant htt 

have lesser neurological imperfections as compared with mice having the cleavable mutant htt 

(Graham et al., 2006). This finding reveals that proteolytic cleavage of the mutant protein through 

caspases might be a key cause in the toxic events during HD, and that htt works as prosurvival 

element. htt is also works as substrate for calcium-activated proteases, calpains. Calpains, a cysteine 

protease normally activated by the elevated levels of intracellular Ca
2+

, either through the 

depolarization of plasma membrane or in response to Ca
2+

 discharge from the intracellular storage 

(Goll et al., 2003). In mice, through overexpression of mutant htt, glutamate release increased from 

afferent neurons which in turn enhance NMDA-R activity. Enhanced NMDA-R activity increases 

intracellular Ca
2+

 level and hence calpains get activated in response. Activated calpains cleaves the htt 

protein in a number of proteolytic products (Gafni et al., 2002) which in turn promote NMDA-R-

mediated excitotoxicity (Cowan et al., 2008). Furthermore, calpains can also modulate htt homeostasis 

through the autophagy. Recent chemical compound and RNAi screenings study in cultured cells reveal 

that inactivation of calpains possibly activate the autophagy of intracellular aggregates (Miller et al., 



Page | 5 

2010). It is also shown by RNAi screening study that small fragments of htt can be produced by the 

proteolytic activity of some matrix metalloproteinases (MMPs) (Williams et al., 2008; Miller et al., 

2010). .Decreased MMP activity, particularly MMP-10 and MMP-14, correlates with lesser number of 

proteolytic fragments and, hence decrease in neuronal degeneration caused by mutant htt in cellular 

model systems and Drosophila (Miller et al., 2010). 

 

 

Figure 1: Representation of intracellular events in neurons expressing mutant htt. Processing 
of mutant htt by caspases, calpains and MMPs and formation of intracellular aggregates 
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3.4 Diagnosis 

Diagnosis of HD is done on the basis of presence of typical motor findings as measured by the Unified 

HD Rating Scale in the setting of a family history of the disease. Some other manifestations of HD like 

behavioral and cognitive symptoms are also helpful at the time of presentation or before diagnosis in 

diagnosis of HD. A DNA test showing abnormal CAG expansion in the htt gene is very common for 

confirmation of HD in symptomatic individuals. A DNA test can be done in symptomatic individuals 

under the guidance of veteran clinicians with proper genetic counselling and only at the patient 

request. Sometimes presymptomatic testing is also performed on the request of patient. Reasons 

behind presymptomatic testing are financial arrangement, family planning, insurance decisions, and 

awareness purposes. TRACK-HD, PREDICT-HD (Neurobiological Predictors of Huntington’s 

Disease Trial) and PHAROS (Prospective Huntington at Risk Observational Study) are some of 

ongoing studies to inspect and detect the HD in people who are gene positive but symptoms are not 

visible on motor criteria (Biglan et al., 2009; Tabrizi et al., 2009). To identify the biomarkers and 

understand the sign of onset of disease, there is also a study going on by enrolling and examining 

individual with HD and their affected and unaffected family members [Cooperative Huntington’s 

Observational Research Trial (COHORT)] (Solomon et al., 2007). The methodology behind the 

COHORT study is clinical measures and biological samples rather than neuroimaging and anatomical 

measures. Subtle motor defects have been related with a smaller striatal volume and higher chance of 

disease diagnosis (Biglan et al., 2009). Lesser scores on the Hopkins Verbal Learning Test-Revised 

were linked with very close proximity to diagnosis and lesser striatal volumes (Solomon et al., 2007). 

Individual with an expanded repeat of CAG and preclinical diagnosis of HD also had inaccurate 

recognition of negative sentiments (Johnson et al., 2007). In addition, self-timed finger tapping, motor 

exam score, odor identifications, striatal volume, speeded finger tapping and word-list learning in 

individual in the PREDICT-HD study were all importantly linked with the predicted time to diagnosis 

(Paulsen et al., 2008). Individual with Expansion reported more psychiatric signs (depression, anxiety) 

than expansion-negative person (Duff et al., 2007). The numerous motor and non-motor measures on 

the neurological analysis used to diagnose and TRACK-HD are incorporated in the Unified 

Huntington’s Disease Rating Scale. The Unified rating scale is subdivided into six parts: motor, 

intellectual, behavioral, and three functional scales (functional capability, functional checklist, and the 

independence scale). Based on the publication of the American College of Genetics, Individual having 

forty or more repeats have 100% penetrance (CMG/ASHG statement Laboratory guidelines for 

Huntington disease genetic testing, 1998). In other words, if individuals have 40 or more number of 

the gene, they will unpreventably express the disease. Individual with a CAG repeat stretch in the 
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range of 36–39 would have lesser penetrance with increased probability of expression with longer 

lifespan of the patient. Although there are some case reports of patients who acquired HD in this 

range, patients with lesser than 36 repeats of CAG will commonly not manifest HD (Andrich et al., 

2008; Kenney et al., 2007). Individuals with size of an allele repeat between 27 to 35 have shown 

instability in meiosis, predominantly in sperm, showing that the upcoming generation is at greater risk 

of inheriting an increased number of repeats, increasing the risk of acquiring Huntington’s disease. 

The span of CAG repeats relates usually with the age of onset of HD, but not essentially with the 

severity or lifespan (Snell et al., 1993). The duration of the disease is commonly 15–20 years, with 

dystonia, dementia, mutism, and bradykinesia mainly in last-stages. Individual with more dystonia and 

swallowing problems may have enhanced complications and, therefore, lesser lifespan comparatively. 

