DEPARTMENT OF ELECTRICAL ENGINEERING DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering) Bawana Road, Delhi-110042

CERTIFICATE

I, Nitu Dhyani, Roll No. 2K12/PSY/14 student of M. Tech. (Power System), hereby declare that the dissertation/project titled "Soft Computing Techniques for Controlling D-STATCOM in Distribution System" under the supervision of Assoc. Prof. Alka Singh of Electrical Engineering Department Delhi Technological University in partial fulfillment of the requirement for the award of the degree of Master of Technology has not been submitted elsewhere for the award of any Degree.

Place: Delhi Date: 31.07.2014 (NITU DHYANI)

(ALKA SINGH)

Associate Professor, EED, DTU

ABSTRACT

In recent years, there has been an exponential increase in energy demand in domestic, commercial and industrial sectors. Applications of electronically controlled devices provide automatic control in modern power system; yet due to their non linear characteristics, the current or voltage waveform deviates from the ideal sinusoidal waveform. Arc furnaces, converters, variable speed AC drives etc inject harmonics into the power system and affect the working of other sensitive devices. This may lead to partial or complete rupturing of equipment and blackouts. The presence of harmonics increases the transformer temperature, leading to equipment heating and increased losses. Sudden addition or removal of large load or capacitor bank results in voltage fluctuation causing sag and swell in system voltage. These problems are collectively grouped as power quality issues and the researchers are working worldwide to find solutions to these power quality problems for improving the efficiency and reliability of the power system. There are various devices like D-STATCOM, DVR and UPQC which are being used to eliminate different power quality problems.

In this thesis, a three-phase, three leg D-STATCOM structure has been studied and analyzed. Conventional control theories viz. Synchronous Reference Frame Theory (SRFT) and Power Balance Theory (PBT) have been implemented in simulation model in MATLAB using SIMULINK and Sim Power System (SPS) toolboxes. Experimental verification of PBT has also been presented. The schemes have been modeled using Sim Power Systems and performance of D-STATCOM is studied for variety of loads under varying load conditions.

The conventional control is replaced by Fuzzy logic controller (FLC) and simulation results are presented for the system with different set of rules. 49, 25 and 9 rule based FLC controllers have been designed and their performance studied for the same system over a wide variation in loading conditions. The performance of FLC is compared with PI controller. FLC requires high computational time therefore Adaptive Neuro-Fuzzy (ANFIS) controller is also designed and studied. Using suitable inputs, error and change in error over the DC link voltage, ANFIS controller is first trained. Once the performance of the ANFIS controller is satisfactory, the rule base developed by it is used for D-STATCOM control. The entire control scheme is simulated in MATLAB environment and also tested experimentally for a prototype system.

The results of different control schemes such as conventional (SRFT and PBT), soft computing techniques like fuzzy and ANN have been used for D-STATCOM control in this thesis work. Power quality problems such as harmonic reduction, power factor correction, load balancing and voltage regulation have been addressed.

ACKNOWLEDGEMENT

First and foremost, I thank to God, the almighty for his blessings and strength on me to carry out this work.

I would like to thank my honorable guide **Dr. Alka Singh**, Associate Professor, Electrical Engineering Department (EED), DTU for her continuous guidance and relentless support as well as acquainting me with the relevant information required for the completion of project. I consider myself fortunate to have chance to work under her supervision.

I am highly grateful to **Prof. Madhusudan Singh**, Head of Electrical Department, DTU for his constant support and acknowledgement.

I would like to extend my thank to **Mr. Manoj Badoni and Ramesh Singh**, PhD Scholar, DTU for his tremendous support for understanding the simulation and hardware model in imparting invaluable knowledge.

I am also very thankful to various people for their direct or indirect involvement in learning and understanding that helped me in my work.

I would like to thank all the Faculty members and staff members of Electrical Engineering Department for help and co-operation.

Finally I wish to express my thank my fellow **Sachin Kumar Kesharvani**, family and friends for their continuous motivation and support.

