DEPARTMENT OF MECHANICAL ENGINEERING

CERTIFICATE

This is to certify that Thesis entitled "SIMULATION OF INERTIA FRICTION WELDING MILD STEEL AND ALUMINIUM USING FINITE ELEMENT METHOD ON ABAQUS" which is submitted by Pushpandra Nimesh (2K14/CDN/13) in partial fulfillment of the requirement for the award of degree M. Tech. in Department of Mechanical Engineering of Delhi Technological University, is a record of the candidate own work carried out by him under my supervision. The matter embodied in this thesis is original and has not been submitted for the award of any other degree/ certificate in any other institution/university.

(Dr. RAJIV CHAUDHARY)

Supervisor

(Dr. R.C. Singh)

Supervisor

DATE: 29/07/2016

PLACE: DELHI

ACKNOWLEDGEMENTS

It gives me a great sense of pleasure to present the Thesis of the M.Tech Major Project-IInd undertaken during M. Tech final Semester. I owe special debt of gratitude to Dr. Rajiv Chaudhary sir, Dr. R.S. Mishra sir (HOD), Dr. R.C. Singh Sir, Dr. Vikas Rastogi sir, Department of Mechanical Engineering, DTU, Mr. Radha Raman Sir, Department of Mechanical Engineering, JSS for their constant support and guidance throughout the course of our work. Their sincerity, thoroughness and perseverance have been a constant source of inspiration for me. It is only their cognizant efforts that our endeavors have seen light of the day.

I also do not like to miss the opportunity to acknowledge the contribution of all faculty members of the Department of Mechanical Engineering for their kind assistance and cooperation during the development of our project. Last but not the least I acknowledge my friends and family for their contribution in the completion of the project.

Signature Name: PUSHPANDRA NIMESH Roll No: 2K14/CDN/13 Date: 29/07/2016

ii

DECLARATION

I hereby declare that the thesis entitled "SIMULATION OF INERTIA FRICTION WELDING MILD STEEL AND ALUMINIUM USING FINITE ELEMENT METHOD ON ABAQUS" submitted in mechanical engineering department of Delhi Technological University is my own work. It is further to declare that the matter embodied in thesis is original and has not been submitted for the award of any other degree/ certificate in any other institution/university.

Signature

Name: PUSHPANDRA NIMESH Roll No: 2K14/CDN/13 Date: 29/07/2016

ABSTRACT

Friction welding is a welding technique involving green technology concept as it makes use of a nonconsumable tool to produce coalescence between work-pieces by utilizing heat generated because of friction and plastic deformation at the interface of work-components affecting the formation of weld joint while the material being in solid state. Advantages of frictional welding process are low distortion of weld joint, absence of flash related defects and high strength of weld joints in those alloys and metals that are considered to be Non-Weldable by conventional fusion welding processes. Friction welding process is omitted of filler-induced defects as the inertia friction welding process requires no use of filler material and thus susceptible to hydrogen damage. The technique can be used to produce joints on equipments utilizing traditional machine technologies and it can be used to produce weld between varieties of similar and dissimilar metals and alloys and it can also be used for producing weld joint between metal reinforced composites. Use of friction welded joints leads to a significant reduction in weight and cost savings serving friction welding process as a reusable tool for industrial and manufacturing sectors. Apart from industrial and manufacturing level applications, inertia friction welding process finds its application in field of Navy, Medicinal applications. Friction welding process seems to be a simple process but this is not, instead it is a very complex process as it includes conversion of mechanical energy into thermal energy in form of heat due to frictional rubbing between work-pieces. So prediction of properties of weld formed at interface is difficult. Numerical simulation offers a way to tackle that problem and also a way to increase repeatability of the friction welding process at manufacturing level and also it opens new ways to understand the process's mechanics more efficiently. This thesis works review an introduction toward the friction welding process, work that had been performed in corresponding field and research work needed to be done in the corresponding field on the basis of research gap in the corresponding field. This project works consists of performing inertia friction welding process between mild steel and aluminum 6061 using lathe machine and then performing numerical simulation of the inertia friction welding process using finite element method on ANSYS and ABAQUS and then performing comparison of the data obtained both experimentally and numerically so as to increase the repeatability of the inertia friction welding process.