Poor positioning and injury caused by higher amplitude movements could become a safety issue for 

Chorea. It has been observed that regularly movement may result in head trauma, infections, skin 

injuries, and even fractures. Problems of immobility, such as infection, pneumonia, skin breakdown, or 

cardiac disease may result in death. Although, suicide is one of the causes of death in 8-9% of patients 

and in that percentage of suicide attempt is 25% (Di et al., 1993). Behavioral impairments are severely 

disabling sign of HD which causes distress to the patient, relatives, family, and caretakers. Stronghold 

of treatments is cognitive interventions and environmental approaches, but addressing disruptive 

behaviors can be enhanced by pharmacological agents. Some of the disease like impulsive, anxiety, 

aggressive, depression and obsessive compulsive behaviors are treated commonly by 

pharmacologically which require behavioral intervention, but it should be taken care to avoid apathy 

and over sedation which are common in HD patients. However, it is not clear from the study that for 

some aspects of the disease pharmacotherapy is less effective than cognitive approaches to treat 

behavior (Pollard, J. 2008). 

 

3.5 Pharmacological treatment options 

There are various agents and surgical techniques have been evaluated in HD for their efficacy on 

quashing chorea, including dopamine agonists, dopamine-depleting agents, dopamine antagonists, 

acetylcholinesterase inhibitors, benzodiazepines, glutamate antagonists, antiseizure medications, 

lithium, cannabinoids, deep brain stimulation, and fetal cell replacement (Adam et al., 2008; Phillips et 

al., 2008; Roze et al., 2008; Imarisio et al., 2008). Pharmacological interventions usually address the 

disorders related to hyperkinetic movement associated with HD, such as chorea, myoclonus dystonia, 

tics and ballism. While choosing the medications, providers need to consider the impact of the agent 

on psychiatric issues linked with HD, such as irritability, anxiety, cognitive decline. Depression, mania 
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and apathy associated with HD. Additionally adjunctive therapies, behavioral planning, alternative and 

complementary therapies and cognitive interventions also play vital role in addressing the symptoms 

of HD and should be considered while choosing medications. There are so many reviews are available 

which has explained the symptomatic treatment of HD (Grimbergen et al., 2003; Bonelli et al., 2004; 

Bonelli et al., 2006; Handley et al., 2006; Nakamura et al., 2007; Adam et al., 2008; Phillips et al., 

2008; Roze et al., 2008; Imarisio et al., 2008; Jankovic, J. 2009; Mestre et al., 2009; Frank et al., 

2010). Hence, sufficient evidences are not available for long-term symptomatic treatment in HD and 

double-blind and long-term studies evaluating several treatment strategies in HD are required (Bonelli 

et al., 2004). On the basis of available evidence, the authors of the Cochrane review revealed that only 

tetrabenazine (TBZ) exhibited efficacy to ameliorate chorea, but “no declaration can be made about 

the best medical option for the treatment of motor and non-motor symptoms in HD”. 

 

3.5.1 Tetrabenazine 

TBZ is the only drug that is approved by US Food and Drug Administration (FDA) for the treatment 

of chorea associated with HD. TBZ is marketed in many countries like United Kingdom, Denmark, 

France, Ireland, Germany etc. TBZ depletes dopamine selectively by inhibiting the central VMAT2 

(vesicular monoamine transporter type 2) reversibly rather than norepinephrine (Bagchi et al., 1983; 

Pettibone et al., 1984). TBZ has maximum binding density in the nucleus accumbens, caudate nucleus 

and putamen, area that is known to be predominantly affected by HD (Mehvar et al., 1987; Thibaut et 

al., 1995). TBZ reversibly bind to VMAT2 and leads to its last hour monoamine depletion hence 

VMT2 not modified by long-term treatment (Scherman et al., 1984; Kenney et al., 2007). These 

important features of the TBZ separate it from the other dopamine-depleting mediator like reserpine. 

Reserpine binds irreversibly to both VMAT1 and VMAT2, leading to the time of action considerably 

extended. Furthermore, VMAT2 is localized specially in the central nervous system while VMAT1 is 

located in to the peripheral nervous system, causing some of adverse effects in the peripheral like 

orthostatic hypotension, diarrhea etc. Additionally, the two other active metabolites of TBZ, α- and β-

dihydrotetrabenazine, have longer half-lives comparatively and are more effectively bound to proteins 

than the TBZ (Roberts et al., 1981; Roberts et al., 1986; Mehvar et al., 1987). Antichoreic properties 

and the efficacy of TBZ has convincingly validated in a randomized placebo-controlled, double-blind 

trial performed by the Huntington Study Group. There are numerous evidences to suggest continuous 

long-term effectiveness. efficacy and tolerability of TBZ in individual with HD (Jankovic et al., 1997; 

Kenney et al., 2007; Fasano et al., 2008; Frank, S. 2009). Moreover, drowsiness, agitation, insomnia, 

akathisia, depressed mood and hyperkinesia are some of adverse events of TBZ that are significantly 
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more frequent. However, by the completion of the maintenance phase, when subjects were more likely 

on optimal dosage, significantly, there were no differences found between TBZ and placebo. Hence, it 

is very important to monitor patients taking TBZ for symptom of depression and suicidal ideation. 

Although, withdrawal of TBZ causes recurrence of chorea but not worse than before starting the drug 

(Frank et al., 2007). 