Delhi, 2014

NITU DHYANI

CONTENTS

CERTIFICATE	i
ABSTRACT	ii
ACKNOWLEDGEMENT	iv
CONTENTS	v
LIST OF FIGURES	viii
LIST OF TABLES	xii
LIST OF ABBREVIATIONS	xiii

Chapter	Chapter Name		
No.		No.	
1	INTRODUCTION AND LITERATURE	1-11	
	REVIEW		
	1.1. General	1	
	1.1. Power Quality in Distribution System	3	
	1.2. Power Quality Solutions	5	
	1.3.1. D-STATCOM	6	
	1.3.2. DVR	7	
	1.3.3. UPQC	9	
	1.3. Trends in Power Quality Standards	10	
	1.4. Conclusion	11	
2	CONVENTIONAL CONTROL	12-34	
	TECHNIQUES FOR D-STATCOM		
	2.1. General	12	
	2.2. System structure	12	
	2.3. Hysteresis Current Controller	13	
	2.4. d-q theory control scheme	14	
	2.4.1. D-STATCOM operation for power	16	

factor improvement

2.4.2. D-STATCOM for voltage regulation	17
2.5. MATLAB based model and simulation	17
results	
2.5.1. Results for power improvement	18
2.5.2. Results for voltage regulation	20
2.6. Power Balance Control scheme	22
2.6.1. MATLAB based model and simulation	25
results	
2.6.1.1. Result for power factor improvement	26
2.6.1.2. Result for voltage regulation	28
2.7. Hardware Results	30
2.8. Conclusion	34
FUZZY LOGIC CONTROLLER	35-50
3.1. General	35
3.2. Fuzzy logic theory	35
3.3. Design of fuzzy logic rules	36
3.3.1. Fuzzification	36
3.3.2. Inference mechanism	36
3.3.3. Design of Fuzzy logic rules	36
3.3.4. Design of Fuzzy logic rules	37
3.4. MATLAB based model and Simulation	38
results	
3.4.1. FLC based on 49 rules	38
3.4.1.1. Results for Power factor	40
Improvement under steady state/	
dynamic conditions	
3.4.1.1. Results for voltage regulation under	42
steady state/ dynamic conditions	
3.4.2. FLC based on 25 rules	43

3

	3.4.2.1.	Results	for	Power	factor	45
		Improver	nent u	nder stea	ady state/	
		dynamic	conditio	ons		
	3.4.2. FI	C based o	on 9 rule	es		47
	3.4.2.1.	Results	for	Power	factor	48
		Improver	nent u	nder stea	ady state/	
		dynamic	conditio	ons		
	3.5. Conclu	sion				50
4	ADAPTIV	E NE	URO-F	UZZY	BASED	51-59
	CONTROL	LLER				
	4.1. Genera	1				51
	4.2. Step Si	ze Variati	on in Ac	laline		51
	4.3. Simula	tion result	S			54
	4.4. Hardwa	are results				55
	4.5. Conclu	sion				59
5	CONCLUS	SION AN	D FUI	TURE SC	COPE OF	60-61
	WORK					
	5.1. Conclu	sion				60
	5.2. Future	scope of w	vork			61
REFERENC	ES					62
APPENDIX						65
PUBLICATI	ON					66