TABLE OF CONTENTS

Page Number

	0
CERTIFICATE	i
ACKNOWLEDGEMENT	ii
DECLARATION	iii
ABSTRACT	iv
TABLE OF CONTENTS	v
LIST OF TABLES	ix
LIST OF FIGURES	Х
LIST OF GRAPHS	xiv

CHAPTER 1 GENERAL INTRODUCTION

1.1 Introduction	1
1.2 Classification of friction welding	2
1.3 Principle	7
1.4 Procedure	8
1.5 Types of inertia friction welding process	9
1.5.1 Continuous motor drive friction welding process	9
1.5.2 Direct drive friction welding process	10
1.6 Inertia friction welding process parameters	10
1.7 Merits	10
1.8 De-merits	11
1.9 Applications of friction welding	11
1.9.1 Simulation of friction welding process	14

CHAPTER 2 LITERATURE REVIEW

2.1 Summary of Literature	17
2.2 Summary of Research gap	22

CHAPTER 3 SELECTION OF MATERIALS AND PROCESS

3.1 Material Selection	24
3.1.1 Material Composition	24
3.2 Process selection	24
3.2.1 Experimentation approach toward inertia friction welding process	25
3.2.2 Finite element approach toward inertia friction welding process	25

CHAPTER 4 EXPERIMENTATION

4.1 Introduction	27
4.1.1 Preparation of special fixture	27
4.1.2 Construction of Design of experiment	28
4.2 Procedure	29
4.2.1 Pre-welding process	30
4.2.2 Welding process	30
4.2.2.1 Steps in performing welding process	30
4.2.3 Post-welding process	32
4.2.3.1 Measurement of target values	32
(I-) Hardness test	32
(II-) impact test	33

CHAPTER 5 NUMERICAL SIMULATION OF WELDING PROCESS

5.1 Introduction	35
5.2 Numerical simulation on ANSYS	36
5.3 Numerical simulation on ABAQUS	36
5.3.1 Introduction to ABAQUS	36
5.3.2 Thermal modeling of welding process	36
5.3.3 Finite element modeling of welding process	38
5.3.3.1 Introduction to finite element method	38
5.3.3.2 Steps taken during FEA modeling of inertia friction welding	39
(I-) Pre-processing module	39

(II-) Solver module	53
(III-) Post processing module	54

CHAPTER 6 RESULTS AND DISCUSSION

6.1 Introduction	55
6.2 Results	55
6.2.1 Distribution of contact shear stress	57
6.2.2 Distribution of elastic strain	57
6.2.3 Distribution of plastic strain	59
6.2.4 Distribution of stresses in work-pieces	59
6.2.5 Distribution of thermal strain	61
6.2.6 Distribution of strain energy	62
6.2.7 Distribution of heat flux	63
6.2.8 Distribution of temperature	64
6.2.9 Graphs	65
6.2.9.1 Heat flux distribution	65
6.2.9.2 Temperature distribution at weld zone	65
6.2.9.3 Temperature distribution at HAZ in mild steel	66
6.2.9.4 Temperature distribution at HAZ Al 6061	67
6.2.9.5 Heat flux at weld zone	67
6.2.9.6 Von-Mises stress at weld zone	68
6.2.9.7 Tresca stress at weld zone	68
6.2.9.8 Max. Principal stress at weld zone	69
6.2.9.9 Elastic strain at weld zone	69
6.2.9.10 Logarithmic strain at weld zone	70
6.2.9.11 Plastic strain at weld zone	70
6.2.9.12 Strain energy density at weld zone	71
6.2.9.12 Frictional energy generation at weld interface	71
6.3 Experimentally Calculated Results	72
6.3.1 Hardness Data for Al 6061 HAZ	72
6.3.2 Hardness Data for Mild steel HAZ.	72

6.3.3 Hardness Data for Weld zone	72
6.3.4 Impact Energy Data for Weld Samples	73
6.3.5 Temperature Data for Welded Samples	73
6.4 Comparison between Experimentally Calculated Results	
and Numerically Simulated results	74

CHAPTER 7 CONCLUSIONS AND FUTURE WORK ASPECT	75
7.1 Conclusions	75
7.2 Future work aspect	

REFERNCES

LIST OF TABLES

Table Number

Page number

Table 1: Composition of mild steel	.24
Table 2: Composition of aluminum 6061	24
Table 3: Steps taken during a finite element method analysis	26
Table 4: Steps involved in Taguchi optimization technique	29
Table 6: Temp. Dependent properties of mild steel	37
Table 7: Temperature dependent properties of aluminum 6061	37
Table 8: Pressure load variation with according to time	49
Table 9: Angular velocity variation with according to time	49
Table 10: Elastic-plastic behavior of mild steel	51
Table 11: Elastic-plastic behavior of Aluminum 6061	51
Table 12: Johnson-cook model parameters for mild steel	52
Table 13: Johnson-cook model parameters for aluminum 6061	52
Table 14: Hardness values for Al 6061's heat affected zone	72
Table 15: Hardness values for Mild steel's heat affected zone	72
Table 16: Hardness value for Weld zone	72
Table 17: Impact energy data for welded samples	73

