
FACE RECOGNITION USING HYBRID SIFT-

SVM

DISSERTATION/THESIS

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE AWARD OF THE DEGREE

OF

MASTER OF TECHNOLOGY
IN

CONTROL AND INSTRUMENTATION

Submitted by:

Kirti Bagla

Roll No. 2K14/C&I/05

Under the supervision of

 Dr. Bharat Bhushan

DEPARTMENT OF ELECTRICAL ENGINEERING
DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

2016

DEPARTMENT OF ELECTRICAL ENGINEERING
DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

CERTIFICATE

I, Kirti Bagla, Roll No. 2K14/C&I/05 student of M. Tech. (Control and Instrumentation), hereby

declare that the dissertation/project titled “Face Recognition Using Hybrid SIFT-SVM” under the

supervision of Dr. Bharat Bhushan of Electrical Engineering Department, Delhi Technological

University in partial fulfillment of the requirement for the award of the degree of Master of

Technology has not been submitted elsewhere for the award of any Degree.

Place: Delhi KIRTI BAGLA

Date: 18.07.2016

Dr. Bharat Bhushan

Assosiate Professor

EED, DTU

ACKNOWLEDGEMENT

I take this opportunity to express my sincere gratitude to all those who have been instrumental in

the successful completion of this dissertation.

Dr. Bharat Bhushan, Assosiate Professor, Dept. Of Electrical Engineering, Delhi Technological

University, my project guide, has guided me for the successful completion of this dissertation. It

is worth mentioning that he always provided the necessary guidance and support. I sincerely thank

him for his wholehearted guidance.

I am grateful for the help and cooperation of Prof. Madhusudan Singh, Head of the Department

of Electrical Engineering, Delhi Technological University, for providing the necessary lab

facilities and cooperation and I wish to thank all faculty members whoever helped to finish my

project in all aspects.

I would also like to thank my beloved parents, who always give me strong inspirations, moral

supports, and helpful suggestions. Without them, my study career would never have begun. It is

only because of them, my life has always been full of abundant blessing. To all the named and

many unnamed, my sincere thanks. Surely it is Almighty’s grace to get things done fruitfully.

Kirti Bagla

2k14/C&I/05

ABSTRACT

Face recognition provides a challenging issue in the domain of analyzing images. In this

dissertation, a face recognition model using hybrid SIFT-SVM is presented and a

comparative analysis between SVM and hybrid SIFT-SVM has been studied.

The current database is divided into two various parts, training and testing database. The

SIFT feature will be created for each training images and the key points are computed, then

the SVM is applied for the matching process for test images. Results are obtained for three

cases child, adult and old age which are made on the basis of age. The recognition rate has

been computed by False Acceptance Rate (FAR) and False Rejection Rate (FRR) on these

cases and then the results of hybrid SIFT-SVM is compared with SVM. It has been studied

that the recognized result provides robust performance under various conditions like

different pose, lighting conditions and facial expressions.

TABLE OF CONTENTS

CERTIFICATE ii

ACKNOWLEDGEMENT iii

ABSTRACT iv

TABLE OF CONTENTS v

LIST OF FIGURES viii

LIST OF TABLES x

CHAPTER 1 INTRODUCTION 1-4

 1.1 General 1

 1.2 Face Recognition 2

 1.3 Motivation 3

 1.4 Problem Formulation 3

 1.5 Dissection of Thesis 3

 1.6 Conclusion 4

CHAPTER 2 LITERATURE REVIEW 5-8

 2.1 General 5

 2.2 SIFT and SVM 7

 2.3 Conclusion 8

CHAPTER 3 FACE DETECTION 9-12

 3.1 General 9

 3.2 Algorithm for face detection 9

 3.2.1 Haar feature selection 9

 3.2.2 Creating an integral image 10

 3.2.3 Adaboost training 10

 3.2.4 Cascading classifiers 12

CHAPTER 4 SCALE INVARIANT FEATURE TRANSFORM 13-14

 4.1 General 13

 4.2 Algorithm for feature extraction 14

 4.3 Conclusion 14

CHAPTER 5 SUPPPORT VECTOR MACHINE 15-19

 5.1 General 15

 5.2 Algorithm for classification on the basis of features 17

 5.3 Hybrid SIFT-SVM 18

 5.4 Conclusion 19

CHAPTER 6 TOOLS AND TECHNOLOGY USED 20-23

 6.1 General 20

6.2 Data type

6.3 Operator

6.4 Vector

6.5 Plotting

 22

22

23

23

CHAPTER 7 RESULTS & DISCUSSIONS 24-31

 7.1 General 24

 7.2 Study of different classes made on the basis of age 25

 7.3 Study of invariance to posture and expression 30

CHAPTER 8 COMAPRISION OF HYBRID SIFT-SVM AND SVM 32-33

CHAPTER 9 CONCLUSION AND FUTURE SCOPE OF WORK 34

 9.1 Conclusion 34

 9.2 Future scope of work 34

APPENDIX 35-72

REFERENCES 73-77

LIST OF PUBLICATIONS

78

LIST OF FIGURES

Figure Description Page No.

3.1 Haar features 9

3.2 Integral image 10

3.3 Boosting 11

3.4 Cascading 12

5.1 Linear classifier 15

5.2 Non-linear classifier 16

5.3 Mapping to higher dimension 16

5.4 SVM classifier 17

5.5 Flow chart of presented model 19

6.1 Graph plot on Matlab 23

7.1 “Candidates” chosen in first step(Input database) 25

7.2 Test samples for children 25

7.3 Extraction of features using SIFT for test images with different

pose and illumination

25

7.4 Results of SVM on extracted SIFT features 26

7.5 Test samples for adults 26

7.6 Extraction of features using SIFT for test images 26

7.7 Results of SVM on extracted SIFT features 27

7.8 Test samples for old age people 27

7.9 Extraction of features using SIFT for test images 28

7.10 Results of SVM on extracted SIFT features 28

7.11 Test samples 30

7.12 Extraction of features using SIFT for test images 30

7.13 Results of SVM on extracted SIFT features 31

8.1 Test samples 32

8.2 Extraction of features using SIFT for test images 32

8.3 Results of SVM on extracted SIFT features 32

8.4 Results of SVM algorithm 33

LIST OF TABLES

Table Description Page

6.1 Basic commands in Matlab 21

6.2 Basic commands and their description 22

7.1 Rate of recognition in different algorithms for Child Case 29

7.2 Rate of recognition in different algorithms for Adult Case 29

7.3 Rate of recognition in different algorithms for Old Age Case 30

CHAPTER 1

INTRODUCTION

GENERAL

Initially, Woody Bledsoe, along with Helen Chan and Charles Bisson during 1964 and 1965

worked to recognize human faces by using computers. He was proud of what they have done, but

an unnamed intelligence agency provided the funding and it did not allow much publicity, hence,

little or no work was published. When the database of images is large, to select a small set of

records in which one of them would match the photograph was a problem. The ratio of the answer

list to the number of records in the database is used to measure the success. Bledsoe (1966)

described that the recognition is variant to head rotation, lightening conditions, facial expressions,

aging etc. Chances of failure in pattern matching are there when the variations are large because

the correlation is very low between the two pictures of same person. They labelled the project as

man-machine because the coordinates of a set of features from the photographs were extracted

manually, after that these features were used by computer for recognition. To extract the

coordinates of features such as peak points etc a graphics tablet was used by the operator. Using

these coordinates, a list of 20 distances, such as width of mouth and width of eyes, pupil to pupil,

were measured. In the database, the list of computed distances and the photograph was associated

with the person’s name and it is stored in the computer. In the recognition phase, the set of

distances was compared with the corresponding distance for each photograph, yielding a distance

between the photograph and the database record. The closest records are returned.

Because it is unlikely that any two pictures would match if there are variations subjected to

rotation, lean, tilt, and scale (distance from the camera), every set of distances is normalized to

represent the face in a frontal orientation. To get this normalization, the program first tries to

determine the extent of tilt, the lean, and the rotation. Then, it uses these angles and undoes the

effect of these transformations on the computed distances. To compute these angles, the computer

should know the 3D geometry of the head. Because of the unavailability of actual heads, a standard

head which was derived from measurements on seven heads was used by Bledsoe.

After Bledsoe left PRI in 1966, this work was continued primarily by Peter Hart at the Stanford

Research Institute. The experiments were performed on a database of over 2000 photographs, and

the computer consistently worked better than humans when presented with the same recognition

tasks.

A system was developed by Christoph von der Malsburg and graduate students of the University

of Bochum in 1997. This Bochum system was funded by the United States Army Research

Laboratory. It was sold and used for the first time by customers such as Deutsche Bank and

operators of airports and other busy locations.

During 2007, an idea came up to build a database by asking users to input the names of people to

recognize in photographs online. A company out of Minnesota, Identix developed the software,

FaceIt. This software was capable to pick a face from the crowd and it could compare it to the

worldwide database for recogniton and hence to put a name on that human face. It was written to

detect multiple features on the human faces. It was capable of detecting the distances between the

eyes, width of the nose, shape of cheekbones, length of jawlines and many more facial features.

By putting the image of the face on a faceprint, the software was able to represent the human face

through a numerical code. Facial recognition software used to work on a 2D image of the person

when he was almost facing the camera directly. But with FaceIt, a 3D image can be compared to

a 2D image by converting a 3D image into a 2D image with the use of a special algorithm that can

be scanned through almost all databases. Latest face recognition algorithms’ performances were

evaluated in the Face Recognition Grand Challenge (FRGC). Results showed that the new

algorithms had 10 times more accuracy than the face recognition algorithms of 2002 and 100 times

more accuracy than those of 1995. Some algorithms were able to perform better than human

participants in recognizing faces.

In Moore's law terms, in every two years, the error was decreased by one-half. Further insufficient

resolution issues have been resolved in the last few years because of the improvements in high

resolution, megapixel cameras.

1.2 FACE RECOGNITION

In face recognition, Software matches the face with its database. Advantage of this is that We do

not require the consent of the person. Otherwise in case of fingerprint, iris scans and sound

recognition we need the consent of the concerned person. But just like any other technique it also

has many flaws in it. It is not perfect and under certain conditions it might give unsatisfactory

results. Face recognition gives pretty good results at full frontal faces and 20 degrees off, but as

you go towards profile, there are problems. Other conditions where face recognition does not work

well include poor lighting, sunglasses, long hair or other objects partially covering the subject’s

face, and low resolution images. Another serious disadvantage is that many systems give varying

results when facial expressions change. Even a big smile can affect the system. For example

Canada is allowing only neutral facial expressions in passport size photographs because it will

help in getting more reliable results. Advantage of using hybrid SIFT-SVM is that it is invariant

to these conditions.

1.3 MOTIVATION

Face recognition has become a hot topic in recent decades as it doesn’t require the consent of the

person for its operation but it has any other problems. The motivation is to present a model which

provides better results than earlier ones. Idea is to merge the two techniques to get better results.

1.4 PROBLEM FORMULATION

Based on the motivation and utility of the problem, the following objectives have been targeted in

this thesis:

i) Study of SIFT algorithm and extraction of features of various test images using this.

ii) Study of SVM and classification of test images.

iii) Merge the above two techniques to make hybrid SIFT-SVM model.

iv) Comparison of the results obtained from SVM as well as Hybrid SIFT-SVM.

1.5 DISSECTION OF THESIS

The whole work is divided into 9 chapters.

Chapter 1 presents the basic introduction of face recognition, its advantages and disadvantages and

objective of the thesis.

Chapter 2 contains the literature review on various face recognition techniques.

Chapter 3 explains the face detection.

Chapter 4 explains feature extraction technique i.e. the scale invariant feature transform.

Chapter 5 explains the classification and pattern recognition tool i.e. support vector machine and

explains the hybrid SIFT-SVM model.

Chapter 6 gives tools and technology used.

Chapter 7 contains results and discussions.

Chapter 8 gives the comparison of results obtained from SVM and Hybrid SIFT-SVM.

Chapter 9 gives the conclusion and future scope of work.

Appendix can be referred for coding.

1.6 CONCLUSION

In this chapter, a brief introduction has been presented. Also, the motivation of the work and

objective of the thesis has been presented. Further, the overview of each chapter is given.

CHAPTER 2

LITERATURE REVIEW

GENERAL

For humans, Face recognition is day to day job. People do not even notice how many times they

do this in a day. Although, research has been going on in this field from last few decades but

recently it has caught attention and has become one of the hot topics [10, 51]. So, it has undergone

noticeable development in past few years [48]. D. Zhang has given advanced pattern recognition

technologies with application to biometrics [14]. Locality preserving projection (LPP) is a

manifold learning method widely used in pattern recognition and computer vision. Three novel

approaches has been proposed by Y. Xu [38]. Y. Xu also proposed a framework to perform

multibiometrics by comprehensively combining the left and right palmprint images [34]. A

supervised sparse representation method for face recognition is discussed by Y. Xu [46]. M. A.

Akhloufi introduced non linear dimensionality reduction approaches for multispectral face

recognition [17]. Based on a sparse representation computed by ‘1-minimization, M. K. Hsu [47]

proposed a general classification algorithm for (image-based) object recognition. H. F. Wang

provided an up-to-date survey of video-based face recognition research [35]. Current 3D face

recognition approaches are too slow for person identification, but D. Colbry reported several

experiments that extract a sparse feature representation from the canonical 3D face surface and

then performed recognition of a probe face based on the sparse features [15]. There was an

expected trade off between algorithm speed and recognition performance. W. Feng [4] research

showed that cross-talk noise is significantly reduced with wavelet filtering preprocessing. D. Y.

Huang gave face detection model based on skin color and Adaboost [37]. K. Vaishanavi [40]

proposed a face recognition technique using beck propogation neural network. Face recognition

has various applications in today’s world. It is being used for face recognition of criminals by

various security agencies around the world. Unique characteristics are measured by facial

recognition and matched for identification and authentication. Facial recognition software detects

a face [16], often through connected digital camera, extract its features and match them against

stored database images [27, 56, 57]. The basic objective of Facial recognition software is to

automatically identify individuals from digital images. Facial recognition software uses algorithms

[53] that extract specific facial features, such as the relative distance between a person's nose, eyes,

jaw and cheekbones. Unlike voice recognition & fingerprint recognition, facial recognition

software yields nearly instant results because in facial recognition image is used and hence consent

is not required. Facial recognition software can be used as a security measure and for verifying

activities [33] of personnel, such as attendance, computer access, etc.

Many face analysis and modelling techniques have been proposed in the last decade but the

reliability of such schemes is a great challenge to the scientific community. Some algorithms for

face recognition such as PCA (Principal Component analysis), ICA [12] (Independent Component

analysis), LDA (Linear Discriminant analysis), Fisher [38], Eigen face [1], SIFT are there [58].

Out of these SIFT [7, 52, 55] is most common because PCA, ICA, LDA are face based technique

(Global features extraction) whereas rest of the two are feature extraction based (Local features

extraction [6]). Y. Xu proposes matrix-based complex PCA (MCPCA), a feature level fusion

method for bimodal biometrics that uses a complex matrix to denote two biometric traits from one

subject. C. Y. Chang [36] proposed a modified LDA (called block LDA) to divide the gradient

image into several non-overlapping subimages of the same size, in order to increase the quantity

of samples and reduce the dimensions of the sample space. In Faced based technique whole face

is considered as a feature so it provides good efficiency but the problem is that it is not robust to

pose and expression changes. To minimise these above mentioned problems face image is divided

into smaller blocks and then global feature extraction algorithms are applied but the problem still

persists. This problem is solved by SIFT [11, 45]. SIFT simply transforms data present in the face

image into the keypoint descriptor which is going to be used as a local feature of that particular

image. Feature detection algorithms repeatedly detect the same point of interest in each image,

regardless of the scale of the image and orientation of the subject and match these points of one

image with corresponding point in another image. Luo et al. [13] has shown the ability of these

features by combining a person’s feautures and a matching stratergy. There has been lots of

improvements in SIFT features [54]. Mikolajcyk ans Schmid said that in image deformation cases,

SIFT is most resistant [9]. Acomparision is also made with other techniques and it was seen that

SIFT is a powerful matching tool [21]. A test has also been made by taking all theinitial keypoints

as features, which performed well on ORL and AR face databases [22]. Sift features are also used

on vedio based techniques [41]. Although, SIFT uses local feature extraction but it concentrates

too much on local extraction and the overall information of an image is ignored.