 

3.6. Other antichorea medications 

Some of the other medications that are usually considered while treating chorea include dopamine 

antagonists, glutamate antagonists and benzodiazepines. However, the most commonly considered 

agents are neuroleptics in the treatment and management of psychosis and chorea in individual with 

HD. Some of the antipsychotic agents are discussed here, that could be possible drug to treat chorea 

related to HD  

 

3.6.1 Curcumin 

Curcumin, a polyphenol compound, is a plant (Curcumina longa) product and natural inducing agent 

of HSPs. It has been found that curcumin plays numerous positive effects like in trauma, in vivo 

models of aging, animal models of certain types of neurodegenerative diseases and ischemia, which 

make it to highlight among other polyphenol compounds (Al-Omar et al., 2006; Begum et al., 2008; 

Sharma et al., 2009). It is naturally occurring amyloid binding compound and has been approved by 

FDA. This biomolecule have the properties of pleiotropic anti-amyloid that propose the possibility for 

curing different neurodegenerative diseases (Grogan et al., 2013). Oral administration of native 

curcumin (which is unsulfated and unglucuronidated) easily crosses the blood brain barrier and act as 

an inhibitor of amyloid aggregation, antioxidant and anti-inflammatory drug (Garcia-Alloza et al., 

2007). Plaque burden is reduced when curcumin and related curcuminoids is administered in AD 

model. It also protects against A𝛽-toxicity and hence improves cognitive function (Garcia et al., 2007; 

Hickey et al., 2012). Furthermore, treatment of CAG140 KI mice with curcumin diminished 

neuropathology and transcriptional shortages, including drop in levels of mutant htt aggregates 

(Hickey et al., 2012). 

 

 

 

 

 



Page | 10 

3.6.2 Berberine 

Berberine (BBR) is the plant-derived protoberberine alkaloid. It is obtained from the bark and roots of 

many plants like Berberissp, Coptis chinenses and has been used for over sixty years in China to cure 

bacterial diarrhea (Takase et al., 1993; Kong et al., 2004). However, Current discoveries have shown a 

plenty of additional uses for this natural compound, which includes its ability to combat diabetes 

cardiac disease, hypercholesterolemia, inflammation, and the side-effects of radiotherapy (Iizuka et 

al., 2000; Hayashi et al., 2007; Zhang et al., 2010; Kwon et al., 2010; Jiang et al., 2011; Dong et al., 

2012; Kim et al., 2014; Shin et al., 2014). High tolerance for orally taken doses makes it safer for 

long-term uses. BBR is freely found in the bloodstream for more than two hours after oral intake and it 

is able to freely cross the blood-brain-barrier (Wang et al., 2005; Jiang et al., 2011; Lan et al., 2014), 

which make it an ideal drug candidate to test its protective effects on chronic neurological disorders 

like AD, PD and HD. The most promising and relevant discovery to BBR’s ability to reduces the 

symptoms and pathology associated with Parkinson’s disease (PD) and Alzheimer’s Disease (AD) in 

animal models shown the promising hope that it could do the same against HD, as both diseases are 

instigated by the accretion of misfolded proteins (Wang et al., 2005; Zhu et al., 2006; Asai et al., 

2007; Panahi et al., 2013). Here, we examined the effects of BBR on mutant htt accumulation and 

toxicity through Bioinformatics approach. 

 

3.6.3 Aripiprazole 

Aripiprazole is a peculiar antipsychotic drug with partial agonist properties at dopamine (DA) D2/D3 

receptors and lesser side-effect property. Due to its efficacy and low side-effect profile, aripiprazole 

has been recognized as one of the best option for treatment of schizophrenia (DeLeon et al., 2004; 

Lieberman et al., 2004) and bipolar disorder (Keck et al., 2003). In Comparison of other antipsychotic 

drugs, aripiprazole is normally safe and well tolerated by patients, rarely inducing extrapyramidal and 

metabolic adverse effects when used in schizophrenic individual (Kane et al., 2002; Pigott et al., 2003) 

and produces lesser side effects, including less extrapyramidal symptoms, reduced incidence of 

sedation and weight gain, and a negligible risk for diabetes and hyperlipidemia (DeLeon et al., 

2004).Owing to its atypical neuropharmacological profile, aripiprazole might be an interesting novel 

symptomatic option that could be used in combination with other drugs such as tetrabenazine which 

acts on chorea to ameliorate the symptoms of HD. 
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3.6.4 Clozapine 

Clozapine, a tricyclic dibenzodiazepine is commonly used antipsychotic drug in the treatment of 

schizophrenia. It is predominantly useful for the individual intolerant to the side effects of traditionally 

used antipsychotics (Kane et al., 1988). Although clozapine may cause agranulocytosis in some 

patients, the incidence is almost 0.37%. Additionally, clozapine does not cause severe extrapyramidal 

toxicity or permanent neurologic side effects (Lieberman et al., 1998). Because its usefulness 

outweighs its side effects, clozapine has been recognized globally as an antipsychotic drug and 

commonly used to treat around 31.7% of Chinese schizophrenia patients (Si et al., 2010). 

Norclozapine, a pharmacologically active metabolite produced when clozapine metabolized by human 

cytochrome P450 (CYP) isozyme 1A2 (Bertilsson et al., 1994). Many scientists have shown that the 

degree to which clozapine is changed into norclozapine predicts the medical consequence with respect 

to multiple events of cognition, positive and negative symptoms, as well as quality of life (Flanagan et 

al., 2003; Mauri et al., 2003). Thus, clozapine and its pharmacological products, norclozapine could be 

promising therapeutic approach towards HD. 

 

3.6.5 Olanzapine 

Olanzapine is a U.S. FDA approved drug, used to cure schizophrenia and bipolar disorder. It is 

structurally very similar to clozapine and quetiapine. 

 

3.6.6 Pridopidine 

Pridopidine stabilize DA and belongs to dopamine’s family. On the basis of prevailing dopaminergic 

tone, pridopidine regulates and modulates DA transmission and also control the regulation of both 

hypoactive and hyper functioning (Ponten et al., 2010). Pridopidine has been successfully tested in 

individual with PD (Tedroff et al., 2004), schizophrenia (Carlsson et al., 2006) and is presently used in 

development of drug for the treatment of HD patient. Recent clinical studies show that pridopidine has 

a promising therapeutic strength for patients with HD (Yebenes et al., 2001; Squitieri et al., 2013). 