LIST OF FIGURES

Figure Number	Page Number
Fig 1: Linear friction welding principle	3
Fig 2: Spin welding principle	4
Fig 3: Friction stir welding principle	5
Fig 4: Friction surfacing process	5
Fig 5: Load application during a typical inertia friction welding process	7
Fig 6: Initial position of work-pieces	8
Fig 7: Application of friction pressure	8
Fig 8: Flash formation during plastic deformation	8
Fig 9: Application of forging pressure	9
Fig 10: Continuous direct drive inertia friction welding scheme	9
Fig 11: Direct inertia friction welding process	10
Fig 12: Automotive half-shaft	12
Fig 13: Jet engine compressor wheel	12
Fig 14: Friction welded mechanical hand tools	12
Fig 15: Aluminum Airbag Inflator	14

Fig 16: Finite element discretiztion	15
Fig 17: Finite element discretiztion in a mechanical component	15
Fig 18: Finite element discretiztion of a toothed gear assembly	16
Fig 19: Parent Metals for Welding	23
Fig 20: work pieces before welding process	27
Fig 21: Special fixture used in welding process	28
Fig 22: special fixture assembled on lathe machine	30
Fig 23: Welded samples	31
Fig 24: work-piece after welding and turning	32
Fig 25: work-piece after hardness testing	. 33
Fig 26: Weld specimen after making V-notch	33
Fig 27: Charpy testing machine	34
Fig 28: Weld specimen after Impact testing	34
Fig 29: Choosing of analysis type in ABAQUS workbench	40
Fig 30: Construction of geometry using ABAQUS design modeler	40
Fig 31: Element type provided in Abaqus element library	41
Fig 32: coupled field element provide in Abaqus element library	41
Fig 33: Selection of contact and target surface	42

Fig 34: Normal Lagrange contact formulation	43
Fig 35: Pure penalty contact formulation	44
Fig 36: Modified Lagrange contact formulation	44
Fig 37: Application of boundary condition no. I on work-pieces	45
Fig 38: Application of boundary condition no. II on work-pieces	46
Fig 39: Different mesh element type offered in abaqus workbench	47
Fig 40: Lagrangian type mesh algorithm	47
Fig 41: Eulerian type mesh algorithm	47
Fig 42: Mesh generation for working model	48
Fig 43: Structural load application in model	50
Fig 44: Step Manager	53
Fig 45: Step Definition	53
Fig 46: Step size and step size controls	54
Fig 47: Parent material work-pieces at starting of simulation process	55
Fig 48: Enlarged view near contact at starting of simulation process	56
Fig 49: Enlarged view near contact after completion	
of simulation process (Deformed shape)	56
Fig 50: weld zone and heat affected zone	56

Fig 51: contact shear stress distribution	57
Fig 52: Elastic strain	57
Fig 53: Elastic strain density distribution	58
Fig 54: logarithmic strain distribution near weld zone and HAZ	58
Fig 55: Plastic strain	59
Fig 56: Von Mises stress distribution	59
Fig 57: Von Mises stress distribution near weld and HAZ	60
Fig 58: Tresca stress distribution near weld zone and HAZ	60
Fig 59: Maximum Principal stress distribution near weld zone and HAZ	61
Fig 60: Thermal strain distribution	61
Fig 61: Thermal strain distribution near weld zone and HAZ	62
Fig 62: Plastic dissipation energy near weld zone and HAZ	62
Fig 63: Heat flux distribution near weld zone and HAZ	63
Fig 64: Heat flux distribution near weld zone and HAZ with free cut	63
Fig 65: Temperature distribution near weld zone and HAZ	64
Fig 66: Experimentally calculated temperature data for Al 6061	
work-piece at a distance of 2mm from weld interface	73
Fig 67: Comparison of upsetting length	74

LIST OF GRAPHS

Graph Number

Page Number

GRAPH 1: Heat flux distribution on mesh elements at weld zone and HAZ65
GRAPH 2: Temperature distribution at weld zone with respect to time65
GRAPH 3: Temperature distribution at HAZ of Mild steel with respect to time66
GRAPH 4: Temperature distribution at HAZ of Al 6061 with respect to time67
GRAPH 5: Heat flux distribution at weld zone with respect to time
GRAPH 6: Von-Mises stress distribution at weld zone with respect to time
GRAPH 7: Tresca stress distribution at weld zone with respect to time
GRAPH 8: Max. Principle stress distribution at weld zone with respect to time
GRAPH 9: Elastic strain distribution at weld zone with respect to time
GRAPH 10: Logarithmic strain distribution at weld zone with respect to time70
GRAPH 11: Plastic strain distribution at weld zone with respect to time70
GRAPH 12: Strain energy distribution at weld zone with respect to time
GRAPH 12: Frictional energy distribution of work-piece with respect to time71