The linear representation methods [23, 29, 39] in which entire image is used for representation,

has been realised as a powerful tool for classification. Subspace clustering refers to the task of

finding a multi-subspace representation that best fits a collection of points taken from a high-

dimensional space. E. Elhamifar and R. Vidal introduced an algorithm inspired by sparse subspace

clustering (SSC) to cluster noisy data, and develops some novel theory demonstrating its

correctness [24]. J. Wright considered the problem of automatically recognizing human faces from

frontal views with varying expression and illumination, as well as occlusion and disguise. He

casted the recognition problem as one of classifying among multiple linear regression models and

argue that new theory from sparse signal representation offers the key to addressing this problem.

Based on a sparse representation computed by minimization, he proposed a general classification

algorithm for (image-based) object recognition [25]. Y. Xu, D. Zhang, and J. Y. Yang experiments

show that the proposed two-step feature extraction scheme can achieve a higher classification

accuracy than the 2DPCA and PCA techniques [30]. A label consistent K-SVD (LC-KSVD)

algorithm to learn a discriminative dictionary for sparse coding is presented by J. Wright [31].

Two step test method, proposed by Y. Xu is able to reduce the side-effect of the other training

samples that are very “far” from the test sample on the recognition decision of the test sample, the

high recognition rates can be obtained [32]. Y. Xu, D. Zhang, J. Yang, and J. Y. Yang proposed a

two-phase test sample 2 representation method for face recognition [42]. Y. Xu, Z. Fan, and Q.

Zhu proposed to exploit the symmetry of the face to generate new samples and devise a

representation based method to perform face recognition [43]. Y. Xu, and Q. Zhu proposed a very

simple and fast face recognition method and present its potential rationale [49]. Along with SIFT,

SVM is used in dissertation, which will classify the extracted feature and that provides better

results. The idea is to merge the two techniques to get better.

2.2 SIFT AND SVM

Scale Invariant Feature Transform (SIFT) was given by David Lowe (2004) which is an image

descriptor and it is used for image based matching and recognition. These descriptors are used in

computer vision for various purposes which are related to object recognition. Under real

conditions, SIFT descriptor is very useful for image matching and object recognition and this is

proved experimentally. These features are invariant to scale, light variations, orientation. SIFT

algorithm [27, 50] provides a set of features of an object which are not affected by clutter,

occlusion and unwanted noise in the image. Also, these features are very distinctive in nature

which helps in accomplishing correct matching on various pair of feature points with high

probability between a large database and a test sample [44, 52]. Hybrid PCA-SIFT algorithm is

proposed by Y. Ke [8]. Volume-SIFT (VSIFT) and Partial-Descriptor-SIFT (PDSIFT) for face

recognition based on the original SIFT algorithm is proposed by C. Geng [19]. A. Majumdar gave

discriminative SIFT features [20]. The keypoint detector represents the main source of errors in

face recognition systems relying on SIFT features, to overcome the presented shortcoming of

SIFT-based methods, J. Krizaj [28] presented a technique that computes the SIFT descriptors at

predefined (fixed) locations learned during the training stage.

Support vector machine (SVM) is a supervised machine learning method which can be used for

classification and pattern recognition. This algorithm is basically used for binary classification but

it can be used for multi-class classification by using different methods. Support Vector Machine

is based on the concept of decision plane that defines decision boundaries [2]. Firstly, the training

data is mapped into a higher dimensional space which gives a hyperplane which separates one

class of objects from another. If this hyperplane is mapped back into original dimensional space it

may give a non linear classifier. To construct an optimal hyperplane, SVM performs an iterative

training algorithm, which minimizes the error function. The maximum margin hyperplane

separating the two classes need to be found, that is why it is known as maximum margin classifier

[3, 5, 17].

2.3 CONCLUSION

This chapter presents the literature review of the face recognition techniques. Latest advancements

and research in the field of image processing are discussed. It helps in enhancing the knowledge

of the system and provides guidance in the thesis work.

CHAPTER 3

FACE DETECTION

GENERAL

In the presented model, Face detection has been done by using Viola and Jones algorithm. This

algorithm is the first algorithm which was proposed for detection of an object by Viola and Michael

Jones in 2001. It can be used to detect variety of object classes but main concentration was on the

problem of face detection.

The Viola/Jones Face Detector features are as follows:

1) It can be used for real time object detection.

2) Though, it is time consuming to train but it detection is fast.

This algorithm has three main steps that is Integral image, Boosting and Cascade.

The basic benefits of this algorithm are robustness, real time usage and easy to implement and

understand by sing computer vision toolbox in matlab. It is fast and efficient and invariant to scale

and location. It scales the features, not the image.

3.2 ALGORITHM FOR FACE DETECTION

3.2.1 HAAR FEATURE SELECTION

Human faces have almost similar properties. Haar features are used to match these regularities

which are shown below:

Fig. 3.1 Haar features

These are the five haar features (shown in fig. 3.1) which can be used for detectiong nose, eyes,

mouth etc. The net value is sum of the pixels in white area minus the sum of the pixels in black

area. Now, summing the pixels and subtracting them can be quite tedius. So, to make the job easier

we go for integral image concept.

3.2.2 CREATING AN INTEGRAL IMAGE

Integral image calculation gives speed advantage over other alternatives. With the help of this, the

net value can be calculated by just 3 additions. Interal image at any location (x,y) is sum of pixels

to its above and to its left and including (x,y). Integral image evaluation is invariant to time also.

One of the examples is shown below.

 Original Integral Original Integral

 5+2+3+1+5+4=20 5+4+2+2+1+3=17 34-14-8+5=17

Fig.3.2 Integral image

Fig. 3.2 describes conversion technique from original image into integral image and vice versa

with an example.

3.2.3 ADABOOST TRAINING

Adaptive Boosting was given by Yoav Freund and Robert Schapire who got Godel Prize in 2003

for this work. To improve the performance of various other learning algorithms, adaboost was

merged with them. The output of learning algorithms also known as weak learners is added to form

a strong and final output of the boosted classifier. Adaboost algorithm gives importance to the ones

which are misclassified by previous classifiers. This algorithm is affected by noisy data.

Individually, the output is weak but as long as the output of weak learners is better than the random

guessing, the final model can give a strong learner.

This is also referred as best out of the box classifier. Th below figures are given for better

understanding. There are two classes one with plus and other with minus sign. One weak learner

shown beside tries to separate the two classes. Some are classified correctly and some are

misclassified. Now, more weight or importance is given to the ones which are misclassified as

shown next. Again the same is repeated and process continues.

Fig. 3.3 Boosting

Fig. 3.3 describes boosting technique and it can be seen from the figure that the strong learner is

the sum of weak learners and the resultant learner is successfully classifying the two classes.

Classification was not possible by a single weak learner because the two classes could not be

separated by a straight line, but by taking multiple weak learner, problem was solved.

3.2.4 CASCADING CLASSIFIERS

Cascading is used to minimize the false acceptance and false rejection rate and hence, it is used to

increase the efficiency. In this, a photo is divided into different blocks. If first classifier is sure that

the input area is not a face then that area is not verified further and it is discarded. If first classifier

is not sure, then it is passed on to next classifier for further processing. This also helps in increasing

the speed of detection.

Input

 Discard input Discard input

Fig. 3.4 Cascading

Fig. 3.4 describes cascading technique. Two stages are cascaded in the figure. Firstly, input area

goes to stage one and chances are there for it to be a face, it goes to second stage otherwise it is

discarded and not evaluated further.

Stage 1

Is input a face?

 Ii

Stage 2

Is input a face?

Is input a face?

May be

Definitely not! Definitely not!

May be

CHAPTER 4

SCALE INVARIANT FEATURE TRANSFORM

GENERAL

Scale Invariant Feature Transform (SIFT) was given by David Lowe (2004) which is an image

descriptor and it is used for image based matching and recognition. These descriptors are used in

computer vision for various purposes which are related to object recognition. Under real

conditions, SIFT descriptor is very useful for image matching and object recognition and this is

proved experimentally. The greatest advantage is that these features are invariant to scale, light

variations, orientation etc. SIFT algorithm provides a set of features of an object which are not

affected by clutter, occlusion and unwanted noise in the image. Also, these features are very

distinctive in nature which helps in accomplishing correct matching on various pair of feature

points with high probability between a large database and a test sample.

SIFT is a local feature extraction technique. A point, edge, or small image patch found in an image

which has a pattern or distinct structure refers to a local feature. It is generally associated with a

patch is that is different from its immediate surroundings by texture, color, or intensity. What really

matters is its distinctiveness from the surrounding. It does not matter what a feature represents in

reality. Various examples of local features are blobs, corners, and edge pixels. These features help

to find image correspondences regardless of occlusion, changes in viewing conditions, or the

presence of clutter. These features help in representing image contents in compact manner which

is then used for detection or classification. Good local features exhibit properties like repeatable

detections, distinctive, localizable.

Feature detection is a technique of selecting region in an image which has unique content. The

points which are useful for further processing are detected by using this. It is not necessary that

these points represent a physical structure for example corners of a table. The major concern is to

find out points which are locally invariant to rotation or scale change. These detected points are

then used for feature extraction which is done with the help of a descriptor. Descriptors use image

processing tools to change a local pixel neighbourhood into a compact vector representation.

Because of this representation comparison becomes invariant to scale and orientation. Local

gradient computations are performed by some descriptors, such as SIFT or SURF. Some work on

local intensity variation, BRISK or FREAK, which are then encoded into a binary vector.

4.2 ALGORITHM FOR FEATURE EXTRACTION OF DETECTED FACE

First is the detection of extreme value in space scale. This step is to determine keypoints (face’s

eyes, nose, mouth etc). At different scales, Image is convolved with the Gaussian filters and the

scale image is the result of this convolution. L(x,y,σ) is the description of input image I(x,y).

L(x,y,σ) = G(x,y,σ) * I(x,y) (4.1)

Where G(x,y,σ) =
1

2П𝜎2
𝑒

−(𝑥2+𝑦2)

2𝜎2

Now, the extreme points (key points) are determined from these scale images which are the face

keypoints mainly. This step generates too many candidate keypoints and all are not stable. So,

filtering is required to be done which uses taylor’s series expension, DoG(x,y,σ). This is used to

delete the points which have low contrast and this also reduces the edge effect.

DoG = L(x,y,kσ)-L(x,y,σ) (4.2)

After filtering, direction of keypoint is needed which will make it invariant to rotation. For the

scaled image the magnitude and phase is computed as follows:

M(x,y)=√((L(x+1,y)-L(x-1,y))2+(L(x,y+1)-L(x,y-1))2 (4.3)

θ = arctan
L(x,y+1)−L(x,y−1)

L(x+1,y)−L(x−1,y)
 (4.4)

Magnitude and phase is calculated for every pixel around the keypoint. The neighbouring samples

are added to the histogram bin. The direction is assigned to the keypoint which corresponds to the

maximal component of the histogram. The final step is feature description of keypoints. This step

makes it invariant to light variations and 3D viewpoint.

4.3 CONCLUSION

In this chapter, Scale invariant feature transform has been studied and algorithm of the same is

discussed.

CHAPTER 5

SUPPORT VECTOR MACHINE

GENERAL

SVM was introduced in 1995 by Vladimir Vapnik and it marked a beginning of a new era. Because

of its theoretical and computational merits, SVM gained attention from the pattern recognition

community. Various advantages are simple interpretation of the margin, uniqueness of the

solution, robustness, effectiveness in high dimensional space, versatility. Support vector machine

(SVM) is a supervised machine learning method which can be used for classification and pattern

recognition. This algorithm is basically used for binary classification but it can be used for multi-

class classification by using different methods. Support Vector Machine is based on the concept

of decision plane that defines decision boundaries. Firstly, the training data is mapped into a higher

dimensional space which gives a hyperplane which separates one class of objects from another. If

this hyperplane is mapped back into original dimensional space it may give a non linear classifier.

To construct an optimal hyperplane, SVM performs an iterative training algorithm, which

minimizes the error function. The maximum margin hyperplane separating the two classes need to

be found, that is why it is known as maximum margin classifier.

Support Vector Machines are based on the concept of decision planes that define decision

boundaries. A decision plane is one that separates between a set of objects having different class

memberships. Let us take one simple example. In this example, there are two classes in which an

object can belong to i.e. GREEN or RED. A boundary line is defined which separates two classes.

It has RED to its left and GREEN to its right. Any object which comes to the right is classified as

GREEN and if it falls to its left then it is classified as RED.

Fig. 5.1 Linear classifier

In fig 5.1, two classes are separated with the help of a line. So, it is an example of linear classifier.

Generally classification tasks are not linear and hence not simple and usually more complex

structures are required in order to make an optimal separation, i.e., correctly classify new objects

(test cases) on the basis of the examples that are available (train cases). One example for non linear

classification is shown below in fig. 5.2. As compared to earlier example to classify RED or

GREEN objects a curve is required which is certainly more complex than a straight line. Tasks

which require to make separating lines which are used to distinguish between different classes are

executed by hyperplane classifiers. Support Vector Machines are used to handle such tasks.

Fig. 5.2 Non-linear classifier

The basic idea behind Support Vector Machines is shown by the figure 5.3 below. By using

mathematical functions, also known as kernels, the original objects are mapped on to higher

dimension where the problem becomes linear. This mapping process is also known as

transformation. The advantage of mapping is the new setting is linearly separable and hence

problem becomes easy because we do not require a curve now. After that, it is required to find an

optimal line which can separate the two different objects.

Fig. 5.3 Mapping to higher dimension

SVM can handle both regression and classification tasks and also supports multiple continuous

and categorical variables. To construct an optimal hyperplane, SVM employs an iterative training

algorithm, which is used to minimize an error function.

5.2 ALGORITHM FOR CLASSIFICATION ON THE BASIS OF FEATURE

Fig. 5.4 SVM classifier

Let the separating hyperplane is;

wT.x+b=0 (5.1)

Cla
ss 1

Cla
ss 2

m

In fig. 5.4, two hyperplanes are selected such that they separate the two categories with no data

points in between.

wT.x+b=1 (5.2)

wT.x+b=-1 (5.3)

The above two equations can be summarized as below;

yi(w
Txi+b)≥1 for all i (5.4)

where yi = 1 is the positive class and yi= -1 is the negative class.

It can be easily seen that the distance between the two boundary hyperplanes is
2

||𝑤||

The classification problem is converted into optimization one where the minimization of

1

2
||w||2 is required (5.5)

Subject to yi(w
Txi+b)≥1

Vapnik proposed a soft margin classifier that finds the best hyperplane separating the two

categories. ζi

is slack variable. The optimization problem can be given as

Min
1

2
||w||2+C∑ζi (5.6)

Subject to yi(w
Txi+b)≥1- ζi , ζi ≥0

5.3 HYBRID SIFT-SVM

In this dissertation, a novel method for face recognition is presented. The idea is to make a hybrid

algorithm from two pre-existing algorithms i.e. Scale Invariant Feature Transform (SIFT) and

Support Vector Machine (SVM) to enhance the performance. SIFT features of face images are

extracted and matched using SVM classifier. In this approach, Few training images are taken to

train SVM classifier. A database is created having facial SIFT features of training images of all

the individuals. For a new image (person), first of all, the facial region will be detected (if it is not

a cropped face image). For detecting face region, Viola-Jones algorithm is used. Then the SIFT

algorithm is used for feature extraction which makes it invariant to posture and illumination.

Extracted feature vectors, also known as descriptors, and their corresponding locations are

obtained from SIFT. Now this feature vector, will be classified using SVM classifier.

To recognize a test sample, the presented method has the three main steps: Firstly, it identifies

certain number of training samples on the basis of Euclidean distance between test & training

samples. Then the matched pairs of SIFT features between each sample are counted and samples

with large number of matched pair are chosen. In third step, the similarity between the test samples

and the training samples is calculated and the class with the maximum similarity is chosen as the

result. The presented method whose flowchart is shown in fig. 5.5 for better understanding, greatly

reduces the complexity in computation and also reduces error recognition due to interference. It

also enhances the robustness. Large number of experiments on different public faces images

confirm high recognition accuracy. For coding, appendix can be referred.