 

3.6.7 Quetiapine 

Quetiapine is an unusual FDA approved neuroleptic with a distinct pharmacological profile from 

typical neuroleptics that acts via blocking dopamine D2 receptors. In USA, it is currently used for the 

treatment of patients suffering from schizophrenia which is a major disorder characterized by bipolar I 

disorder and depression. Furthermore, it is frequently prescribed off-label for obsessive-compulsive 

disorder, anxiety, depression and sleep disturbance (Bowden et al., 2005; McIntyre et al., 2007; 



Page | 12 

McIntyre et al., 2007).Thus, in addition to D2 antagonistic properties, quetiapine seems to have 

different modes of action. quetiapine has an additional distinctive profile with a strong affinity for 

histamine (H1) and α1-adrenergic receptors among the atypical neuroleptics that strongly bound to 

serotonin (5-HT2A) but a relatively weakly bound to dopamine (D2) receptors (Mohr et al., 2002; 

Nemeroff et al., 2002). On the basis of its distinctive features, we hypothesized that quetiapine would 

have unique pharmacological actions and functions through different pathways as compare to the 

tradional neuroleptics and hence it could be a novel drug for treatment of HD. 

 

3.6.8 Rilmenidine 

Rilmenidine is an antihypertensive agent which acts on α2-adrenoceptors and imidazoline I1 receptors 

in the brain and in the periphery (Harron et al., 1995). It acts primarily within the rostral part of the 

ventrolateral medulla to reduce sympathic outflow to peripheral organs (Montastruc et al., 1989). It is 

30 times more selective for imidazoline I1 receptors than for α2-adrenoceptors in comparison to the 

prototypical compound clonidine and thus causes fewer adverse central side effects. This drug is like 

sedation or antinociception (Chan et al., 1996; Kamisaki et al., 1990). It is known that rilmenidine 

goes to the brain and performs its antihypertensive function (Safar et al., 1989). The imidazoline 

I1 receptor is expressed in HD affected region in both the rodent and human, including the striatum, 

hippocampus cerebral cortex, hypothalamus and ventrolateral medulla (Vos et al., 1994). As 

rilmenidine is safer comparatively, it could be considered for the treatment of HD individual. 

 

3.6.9 Tiapride 

Tiapride is an atypical antipsychotic agent. It is a selectively block dopamine D2-receptor with little 

side effects like catalepsy and sedation. It shows better activity at receptors previously sensitized to 

dopamine and those located extra-striatally. Tiapride exhibits antidyskinetic activity due to its 

antidopaminergic actions, and it also has anxiolytic activity but mechanisms involved is not 

understood. 
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4. MATERIALS AND METHODS 

4.1 Retrieval, Visualization and quality assessment of Huntingtin (htt) protein 

To visualize the 3D structure of the Huntington disease related protein Huntingtin (htt) with PDB ID: 

3IOW was identified using Protein Data Bank (PDB). Once the PDB ID of protein was identified, it 

was visualized using pymol. RAMPAGE (http://mordred.bioc.cam.ac.uk/~rapper/rampage.php)  was 

used for visualizing the Ramachandran Plot of protein for the structural evaluation and stereo chemical 

analysis of proteins. 

 

4.2 Ligand Optimization  

Sdf files of ligands along with their physical and chemical properties were retrieved from PubChem 

Compound Database (http://www.ncbi.nlm.nih.gov/pccompound).These sdf files converted into pdb 

format with the help OpenBabel tool. 

 

4.3 Lipinski Filter Analysis of Screened Drugs (Biomolecules) 

Another online tool Sanjeevini (http://www.scfbio-iitd.res.in/sanjeevini/sanjeevini.jsp) is used to get 

the information of drugs with the help of Lipinski Rule.  

Lipinski rule (or Lipinski rule of five) helps to differentiate drug and nondrug like molecules. It is used 

to identify the possibility of success or failure due to drug likeness for molecules fulfilling with two or 

more of the following rules 

a) Molecular mass should be<500 Dalton.  

b) High lipophilicity (expressed as logP less than 5).  

c) Less than 5 hydrogen bond donors.  

d) Less than 10 hydrogen bond acceptors.  

e) Molar refractivity should be between 40 -130.  

 

4.4 Active Site Prediction 

Castp server (http://www.sts.bioe.uic.edu/castp/) was used to predict the active sites of protein. Castp 

could also be used to measure area, circumference of mouth openings of each binding site in solvent 

and molecular accessible surface. PDB file of protein was uploaded in the server and it showed the 

http://mordred.bioc.cam.ac.uk/~rapper/rampage.php
http://www.ncbi.nlm.nih.gov/pccompound
http://www.scfbio-iitd.res.in/sanjeevini/sanjeevini.jsp
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ligand binding sites present in protein and the most conserved site was selected and all the amino acid 

residues involved in binding with ligands were retrieved. 

 

4.5 Preparation of Protein and ligand molecules 

Preparation of protein involves the addition of polar hydrogen atoms, neutralization of charge and 

removal of any miscellaneous structures from the protein molecule by Autodock 4.2.1 whereas ligand 

preparation involves the neutralization of charge.  