LIST OF FIGURES

Fig. No.	Description
Fig.1.1.	Block diagram of D-STATCOM system
Fig.1.2.	Block diagram of DVR system
Fig.1.3.	Basic block diagram of UPQC
Fig.2.1.	System structure of D-STATCOM
Fig.2.2.	Switching sequence of D-STATCOM
Fig.2.3.	Block diagram of SRFT control scheme
Fig.2.4.	MATLAB model based on SRFT control algorithm
Fig.2.5.	Waveform of source voltage (v_s) , source current (i_s) , compensator
	current (i _c), load current (i _l), DC voltage (V _{dc}) and terminal
	voltage (V $_{tm}$) under steady state / unbalanced conditions (UPF
	mode)
Fig. 2.6.	Plot of d-component (idref) of reference current under stedy state
	condition
Fig. 2.7.	Source voltage (v_{sa}) and Source current (i_{sa}) waveform
Fig. 2.8.	Waveform and THD of source current (isa)
Fig. 2.9.	Waveform and THD of load current (i _{la})
Fig. 2.10.	Waveform of source voltage (v_s) , source current (i_s) , compensator
	current (i _c), load current (i _l), DC voltage (V _{dc}) and terminal
	voltage (V_{tm}) (voltage regulation mode)
Fig. 2.11	Plot of q-component (i_{qref}) of reference current under steady state
	condition
Fig. 2.12.	Waveform and THD of source current (i _{sa})
Fig. 2.13.	Waveform and THD of load current (i _{la})
Fig. 2.14.	Block diagram of PBT control scheme
Fig. 2.15.	MATLAB based model of PBT
Fig. 2.16.	Plot of real load power (p _{load}) under steady state condition
Fig. 2.17.	Plot of reactive load power (q_{load}) under steady state condition
Fig. 2.18.	Waveform of source voltage (v_s) , source current (i_s) , compensator
	current (i _c), load current (i _l), dc voltage (V _{dc}), terminal voltage
	V_{tm} under balanced/unbalanced condition (UPF mode)
Fig. 2.19.	Waveform and THD of source current (isa)

Fig. 2.20.	Waveform and THD of load current (i _{la})
Fig. 2.21.	Waveform of source voltage (v_s), source current (i_s), compensator
118.2.21	current (i _c), load current (i _l), dc voltage (V_{dc}), terminal voltage
	V_{tm} under balanced/unbalanced condition (voltage regulation
	mode)
Fig. 2.22.	Waveform and THD of source current (i _{sa})
Fig. 2.23.	Waveform and THD of load current i_{la}
Fig. 2.23.	Steady state waveform of source current (i_{sa}) , load current (i_{la}) ,
Г <u>і</u> g. 2.24.	
Etc. 2.25	compensator current (i_{ca}) and DC voltage (V_{dc})
Fig. 2.25.	Waveform of source current (i_{sa}) , load current (i_{lc}) , compensator
	current (i_{ca}) and DC link voltage (V_{dc}) when load is removed in
	phase 'c'
Fig. 2.26.	Waveform of source current (i_{sa}), load current (i_{lc}), compensator
D ' 0.07	current (i_{ca}), DC link voltage (V_{dc}) when load in phase 'c' added
Fig. 2.27.	Waveform of source current (i_{sa}) and source voltage (v_{sa})
Fig. 2.28.	THD of source current (i _{sa})
Fig. 2.29.	THD of load current (i _{la})
Fig. 2.30.	THD of source voltage (v _{sa})
Fig. 3.1.	Block diagram of Fuzzy Logic Controller
Fig. 3.2.	Closed Loop Response of Step Input
Fig. 3.3.	Block diagram of Fuzzy Logic Control Scheme
Fig. 3.4	Seven Rulebase for (a) input (er) (b) input (Δ er) (c) output (i _{loss})
Fig. 3.5.	Result showing source voltage (v_s) , source current (i_s) ,
	compensator current (i _c), load current (i _l), DC link voltage (V _{dc})
	and voltage at PCC $\left(V_{tm}\right)$ under steady state / dynamic condition
	(UPF mode)
Fig. 3.6.	Plot of source voltage (v_{sa}) and source current (i_{sa})
Fig. 3.7.	DC link voltage (V_{dc}) variation with time under dynamic load
	changes
Fig. 3.8.	Waveform and THD of source current (i _{sa})
Fig. 3.9.	Results showing source voltage (v_s) , source current (i_s) ,
	compensator current (i _c), load current (i _l), DC link voltage (V _{dc})
	and voltage at PCC $\left(V_{tm}\right)$ under steady state / dynamic condition
	(voltage regulation)
4	