Fig. 5.5 Flow chart of presented model

5.4 CONCLUSION

In this chapter, Support vector machine has been studied and algorithm of the same is discussed.

Also, hybrid SIFT-SVM is discussed with the help of a flow chart.

Feature Extraction

Using SIFT
Input Face

Training dataset

using SVM

Recognize

Face

Input Database Test for

correctness

CHAPTER 6

TOOLS AND TECHNOLOGY USED

GENERAL

MATLAB was invented by Cleve Moler. He was a specialist in matrix computation. He worked

to make a reliable library on FORTRAN for calculating eigen values of matrices and to solve

systems of linear equations. To make the job easier he created MATLAB for his students which

actually meant “MATRIX LABORATORY”. So, originally MATLAB was a FORTRAN

program. Initially it contained 1 data type and fixed 80 functions. He then used his software to

teach numerical analysis at Stanford in 1979. Jack Little, who came to know about this program,

tried to use it in the domain of signal processing and control.

Little and Steve Bangert made PC MATLAB by transforming Moler's code from FORTRAN to

C, they also added new user-defined functions, improved graphics, libraries, toolboxes. In 1984,

These three collectively formed Mathworks which had PC MATLAB as its first product. Their

first sale was just 10 copies.

In the today’s world, there is a requirement to quantify estimation, formulation and graphics. To

achieve this, a high level language is required which has fourth generation technology. Matlab is

developed and updated by Mathwork. Matrix handling is allowed in matlab, algorithms can be

implemented, various functions can be plotted, graphical user interface can be designed, various

programs in different languages can be merged, data can be analyzed, different applications and

models can be created. Built in commands are there which the job easier. Hence for computation

of mathematical programs, this is very useful. Because of its various advantages, it is been heavily

used in many technical fields for analysis of data, solving problems, and for experimentation and

development of algorithm.

The MATLAB system consists of five main parts which are as follows:

Development Environment: These are the set of tools and facilities which allows us to use Matlab

files and functions effectively. A lot many tools are GUI which is therefore user friendly. It

basically contains Command Window, a command history, an editor and debugger, and help

window, the workspace and the search path.

The MATLAB Mathematical Function Library: It contains wide collection of algorithms which

range from elementary functions like sinusoidal functions etc, to more complicated functions like

FFT, inverse, eigenvalues etc.The MATLAB Language: It is a high level language which allows

flow control statements, various functions and it has object oriented programming features also.

Graphics: It has facility to display matrices and vectors in graphs and also it allows annotation

and printing of those graphs. Various high level functions are there which helps in two-dimensional

and three-dimensional visualization. It also has image processing toolbox and functions for

animation and presentations. Not only high level functions, it contains low level functions as well

which help in customizing the appearance of graphics and help to make GUI for Matlab

applications.

The MATLAB Application Program Interface (API): With the help of this library, various

programs can be written in C and Fortran and then these programs can interact with Matlab. It has

facilities through which m-files can be read or written and routines can be called from Matlab.

Matlab has its application in various domains. For example control systems, image and video

processing, signal processing and communication, test and measurement, computational finance,

computational biology. To visualize a data in matlab, it has commands matlab. For this, just write

the command in the command window. Some common commands which are used by the users are

given in table 6.1:

Table 6.1 Basic commands in Matlab

Command Purpose

Clc Clear command window

Clear Removes variable from memory

Exist Check for existence of file or variable

Global Declares variable to be global

Help Searches for a help topic

Lookfor Searches help entries for a keyboard

Quit Stops Matlab

Who Lists current variable

Whos List current variables(long display)

6.1 M files

Previously we have discussed that how to write a command in command window. Let us now see,

how to write multiple commands in a single line. How to execute mutilple commands in one go.

The M files can be of two types:

Scripts- The program files with .m extension are the example of script file. In these files, various

commands can be written and matlab runs these commands in a one go. These files have limitations

for example input is not accepted etc.

Functions – The program files which have .m extension in another kind of files are called function

file. These files accept the input and return some output. Variables defined in these files are locally

defined that is they exist only in fuction file.

To create .m file, matlab editor is used. Script files can call multiple functions. To run a script file,

type its name on command window. To open a matlab editor, two ways are there, by using the

command prompt or by using IDE.

6.2 Data Types

It is not required to mention data type with the statement. As soon as a new variable is declared,

matlab allocates proper space to it and the variable is created. If the variable exceeds the earlier

allocated space then it is replaced with a new one and a new space is also allocated to it. Matlab

offers 15 different types of data types. Each data type has some functionality. The basic advantage

of these data types is any length of array or matrix can be stored with the help of these. The table

6.2 mentions the common data types:

Table 6.2 Data types and their description

Data type Description

Uint64 64 bit unsigned integer

Int64 64 bit signed integer

Uint 32 32 bit unsigned integer

Int 32 32 bit signed integer

Uint 16 16 bit unsigned integer

Int 16 16 bit signed integer

Uint 8 8 bit unsigned integer

Int 8 8 bit signed integer

6.3 Operators

It is used to perform some operations and this can be guessed by its name only. It is used for logical

and mathematical operations. Primarily matlab works with matrices or arrays, but both scalar and

non scaler data can be operated by using them. There are many operators for example Relational

operators, Logical operators, Bitwise operators, Set operators, Arithmatic operators.

6.4 Vectors

There can be two types of vectors in matlab i.e. Row vectors, Column vectors.

Row Vectors: This type of vector is created when the set of data or element is entered by using

comma or space and it is bounded by square brackets.

Column Vectors: This type of vector is created when the set of data or element is entered by using

semicolon and is bounded square brackets.

6.5 Plotting

To create a graph in matlab, some steps are needed to be followed which are given below:

1. Define x variable and its range.

2. Define function y.

3. Use plot command to plot y vs x i.e. plot(x,y).

Fig 6.1: Graph plot on Matlab

 In fig. 6.1, a basic plot of a straight line is shown. There are many other options to it for example

adding title, giving name to x-axis and y-axis, adjusting the axes of the graph.

CHAPTER 7

RESULTS AND DISCUSSION

GENERAL

Multi-class classification is needed as in any case there would be many classes (the face images of

different people). Simulation has been done on Matlab. Libsvm is used, a library for Support

Vector Machines for performing multi-class SVM. For testing the method, standard face databases

has been used. The Face Database consists of 75 images. The images of each individual cover a

range of poses from frontal towards side view and illumination changes as well. This database is

suitable to test perspective change and illumination invariance. The below figures show the results

of proposed method in which firstly, it detects a face, then it extracts the features using SIFT and

finally, it classifies using SVM and with that it recognizes the face. On the basis of age, Analysis

is divided into three cases. In every case, some samples are taken and then they are compared with

different algorithms in the end and then in the second section it has been tested that the presented

model is invariant to posture and expression.

The input database chosen is given in fig. 7.1

Fig. 7.1 “Candidates” chosen in the first step (Input database)

7.2 STUDY ON DIFFERENT CLASSES MADE ON THE BASIS OF AGE

Three categories are made on the basis of age. Every case is discussed below.

CASE 1. Child

Fig. 7.2 The test samples of children

Fig. 7.3 Extraction of features using SIFT for test images (shown beside) with different pose and illumination

Fig. 7.2 shows the samples of children taken to test the model and results of SIFT algorithm on the

sample images is shown in fig. 7.3. SIFT is invariant to pose and illumination variations. So,

expected results are obtained for case one. Now, taking these extracted features as an input for

SVM which is used for classification, the results are shown in fig. 7.4.

Fig. 7.4 Results of SVM on the extracted SIFT features

Same operation (first SIFT and then SVM) is performed on next section of age i.e. adults.

CASE 2. Adult

Fig. 7.5 The test samples of adults

Fig. 7.6 Extraction of features using SIFT for test images

Fig. 7.7 Results of SVM on the extracted SIFT features

Fig. 7.5 shows the samples of adults taken to test the model and results of SIFT algorithm on the

sample images is shown in fig. 7.6 and fig. 7.7 shows the corresponding SVM results. Third section

is old age. Hybrid SIFT-SVM is performed on some old age samples.

CASE 3. Old Age

Fig. 7.8 The test samples of old age people

Fig. 7.9 Extraction of features using SIFT for test images

Fig. 7.10 Results of SVM on the extracted SIFT features

Fig. 7.8 shows the samples of old age people taken to test the model and results of SIFT algorithm

on the sample images is shown in fig. 7.9 and fig. 7.10 shows the corresponding SVM results. It

has been studied that on all the three sections of age, results have good recognizing rate. For

comparision with the pre-existing algorithms, some performance measures are taken.

There can be two types of errors in a recognition system: FR (False Rejection) in which system

refuses a true face and FA (False Acceptance) in which system accepts a false image. The

performance is measured in terms of FRR (False Rejection Rate) and FAR (False Acceptance

Rate). By taking these parameters into consideration and varying the number of test and training

database images the presented method is compared with PCA, FISHER and SIFT algorithms.

Comparision tables are made in which the recognition rate of presented method is compared with

some other techniques as shown.

TABLE 7.1 Rate of recognition in different algorithms for Child Case

No of Test Set 50 80 100 150

No of Training Set 50 80 100 150

PCA(%) 46.3 46.3 40.7 53.1

FISHER(%) 74.7 65.7 64.7 61

SIFT(%) 76.7 70.4 68.4 64.3

Hybrid SIFT-SVM(%) 79.9 76.6 69.9 63.8

TABLE 7.2 Rate of recognition in different algorithms for Adult Case

No of Test Set 60 90 120 180

No of Training Set 60 90 120 180

PCA(%) 46.9 47.1 39.8 52.9

FISHER(%) 74.8 64.2 63.7 62.6

SIFT(%) 75.8 69.8 67.9 64.1

Hybrid SIFT-SVM(%) 79.8 74.3 69.2 62.6

TABLE 7.3 Rate of recognition in different algorithms for Old Age Case

No of Test Set 55 70 130 190

No of Training Set 55 70 130 190

PCA(%) 47.2 46.1 37.9 52.6

FISHER(%) 71.3 63.8 61.7 63.2

SIFT(%) 73.2 69.2 67.3 63.9

Hybrid SIFT-SVM(%) 81.2 72.8 68.8 62.7

Table 7.1, 7.2 and 7.3 show that the recognition rate has improved when the proposed method is

used which implies that the method is robust and reliable.

7.3 STUDY OF INVARIANCE TO POSTURE AND EXPRESSION

In this section, it has been studied that how the presented model behaves with varying expressions

and posture. It has been analysed that the method is invariant to posture and expressions.

The input database is same as mentioned in the starting of the chapter (fig. 7.1).

Test samples are given in fig. 7.11 below.

Fig. 7.11 The test samples

Fig 7.12 Extraction of features using SIFT for test images

Fig. 7.13 Results of SVM on the extracted SIFT features

Fig. 7.11 shows the samples of different poses of a single person taken to test the model and results

of SIFT algorithm on the sample images is shown in fig. 7.12 and fig. 7.13 shows the

corresponding SVM results. It can be seen from the results that presented model is giving good

accuracy rate, not only for frontal images or faces but also for the different poses. Some of the

selfies of a same person is taken here and then results are observed.

CHAPTER 8

COMPARISION OF HYBRID SIFT-SVM AND SVM

GENERAL

It has been studied and observed that the results for hybrid SIFT-SVM are better than SVM.

The input database is same as mentioned in previous chapter i.e. fig. 7.1. Test samples are given

in fig. 8.1 below.

Fig. 8.1 The test samples

Fig. 8.2 Extraction of features using SIFT for test images

Fig. 8.3 Results of SVM on the extracted SIFT features

Fig. 8.4 Results of SVM algorithm

Fig. 8.1 shows the samples of all age categories taken to test the model and results of SIFT

algorithm on the sample images is shown in fig. 8.2 and fig. 8.3 shows the corresponding SVM

results on the extracted SIFT features. Fig 8.4 shows the results of only SVM algorithm with no

feature extraction. It can be seen that the recognition rate of hybrid SIFT-SVM is better than SVM

from the above figures as hybrid SIFT-SVM is giving more accuracy rate in comparision to only

SVM. Robustness is more in the proposed model. For coding, appendix can be referred.

CHAPTER 9

CONCLUSION AND FUTURE SCOPE OF WORK

9.1 CONCLUSION

Features of input image is extracted by using SIFT which is a local feature extraction technique

and then, SVM is used for classification which takes SIFT output as its input. Hybrid SIFT-SVM

is applied on three cases child, adult and old age. In each case, test and training database is varied

and proposed model is compared with other algorithms. Tables on three cases show that the

recognition accuracy has been increased in comparison to other algorithms and hybrid model

outperforms other examined methods. It is more reliable and robust than PCA, ICA, Fisher and

SIFT algorithms. Also, it has been studied that the presented model is invariant to posture and

expression.

In this dissertation, a comparative analysis has been done in between hybrid SIFT-SVM and SVM

and the results shows that presented model is better in terms of accuracy.

9.2 FUTURE SCOPE OF WORK

There are several points which may further be investigated but couldn’t be covered in this work

due to limited time frame. The main points are described below.

1) The thesis work carried out here is useful for face recognition purpose, if it can be used on real

time data then it would be very helpful for security agencies. It can be incorporated through high

resolution cameras and then it can be used in real world.

2) The studies done in this work are based upon SIFT and SVM, and it has been compared with

different feature extraction technique now instead of SVM, we could try other classifiers and

instead of SIFT we could use SURF to see how things turn up.

APPENDIX I

ADJUST ARROW HEAD SIZE

This program is for adjusting the size of arrowhead i.e. to make it bigger or smaller.

function adjust_quiver_arrowhead_size(quivergroup_handle, scaling_factor)
% Make quiver arrowheads bigger or smaller.
%
% adjust_quiver_arrowhead_size(quivergroup_handle, scaling_factor)
%
% Example:
% h = quiver(1:100, 1:100, randn(100, 100), randn(100, 100));
% adjust_quiver_arrowhead_size(h, 1.5); % Makes all arrowheads 50%

bigger.
%
% Inputs:
% quivergroup_handle Handle returned by "quiver" command.
% scaling_factor Factor by which to shrink/grow arrowheads.
%
% Output: none
if ~exist('quivergroup_handle', 'var')
 help(mfilename);
 return
end
if isempty(quivergroup_handle) || any(~ishandle(quivergroup_handle))
 errordlg('Input "quivergroup_handle" is empty or contains invalid

handles.', ...
 mfilename);
 return
end
if length(quivergroup_handle) > 1
 errordlg('Expected "quivergroup_handle" to be a single handle.',

mfilename);
 return
end
if ~strcmpi(get(quivergroup_handle, 'Type'), 'hggroup')
 errrodlg('Input "quivergroup_handle" is not of type "hggroup".',

mfilename);
 return
end
if ~exist('scaling_factor', 'var') || ...
 isempty(scaling_factor) || ...
 ~isnumeric(scaling_factor)
 errordlg('Input "scaling_factor" is missing, empty or non-numeric.', ...
 mfilename);
 return
end
if length(scaling_factor) > 1
 errordlg('Expected "scaling_factor" to be a scalar.', mfilename);
 return
end
if scaling_factor <= 0
 errordlg('"Scaling_factor" should be > 0.', mfilename);
 return
end
line_handles = get(quivergroup_handle, 'Children');

if isempty(line_handles) || (length(line_handles) < 3) || ...
 ~ishandle(line_handles(2)) || ~strcmpi(get(line_handles(2), 'Type'),

'line')
 errordlg('Unable to adjust arrowheads.', mfilename);
 return
end
arrowhead_line = line_handles(2);
XData = get(arrowhead_line, 'XData');
YData = get(arrowhead_line, 'YData');
if isempty(XData) || isempty(YData)
 return
end
% Break up XData, YData into triplets separated by NaNs.
first_nan_index = find(~isnan(XData), 1, 'first');
last_nan_index = find(~isnan(XData), 1, 'last');
for index = first_nan_index : 4 : last_nan_index
 these_indices = index + (0:2);
 if these_indices(end) > length(XData)
 break
 end
 x_triplet = XData(these_indices);
 y_triplet = YData(these_indices);
 if any(isnan(x_triplet)) || any(isnan(y_triplet))
 continue
 end
 % First pair.
 delta_x = diff(x_triplet(1:2));
 delta_y = diff(y_triplet(1:2));
 x_triplet(1) = x_triplet(2) - (delta_x * scaling_factor);
 y_triplet(1) = y_triplet(2) - (delta_y * scaling_factor);
 % Second pair.
 x_triplet(3) = x_triplet(2) + (delta_x * scaling_factor);
 y_triplet(3) = y_triplet(2) + (delta_y * scaling_factor);
 XData(these_indices) = x_triplet;
 YData(these_indices) = y_triplet;
end
set(arrowhead_line, 'XData', XData);

