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Abstract 

This project is continuous work of minor project “Study of semiconductor devices using 
Archimedes tool”. In this major project, I use the upgraded version of Archimedes called Nano-
Archimedes. It is also a member of TCAD family. 

Nano-Archimedes help to study the flow of particles in semiconductor devices at nano level. 
Nano-Archimedes uses Wigner Monte Carlo formulation to find the probability of location of 
particles in device. Nano-Archimedes code considers the flow of electron as Ballistic conduction, 
including annihilation. For fast calculation Monte Carlo method is use. 

For better understanding thesis is divided into 2 sections. First section contains the Introduction 
of different terms and second section provides the Algorithm and code of Nano-archimedes. 
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Chapter 1 
Nano-Archimedes 

 

1.1 Introduction of Archimedes and Nano-Archimedes 

Archimedes and Nano-archimedes are ongoing simulation tool for semiconductor devices and 
quantum mechanics.  

Archimedes:  

Archimedes is the GNU package for semiconductor device simulations that has been released for 
the first time on 2005 under GPL. It has been created by Jean Michel Sellier who is, since then, 
the leader of the project and the main developer. It is free software and thus it can be copied, 
modified and redistributed under GPL. This is the one of the big advantages of using 
Archimedes. Archimedes belongs to the well-known family of TCAD software, i.e. tools utilized 
to assist the development of technologically relevant products. In particular, this package assists 
engineers in designing and simulating submicron and microscopic semiconductor devices. Today 
Archimedes is used in several big companies for simulation and production purposes. 

Archimedes is also useful for teaching purposes since everybody can access the sources, modify 
and test them. Today, it is used for teaching courses in several hundreds universities all around 
the world. Furthermore, a simplified version, developed for students, is available on 
nanoHUB.org.  

Nano-archimedes: 

Nano-archimedes is based on the platform implemented for Archimedes. The code is able to 
simulate time dependent, full quantum, multi-dimensional phenomena such as wave phase 
breaking and single electron ballistic transport with open boundary conditions, electron dynamics 
in molecular systems, etc. 

Nano-archimedes is a Technology Computer Aided Design tool (TCAD) for the simulation of 
various technology relevant situations involving the dynamics of electrons such as the transport 
in nanometer scale semiconductor devices (nano devices) and the dynamics of N-body problems 
in quantum chemistry. It is based on the Signed Particle Formulation of quantum mechanics, a 
(computationally convenient) phase-space formalism which can simulate time-dependent 
quantum problems involving single- and many-body systems. 

 

 

 

 



9 
 

 

Comparison between Archimedes and Nano-archimedes 

Properties Archimedes Nano-archimedes 
Year 2005 2013 

Platform  Support Archimedes platform 
Operating 

System require 
Linux ,Unix Linux ,Unix 

Application 1. Archimedes a powerful tool for the 
simulation of quite general semiconductor 
devices. 

2. Archimedes is able to simulate a plenty of 
physics effects and transport for electrons 
and heavy holes in Silicon, Germanium, 
GA As, InSb, AlSb, AlAs , AlxInxSb, 
AlxIn(1-x)Sb, AlP, AlSb, GaP, GaSb, InP 
and their compounds (III-V semiconductor 
materials), along with Silicon Oxide, 
 

1. Simulating post-CMOS designs. 
2. Practical design and optimization of 

realistic solotronic devices. 
3. Simulating chemical systems. 
4. Ab-initio simulations of the quantum 

many-body problem. 
 

Method or 
Computation 

Technique 

The Ensemble Monte Carlo method is the method 
that Archimedes uses to simulate and predict the 
behavior of a device. 

It is based on the Wigner equation, a 
convenient formulation of quantum 
mechanics in terms of a phase-space 
(completely equivalent to the Schrödinger 
equation), and the density functional theory 
(DFT). 

Programming 
Language 
And Code 

The code is entirely written in C and can compile on 
a huge variety of machines without any particular 
effort. 