 

4.6 Docking Study 

Prepared and optimized structures of ligands and protein were ultimately used for molecular docking 

using Autodock 4.2.1 for predicting the possible protein–ligand interactions and the results that 

include the understanding of the association that involves H-bonding and hydrophobic interactions 

were analyzed using LIGPLOT1.4.5, a program to generate schematic diagrams of protein-ligand 

interactions. 
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5. RESULTS AND DISCUSSION  

5.1 Visualization and quality assessment of Huntingtin (htt) protein 

3D structure of htt protein (PDB ID-3IOW) was obtained through pymol [Figure-2 (a)]. There were 

no steric hindrances found in the structure generated. Further, Ramachandran Plot was obtained 

through RAMPAGE (http://mordred.bioc.cam.ac.uk/~rapper/rampage.php) to validate the reliability of 

predicted 3D structure of htt protein [Figure-2 (b)]. It examined the stereo chemical quality of a 

protein structure by analyzing geometry of residues as well as overall structure geometry [Figure-2 

(b)]. RAMPAGE showed 94.7% of residues in the most favorable regions, 4.1% residues in 

additionally allowed and 1.2% outlier regions. Furthermore, Errat server calculated overall 89.114% 

accuracy of htt protein. 

 

5.2 Active site prediction 

CastP server (http://www.sts.bioe.uic.edu/castp/) was used to identify the active site of htt protein 

where the ligand binds effectively. This server calculates the possible active sites from the 3D atomic 

coordinates of the protein. Active site identification is very useful for determination of potential sites 

for binding of ligand to protein in molecular docking. Residues of active site responsible for binding 

ligand, site volume and protein volume for 155 active sites for htt were predicted. Among the 155 

active sites, 155
th

 site was highly conserved [Figure-2 (c)]. Residues found in 155
th

 active site which 

interact to ligand at the time of molecular docking are ILE
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, ASP
14
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, GLY
16

, PRO
40

, 

LYS
42

, LEU
43

, GLU
44
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, ALA
63

, HIS
64

, ASP
65

, 
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, ALA
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http://mordred.bioc.cam.ac.uk/~rapper/rampage.php
http://www.sts.bioe.uic.edu/castp/
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Figure 2: 3D structures, Ramachandran Plot and Active site of Huntingtin (htt). Generated 
model had no steric clashes and its most conserved active site is located in the hydrophobic 
region of Huntingtin (htt) protein.  

 

 

  

(a) 3D structure of Htt 

(b) Ramchandran plot of Htt 

(c) Active Site of Htt 
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5.3 Lipinski filter analysis of screened drugs 

All the biomolecules screened on the basis of Lipinski filter analysis. Values of different parameters 

of Lipinski filter are given in table (Table-1). Analysis for drug likeness is done by drawing the 

graph (Graph-1). Lipinski filter analysis revealed that the all these nine experimental biomolecules 

act as drug on the basis of Lipinski rule of five. When it was analyzed that all screened 

biomolecules had drug like property, these were then used for docking purposes to understand the 

interaction of proteins and the screened drug molecule. 

 

Biomolecules 
Molecular 

Weight 

Hydrogen 

Bond 

Donor 

Hydrogen 

Bond 

Acceptor 

LogP 
Molar 

Refractivity 

Tetrabenazine 

(Control) 
318 1 3 1.588 88.323 

Curcumin 368 2 6 3.369 102.01 

Berberine 337 0 4 2.732 93.033 

Aripiprazole 408 2 4 2.519 120.88 

Clozapine 310 3 2 1.34 93.74 

Olanzapine 316 3 1 -0.277 90.83 

Pridopidine 282 1 2 2.34 77.42 

Quetiapine 384 2 4 1.43 108.24 

Rilmenidine 184 4 1 -1.38 47.69 

Tiapride 329 2 5 0.834 85.39 

Table 1:-Calculation of different parameter on the basis of Lipinski Rule 

 

 

Graph 1: Comparison between different drugs on the basis of Lipinski Rule  
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5.4 Docking calculation of Biomolecules with huntingtin (htt) 

Biomolecule 

Est. Free 

Energy of 

Binding 

Est. 

Inhibition 

Constant 

Est. 

Intermolecular 

Energy 

vdW+Hbond+desolv 

Energy 

Electrostatic 

Energy 

Est. Internal 

Energy 

Torsional 

Free 

Energy 

Tetrabenazine 

(Control) 

-5.17 

(kcal/mol) 

161.18 

µM 

-7.26 

(kcal/mol) 

-6.45 

(kcal/mol) 

-0.82 

(kcal/mol) 

-0.54 

(kcal/mol) 

+2.09 

(kcal/mol) 

Curcumin 
-6.30 

(kcal/mol) 

24.30 

µM 

-8.38 

(kcal/mol) 

-8.19 

(kcal/mol) 

-0.20 

(kcal/mol) 

-2.20 

(kcal/mol) 

+2.09 

(kcal/mol) 

Berberine 
-5.29 

(kcal/mol) 

132.32 

µM 

-8.22 

(kcal/mol) 

-7.75  

(kcal/mol) 

-0.47 

(kcal/mol) 

-0.91 

(kcal/mol) 

+2.09 

(kcal/mol) 

Aripiprazole 
-6.14 

(kcal/mol) 

31.81 

µM 

-8.22 

(kcal/mol) 

-7.75 

(kcal/mol) 

-0.47 

(kcal/mol) 

-0.91 

(kcal/mol) 

+2.09 

(kcal/mol) 

Clozapine 
-5.29 

(kcal/mol) 

133.41 

µM 

-7.37 

(kcal/mol) 

-6.77 

(kcal/mol) 

-0.60 

(kcal/mol) 

-0.42 

(kcal/mol) 

+2.09 

(kcal/mol) 

Olanzapine 
-5.09 

(kcal/mol) 

184.52 

µM 

-7.18 

(kcal/mol) 

-6.20 

(kcal/mol) 

-0.98 

(kcal/mol) 

-0.29 

(kcal/mol) 

+2.09 

(kcal/mol) 

Pridopidine 
-6.31 

(kcal/mol) 

23.87 

µM 

-8.39 

(kcal/mol) 

-7.62 

(kcal/mol) 

-0.78 

(kcal/mol) 