APPENDIX II

FACE DETECT

To detect a face from an image following code has been used.

hsvIm = rgb2hsv(Image);
Im1 = MyConv(hsvIm,MyGauss(5,5));
EdgeIm = rgb2gray(hsvIm-Im1);
SkinImage = Skindetect(hsvIm,EdgeIm);
[m,n]=size(SkinImage);
sumRows=sum(SkinImage,2)/(n*255);
idx=find(sumRows<0.15);
SkinImage(idx,:)=[];
Image(idx,:,:)=[];
[m,n]=size(SkinImage);
sumCols=sum(SkinImage,1)/(m*255);
idx=find(sumCols<0.15);
SkinImage(:,idx)=[];
Image();
[P,clusters] = bwlabel(SkinImage,8);
for i=1:clusters
 [r,c]=find(P==i);
 rMin=min(r);
 rMax=max(r);
 cMin=min(c);
 cMax=max(c);
 t(i,:)=[rMin,cMin,rMax-rMin,cMax-cMin];
end
 area=t(:,3).*t(:,4);
 minIdx=find(area==max(area));
 t=t(minIdx,:);
Face=Image(t(1):t(3)+t(1),t(2):t(2)+t(4),:);
end

APPENDIX III

BUILD DETECTOR

To detect a face, a detector is made by following commands.

function detector = buildDetector(thresholdFace, thresholdParts, stdsize)
if(nargin < 1)
 thresholdFace = 1;
end
if(nargin < 2)
 thresholdParts = 1;
end
if(nargin < 3)
 stdsize = 176;
end
nameDetector = {'LeftEye'; 'RightEye'; 'Mouth'; 'Nose'; };
mins = [[12 18]; [12 18]; [15 25]; [15 18];];
detector.stdsize = stdsize;
detector.detector = cell(5,1);
for k=1:4
 minSize = int32([stdsize/5 stdsize/5]);
 minSize = [max(minSize(1),mins(k,1)), max(minSize(2),mins(k,2))];
 detector.detector{k} = vision.CascadeObjectDetector(char(nameDetector(k)),

'MergeThreshold', thresholdParts, 'MinSize', minSize);
end
detector.detector{5} = vision.CascadeObjectDetector('FrontalFaceCART',

'MergeThreshold', thresholdFace);
function detector = buildDetector(thresholdFace, thresholdParts, stdsize)
 if(nargin < 1)
 thresholdFace = 1;
end
 if(nargin < 2)
 thresholdParts = 1;
end
 if(nargin < 3)
 stdsize = 176;
end
nameDetector = {'LeftEye'; 'RightEye'; 'Mouth'; 'Nose'; };
mins = [[12 18]; [12 18]; [15 25]; [15 18];];
detector.stdsize = stdsize;
detector.detector = cell(5,1);
for k=1:4
 minSize = int32([stdsize/5 stdsize/5]);
 minSize = [max(minSize(1),mins(k,1)), max(minSize(2),mins(k,2))];
 detector.detector{k} = vision.CascadeObjectDetector(char(nameDetector(k)),

'MergeThreshold', thresholdParts, 'MinSize', minSize);
end
 detector.detector{5} = vision.CascadeObjectDetector('FrontalFaceCART',

'MergeThreshold', thresholdFace);

APPENDIX IV

CALCULATE DOG

In SIFT algorithm, keypoints can be obtained by DOG. The following code is to calculate

Difference of Guassian (DOG) images.

function calculateDog = calculateDog(octaveStack)
 cellDOG = cell(size(octaveStack,1),1);
 octaves = size(octaveStack,1);
 for i = 1:octaves
 %each octave do the substraction of gaussians
 cellDOG{i} = zeros (size(octaveStack{i},1), size(octaveStack{i},2),

size(octaveStack{i},3), size(octaveStack{i},4)-1);
 cant = size(octaveStack{i},4);
 for j = 2:cant
 %substraction of the previous from the current
 cellDOG{i}(:,:,:,j-1) = octaveStack{i}(:,:,:,j) -

octaveStack{i}(:,:,:,j-1);
% cant
 end
 end
calculateDog = cellDOG;
end

APPENDIX V

CALCULATE KEYPOINTS

Function that calculates the keypoints and filters out the ones on edges

and with low contrast.

function calculateKeypoints=calculateKeypoints(dogDescriptors, originalImage)
 contrastLimit = 0.03;
 isKeypoint = false;
% keypointsMap = cell(size(dogDescriptors,1), size(dogDescriptors,1)-2);
 keypointsMap = cell(size(dogDescriptors,1), size(dogDescriptors{1},4)-2);
 cant = 0;
% size(dogDescriptors{1},3)
 for octave = 1:size(dogDescriptors,1)
 for layer = 2:(size(dogDescriptors{octave},4)-1)
% keypointsMap{octave}{layer-1} =

zeros(size(dogDescriptors{octave},1), size(dogDescriptors{octave},2));
 keypointsMap{octave,layer-1} =

zeros(size(dogDescriptors{octave},1), size(dogDescriptors{octave},2));
 %each of the points are to be compared - if it takes too long, do

it in C++
 for row = 2:size(dogDescriptors{octave},1)-1
 for column = 2:size(dogDescriptors{octave},2)-1
 %checks if it is maxima
 isKeypoint = false;
 if dogDescriptors{octave}(row,column,1,layer) >

dogDescriptors{octave}(row-1,column,1,layer) && ...
 dogDescriptors{octave}(row,column,1,layer) >

dogDescriptors{octave}(row-1,column-1,1,layer) && ...
 dogDescriptors{octave}(row,column,1,layer) >

dogDescriptors{octave}(row,column-1,1,layer) && ...
 dogDescriptors{octave}(row,column,1,layer) >

dogDescriptors{octave}(row+1,column-1,1,layer) && ...
 dogDescriptors{octave}(row,column,1,layer) >

dogDescriptors{octave}(row+1,column,1,layer) && ...
 dogDescriptors{octave}(row,column,1,layer) >

dogDescriptors{octave}(row,column+1,1,layer) && ...
 dogDescriptors{octave}(row,column,1,layer) >

dogDescriptors{octave}(row-1,column+1,1,layer) && ...
 dogDescriptors{octave}(row,column,1,layer) >

dogDescriptors{octave}(row-1,column,1,layer-1) && ...
 dogDescriptors{octave}(row,column,1,layer) >

dogDescriptors{octave}(row-1,column-1,1,layer-1) && ...
 dogDescriptors{octave}(row,column,1,layer) >

dogDescriptors{octave}(row,column-1,1,layer-1) && ...
 dogDescriptors{octave}(row,column,1,layer) >

dogDescriptors{octave}(row+1,column-1,1,layer-1) && ...
 dogDescriptors{octave}(row,column,1,layer) >

dogDescriptors{octave}(row+1,column,1,layer-1) && ...
 dogDescriptors{octave}(row,column,1,layer) >

dogDescriptors{octave}(row+1,column+1,1,layer-1) && ...
 dogDescriptors{octave}(row,column,1,layer) >

dogDescriptors{octave}(row,column+1,1,layer-1) && ...
 dogDescriptors{octave}(row,column,1,layer) >

dogDescriptors{octave}(row-1,column+1,1,layer-1) && ...

 dogDescriptors{octave}(row,column,1,layer) >

dogDescriptors{octave}(row,column,1,layer-1) && ...
 dogDescriptors{octave}(row,column,1,layer) >

dogDescriptors{octave}(row-1,column,1,layer+1) && ...
 dogDescriptors{octave}(row,column,1,layer) >

dogDescriptors{octave}(row-1,column-1,1,layer+1) && ...
 dogDescriptors{octave}(row,column,1,layer) >

dogDescriptors{octave}(row,column-1,1,layer+1) && ...
 dogDescriptors{octave}(row,column,1,layer) >

dogDescriptors{octave}(row+1,column-1,1,layer+1) && ...
 dogDescriptors{octave}(row,column,1,layer) >

dogDescriptors{octave}(row+1,column,1,layer+1) && ...
 dogDescriptors{octave}(row,column,1,layer) >

dogDescriptors{octave}(row+1,column+1,1,layer+1) && ...
 dogDescriptors{octave}(row,column,1,layer) >

dogDescriptors{octave}(row,column+1,1,layer+1) && ...
 dogDescriptors{octave}(row,column,1,layer) >

dogDescriptors{octave}(row-1,column+1,1,layer+1) && ...
 dogDescriptors{octave}(row,column,1,layer) >

dogDescriptors{octave}(row,column,1,layer+1)
 if(keypointsMap{octave,layer-1}(row,column) == 0)
 cant = cant + 1;
 isKeypoint = true;
 end
 end
 %checks if it is minima
 if dogDescriptors{octave}(row,column,1,layer) <

dogDescriptors{octave}(row-1,column,1,layer) && ...
 dogDescriptors{octave}(row,column,1,layer) <

dogDescriptors{octave}(row-1,column-1,1,layer) && ...
 dogDescriptors{octave}(row,column,1,layer) <

dogDescriptors{octave}(row,column-1,1,layer) && ...
 dogDescriptors{octave}(row,column,1,layer) <

dogDescriptors{octave}(row+1,column-1,1,layer) && ...
 dogDescriptors{octave}(row,column,1,layer) <

dogDescriptors{octave}(row+1,column,1,layer) && ...
 dogDescriptors{octave}(row,column,1,layer) <

dogDescriptors{octave}(row+1,column+1,1,layer) && ...
 dogDescriptors{octave}(row,column,1,layer) <

dogDescriptors{octave}(row,column+1,1,layer) && ...
 dogDescriptors{octave}(row,column,1,layer) <

dogDescriptors{octave}(row-1,column+1,1,layer) && ...
 dogDescriptors{octave}(row,column,1,layer) <

dogDescriptors{octave}(row-1,column,1,layer-1) && ...
 dogDescriptors{octave}(row,column,1,layer) <

dogDescriptors{octave}(row-1,column-1,1,layer-1) && ...
 dogDescriptors{octave}(row,column,1,layer) <

dogDescriptors{octave}(row,column-1,1,layer-1) && ...
 dogDescriptors{octave}(row,column,1,layer) <

dogDescriptors{octave}(row+1,column-1,1,layer-1) && ...
 dogDescriptors{octave}(row,column,1,layer) <

dogDescriptors{octave}(row+1,column,1,layer-1) && ...
 dogDescriptors{octave}(row,column,1,layer) <

dogDescriptors{octave}(row+1,column+1,1,layer-1) && ...
 dogDescriptors{octave}(row,column,1,layer) <

dogDescriptors{octave}(row,column+1,1,layer-1) && ...

 dogDescriptors{octave}(row,column,1,layer) <

dogDescriptors{octave}(row-1,column+1,1,layer-1) && ...
 dogDescriptors{octave}(row,column,1,layer) <

dogDescriptors{octave}(row,column,1,layer-1) && ...
 dogDescriptors{octave}(row,column,1,layer) <

dogDescriptors{octave}(row-1,column,1,layer+1) && ...
 dogDescriptors{octave}(row,column,1,layer) <

dogDescriptors{octave}(row-1,column-1,1,layer+1) && ...
 dogDescriptors{octave}(row,column,1,layer) <

dogDescriptors{octave}(row,column-1,1,layer+1) && ...
 dogDescriptors{octave}(row,column,1,layer) <

dogDescriptors{octave}(row+1,column-1,1,layer+1) && ...
 dogDescriptors{octave}(row,column,1,layer) <

dogDescriptors{octave}(row+1,column,1,layer+1) && ...
 dogDescriptors{octave}(row,column,1,layer) <

dogDescriptors{octave}(row+1,column+1,1,layer+1) && ...
 dogDescriptors{octave}(row,column,1,layer) <

dogDescriptors{octave}(row,column+1,1,layer+1) && ...
 dogDescriptors{octave}(row,column,1,layer) <

dogDescriptors{octave}(row-1,column+1,1,layer+1) && ...
 dogDescriptors{octave}(row,column,1,layer) <

dogDescriptors{octave}(row,column,1,layer+1)
 if(keypointsMap{octave,layer-1}(row,column) == 0)
 keypointsMap{octave,layer-1}(row,column) = 1;
 cant = cant + 1;
 isKeypoint = true;
 end
 end
 %checks the contrast - for now just the simplest way,
 %without doing tailor expansion
 if(isKeypoint==true)

if(abs(dogDescriptors{octave}(row,column,1,layer))<contrastLimit)
 keypointsMap{octave,layer-1}(row,column) = 0;
 isKeypoint = false;
 cant = cant - 1;
 end
 end
 %checks the points on the ridges
 if(isKeypoint==true)
 DerivativeYY = (dogDescriptors{octave}(row-

1,column,1,layer) + ...
 dogDescriptors{octave}(row+1, column, 1,

layer) - ...
 2.0*dogDescriptors{octave}(row, column, 1,

layer));
 DerivativeXX = (dogDescriptors{octave}(row,column-

1,1,layer) + ...
 dogDescriptors{octave}(row, column+1, 1,

layer) - ...
 2.0*dogDescriptors{octave}(row, column, 1,

layer));
 DerivativeXY = (dogDescriptors{octave}(row-1,column-

1,1,layer) + ...
 dogDescriptors{octave}(row+1,column+1,1,layer)

- ...
 dogDescriptors{octave}(row+1, column-1, 1,

layer) - ...

 dogDescriptors{octave}(row-1, column+1, 1,

layer))/4;
 trTerm = DerivativeXX + DerivativeYY;
 DeterminantH = DerivativeXX * DerivativeYY -

DerivativeXY*DerivativeXY;
 if(DeterminantH<0)
 % DeterminantH
 end
 ratio = (trTerm*trTerm)/DeterminantH;

 %r=10 is the value proposed in section 4.1 of Lowe
 %paper, however experimentally 5 seems to be better
 %ratio
 threshold = ((5+1)^2)/5;
 if(ratio>=threshold || DeterminantH<0)
 keypointsMap{octave,layer-1}(row,column) = 0;
 isKeypoint = false;
 cant = cant -1;
 end
 end
 end
 end
 end
 end
 withPointsImage = originalImage;
 returnData = cell(4,1);
 returnData{1} = keypointsMap;
 returnData{2} = withPointsImage;
 returnData{3} = dogDescriptors;
 %number of keypoints
 returnData{4} = cant;
% qtyDep
 cant;
 calculateKeypoints = returnData;
end

APPENDIX VI

CHECK KERNEL

To construct a kernel, following code is used.

function K = constructKernel(fea_a,fea_b,options)
% function K = constructKernel(fea_a,fea_b,options)
% Usage:
% K = constructKernel(fea_a,[],options)
%
% K = constructKernel(fea_a,fea_b,options)
%
% fea_a, fea_b : Rows of vectors of data points.
%
% options : Struct value in Matlab. The fields in options that can
% be set:
% KernelType - Choices are:
% 'Gaussian' - e^{-(|x-y|^2)/2t^2}
% 'Polynomial' - (x'*y)^d
% 'PolyPlus' - (x'*y+1)^d
% 'Linear' - x'*y
%
% t - parameter for Gaussian
% d - parameter for Poly
%
% version 1.0 --Sep/2006
%
% Written by Deng Cai (dengcai2 AT cs.uiuc.edu)
%
if (~exist('options','var'))
 options = [];
else
 if ~isstruct(options)
 error('parameter error!');
 end
end
%===
if ~isfield(options,'KernelType')
 options.KernelType = 'Gaussian';
end
switch lower(options.KernelType)
 case {lower('Gaussian')} % e^{-(|x-y|^2)/2t^2}
 if ~isfield(options,'t')
 options.t = 1;
 end
 case {lower('Polynomial')} % (x'*y)^d
 if ~isfield(options,'d')
 options.d = 2;
 end
 case {lower('PolyPlus')} % (x'*y+1)^d
 if ~isfield(options,'d')
 options.d = 2;
 end
 case {lower('Linear')} % x'*y
 otherwise
 error('KernelType does not exist!');

end
%===
switch lower(options.KernelType)
 case {lower('Gaussian')}
 if isempty(fea_b)
 D = EuDist2(fea_a,[],0);
 else
 D = EuDist2(fea_a,fea_b,0);
 end
 K = exp(-D/(2*options.t^2));
 case {lower('Polynomial')}
 if isempty(fea_b)
 D = full(fea_a * fea_a');
 else
 D = full(fea_a * fea_b');
 end
 K = D.^options.d;
 case {lower('PolyPlus')}
 if isempty(fea_b)
 D = full(fea_a * fea_a');
 else
 D = full(fea_a * fea_b');
 end
 K = (D+1).^options.d;
 case {lower('Linear')}
 if isempty(fea_b)
 K = full(fea_a * fea_a');
 else
 K = full(fea_a * fea_b');
 end
 otherwise
 error('KernelType does not exist!');
end
if isempty(fea_b)
 K = max(K,K');
end