The code is entirely written in C and can 
compile on a huge variety of machines 
without any particular effort. 

License Free Free 
Source Code http://www.gnu.org/software/archimedes http://www.nano-

archimedes.com/download.php 
Table 1.1: Difference between Archimedes and Nano-archimedes 

 

1.2 History of Nano-Archimedes: 

Nano-Archimedes is improve version of Archimedes which is design by Jean Michel Sellier. 
Who also is the leader of project Nano-Archimedes. To understand about Nano-archimedes we 
have to first know about Archimedes. It is not surprising to say that semiconductor technology, 
since its beginning, has been principally devoted to the reduction of the dimensions of devices. 
The smaller the device, the more devices on a single wafer, the more the computing power per 
unit area. The cost of prototyping new devices is very high and techniques have been developed 
to reduce the cost of such prototypes. Initially, simulations provided a means of making, at the 
very least, reasonable guesses of the performance of actual devices. This field has been so 
studied and developed in the past several decades that, today, it is possible to accurately model 
the electric characteristics of a new device even before its fabrication. 

At the beginning of this discipline, in the 1970s and 80s, the physics were not well understood, 
and phenomena like interactions with phonons and impurities, silicon-oxide interface roughness, 
impact ionization, energy bands, etc. were nascent areas of research. In the 80s, the semi-

http://www.gnu.org/software/archimedes
http://www.nano-
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classical Boltzmann model, incorporated in such tools as IBM’s Damocles, had become the 
standard for the simulation and comprehension of submicron devices.  

The Monte Carlo method has been applied to a wide variety of scientific problems, 
demonstrating the robustness and reliability of the method. Unfortunately, this method is based 
on the particle nature of electrons in submicron devices and, as so, cannot be applied to situations 
where the quantum effects start to be important. The effective potentials approach is 
implemented in Archimedes. Other methods include Wigner Monte Carlo and the Master 
equation .Archimedes implements this Monte Carlo approach to provide reliable and predictive 
semiconductor device simulations for the semi-classical regime. Archimedes is based on the 
well-known MC method. The method is based on the particle nature of electrons, at a semi-
classical level, described by a position and a pseudo-wave vector. At each time step, the code 
evolves the two particle vectors, taking into account the interaction with the electrostatic 
potential (drift) and the interactions with the lattice phonons (scattering). To mimic some of the 
quantum effects several quantum effective potential models have been included into Archimedes. 
These models are enough to simulate submicron devices and some non-atomistic nano-devices as 
it has been vastly demonstrated in the literature. 

Regardless of the electron transport models used, they aim to describe the dynamics of electrons 
in a semiconductor device and, as so, have several things in common. The transport problem, in 
both cases, can be split into the equation describing the electron dynamics in a given potential 
and the equation describing the potential generated by the electrons. 

To describe the electrostatic potential, Archimedes uses the Poisson equation, sometimes called 
the Hartree approximation for electrons-electron interactions, which is well-known and will not 
be described here. This equation does not take into account phenomena like exchange-correlation 
effects, which is more common in the quantum chemistry field. This equation is reasonable for 
the description of electron transport in semiconductor devices, until it is not in particular 
situations, like the Coulomb blockade regime, for example. In the future, a correction could be 
implemented, such as an exchange correlation term used by numerical chemists. 

The following sections sketch the principal methods implemented in Archimedes to simulate the 
semi classical and quantum transport. These sections do not aim to be a complete and exhaustive 
method description, but short introduction. 

A. The Monte Carlo Method 

The Monte Carlo method is based on the particle nature of electrons, similar to e.g. a billiard 
ball, completely described by two vectors, i.e. the position and the pseudo-wave vector that is 
directly related to the velocity of the particle. For every particle, and at each time step, the two 
vectors describing the particle are evolved, taking into account the main phenomena a particle 
feels in a semi classical regime, i.e. the interaction with the electrostatic potential (drift) and the 
interactions with lattice phonons (scattering). 