-0.41 

(kcal/mol) 

+2.09 

(kcal/mol) 

Quetiapine 
-6.03 

(kcal/mol) 

37.97 

µM 

-8.12 

(kcal/mol) 

-6.95 

(kcal/mol) 

-1.17 

(kcal/mol) 

-1.60 

(kcal/mol) 

+2.09 

(kcal/mol) 

Rilmenidine 
-3.57 

(kcal/mol) 

2.40 

µM 

-5.66 

(kcal/mol) 

-5.63 

(kcal/mol) 

-0.03 

(kcal/mol) 

-0.47 

(kcal/mol) 

+2.09 

(kcal/mol) 

Tiapride 
-5.69 

(kcal/mol) 

67.83 

µM 

-7.78 

(kcal/mol) 

-6.85 

(kcal/mol) 

-0.92 

(kcal/mol) 

-1.36 

(kcal/mol) 

+2.09 

(kcal/mol) 

 

Table 2: Docking calculation of Biomolecule with Huntingtin (htt) gene 

 

5.4.1 Huntingtin (htt) interaction with Tetrabenazine 

Docking study of tetrabenazine with huntingtin (htt) shows that Free energy of binding of 

tetrabenazine with huntingtin gene is -5.17 kcal/mol., Est. Inhibition Constant, Ki is 161.18 μM and 

Intermolecular Energy is -7.26 kcal/mol. VdW+ Hbond + desolv Energy and Electrostatic Energy are -

6.45 kcal/mol. and -0.82 kcal/mol. respectively. Total Internal Energy and Torsional Free Energy are -

.54 kcal/mol. and 2.09 kcal/mol. respectively (Table: 2). Interaction pattern of docking study between 

htt and tetrabenazine has been shown in [Figure-3-(a)]. 

 

5.4.2 Huntingtin (htt) interaction with Curcumin 

Docking study of tetrabenazine with huntingtin (htt) shows that Free energy of binding of 

tetrabenazine with huntingtin gene is -6.30 kcal/mol., Est. Inhibition Constant, Ki is 24.30 μM and 

Intermolecular Energy is -8.38 kcal/mol. VdW+ Hbond + desolv Energy and Electrostatic Energy are -

8.19 kcal/mol. and -0.20 kcal/mol. respectively. Total Internal Energy and Torsional Free Energy are -
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2.20 kcal/mol. and 2.09 kcal/mol. respectively (Table: 2). Interaction pattern of docking study 

between htt and tetrabenazine has been shown in [Figure-3-(b)]. 

 

5.4.3 Huntingtin (htt) interaction with Berberine 

Docking study of tetrabenazine with huntingtin (htt) shows that Free energy of binding of 

tetrabenazine with huntingtin gene is -5.29 kcal/mol., Est. Inhibition Constant, Ki is 132.32 μM and 

Intermolecular Energy is -8.22 kcal/mol. VdW+ Hbond + desolv Energy and Electrostatic Energy are -

7.75 kcal/mol. and -0.47 kcal/mol. respectively. Total Internal Energy and Torsional Free Energy are -

.91 kcal/mol. and 2.09 kcal/mol. respectively (Table: 2). Interaction pattern of docking study between 

htt and tetrabenazine has been shown in [Figure-3-(c)]. 

 

5.4.4 Huntingtin (htt) interaction with Aripiprazole 

Docking study of tetrabenazine with huntingtin (htt) shows that Free energy of binding of 

tetrabenazine with huntingtin gene is -6.14 kcal/mol., Est. Inhibition Constant, Ki is 31.81 μM and 

Intermolecular Energy is -8.22 kcal/mol. VdW+ Hbond + desolv Energy and Electrostatic Energy are -

7.75 kcal/mol. and -0.47 kcal/mol. respectively. Total Internal Energy and Torsional Free Energy are -

.91 kcal/mol. and 2.09 kcal/mol. respectively (Table: 2). Interaction pattern of docking study between 

htt and tetrabenazine has been shown in [Figure-3-(d)]. 

 

5.4.5 Huntingtin (htt) interaction with Clozapine 

Docking study of tetrabenazine with huntingtin (htt) shows that Free energy of binding of 

tetrabenazine with huntingtin gene is -5.29 kcal/mol., Est. Inhibition Constant, Ki is 133.41 μM and 

Intermolecular Energy is -7.37 kcal/mol. VdW+ Hbond + desolv Energy and Electrostatic Energy are -

6.77 kcal/mol. and -0.60 kcal/mol. respectively. Total Internal Energy and Torsional Free Energy are -

.42 kcal/mol. and 2.09 kcal/mol. respectively (Table: 2). Interaction pattern of docking study between 

htt and tetrabenazine has been shown in [Figure-3-(e)]. 

 

5.4.6 Huntingtin (htt) interaction with Olanzapine 

Docking study of tetrabenazine with huntingtin (htt) shows that Free energy of binding of 

tetrabenazine with huntingtin gene is -5.09 kcal/mol., Est. Inhibition Constant, Ki is 184.52 μM and 

Intermolecular Energy is -7.18 kcal/mol. VdW+ Hbond + desolv Energy and Electrostatic Energy are -

6.20 kcal/mol. and -0.98 kcal/mol. respectively. Total Internal Energy and Torsional Free Energy are -



Page | 20 

.29 kcal/mol. and 2.09 kcal/mol. respectively (Table: 2). Interaction pattern of docking study between 

htt and tetrabenazine has been shown in [Figure-3-(f)]. 