APPENDIX VII

DEFINE ORIENTATION

SIFT features not only have magnitude but also a direction. So, following code is to define the

orientation.

function defineOrientation=defineOrientation(genDescriptor, dogDescriptor,

...
 octaveDescriptor, originalImage, accumSigmas)
 %First, the gradient magnitudes and orientations are calculated for
 %each pixel in each of L scaled images, such as indicated in the
 %paragraph 2 of section 5 of 1, later these magnitudes/orientations
 keypointDescriptor = genDescriptor{1};
 orientMagn =

cell(size(octaveDescriptor,1),size(octaveDescriptor{1},4),2);
 for octaveId = 1:size(octaveDescriptor,1)
 for scaleId = 1:size(octaveDescriptor{octaveId},4)
 %in order not to iterate over each pixel, I will try to calculate

the gradient using
 %filter and matrix operations:
 %filter for calculating diffX:
 filterDiffX = [0 0 0; -1 0 1; 0 0 0];
 diffXMat = imfilter(octaveDescriptor{octaveId}(:,:,1,scaleId),

filterDiffX);
 %filter for calculating diffY:
 filterDiffY = [0 1 0; 0 0 0; 0 -1 0];
 diffYMat = imfilter(octaveDescriptor{octaveId}(:,:,1,scaleId),

filterDiffY);
 %get the magnitude operating directly on matrixes:
 magnMat = sqrt(diffXMat.*diffXMat + diffYMat.*diffYMat);
 %do similar thing for orientation
 orientMat = atan2(diffYMat, diffXMat);
 %however, the atan function only gives the orientation respect
 %to a particular quadrant, atan2 function must be used
 %store magnitude and orientation, so they can be used later on
 orientMagn{octaveId}{scaleId}{1} = magnMat;
 orientMagn{octaveId}{scaleId}{2} = orientMat;
 end
 end
 %four elements for each layer in the octave: coordinates, histograms,
 %position of best histograms
 orientationDescriptor = cell(size(keypointDescriptor,

1),size(keypointDescriptor,2));
 %36 buckets in histogram
 hist = zeros(36,1);
 cant = 0;
 %for each keypoints octave
 for octave = 1:size(keypointDescriptor, 1)
 %for each keypoints layer
 for kptLayer = 1:size(keypointDescriptor,2)
 %Once the magnitudes and orientations have been calculated, it is
 %necessary to calculate the orientation histogram explained in

slides
 %36 and 37 of [2] seen in class. There is one histogram for each
 %keypoing, each one can have one or more orientations.

 %gets the indices of all the elements that are keypoints in a
 %particular keypoint level.
 [rowKpt colKpt] = find(keypointDescriptor{octave,kptLayer} == 1);

 %gaussian kernel with sigma 1.5 times of the sigma
 %corresponding to the scale of the keypoint
 %TODO: kptLayer or kptLayer+1?
 accumSigma = accumSigmas(octave, kptLayer)*1.5;
 weightKernel = fspecial('gaussian',[round(accumSigma*6-1)

round(accumSigma*6-1)], accumSigma);
 knlHeight = size(weightKernel,1);
 knlWidth = size(weightKernel,2);
 winHeight = size(orientMagn{octave}{kptLayer}{1},1);
 winWidth = size(orientMagn{octave}{kptLayer}{1},2);
 %-------new part to see if improves
 totWeighted = orientMagn{octave}{kptLayer}{1};

%orientMagn{octave}{kptLayer}{1};

%conv2(orientMagn{octave}{kptLayer}{1},weightKernel);
 %-------end new part
 for keypoint = 1:size([rowKpt colKpt],1)
 xfrom = round(colKpt(keypoint)-knlWidth/2);
 xto = round(colKpt(keypoint)+knlWidth/2-1);
 yfrom = round(rowKpt(keypoint)-knlHeight/2);
 yto = round(rowKpt(keypoint)+knlHeight/2-1);
 truncXKnlLeft = 0;
 truncXKnlRight = 0;
 truncYKnlTop = 0;
 truncYKnlBottom = 0;
 if(xfrom<1)
 xfrom = 1;
 truncXKnlLeft = knlWidth-(xto-xfrom)-1;
 end
 if(yfrom<1)
 yfrom = 1;
 truncYKnlTop = knlHeight-(yto-yfrom)-1;
 end
 if(xto>winWidth)
 xto = winWidth;
 truncXKnlRight = knlWidth-truncXKnlLeft-(xto-xfrom+1);
 end
 if(yto>winHeight)
 yto=winHeight;
 truncYKnlBottom = knlHeight - truncYKnlTop-(yto-yfrom+1);
 end
 %truncates kernel if necessary
 weightKernelEval =
 %gets the matrix of magnitude values
% magnitudes =

orientMagn{octave}{kptLayer}{1}(yfrom:yto,xfrom:xto);
 magnitudes = totWeighted(yfrom:yto,xfrom:xto);
 cant=cant+1;
 %applies the weight of the kernel to matrix, getting
 %weighted magnitudes
 magnitudes = weightKernelEval.*magnitudes;
 %gets the matrix of orientations
 orientations =

orientMagn{octave}{kptLayer}{2}(yfrom:yto,xfrom:xto);

 %transforms orientations to degrees in order to distribute
 %them into buckets
 orientations = (orientations.*180)./pi; % + 180;
 %for each bucket get the magnitudes
 for bucket=1:36
 bucketRangeFrom = (bucket-19)*10;
 bucketRangeTo = (bucket-18)*10;
 [rowOr, colOr] = find(orientations<bucketRangeTo &

orientations>=bucketRangeFrom);
% indexes = sub2ind(size(weightedMagnitudes),rowOr,colOr);
% hist(bucket) = sum(weightedMagnitudes(indexes));
 indexes = sub2ind(size(magnitudes),rowOr,colOr);
 hist(bucket) = sum(magnitudes(indexes));
 end
 %finds the position of highest peak of the histogram
 posMaxHist = find(hist==max(hist));
 %finds those that are within 80% of the highest peak
 posOtherHist = find(hist>(max(hist)-

max(hist)*0.2)&hist~=hist(posMaxHist(1)));
 posAllHist = zeros(1,1);
 if(size(posOtherHist,1)>0)
 posAllHist = cat(2,posMaxHist,posOtherHist.');
 else
 posAllHist = posMaxHist;
 end
 interpolatedOrientations = zeros(size(posAllHist,1),1);
 %in section 5 (par 4) of [1] says: "Finally, a parabola is

fit to the 3 histogram values
 %closest to each peak to interpolate the peak position for
 %better accuracy".
 for currentBestHist = 1:size(posAllHist,2)
 posHist = posAllHist(currentBestHist);
 x1 = posHist-1;
 x2 = posHist;
 x3 = posHist+1;
 y1 = 0;
 y2 = hist(x2);
 y3 = 0;
 %in order not to lose the topology
 if(x1<1)
 y1 = hist(36);
 else
 y1 = hist(x1);
 end
 if(x3>36)
 y3 = hist(1);
 else
 y3 = hist(x3);
 end
 valsX = [x1-0.5 x2-0.5 x3-0.5];
% valsX = [x1 x2 x3];
 valsY = [y1 y2 y3];
 pars = polyfit(valsX,valsY,2);
 %result of derivative = 0 to see where is the parabolic

maxima
 xMax = (pars(2)*(-1))/(2*pars(1));

 xMax = xMax;
 if(xMax<0)
 xMax = 36+xMax;
 end
 if(xMax>36)
 xMax = xMax-36;
 end
 %now, convert to degrees
 xMax = xMax * 10;
 interpolatedOrientations(currentBestHist) = xMax;
 end
 %creates the structure with the data
 histDescriptor = struct('octave', octave, ...
 'layer', kptLayer, ...
 'position',[rowKpt(keypoint)

colKpt(keypoint)], ...
 'histogram', hist, ...
 'bestHist', posAllHist.', ...
 'interpOrien',

interpolatedOrientations.', ...
 'theBestHist', posMaxHist);

orientationDescriptor{octave}{kptLayer}(rowKpt(keypoint),colKpt(keypoint)) =

histDescriptor;
 end
 end
 end
 %returns orientation descriptor along with magnitudes and orientations
 retCell = cell(2);
 retCell{1} = orientationDescriptor;
 retCell{2} = orientMagn;
 defineOrientation = retCell;
end

APPENDIX VIII

DETECT FACE PARTS

Computer vision toolbox in matlab is used to detect the face parts.

function [bbox,bbX,faces,bbfaces] = detectFaceParts(detector,X,thick)
if(nargin < 3)
 thick = 1;
end
%%%%%%%%%%%%%%%%%%%%%%% detect face %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Detect faces
bbox = step(detector.detector{5}, X);
bbsize = size(bbox);
partsNum = zeros(size(bbox,1),1);
%%%%%%%%%%%%%%%%%%%%%%% detect parts %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
nameDetector = {'LeftEye'; 'RightEye'; 'Mouth'; 'Nose'; };
mins = [[12 18]; [12 18]; [15 25]; [15 18];];
stdsize = detector.stdsize;
for k=1:4
 if(k == 1)
 region = [1,int32(stdsize*2/3); 1, int32(stdsize*2/3)];
 elseif(k == 2)
 region = [int32(stdsize/3),stdsize; 1, int32(stdsize*2/3)];
 elseif(k == 3)
 region = [1,stdsize; int32(stdsize/3), stdsize];
 elseif(k == 4)
 region = [int32(stdsize/5),int32(stdsize*4/5); int32(stdsize/3),stdsize];
 else
 region = [1,stdsize;1,stdsize];
 end
 bb = zeros(bbsize);
 for i=1:size(bbox,1)
 XX = X(bbox(i,2):bbox(i,2)+bbox(i,4)-1,bbox(i,1):bbox(i,1)+bbox(i,3)-1,:);
 XX = imresize(XX,[stdsize, stdsize]);
 XX = XX(region(2,1):region(2,2),region(1,1):region(1,2),:);
 b = step(detector.detector{k},XX);
 if(size(b,1) > 0)
 partsNum(i) = partsNum(i) + 1;
 if(k == 1)
 b = sortrows(b,1);
 elseif(k == 2)
 b = flipud(sortrows(b,1));
 elseif(k == 3)
 b = flipud(sortrows(b,2));
 elseif(k == 4)
 b = flipud(sortrows(b,3));
 end
 ratio = double(bbox(i,3)) / double(stdsize);
 b(1,1) = int32((b(1,1)-1 + region(1,1)-1) * ratio + 0.5) +

bbox(i,1);
 b(1,2) = int32((b(1,2)-1 + region(2,1)-1) * ratio + 0.5) + bbox(i,2);
 b(1,3) = int32(b(1,3) * ratio + 0.5);
 b(1,4) = int32(b(1,4) * ratio + 0.5);
 bb(i,:) = b(1,:);
 end
 end

 bbox = [bbox,bb];
 p = (sum(bb') == 0);
 bb(p,:) = [];
end

%%%%%%%%%%%%%%%%%%%%%%% draw faces %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
bbox = [bbox,partsNum];
bbox(partsNum<=2,:)=[];
if(thick >= 0)
 t = (thick-1)/2;
 t0 = -int32(ceil(t));
 t1 = int32(floor(t));
else
 t0 = 0;
 t1 = 0;
end
bbX = X;
boxColor = [[0,255,0]; [255,0,255]; [255,0,255]; [0,255,255]; [255,255,0];];
for k=5:-1:1
 shapeInserter =

vision.ShapeInserter('BorderColor','Custom','CustomBorderColor',boxColor(k,:)

);
 for i=t0:t1
 bb = int32(bbox(:,(k-1)*4+1:k*4));
 bb(:,1:2) = bb(:,1:2)-i;
 bb(:,3:4) = bb(:,3:4)+i*2;
 bbX = step(shapeInserter, bbX, bb);
 end
end
%%%%%%%%%%%%%%%%%%%%%%% faces %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if(nargout > 2)
 faces = cell(size(bbox,1),1);
 bbfaces = cell(size(bbox,1),1);
 for i=1:size(bbox,1)
 faces{i,1} = X(bbox(i,2):bbox(i,2)+bbox(i,4)-

1,bbox(i,1):bbox(i,1)+bbox(i,3)-1,:);
 bbfaces{i,1} = bbX(bbox(i,2):bbox(i,2)+bbox(i,4)-

1,bbox(i,1):bbox(i,1)+bbox(i,3)-1,:);
 end
end

APPENDIX IX

DETECT ROATATION IN FACE PARTS

Code is to detect how much rotation is there in face as compared to a frontal image.

function [fourpoints,bbX,faces,bbfaces] =

detectRotFaceParts(detector,X,thick,rotate)
if(nargin < 4)
 rotate = 15;
end
if(nargin < 3)
 thick = 1;
end
rotate = [0:rotate:360-rotate/2];
srcOrg = [size(X,2);size(X,1)]/2+0.5;
fourpoints = [];
k = 1;
for deg = rotate
 R = imrotate(X,deg,'bicubic');
 bbox = detectFaceParts(detector,R);
 if(size(bbox,1) >= 1)
 dstOrg = [size(R,2);size(R,1)]/2+0.5;
 fourpoints = vertcat(fourpoints,bbox2fourpoint(bbox,srcOrg,dstOrg,deg));
 end
end
fourpoints = mergeFourPoints(fourpoints);
if(nargout >= 2)
 bbX = drawFourPoints(X,fourpoints,thick);
 if(nargout >= 3)
 faces = cell(size(fourpoints,1),1);
 bbfaces = cell(size(fourpoints,1),1);
 leng = round(sqrt(three2area(fourpoints(:,1:2), fourpoints(:,3:4),

fourpoints(:,5:6)) + three2area(fourpoints(:,1:2), fourpoints(:,7:8),

fourpoints(:,5:6))));
 for i=1:size(fourpoints,1)
 U = [1,1;leng(i,1)-1,1;leng(i,1)-1,leng(i,1)-1;1,leng(i,1)-1];
 V = [fourpoints(i,1:2); fourpoints(i,3:4); fourpoints(i,5:6);

fourpoints(i,7:8)];
 T = maketform('projective',V,U);
 faces{i,1} =

imtransform(X,T,'bicubic','XData',[1,leng(i,1)],'YData',[1,leng(i,1)]);
 bbfaces{i,1} =

imtransform(bbX,T,'bicubic','XData',[1,leng(i,1)],'YData',[1,leng(i,1)]);
 end
 end
end
function fourpoint = bbox2fourpoint(bbox, srcOrg, dstOrg, deg)
T = [cos(deg*pi/180), -sin(deg*pi/180); sin(deg*pi/180), cos(deg*pi/180)];
fourpoint = zeros(size(bbox,1), 2*4*5+1);
for i=1:size(bbox,1)
 for j=0:4
 if(bbox(i,j*4+1) > 0 && bbox(i,j*4+2) > 0)
 x = bbox(i,j*4+1:j*4+2)' - dstOrg;
 y = T * x + srcOrg;

 fourpoint(i,j*8+1:j*8+2) = y';
 x = bbox(i,j*4+1:j*4+2)' + [bbox(i,j*4+3);0] - dstOrg;
 y = T * x + srcOrg;
 fourpoint(i,j*8+3:j*8+4) = y';
 x = bbox(i,j*4+1:j*4+2)' + [bbox(i,j*4+3);bbox(i,j*4+4)] - dstOrg;
 y = T * x + srcOrg;
 fourpoint(i,j*8+5:j*8+6) = y';
 x = bbox(i,j*4+1:j*4+2)' + [0;bbox(i,j*4+4)] - dstOrg;
 y = T * x + srcOrg;
 fourpoint(i,j*8+7:j*8+8) = y';
 end
 end
 fourpoint(i,2*4*5+1) = deg;
end
%%%
%%%
function area = three2area(xy1, xy2, xy3)
xy1 = xy1 - xy3;
xy2 = xy2 - xy3;
area = abs(xy1(:,1) .* xy2(:,2) - xy1(:,2) .* xy2(:,1)) / 2;

APPENDIX X

MATCHING OF DESCRIPTORS OF TWO IMAGES

Code is to compare two descriptors or SIFT features.