Usually, a Monte Carlo code can be described by the following phases: 
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· Definition of the device to be simulated (geometry, doping, applied potential, lattice 
temperature, etc.) In Archimedes, this is done by parsing a user script. 

· Definition of the initial conditions of motions for the particles. 

· A loop consisting in the evolution over time of the particles position and pseudo-wave vectors, 
calculation of the obtained charge, and finally evolution of the electrostatic potential according to 
the pre-calculated electronic charge. 

In particular, the evolution of the particles consists of two parts, the drift and the scattering ones. 
The drift part consists of the following two equations: 

 

The first equation describes the evolution of the position vector, while the second describes the 
evolution of the pseudo wave vector. 

The scattering part is a bit more complex than the drift one and consists of a selection of a 
scattering mechanism (selected by a pre-calculated probability that the phenomena occurs) and 
the evolution of the pseudo-wave vector after the scattering occurred. For example, if an elastic 
and isotropic scattering occurred (e.g. a scattering with an acoustic phonon) the electron will 
have a new pseudo-wave vector which polar angles are generated as follow (considering that this 
phenomenon is energy-conservative): 

 

Here r1 and r2 are two random numbers between 0 and 1. 

Concerning the evolution of the electrostatic potential, the well-known Poisson equation is 
coupled to a Cloud-in-cell algorithm to calculate consistently the electron charge.  

B. Quantum Effective Potentials 

Effective potential approaches have been developed in the attempt to have a simple way to 
include quantum effects primarily arising from the non-zero size of electron wave packets. A 
very good description of such approach. Several models have been implemented that, with a 
certain degree of success, have been able to mimic some quantum effects. Those models have the 
great advantage to be simple to implement in semi classical codes like the well-known drift 
diffusion. Unfortunately, even the more sophisticated effective potential is not able to include 
effects like barrier tunneling and/or source-drain tunneling. 



12 
 

Furthermore, some difficulties arise when used in very noisy methods such as Monte Carlo. All 
models are based on the Bohm quantum potential presented for the first time. They all differ for 
the way quantum potentials are calculated but they are all derived from the Bohm potential. 
These kind of models have been implemented in commercial codes. The models implemented in 
Archimedes include the Bohm potential, weighted Bohm potential, full effective potential, and 
density gradient potential. Two of those effective potentials are reported here to give an idea of 
those approximation models. The Bohm potential reads: 

 

Where n is the density of electrons. 

The weighted Bohm potential can be considered as a generalization of the quantum Bohm 
effective potential. The potential reads: 

  

Where alpha and gamma are two fitting parameters that can be calibrated by means of more 
sophisticated (and thus more computationally demanding) quantum models. 

C. Materials and Devices 

Archimedes is able to simulate a variety of physics effects and transport for electrons and heavy 
holes in Silicon, Germanium, GaAs, InSb, AlSb ,AlAs, AlxIn(1-x)Sb, AlxIn(1-x)Sb, AlP, AlSb, 
GaP, GaSb, InP and their compounds (III-V semiconductor materials), along with Silicon Oxide, 
the applied and/or self-consistent electrostatic and magnetic fields by means of Poisson and 
Faraday equation. Archimedes also deals with hetero structures. Archimedes understands several 
predefined device types such as diodes, MESFETs, and MOSFETs. Adjustable parameters 
include geometry dimensions, doping levels, and numerical simulation controls. These 
predefined devices are already built-in for nanoHUB users. Users can also simulate advanced 
devices by modifying scripts with the help of Archimedes’ extensive documentation. 