 

5.4.7 Huntingtin (htt) interaction with Pridopidine 

Docking study of tetrabenazine with huntingtin (htt) shows that Free energy of binding of 

tetrabenazine with huntingtin gene is -6.31 kcal/mol., Est. Inhibition Constant, Ki is 23.87 μM and 

Intermolecular Energy is -8.39 kcal/mol. VdW+ Hbond + desolv Energy and Electrostatic Energy are -

7.62 kcal/mol. and -0.78 kcal/mol. respectively. Total Internal Energy and Torsional Free Energy are -

.41 kcal/mol. and 2.09 kcal/mol. respectively (Table: 2). Interaction pattern of docking study between 

htt and tetrabenazine has been shown in [Figure-3-(g)]. 

 

5.4.8 Huntingtin (htt) interaction with Quetiapine 

Docking study of tetrabenazine with huntingtin (htt) shows that Free energy of binding of 

tetrabenazine with huntingtin gene is -6.03 kcal/mol., Est. Inhibition Constant, Ki is 37.97 μM and 

Intermolecular Energy is -8.12 kcal/mol. VdW+ Hbond + desolv Energy and Electrostatic Energy are -

6.95 kcal/mol. and -1.17 kcal/mol. respectively. Total Internal Energy and Torsional Free Energy are -

1.60 kcal/mol. and 2.09 kcal/mol. respectively (Table: 2). Interaction pattern of docking study 

between htt and tetrabenazine has been shown in [Figure-3-(h)]. 

 

5.4.9 Huntingtin (htt) interaction with Rilmenidine 

Docking study of tetrabenazine with huntingtin (htt) shows that Free energy of binding of 

tetrabenazine with huntingtin gene is -3.57 kcal/mol., Est. Inhibition Constant, Ki is 2.40 μM and 

Intermolecular Energy is -5.66 kcal/mol. VdW+ Hbond + desolv Energy and Electrostatic Energy are -

5.63 kcal/mol. and -0.03 kcal/mol. respectively. Total Internal Energy and Torsional Free Energy are -

.47 kcal/mol. and 2.09 kcal/mol. respectively (Table: 2). Interaction pattern of docking study between 

htt and tetrabenazine has been shown in [Figure-3-(i)]. 

 

5.4.10 Huntingtin (htt) interaction with Tiapride 

Docking study of tetrabenazine with huntingtin (htt) shows that Free energy of binding of 

tetrabenazine with huntingtin gene is -5.69 kcal/mol., Est. Inhibition Constant, Ki is 67.83 μM and 

Intermolecular Energy is -7.78 kcal/mol. VdW+ Hbond + desolv Energy and Electrostatic Energy are -

6.85 kcal/mol. and -0.92 kcal/mol. respectively. Total Internal Energy and Torsional Free Energy are -
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1.36 kcal/mol. and 2.09 kcal/mol. respectively (Table: 2). Interaction pattern of docking study 

between htt and tetrabenazine has been shown in [Figure-3-(j)]. 

  



Page | 22 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Docking study of huntingtin (htt) with selected Biomolecules  

(a) Htt interaction with Tetrabenazine (b) Htt interaction with Curcumin 

(c) Htt interaction with Berberine (d) Htt interaction with Aripiprazole 

(e) Htt interaction with Clozapine (f) Htt interaction with Olanzapine 

(g) Htt interaction with Pridopidine (h) Htt interaction with Quetiapine 

(i) Htt interaction with Rilmenidine (j) Htt interaction with Tiapride 
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5.5 Interacting residue of huntingtin (htt) with Biomolecules 

Ligand and protein analysis revealed that tetrabenazine forms hydrophobic binding with GLU
111

, 

GLU
153

, TRP
155

, TRP
220

, MET
330

, TRP
340

, PRO
418

, GLN
419 

residues [Figure 4-(a) ] of htt gene. 

Curcumin forms H-bonding with ASN
12

, LYS
15

, LEU
299

 , PRO
418 

residues and hydrophobic 

interaction with ASN
12

, ASP
14

, LYS
15

, TRP
62

, ALA
63

, ALA
109

, GLN
111

, TRP
230

, GLY
260

, LEU
262

, 

GLN
416

, LEU
417

, PRO
418

, GLN
419

 residues [Figure 4-(b) ] of htt gene. Berberine forms hydrophobic 

interaction with LYS
13

, ALA
109

, VAL
110

, PRO
229

, TRP
230

, TRP
232

, SER
233

, GLY
260

, LEU
262

, PRO
298

, 

LEU
299

, GLY
300

, ARG
316

 residues [Figure 4-(c)] of htt gene. Aripiprazole forms hydrophobic 

interaction with SER
337

, TYR
341

, MET
370

, GLU
375

, GLU
382

, PRO
411

, PRO
412

, PRO
414 

residues [Figure 

4-(d)] of htt gene. Clozapine forms hydrophobic interaction with ALA
162

, GLY
165

, GLY
166

, TYR
167

, 

PHE
169

, TYR
171

, TYR
176

, LYS
256

, GLN
325

, GLY
327

, GLU
328

, ILE
329

 residues [Figure 4-(e)] of htt gene. 

Olanzapine forms hydrophobic interaction with GLU
111

, GLU
153

, TYR
155

, PHE
156

, TRP
230

, GLY
260

, 

PRO
418 

residues [Figure 5-(a)] of htt gene. Pridopidine forms H-bonding with TYR
171

 and 

hydrophobic interaction with PHE
92

, ASP
95

, TYR
167

, PHE
169

, LYS
170

, TYR
176

, ALA
324

, GLN
325

, 

GLY
327

, GLU
328

, ILE
329

 residues [Figure 5-(b)] of htt gene. Quetiapine forms H-bonding with ARG
66

 

and hydrophobic interaction with GLU
44

, ALA
63

, ASP
65

, GLU
153

, TYR
155

, PHE
156

, MET
330

, TRP
340

, 

ARG
344

, GLN
416

residues [Figure 5-(c)] of htt gene. Rilmenidine forms H-bonding with PRO
406

 and 

hydrophobic interaction LEU
374

, LEU
377

, MET
378

, PHE
381

, PRO
408 

residues [Figure 5-(d)] of htt gene. 