%get matches between descriptors of two different images
function getMatches = getMatches(descriptorImage1, descriptorImage2)
 %in [1] it is recommended also to take into account the second nearest
 %neighbour and ignore it if the distance is more than 0.8 between these
 %two neighbours
 cant = 0;
 matches = repmat(struct('descriptorIm1',descriptorImage1(1), ...
 'descriptorIm2',descriptorImage2(1)), size(descriptorImage1,1),1);
 indexMatches = 1;
 for keypointIm1 = 1:size(descriptorImage1,1)
 bestL2Diff=9999999999;
 bestL2Index = -1;
 secondBestL2Diff=9999999999;
 for keypointIm2 = 1:size(descriptorImage2,1)
 l2Difference = getL2Difference(descriptorImage1(keypointIm1), ...
 descriptorImage2(keypointIm2));
 if(l2Difference<bestL2Diff)
 secondBestL2Diff = bestL2Diff;
 bestL2Diff = l2Difference;
 bestL2Index = keypointIm2;
 if(secondBestL2Diff==9999999999)
 secondBestL2Diff = l2Difference;
 end
 end
 end
 diffBestSecond = secondBestL2Diff-bestL2Diff;
 ratioBestSecond = double(bestL2Diff)/double(diffBestSecond);
 if(diffBestSecond~=0 && bestL2Diff~=0 && ratioBestSecond>1.3)
 %ignore the keypoint
 %'ignore'
 ratioBestSecond;
 else
 %add the keypoint to matches
 matchStruct = struct('descriptorIm1',

descriptorImage1(keypointIm1), ...
 'descriptorIm2',

descriptorImage2(bestL2Index));

 matches(indexMatches) = matchStruct;
 indexMatches = indexMatches + 1;
 end
 end
 getMatches = matches;
 indexMatches
 function getL2Difference = getL2Difference(descriptor1, descriptor2)
 cant = cant+1;
 l2Diff = [];
 if(cant==40641)
 l2Diff = sqrt(sum((descriptor1.kptDescriptor-

descriptor2.kptDescriptor).^2));
 end

 l2Diff = sqrt(sum((descriptor1.kptDescriptor-

descriptor2.kptDescriptor).^2));
 getL2Difference = l2Diff;

APPENDIX XI

SIFT DESCRIPTOR

Code is to calculate the SIFT descriptor of an input image and to plot it.

function siftDescriptor = siftDescriptor()
 image1 = imread('siftface.jpg');
 %image2 = imread('model2.png');
 %define the scale space
 retScaleSpace = scaleSpace(image1,4,3);
 octaveStack = retScaleSpace{1};
 accumSigmas = retScaleSpace{2};
 octaveDOGStack = calculateDog(octaveStack);
 keypoints = calculateKeypoints(octaveDOGStack, image1);
 orientationDef = defineOrientation(keypoints, octaveDOGStack, ...
 octaveStack, image1, accumSigmas);
 descriptor = localDescriptor_v3(orientationDef, keypoints, ...
 accumSigmas, size(image1,1)*2, size(image1,2)*2);
%to plot the descriptor, uncomment and comment the rest of the code below
figure,
 plotDescriptor(descriptor, image1, orientationDef, keypoints);
 retScaleSpace2 = scaleSpace(image2,4,3);
 octaveStack2 = retScaleSpace2{1};
 accumSigmas2 = retScaleSpace2{2};
 octaveDOGStack2 = calculateDog(octaveStack2);
 keypoints2 = calculateKeypoints(octaveDOGStack2, image2);
 orientationDef2 = defineOrientation(keypoints2, octaveDOGStack2, ...
 octaveStack2, image2, accumSigmas2);
 descriptor2 = localDescriptor_v3(orientationDef2, keypoints2, ...
 accumSigmas2, size(image2,1)*2, size(image2,2)*2);
 plotDescriptor(descriptor2, image2, orientationDef2, keypoints2);
 matches = getMatches(descriptor, descriptor2);
 plotMatches(image1,image2,matches);
 siftDescriptor = keypoints;
end

 APPENDIX XII

SVM CLASSIFY

To classify images, SVM code is as follows.

% Load Datasets
Dataset = 'TrainDataBase';
Testset = 'TestDataBase';
% we need to process the images first.
% Convert your images into grayscale
% Resize the images
width=100; height=100;
DataSet = cell([], 1);
 for i=1:length(dir(fullfile(Dataset,'*.jpg')))
 % Training set process
 k = dir(fullfile(Dataset,'*.jpg'));
 k = {k(~[k.isdir]).name};
 for j=1:length(k)
 tempImage = imread(horzcat(Dataset,filesep,k{j}));
 imgInfo = imfinfo(horzcat(Dataset,filesep,k{j}));
 % Image transformation
 if strcmp(imgInfo.ColorType,'grayscale')
 DataSet{j} = double(imresize(tempImage,[width height])); %

array of images
 else
 DataSet{j} = double(imresize(rgb2gray(tempImage),[width

height])); % array of images
 end
 end
 end
TestSet = cell([], 1);
 for i=1:length(dir(fullfile(Testset,'*.jpg')))
 % Training set process
 k = dir(fullfile(Testset,'*.jpg'));
 k = {k(~[k.isdir]).name};
 for j=1:length(k)
 tempImage = imread(horzcat(Testset,filesep,k{j}));
 imgInfo = imfinfo(horzcat(Testset,filesep,k{j}));
 % Image transformation
 if strcmp(imgInfo.ColorType,'grayscale')
 TestSet{j} = double(imresize(tempImage,[width height])); %

array of images
 else
 TestSet{j} = double(imresize(rgb2gray(tempImage),[width

height])); % array of images
 end
 end
 end
train_label =

zeros(size(length(dir(fullfile(Dataset,'*.jpg'))),1),1);
train_label(1:8,1) = 1;
train_label(8:length(dir(fullfile(Dataset,'*.jpg'))),1) = 2;
% Prepare numeric matrix for svmtrain
Training_Set=[];
for i=1:length(DataSet)

 Training_Set_tmp = reshape(DataSet{i},1, 100*100);
 Training_Set=[Training_Set;Training_Set_tmp];
end
Test_Set=[];
for j=1:length(TestSet)
 Test_set_tmp = reshape(TestSet{j},1, 100*100);
 Test_Set=[Test_Set;Test_set_tmp];
end
% Perform first run of svm
SVMStruct = svmtrain(Training_Set , train_label, 'kernel_function',

'linear');
Group = svmclassify(SVMStruct, Test_Set);

APPENDIX XIII

SIFT

This function reads an image and returns its SIFT keypoints.

% [image, descriptors, locs] = sift(imageFile)
%
%
% Input parameters:
% imageFile: the file name for the image.
%
% Returned:
% image: the image array in double format
% descriptors: a K-by-128 matrix, where each row gives an invariant
% descriptor for one of the K keypoints. The descriptor is a vector
% of 128 values normalized to unit length.
% locs: K-by-4 matrix, in which each row has the 4 values for a
% keypoint location (row, column, scale, orientation). The
% orientation is in the range [-PI, PI] radians.
%
function [image, descriptors, locs] = sift(imageFile)
% Load image
%imagefile='model1.png';
image = imread(imageFile);
% If you have the Image Processing Toolbox, you can uncomment the following
% lines to allow input of color images, which will be converted to

grayscale.
 if isrgb1(image)
 image = rgb2gray(image);
 end
[rows, cols] = size(image);
% Convert into PGM imagefile, readable by "keypoints" executable
f = fopen('tmp.pgm', 'w');
if f == -1
 error('Could not create file tmp.pgm.');
end
fprintf(f, 'P5\n%d\n%d\n255\n', cols, rows);
fwrite(f, image', 'uint8');
fclose(f);
% Call keypoints executable
if isunix
 command = '!./sift ';
else
 command = '!siftWin32 ';
end
command = [command ' <tmp.pgm >tmp.key'];
eval(command);
% Open tmp.key and check its header
g = fopen('tmp.key', 'r');
if g == -1
 error('Could not open file tmp.key.');
end
[header, count] = fscanf(g, '%d %d', [1 2]);
if count ~= 2
 error('Invalid keypoint file beginning.');
end

num = header(1);
len = header(2);
if len ~= 128
 error('Keypoint descriptor length invalid (should be 128).');
end
% Creates the two output matrices (use known size for efficiency)
locs = double(zeros(num, 4));
descriptors = double(zeros(num, 128));
% Parse tmp.key
for i = 1:num
 [vector, count] = fscanf(g, '%f %f %f %f', [1 4]); %row col scale ori
 if count ~= 4
 error('Invalid keypoint file format');
 end
 locs(i, :) = vector(1, :);
 [descrip, count] = fscanf(g, '%d', [1 len]);
 if (count ~= 128)
 error('Invalid keypoint file value.');
 end
 % Normalize each input vector to unit length
 descrip = descrip / sqrt(sum(descrip.^2));
 descriptors(i, :) = descrip(1, :);
end
fclose(g);
%eval('!rm -f tmp.pgm');
%eval('!rm -f tmp.key');

APPENDIX XIV

SCALE SPACE

After constructing DOG function, Keypoints are taken at the scale space extreme Dog function

convolved with the image. Below code is for the same.

function scaleSpace=scaleSpace(image, octaves, scales)
 grayScaleIm = rgb2gray(image);
 grayScaleIm = double(grayScaleIm)/double(255.0);
 firstBlurSigma = 0.5;
 kernelSize = 15;
 %step 1: double the image size prior to building the first level of the

pyramid
 %this must be done after bluring the original image with gaussian of

sigma = 0.5. This is suggested in the section
 %3.3 in paper [2].
 initialBluredImage = gaussianBlur(grayScaleIm,firstBlurSigma,kernelSize);
 inDSI = imresize(grayScaleIm, 2, 'bilinear'); %grayScaleIm;

%imresize(grayScaleIm, 2, 'bilinear');
 initialDoubleSizeImage = inDSI;
% initialDoubleSizeImage =

gaussianBlur(initialDoubleSizeImage,1,kernelSize);
 %in section 3.3 of [2] is suggested to use sigma = 1.6
 initialSigma = sqrt(2); %1.6; %sqrt(2);
% initialSigma = 1.6;
 currentSigma = initialSigma;
 totScales = scales + 3;
 cellOctaves = cell(octaves,1);
 previousDoubleSizeImage = initialDoubleSizeImage ;
 %this matrix will contain the values of accumulated sigmas and will be
 %used to calculate orientation histogram weight later on
 accumSigmas = zeros(octaves, totScales);
 for octave = 1:octaves
 sigma = zeros(size(initialDoubleSizeImage,1),

size(initialDoubleSizeImage,2), size(initialDoubleSizeImage,3), totScales);
 cellOctaves{octave} = sigma;
 %it is done for 5 blur levels
 for blur_level = 1:totScales
% %in case of the first blur, in section 3.3 of [2] it states that

since the original image was pre-smoothed with sigma = 0.5,
% %"This means that little additional smoothing is needed prior to

creation of the first octave os scale space". Basically, we know that the

image is already blurred with
% %sigma = 1 (0.5 * 2 since it was upscaled) , we have to complete

the rest of the blur until reaching sigma = 1.6 (initialSigma), which can be

calculated using the following equation:
% %sqrt(initialSigma^2 - (2*0.5)^2), this is what I do next in the

code
%
% if(octave==1 && blur_level == 1)
% currentSigma = sqrt(initialSigma^2 - (2*firstBlurSigma)^2);
% end
 %method used to calculate accum sigmas was taken from

http://mathworld.wolfram.com/Convolution.html
 if (octave==1 && blur_level == 1)

 accumSigmas(octave,blur_level) = sqrt(((0.5*2)^2)

+(currentSigma^2));
 elseif (blur_level == 1)
 %TODO: the 3 must be parametrized as round(totScales/2)
% accumSigmas(octave,blur_level) = sqrt(((accumSigmas(octave-

1,3))^2) ...
% +(currentSigma^2));
 accumSigmas(octave,blur_level) = sqrt(((accumSigmas(octave-

1,3)/2)^2) ...
 +(currentSigma^2));
 else
 accumSigmas(octave,blur_level) =

sqrt((accumSigmas(octave,blur_level-1)^2) ...
 +(currentSigma^2));
 end
 k = (2^((blur_level)/scales));
% k = (2^((blur_level)/scales));
% bluredImage =

gaussianBlur(initialDoubleSizeImage,currentSigma,kernelSize);
 bluredImage =

gaussianBlur(previousDoubleSizeImage,currentSigma,kernelSize);
 previousDoubleSizeImage = bluredImage;
 %disp(['Octave ' num2str(octave) ' blur level '

num2str(blur_level) ' sigma ' num2str(currentSigma)]);
 cellOctaves{octave}(:, :, :, blur_level) = bluredImage;
 currentSigma = initialSigma * k;
 end
% cellOctaves{octave} = uint8(cellOctaves{octave});
 currentSigma = initialSigma;
 %in [2] it states to resample two images from the top (totScales-3)
 initialDoubleSizeImage =

reduceInHalf(cellOctaves{octave}(:,:,:,totScales-3));

%imresize(initialDoubleSizeImage, 0.5, 'bilinear');

%reduceInHalf(cellOctaves{octave}(:,:,:,3));

%imresize(initialDoubleSizeImage, 0.5, 'bilinear');
 previousDoubleSizeImage = initialDoubleSizeImage;
 end
 returnData = cell(2,1);
 %code just to check images
% subplot(1,2,1);
% imagesc(cellOctaves{4}(:,:,:,2));
% sigmaknl = accumSigmas(4,2);
% knl = fspecial('gaussian',[(round(6*sigmaknl)-1) (round(6*sigmaknl)-

1)],sigmaknl);
% for i = 1:4-1
% inDSI = reduceInHalf(inDSI);
% end
% inDSI = imfilter(inDSI,knl);
% subplot(1,2,2);
% imagesc(inDSI);
 %end code to check images
 returnData{1} = cellOctaves;
 returnData{2} = accumSigmas;
 scaleSpace = returnData;
 %As suggested in section 3 of paper [2], the reduction is done by taking

every second pixel
 function reduceInHalf = reduceInHalf(image)

 reduceInHalf=image(1:2:end,1:2:end) ;
 end
end

APPENDIX XV

LOCAL DESCRIPTOR

Code to create a local descriptor i.e. SIFT features

function localDescriptor_v3=localDescriptor_v3(orientationDef, genDescriptor,

accumSigmas, maxHeight, maxWidth)
%define some constants
%descriptor width recommended for each of the subregions
DESC_WIDTH = 4;
%number of bins in the histogram in descriptor array
DESC_HIST_BINS = 8;
%descriptor window size
DESC_WIN_SIZE = 16;
 keypoints = 0;
 keypointDescriptor = genDescriptor{1};
 qtyKeypoints = genDescriptor{4};
 keypointDescriptors = cell(size(keypointDescriptor,1),

size(keypointDescriptor,2), maxHeight, maxWidth);
 kptDescriptors =

repmat(struct('octave',0,'kptLayer',0,'kptDescriptor',zeros(4,4,8), ...
 'kptX',0,'kptY',0),qtyKeypoints,1)
 %for each of the keypoints, I calculate the orientation, then I rotate
 %the keypoint descriptor accordingly. Finally, calculate the keypoint
 %descriptor.
 cont = 0;
 for octave = 1:size(keypointDescriptor, 1)
 %for each keypoints layer
 for kptLayer = 1:size(keypointDescriptor,2)
 [rowKpt colKpt] = find(keypointDescriptor{octave,kptLayer} == 1);
 if(size(rowKpt,1)==0)
 continue;
 end
 keypointData = orientationDef{1}{octave}{kptLayer};
 magnitudes = orientationDef{2}{octave}{kptLayer}{1};
 orientations = orientationDef{2}{octave}{kptLayer}{2};
 %for each keypoint
 for keypoint = 1:size([rowKpt colKpt],1)
 keypointDetail =

keypointData(rowKpt(keypoint),colKpt(keypoint));
 %for each of the main orientations of the keypoint
 for orient = 1:size(keypointDetail.bestHist,1)
 kptDescriptor = zeros(128,1);
 cont = cont+1;
 keypoints = keypoints+1;
 degreeInd = orient;
 %get the degree to rotate
 degrees = keypointDetail.interpOrien(degreeInd);
 %the gaussian weights for the window
 gaussWeight = getGaussWeights(DESC_WIN_SIZE,