Fig. 3.10.	Waveform and THD of source current (i _{sa})
Fig. 3.11.	FLC based on five rules (a) Input (er) (b) Input (Δ er) (c) Output
0	variables
Fig. 3.12.	Result showing source voltage (v_s) , source current (i_s) ,
0	compensator current (i _c), load current (i _l), DC link voltage (V_{dc})
	and voltage at PCC (V_{tm}) under steady state / dynamic condition
	(UPF mode)
Fig. 3.13.	Waveform and THD waveform of source current (i _{sa})
Fig. 3.14.	Plot of DC link voltage (V_{dc}) with dynamic load changes with 25
C	rule FLC
Fig. 3.15.	FLC based on three rules (a) Input (er) (b) Input (Δ er) (c) Output
-	variables
Fig. 3.16.	Results of source voltage (v_s) , source current (i_s) , compensator
	current (i _c), load current (i _l), DC link voltage (V _{dc}) and voltage at
	PCC (V_{tm}) for power factor improvement under steady
	state/dynamic conditions
Fig. 3.17.	DC link voltage (V _{dc}) plot under steady state / dynamic conditions
Fig. 3.18.	Waveform and THD of source current (isa)
Fig. 4.1.	Block diagram of ANFIS based on Adaline algorithm
Fig. 4.2.	Block Diagram of Adaptive Neuro-Fuzzy for estimating variable
	step size
Fig. 4.3.	Adaptive Neuro-Fuzzy rules (9 rules)
	Waveforms of source voltage (v_s) , source current (i_s) ,
	compensator current (i _c), load current (i _l), DC bus voltage (V _{dc})
	and terminal voltage $\left(V_{tm}\right)$ under steady state and unbalance
	conditions
Fig. 4.4.	Waveforms of source voltage (v_s) , source current (i_s) ,
	compensator current (i _c), load current (i _l), DC bus voltage (V _{dc})
	and terminal voltage $\left(V_{tm}\right)$ under steady state and unbalance
	conditions
Fig. 4.5.	Plot for source voltage (v_{sa}) and source current (i_{sa})
Fig. 4.6.	Waveform and THD of source current (isa)
Fig. 4.7.	Waveform and THD of load current (i_{la})
Fig. 4.8.	Three phase source voltage (v _s) waveform

Fig. 4.9.	THD of source voltage (v _s)
Fig. 4.10.	Three phase source current (i _s) waveform
Fig. 4.11.	THD of source current (i_s)
Fig. 4.12.	Three phase load current (i ₁) waveform
Fig. 4.13.	THD of Load current (i ₁)
Fig. 4.14.	Plot of source voltage (v_{sa}) and source current (i_{sa})
Fig. 4.15.	Plot of source voltage (v_{sa}) and load current (i_{la})

LIST OF TABLES

Table No.	Description
Table 1.1.	Total Energy Installed Generating Capacity
Table 1.2.	Electricity Consumption Sector Wise Utilities and Non Utilities
Table 3.1.	Fuzzy logic controller rules for seven rule base (49 rules)
Table 3.2.	Fuzzy logic controller rules for five rule base (25 rules)
Table 3.3.	Fuzzy logic controller rules for three rule base (9 rules)
Table 3.4.	Comparative analysis of different fuzzy rules

LIST OF ABBREVIATIONS

DSTATCOM	Distribution static compensator
DVR	Dynamic voltage restorer
UPQC	Unified power quality conditioner
MOSFET	Metal oxide field effect transistor
IGBT	Insulated gate bipolar transistor
GTO	Gate turn off
SRFT	Synchronous reference frame theory
PBT	Power balance theory
SPS	Sim power system
VSC	Voltage source converter
HCC	Hysteresis current controller
PWM	Pulse width modulation
PHF	Parallel hybrid filter
PF	Passive filter
TDD	Total distortion demand
THD	Total harmonic distortion
PCC	Point of common coupling
PFC	Power factor correction
UPF	Unity power factor
ZVR	Zero voltage regulation
FLC	Fuzzy logic controller
NL	Negative large
NM	Negative medium
NS	Negative small
Z	zero
PL	Positive large
PM	Positive medium
PS	Positive small
ANFIS	Adaptive neuro-fuzzy inference system
ADALINE	Adaptive linear network