Tiapride forms H-bonding with ARG
344 

and hydrophobic interaction GLU
153

, PRO
154

, TYR
155

, 

PHE
156

, TRP
230

, TRP
340

, GLN
416

, LEU
417

, PRO
418 

residues [Figure 5-(e)] of htt gene. 

 

Biomolecule Interacting residues 

Tetrabenazine (Control) GLU
111

, GLU
153

, TRP
155

, TRP
220

, MET
330

, TRP
340

, PRO
418

, GLN
419

 

Curcumin 
ASN

12
, ASP

14
, LYS

15
, TRP

62
, ALA

63
, ALA

109
, GLN

111
, TRP

230
,GLY

260
, LEU

262
, 

GLN
416

, LEU
417

, PRO
418

, GLN
419

 

Berberine 
LYS

13
, ALA

109 
, VAL

110
, PRO

229
, TRP

230
, TRP

232
, SER

233
, GLY

260
, LEU

262
, 

PRO
298

, LEU
299

, GLY
300

, ARG
316

 

Aripiprazole SER
337

, TYR
341

 , MET
370

, GLU
375

, GLU
382

, PRO
411

, PRO
412

, PRO
414

 

Clozapine 
ALA

162
, GLY

165
, GLY

166
, TYR

167 
, PHE

169
, TYR

171
, TYR

176
, LYS

256
, GLN

325
, 

GLY
327

, GLU
328 

, ILE
329

 

Olanzapine GLU
111

, GLU
153

, TYR
155

, PHE
156

, TRP
230

, GLY
260

,  PRO
418

 

Pridopidine 
PHE

92
, ASP

95
, TYR

167
, PHE

169
,LYS

170 
, TYR

176
, ALA

324
, GLN

325
, GLY

327
, 

GLU
328

, ILE
329

 

Quetiapine 
GLU

44
, ALA

63
, ASP

65
, GLU

153
, TYR

155
, PHE

156
,  MET

330
, TRP

340
, ARG

344
, 

GLN
416

 

Rilmenidine LEU
374

, LEU
377

,  MET
378

,  PHE
381

,  PRO
408

 

Tiapride GLU
153

, PRO
154

, TYR
155

, PHE
156

, TRP
230

, TRP
340

, GLN
416

, LEU
417

, PRO
418

 

Table 3: Interacting residues of Huntingtin (htt) gene with biomolecule 
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Figure 4: Binding site of htt with selected compounds. 3D and 2D pattern of protein-
ligand interaction shows the interacting residues of Huntingtin (htt) ligand binding. 

Gln419 
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Figure 5: Binding site of htt with selected compounds. 3D and 2D pattern of protein-
ligand interaction shows the interacting residues of Huntingtin (htt) ligand binding. 
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6. CONCLUSION 

Recent therapeutics advancement in HD reveals the promising role of biomolecules that has been 

shown to be potent antipsychotic agents for the treatment of HD. 3D structure of htt was checked for 

the presence of steric clashes and its suitability in the docking procedure using Ramachandran plot 

prediction analysis via RAMPAGE. RAMPAGE showed 94.7% of residues in the most favorable 

regions, 4.1% residues in additionally allowed and 1.2% outlier regions which shows that stereo 

chemical quality of protein structure is good. Furthermore, Errat server calculated overall 89.114% 

accuracy of htt protein. Among one hundred fifty five binding sites obtained from CastP Server for 

huntingtin, site 155 was highly conserved within all the binding sites of htt protein. Active site 

identification is very useful for determination of potential sites for binding of ligand to protein in 

molecular docking. Nine natural products like Curcumin, Berberine, Aripiprazole, Clozapine, 

Olanzapine, Pridopidine, Quetiapine, Rilmenidine and Tiapride were selected for molecular docking 

purposes and compared with docking analysis of FDA approved drug tetrabenazine.  

Lipinski Filter Investigation of all the natural compounds showed that all the compounds had drug 

likeness but Rilmenidine had more drug likeness followed by Pridopidine and Aripiprazole had least 

drug likeness. Molecular Docking study showed that all the nine natural biomolecules are interacting 

with the identified active site. Furthermore, comparison of binding atomic coordination with the 

template complex coordination revealed that docked drug coordination was similar with the known 

coordination. Inhibition Constant (Ki) of Curcumin, Berberine, Aripiprazole, Clozapine, Olanzapine, 

Pridopidine, Quetiapine, Rilmenidine and Tiapride for htt was found to be 24.30 µM, 132.32 µM, 

31.81 µM, 133.41 µM, 184.52 µM, 23.87 µM, 37.87 µM, 2.40 µM and 67.83 µM while the inhibition 

constant for Tetrabenazine (FDA approved drug for HD) was found to be 161.1824.30 µM, 132.32 

µM, 31.81 µM, 133.41 µM, 184.52 µM, 23.87 µM, 37.87 µM, 2.40 µM and 167.83 µM. it suggests 

that all the selected natural biomolecules are effective against htt (Table 2).Curcumin, Berberine, 

Aripiprazole, Clozapine, Olanzapine, Pridopidine, Quetiapine, Rilmenidine and Tiapride bind to the 

active site of mutant htt protein. Finally, docking analysis revealed that Curcumin, Berberine, 

Aripiprazole, Clozapine, Pridopidine, Quetiapine and Tiapride were more effective as compared with 

Tetrabenazine (control) as these compounds had lower Inhibition Constant, Ki and free energy of 

binding in comparison with Tetrabenazine (Park, H., 2006). 

The results can be validated through laboratory trials and clinical trials of the drugs as one of future 

perspective options. 
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