DESC_WIN_SIZE/2);
 %%%%%%%%%gets the coordinates of rotated imate and

rotates the image (of magnitudes)%%%%%%
 row = rowKpt(keypoint);
 col = colKpt(keypoint);

 v=[row, col]';
 c=[size(magnitudes,1)/2, size(magnitudes,2)/2]' ;
 %c=[304.5, 282.5]' ;
 rotAngle=degrees;
 rotAngle = 360 - rotAngle;
 rotMagnitudes= imrotate(magnitudes,rotAngle);
 %the rotation is also performed for orientations
 rotOrientations= imrotate(orientations,rotAngle);
 %this is rotation matrix such as explained by Erik
 RM=[cosd(rotAngle) -sind(rotAngle)
 sind(rotAngle) cosd(rotAngle)];
 temp_v=RM*(v-c);
 rot_v = temp_v+c;
 difmat = [(size(rotMagnitudes,1) - size(magnitudes,1))/2,

(size(rotMagnitudes,2) - size(magnitudes,2))/2]';
 rot_v2 = rot_v + difmat;
 rotRow = rot_v2(1);
 rotCol = rot_v2(2);
 %%%%%%%%%END: gets the coordinates of rotated imate and

rotates the image%%%%%%
 %the window is 16 x 16 pixels in the keypoint level
 for x = 0:DESC_WIN_SIZE-1
 for y = 0:DESC_WIN_SIZE-1
 %first identify subregion I am in
 subregAxisX = floor(x/4);
 subregAxisY = floor(y/4);
 yCoord = rotRow + y - DESC_WIN_SIZE/2;
 xCoord = rotCol + x - DESC_WIN_SIZE/2;
 yCoord = round(yCoord);
 xCoord = round(xCoord);
 %get the magnitude
if(yCoord>0&&xCoord>0&&yCoord<=size(rotMagnitudes,1) &&

xCoord<=size(rotMagnitudes,2))
 magn = rotMagnitudes(yCoord,xCoord);
 %multiply the magnitude by gaussian weight
 magn = magn*gaussWeight(y+1,x+1);
 orientation = rotOrientations(yCoord,xCoord);
 orientation = orientation + pi;
 %calculate the respective bucket
 bucket = (orientation)*(180/pi);
 bucket = ceil(bucket/45);
 kptDescriptor((subregAxisY*4+subregAxisX)*8 +

bucket) = ...

kptDescriptor((subregAxisY*4+subregAxisX)*8 + bucket) + magn;
 end
 end
 end
 %normalize the vector
 sqKptDescriptor = kptDescriptor.^2;
 sumSqKptDescriptor = sum(sqKptDescriptor);
 dem = sqrt(sumSqKptDescriptor);
 kptDescriptor = kptDescriptor./dem;
 %threshold
 kptDescriptor(find(kptDescriptor>0.2))=0.2;
 %Renormalizing again, as stated in 6.1 of [1]
 sqKptDescriptor = kptDescriptor.^2;
 sumSqKptDescriptor = sum(sqKptDescriptor);

 dem = sqrt(sumSqKptDescriptor);
 kptDescriptor = kptDescriptor./dem;
%

keypointDescriptors{octave}{kptLayer}{rowKpt(keypoint)}{rowKpt(keypoint)} =

kptDescriptor;
 kptDescriptors(cont) =

struct('octave',octave,'kptLayer',kptLayer, ...
 'kptDescriptor',kptDescriptor, ...

'kptX',colKpt(keypoint),'kptY',rowKpt(keypoint));
 end
 end
 end
 end
 %keypoints
 %return the keypoint descriptor
 %localDescriptor = keypointDescriptors;
 localDescriptor_v3 = kptDescriptors;
 %function that gets the gaussian weighted window
 function getGaussWeights = getGaussWeights(windowSize, sigma)
 k = fspecial('Gaussian', [windowSize windowSize], sigma);
 k = k.*(1/max(max(k)));
 getGaussWeights = k;
 end
end

APPENDIX XVI

PLOT DESCRIPTOR

Plots a particular descriptor, indicating keypoints and orientations.

function plotDescriptor = plotDescriptor(descriptor, image, orientationDef,

genDescriptor)
 clf;
% imagesc(image);
 keypointDescriptor = genDescriptor{1};
 orientations = orientationDef{1};
 %for each keypoints in octave plots the dots
 for octave = 1:size(keypointDescriptor, 1)
 %for each keypoints layer
 for kptLayer = 1:size(keypointDescriptor,2)
 [rowKpt colKpt] = find(keypointDescriptor{octave,kptLayer} == 1);
 for keypoint = 1:size([rowKpt colKpt],1)
 %plots the dot
 image = plotDot(image, rowKpt(keypoint), colKpt(keypoint),

octave);
 end
 end
 end
 imagesc(image);
 hold on;
 for octave = 1:size(keypointDescriptor, 1)
 %for each keypoints layer
 for kptLayer = 1:size(keypointDescriptor,2)
 [rowKpt colKpt] = find(keypointDescriptor{octave,kptLayer} == 1);
 for keypoint = 1:size([rowKpt colKpt],1)
 %plot the arrow with orientation and magnitude starting on
 %the dot, the length of the line also depends on the
 %octave in which the keypoint is located
 plotArrow(rowKpt(keypoint), colKpt(keypoint), octave, ...
 orientations{octave}{kptLayer}(rowKpt(keypoint),colKpt(keypoint)));
 end
 end
 end
 hold off;
 function plotArrow = plotArrow(row,col,octave, keypointDetail)
 %iterates on all the orientations in a particular keypoint and
 %draws them
 for orient = 1:size(keypointDetail.bestHist,1)
 %get the degree to rotate
 degrees = keypointDetail.interpOrien(orient);
 radians = (pi/180)*degrees ;
 magnitude =

keypointDetail.histogram(keypointDetail.bestHist(orient));
 %to see better magnitudes, the small ones are thresholded
 if(magnitude<6)
 magnitude = 6;
 end
 %proportional to the octave in which it was found
 magnitude = magnitude*octave;
 relRow = row;
 relCol = col;

 if(octave==1)
 relRow = round(row/2);
 relCol = round(col/2);
 end
 if(octave>2)
 relRow = row * (2^(octave-2));
 relCol = col * (2^(octave-2));
 end
 relCol ;
 relRow ;
 colTo = round(relCol + magnitude*cos(radians));
 rowTo = rowTo - relRow;
 h = quiver(relCol,relRow,colTo,rowTo, 'Color','w');
 adjust_quiver_arrowhead_size(h, 7.0);
 end
 end
 function plotDot = plotDot(image, row, col, octave)
 relRow = row;
 relCol = col;
 if(octave==1)
 relRow = round(row/2);
 relCol = round(col/2);
 end
 if(octave>2)
 relRow = row * (2^(octave-2));
 relCol = col * (2^(octave-2));
 end
 if(relRow==1)
 relRow = 2;
 end
 if(relCol==1)
 relCol = 2;
 end
 image(relRow,relCol,1) = 255;
 image(relRow,relCol,2) = 255;
 image(relRow,relCol,3) = 0;
 image(relRow-1,relCol-1,1) = 255;
 image(relRow-1,relCol-1,2) = 255;
 image(relRow-1,relCol-1,3) = 0;
 image(relRow+1,relCol+1,1) = 255;
 image(relRow+1,relCol+1,2) = 255;
 image(relRow+1,relCol+1,3) = 0;
 image(relRow-1,relCol+1,1) = 255;
 image(relRow-1,relCol+1,2) = 255;
 image(relRow-1,relCol+1,3) = 0;
 image(relRow+1,relCol-1,1) = 255;
 image(relRow+1,relCol-1,2) = 255;
 image(relRow+1,relCol-1,3) = 0;
 plotDot = image;
 end
end

APPENDIX XVII

PLOT MATCHES

It plots the matches of two images.

function plotMatches = plotMatches(image1, image2, matches)
 %first, build image with two images
 heightImage1 = size(image1,1);
 widthImage1 = size(image1,2);
 heightImage2 = size(image2,1);
 widthImage2 = size(image2,2);
 totFrameWidth = widthImage1 + widthImage2;
 if(heightImage1>heightImage2)
 totFrameHeight = heightImage1;
 else
 totFrameHeight = heightImage2;
 end
 combinedImage = ones(totFrameHeight, totFrameWidth,3);
 combinedImage(1:heightImage1, 1:widthImage1,:) = image1;
 combinedImage(1:heightImage2,(widthImage1+1):(widthImage2+widthImage1),:) =

image2;
 imagesc(double(combinedImage)/double(255));
 hold on;
 for match = 1:size(matches,1)
 desc1 = matches(match).descriptorIm1;
 desc2 = matches(match).descriptorIm2;
 octave1 = desc1.octave;
 xPos1 = desc1.kptX;
 yPos1 = desc1.kptY;
 if(octave1==1)
 xPos1 = round(xPos1/2);
 yPos1 = round(yPos1/2);
 end
 if(octave1>2)
 xPos1 = xPos1 * (2^(octave1-2));
 yPos1 = yPos1 * (2^(octave1-2));
 end
 octave2 = desc2.octave;
 xPos2 = desc2.kptX;
 yPos2 = desc2.kptY;
 if(octave2==1)
 xPos2 = round(xPos2/2);
 yPos2 = round(yPos2/2);
 end
 if(octave2>2)
 xPos2 = xPos2 * (2^(octave2-2));
 yPos2 = yPos2 * (2^(octave2-2));
 end
 xPos2 = widthImage1 + xPos2;
 plot([xPos1,xPos2],[yPos1,yPos2]);
 end
 hold off;
end

APPENDIX XVIII

GUI

Code to make graphical user interface.

function varargout = GUI(varargin)
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
 'gui_Singleton', gui_Singleton, ...
 'gui_OpeningFcn', @GUI_OpeningFcn, ...
 'gui_OutputFcn', @GUI_OutputFcn, ...
 'gui_LayoutFcn', [] , ...
 'gui_Callback', []);
if nargin && ischar(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
 gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT
% --- Executes just before GUI is made visible.
function GUI_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to GUI (see VARARGIN)
% Choose default command line output for GUI
handles.output = hObject;
% Update handles structure
guidata(hObject, handles);
% inimg = imread('inputimage.jpg');
% imshow(inimg,'Parent',handles.axes1);
%h=waitbar(0,'Loading..');
%createbin();
% UIWAIT makes GUI wait for user response (see UIRESUME)
% uiwait(handles.figure1);
% img = imread('1.jpg');
% imshow(img,'Parent',handles.axes1);
%set(handles.pushbutton1,'Visible','off');
drawnow();
%[out_img gender name] = FacialSimilarity(img,Seq,Names,label,d);
set(handles.axes2,'Visible','on');
set(handles.axes3,'Visible','on');
set(handles.axes4,'Visible','on');
% imshow(out_img{1},'Parent',handles.axes2);
% imshow(out_img{2},'Parent',handles.axes3);
% imshow(out_img{3},'Parent',handles.axes4);
% set(handles.text4,'String',gender);
% set(handles.text6,'String',name{1});
% set(handles.text7,'String',name{2});
% set(handles.text8,'String',name{3});
% --- Outputs from this function are returned to the command line.
function varargout = GUI_OutputFcn(hObject, eventdata, handles)

% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Get default command line output from handles structure
varargout{1} = handles.output;
% --- Executes on button press in pushbutton1.
function pushbutton1_Callback(hObject, eventdata, handles)
 global Seq Names label d
% [file path] = uigetfile('*.jpg');
% if(size(file,2)<=1)
% return;
% end
s=get(handles.text9,'String');
img = imread(s);
imshow(img,'Parent',handles.axes1);
set(handles.pushbutton1,'Visible','on');
set(handles.text4,'Visible','on');
drawnow();
[out_img gender name] = FacialSimilarity(img,Seq,Names,label,d);
set(handles.axes2,'Visible','on');
set(handles.axes3,'Visible','on');
set(handles.axes4,'Visible','on');
imshow(out_img{1},'Parent',handles.axes2);
imshow(out_img{2},'Parent',handles.axes3);
imshow(out_img{3},'Parent',handles.axes4);
set(handles.text4,'String',gender);
set(handles.text6,'String',name{1});
set(handles.text7,'String',name{2});
set(handles.text8,'String',name{3});
set(handles.pushbutton1,'Visible','on');
% hObject handle to pushbutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% --- Executes during object creation, after setting all properties.
function figure1_CreateFcn(hObject, eventdata, handles)
% hObject handle to figure1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% --- Executes on button press in pushbutton2.
function pushbutton2_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global Seq Names label d
[file path] = uigetfile('*.jpg');
if(size(file,2)<=1)
 return;
end
img = imread([path file]);
strT = strcat(path,file);
set(handles.text9,'String',strT);
set(handles.text11,'String',file);
imshow(img,'Parent',handles.axes1);
set(handles.pushbutton2,'enable','off');
set(handles.pushbutton3,'enable','on');
% --- Executes on button press in pushbutton3.

function pushbutton3_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton3 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
faceDetector = vision.CascadeObjectDetector;
s=get(handles.text9,'String');
I = imread(s);
bboxes = step(faceDetector, I);
IFaces = insertObjectAnnotation(I, 'rectangle', bboxes, 'Face');
 figure, imshow(IFaces), title('Detected faces');
set(handles.pushbutton2,'enable','off');
set(handles.pushbutton3,'enable','off');
set(handles.pushbutton6,'enable','on');
% --- Executes on button press in pushbutton4.
function pushbutton4_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton4 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
s=get(handles.text9,'String');
I1=imread (s);
figure()
%subplot(3,3,1),imshow(I1),title('Input1'),
[x1,y1,z1]=size(I1);
s1=[reshape(I1,[1,x1*y1*z1])];
S_all=[s1];
S=double(S_all);
Sweight=rand(size(S_all,1));
MixedS=Sweight*S;
ms1=reshape(MixedS(1,:),[x1,y1,z1]);
I1_mixed=uint8(round(ms1));
%subplot(3,3,4),imshow(I1_mixed),title('Mixed1'),
MixedS_bak=MixedS;
MixedS_mean=zeros(3,1);
for i=1:1
 MixedS_mean(i)=mean(MixedS(i,:));
end
for i=1:1
 for j=1:size(MixedS,2)
 MixedS(i,j)=MixedS(i,j)-MixedS_mean(i);
 end
end
MixedS_cov=cov(MixedS');
[E,D]=eig(MixedS_cov);
Q=inv(sqrt(D))*(E)';
MixedS_white=Q*MixedS;
IsI=cov(MixedS_white');
X=MixedS_white;
[VariableNum,SampleNum]=size(X);
numofIC=VariableNum;
B=zeros(numofIC,VariableNum);
for r=1:numofIC
 i=1;maxIterationsNum=150;
 b=2*(rand(numofIC,1)-.5);
 b=b/norm(b);
 while i<=maxIterationsNum+1
 if i == maxIterationsNum
 fprintf('No convergence¡£', r,maxIterationsNum);

 break;
 end
 bOld=b;
 u=1;
 t=X'*b;
 g=t.^3;
 dg=3*t.^2;
 b=((1-u)*t'*g*b+u*X*g)/SampleNum-mean(dg)*b;
 b=b-B*B'*b;
 b=b/norm(b);
 if abs(abs(b'*bOld)-1)<1e-10
 B(:,r)=b;
 break;
 end
 i=i+1;
 end
end
ICAedS=B'*Q*MixedS_bak;
ICAedS_bak=ICAedS;
ICAedS=abs(55*ICAedS);
is1=reshape(ICAedS(1,:),[x1,y1,z1]);
I1_icaed =uint8 (round(is1));
%subplot(3,3,7),imshow(I1_icaed),title('Restored1');
reqToolboxes = {'Computer Vision System Toolbox', 'Image Processing

Toolbox'};
if(~checkToolboxes(reqToolboxes))
 error('detectFaceParts requires: Computer Vision System Toolbox and Image

Processing Toolbox. Please install these toolboxes.');
end
str=get(handles.text9,'String');
img = imread(str);
detector = buildDetector();
[bbox bbimg faces bbfaces] = detectFaceParts(detector,img,2)
%figure;imshow(bbimg);
for i=1:size(bbfaces,1)
 set(handles.axes2,'visible','on');
 %figure()
axes(handles.axes5);
 imshow(bbfaces{i});
end
% --- Executes on button press in pushbutton6.
function pushbutton6_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton6 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
s=get(handles.text9,'String');
image1 = imread(s);
 %image2 = imread('model2.png');
 %define the scale space
 retScaleSpace = scaleSpace(image1,4,3);
 octaveStack = retScaleSpace{1};
 accumSigmas = retScaleSpace{2};
 octaveDOGStack = calculateDog(octaveStack);
 keypoints = calculateKeypoints(octaveDOGStack, image1);
 orientationDef = defineOrientation(keypoints, octaveDOGStack, ...
 octaveStack, image1, accumSigmas);
 descriptor = localDescriptor_v3(orientationDef, keypoints, ...

 accumSigmas, size(image1,1)*2, size(image1,2)*2);
 %U=keca(descriptor,1)
%to plot the descriptor, uncomment and comment the rest of the code below
figure,
 plotDescriptor(descriptor, image1, orientationDef, keypoints);
set(handles.pushbutton2,'enable','off');
set(handles.pushbutton3,'enable','off');
set(handles.pushbutton4,'enable','off');
set(handles.pushbutton6,'enable','off');
set(handles.pushbutton7,'enable','on');
% --- Executes on button press in pushbutton7.
function pushbutton7_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton7 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
s=get(handles.text11,'String');
st=sscanf(s, '%d')
svmclassify2
Dataset = 'TrainDataBase';
m=length(dir(fullfile(Dataset,'*.jpg')));
for m = 1:m
 %img_name = sortedImgs(m);
 img_name = int2str(st);
 str_name = strcat('TrainDataBase\', img_name, '.jpg');
 returnedImage = imread(str_name);
 imshow(returnedImage), title('Recognized Image');
end
set(handles.pushbutton2,'enable','off');
set(handles.pushbutton3,'enable','off');
set(handles.pushbutton4,'enable','off');
set(handles.pushbutton6,'enable','off');
set(handles.pushbutton7,'enable','off');

REFERENCES

[1] M. A. Turk, and A. P. Pentland, “Face recognition using eigenfaces,” Journal of cognitive

neuroscience, vol. 3, no. 1, pp. 586-591, 1991.

[2] Christopher J.C. Burges, “A Tutorial on Support Vector Machines for Pattern Recognition,”

Bell Laboratories, Lucent Technologies, June 1998.

[3] V. Vapnik, “Statistical Learning Theory,” New York: Wiley, Sep. 1998.

[4] W. Feng, Q. He, Y. Yan, G. Jin, and M. Wu, “Real-time human face recognition system with

high parallelism,” Proc. of SPIE, vol. 3817, pp. 108-115, 1999.

[5] Issam El-Naqa, Yongyi Yang, Miles N. Wernick, Nikolas P. Galatsanos and Robert M.

Nishikawa, “A Support Vector Machine Approach for Detection of Microcalcifications,” IEEE

Transactions on Medical Imaging, vol. 21, Dec. 2002.

[6] S. Arca, P. Campadelli, and R. Lanzarotti, “A face recognition system based on local feature

analysis,” Proc. of e 4th International Conference on Audio and Video-Based Biometric Person

Authentication, pp. 182-189, 2003.

[7] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Journal of Computer

Vision, vol. 60, no. 2, pp. 91-110, 2004.

[8] Y. Ke and R. Sukthankar, “Pca-sift: a more distinctive representation for local image

descriptors,”Proc. of IEEE Computer Society Conference on Computer Vision and Pattern

Recognition, pp.506-513, 2004.

[9] K. Mikolajczyk, and C. Schmid, “A performance evaluation of local descriptors,” IEEE Trans.

Pattern Analysis and Machine Intelligence, vol. 27, no. 10, pp. 1651-1630, 2005.

[10] C. L. Lin, T. C. Chuang, and K. C. Fan, “Palmprint verification using hierarchical

decomposition,” Journal of Pattern Recognition, vol. 38, no. 12, pp. 2639-2652, 2005.

[11] M. Bicego, A. Lagorio, E. Grosso, and M. Tistarelli, “On the use of sift features for face

authentication,” Proc. of Conference on Computer Vision and Pattern Recognition Workshop,

2006.

[12] L. Zhang, Q. Gao, and D. Zhang, “Block independent component analysis for face

recognition,” Journal of The 14th International Conference on Image Analysis and Processing,

vol. 27, no. 9, pp. 217-222, 2007.

[13] J. Luo, Y. Ma, E. Takikawa, S. Lao, M. Kawade, and B. L. Lu, “Person-specific sift

features for face recognition,” Proc. of The IEEE International Conference on Acoustics,

Speech and Signal Processing, pp. 593-596, 2007.

[14] D. Zhang, F. Song, Y. Xu, and Z. Liang, Advanced pattern recognition technologies with

applications to biometrics, IGI, Hershey, USA, 2008.

[15] D. Colbry, F. Oki, and G. Stockman, “3D face identification: experiments towards a large

gallery,” Proc. of SPIE, vol. 6944, pp. 694403-1-694403-9, 2008.

[16] Geng Du, Fei Su, Anni Cai, “Face recognition using SURF features,” Pattern Recognition

and Computer Vision, vol. 7496, Dec. 2009.

[17] Durgesh k. Srivastava, Lekha Bhambhu, “Data Classification Using Support Vector

Machine,” Journal of Theoretical and Applied Information Technology, Sep. 2009.

[18] M. A. Akhloufi, A. Bendada, and J. C. Batsale, “Multispectral face recognition using non

linear dimensionality reduction,” Proc. of International Society for Optical Engineering, pp.

73410J-1-73410J-10, 2009.

[19] C. Geng, “Face recognition using sift features,” Proc. of the 16th IEEE International

Conference on Image Processing, pp. 3313-3316, 2009.

[20] A. Majumdar, and R. K. Ward, “Discriminative sift features for face recognition,” Proc. of

Canadian Conference on Electrical and Computer Engineering, pp. 27-30, 2009.

[21] B. Dai, D. Zhang, H. Liu, S. Sun, and K. Li, “Evaluation of face recognition techniques,”

Proc. of SPIE, vol. 7489, pp. 74890M-1-74890M-7, 2009.

[22] C. Geng, and X. Jiang, “Face recognition using sift features,” Proc. of the 16th IEEE

International Conference on Image Processing, pp. 3277-3280, 2009.

[23] Y. Shi, D. Q. Dai, C. C. Liu, and H. Yan, “Sparse discriminant analysis for breast cancer

biomarker identification and classification,” Journal of Progress in Natural Science, vol. 19,

no. 11, pp. 1635-1641, 2009.

[24] E. Elhamifar, and R. Vidal, “Sparse subspace clustering,” Proc. of IEEE International

Conference on Computer Vision and Pattern Recognition, pp. 2790-2797, 2009.

[25] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma, “Robust face recognition via

sparse representation,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 31, no. 2,

pp. 210-227, 2009.

[26] Y. Xu, A. Zhong, J Yang, and David Zhangn, “Lpp solution schemes for use with face

recognition,” Journal of Pattern Recognition, vol. 43, no. 12, pp. 4165-4176, 2010.

[27] X. Li, A. Li, and X. Bai, “3D face detection and face recognition: state of the art and

trends,” Proc. of International Society for Optical Engineering, pp. 78201E-1-78201E-7, 2010.

[28] J. Kriˇzaj, V. ˇStruc and N. Paveˇsi´c, “Adaptation of sift features for robust face

recognition,” Proc. Of The 7th international conference on Image Analysis and Recognition,

pp. 394-404, 2010.

[29] Z. Lai, Z. Jin, J. Yang, and W. K. Wong, “Sparse local discriminant projections for feature

extraction,” Proc. of the 20th International Conference on Pattern Recognition, pp. 926-929,

2010.

[30] Y. Xu, D. Zhang, and J. Y. Yang, “A feature extraction method for use with bimodal

biometrics,” Journal of Pattern Recognition, Vol. 43, no. 3, pp. 1106-1115, 2010.

[31] J. Wright, Y. Ma, J. Mairal, G. Sapiro, T. Huang, and S. Yan, “Sparse representation for

computer vision and pattern recognition,” Proc. of IEEE, vol. 98, no. 6, pp. 1031-1044, 2010.

[32] Y. Xu, A. Zhong, J. Yang, and D. Zhanget, “Bimodal biometrics based on a representation

and recognition approach,” Journal of Optical Engineering, vol. 50, no. 3, pp. 037202-1-

037202-7, 2011.

[33] Wang, H., Yang, Gao, F. and Li, “Normalization Methods if SIFT Vector for Object

Recognition,” Tenth International Symposium on Distributed Computing and Applications to

Business Engineering and Science, pp. 175-178, Oct. 2011.

[34] Y. Xu, Q. Zhu, and D. Zhang, “Combine crossing matching scores with conventional

matching scores for bimodal biometrics and face and palmprint recognition experiments,”

Journal of Neurocomputing,vol. 74, no. 18, pp. 3946-3952, 2011.

[35] H. F. Wang, Y. Han, and Z. X. Zhang, “Applying local gabor ternary pattern for video-

based illumination variable face recognition,” Proc. of International Conference on Machine

Vision, pp.83490W-1-83490W-6, 2011.

[36] C. Y. Chang, C. W. Chang, and C. Y. Hsieh, “Applications of block linear discriminant

analysis for face recognition,” Journal of Information Hiding and Multimedia Signal

Processing, vol. 2, no. 3, pp.259-269, 2011.

[37] D. Y. Huang, C. J. Lin, and W. C. Hu, “Learning-based face detection by adaptive

switching of skin color models and AdaBoost under Varying Illumination,” Journal of

Information Hiding and Multimedia Signal Processing, vol. 2, no. 3, pp. 204-216, 2011.

[38] J. Wang, Q. Li, J. You, and Q. Zhao, “Fast kernel fisher discriminant analysis via

approximating the kernel principal component analysis,” Journal of Neurocomputing, vol. 74,

no. 17, pp. 3313V3322, 2011.

[39] L. Zhang, M. Yang, and X. Feng, “Sparse representation or collaborative representation:

which helps face recognition,” Proc. of IEEE International Conference on Computer Vision,

pp. 471-478, 2011.

[40] K. Vaishnavi, and G. P. R. Kumar, “Face recognition using passion back propagation

neural networks,” Journal of Computing Technology and Information Security, vol. 1, no. 2,

pp. 9-15, 2011.

[41] A. Mian, “Online learning from local features for video-based face recognition,” Journal

of Pattern Recognition, vol. 44, no. 5, pp. 1068-1075, 2011.

[42] Y. Xu, D. Zhang, J. Yang, and J. Y. Yang, “A two-phase test sample sparse representation

method for use with face recognition,” IEEE Trans. Circuits and Systems for Video

Technology, vol. 21, no.9, pp. 1255-1262, 2011.

[43] Y. Xu, Z. Fan, and Q. Zhu, “Feature space-based human face image representation and

recognition,” Journal of Optical Engineering, vol. 51, no. 1, pp. 017205-1-017205-7, 2012.

[44] Hirdesh Kumar, Padmavati, “Face Recognition using SIFT by varying Distance

Calculation Matching Method,” International Journal of Computer Applications, vol. 47, no.

3, June 2012.

[45] Hung-Fu Huang and Shen-Chuan Tai, “Facial Expression Recognition Using New Feature

Extraction Algorithm,” Electronic Letters on Computer Vision and Image Analysis, ISSN

1577-5097, Sept. 2012.

[46] Y. Xu, W. Zuo, and Z. Fan, “Supervised sparse representation method with a heuristic

strategy and face recognition experiments,” Journal of Neurocomputing, vol. 79, no. 1, pp.

125-131, 2012.

[47] M. K. Hsu, C. Hsu, T. N. Lee, and H. Szu, “Face recognition from a moving platform via

sparse representation,” Proc. of SPIE, vol. 8401, pp. 840106-1-840106-6, 2012.

[48] D. Y. Huang, C. H. Chen, W. C. Hu, S. C. Yi, and Y. F. Lin, “Feature-based vehicle flow

analysis and measurement for a real-time traffic surveillance system,” Journal of Information

Hiding and Multimedia Signal Processing, vol. 3, no. 3, pp. 279-294, 2012.

[49] Y. Xu, and Q. Zhu, A simple and fast representation-based face recognition method,

Springer, London, UK, 2012.

[50] Yu-Yao Wang, Zheng-Ming Li, Min Wang, Long Wang, “A Scale Invariant Feature

Transform Based Method”, Journal of Information Hiding and Multimedia Signal Processing,

vol. 4, no. 2, April 2013.

[51] Patrik Kamencay, Martina Zachariasova, Robert Hudec, Roman Jarina, Miroslav Benco,

Jan Hlubik, “A Novel Approach to Face Recognition using Image Segmentation Based on

SPCA-KNN Method,” Radio Engineering, vol. 22, no. 1, April 2013.

[52] Mr. Amit Kr. Gautam, Ms. Twisha, “Improved Face Recognition Technique using Sift,”

Journal of Electrical and Electronics Engineering, pp. 72-76, March 2014.

[53] G. Srividhya, Ms. B. Vijaya Lakshmi, “Face Recognition of Different Modalities Using

SIFT and LBP Features,” International Journal of Innovative Research in Science, Engineering

and Technology, issue 1, ISSN (online) 2319 – 8753, ISSN (print) 2347 – 6710, vol. 3, Feb.

2014.

[54] Isra’a Abdul-Ameer Abdul-Jabbar, Jieqing Tan, and Zhengfeng Hou, “Adaptive PCA-

SIFT Matching Approach for Face Recognition Application,” International MultiConference

of Engineers and Computer Scientists, vol. 1, March 2014.

[55] Trasha Gupta, Lokesh Garg, “Face Recognition Using SIFT,” International Journal of

Emerging Technology and Advanced Engineering, issue 5, vol. 4, May 2014.

[56] A. Martinez, and R. Benavente, “The ar face database,” 1998, http://www2.ece.ohio-

state.edu/~aleix/ARdatabase.html.

[57] P. J. Phillips, “The facial recognition technology (feret) database,”

http://www.itl.nist.gov/iad/humanid/feret/feret_master.html.

[58] Ajitkumar Deshmukh, Pritam Sirpotdar, Juber Sheikh, Prof. Dr. M. A. Joshi, “High

accuracy Face Recognition system based on SIFT,” International Journal of Advanced

Research in Computer Engineering & Technology, issue 6, vol. 4 , May 2015.

http://www2.ece.ohio-state.edu/~aleix/ARdatabase.html
http://www2.ece.ohio-state.edu/~aleix/ARdatabase.html
http://www.itl.nist.gov/iad/humanid/feret/feret_master.html

LIST OF PUBLICATIONS

[1] Kirti Bagla and Bharat Bhushan, “A novel approach for face recognition using hybrid SIFT-

SVM”, presented in IEEE 1st Internatinal Conference on Power Electronis, Intelligent control and

Energy Systems, ICPEICES-2016, Delhi, to be published on IEEE Explore.