1.3 Evolution of Nano-Archimedes from Nano-Archimedes 

Nano-Archimedes is modified version of Archimedes the GNU package for the simulation of 
carrier transport in semiconductor devices. This code was first released in 2005, and, since then, 
users have been able to download the source code under the GNU Public License (GPL). Many 
features have been introduced in this package. Nano-Archimedes aim has been to develop a full 
quantum time-dependent nano device simulator including phonon scattering effects. The code is 
entirely developed in C and optimized to get the best performance from the hardware. It can run 
on parallel machines using the Open MP standard library. The results of the present version are 
posted on the Nano-archimedes website, dedicated to the simulation of quantum systems.  
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Nano-Archimedes uses the Wigner Formulation to study the quantum mechanics and its effect 
when this techniques uses with Monte Carlo simulator then it is called as Wigner Monte Carlo 
simulator. Nano-Archimedes is very powerful technique to study the quantum effect at 
microscopic level which has high complexity. 

 

1.4 Features of Nano-Archimedes 

1. Simulating post-CMOS designs. 

2. Practical design and optimization of realistic solotronic devices. 

3. Simulating chemical systems. 

4. Ab-initio simulations of the quantum many-body problem. 
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Chapter 2 

Wigner Monte Carlo Formulation 

 

2.1 Introduction 

The purpose of Monte Carlo methods is to approximate the solution of problems in 
computational mathematics by using random processes for each such problem. These methods 
give statistical estimates for any linear functional of the solution by performing random sampling 
of a certain random variable whose mathematical expectation is the desired functional. 

In this work, we focus our attention on the Wigner formulation of quantum mechanics and show 
how to apply it for practical calculations related to quantum systems. As we will see throughout 
this , the Wigner formalism is a very intuitive approach which describes quantum systems in 
terms of a quasi-distribution function fW = fW(x; p; t), sometimes referred to as the Wigner 
function, where (x; p) is the corresponding phase-space, and x = (x1, x2, . . . , xn) and p = (p1, 
p2, . . . , pn) are the set of positions and the set of momenta of the involved particles respectively. 
We will show that, although the quasi-distribution function fW can have negative values in some 
restricted region of the phase space where quantum effects are dominant, it can still be utilized as 
a regular distribution function to recover the value of macroscopic variables as is for the 
Boltzmann equation of classical statistical mechanics. As a matter of fact, the work of Wigner 
was first introduced as a quantum correction to classical thermodynamics. Thus, it is not 
surprising that the enunciation of Wigner is very close to the language of experimentalists, 
therefore putting quantum mechanics on relatively more reasonable foundations [1]. Finally, we 
will comment on the fact that today experimental techniques exist to measure the Wigner 
function and a convincing physical interpretation of the negative values of fW(x; p; t) can be 
given [2–5]. 

We now give a short introduction to the Monte Carlo method and its use in physics. 

2.2. A short history of Monte Carlo method 

Although the year 1949 is generally considered to be the official birthday of the Monte Carlo 
method [6], it is worth to note that earlier applications can be found in literature performed by 
the French mathematician Georges-Louis Leclerc, comte de Buffon in 1777 [7]. In his 
pioneering essay, known as L’aiguille de Buffon (Buffon’s needle), he poses the following 
problem: supposing one drops a needle onto a floor made of parallel strips of wood (with the 
same width), what is the probability the needle lies across a line between two strips? He found 
that the solution is 2l πt , where l is the length of needle and t is the distance between each strip. 
As pointed out, later on, by Marquis Pierre-Simon de Laplace (in 1886), this approach can be 
used as a method to compute the value of the number π. As a matter of fact, by repeatedly 
throwing the needle onto a lined sheet of paper and counting the number of intersected lines, one 
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can eventually estimate the value of π, in other words a Monte Carlo method to evaluate the 
number π. With the advent of computational resources, intensive applications started to be 
developed in the Manhattan project (Los Alamos, USA), by J. von Neumann, E. Fermi, G. Kahn 
and S.M. Ulam. 

The legend says that the name Monte Carlo was eventually suggested by N. Metropolis in honor 
of Ulam’s uncle who was a well-known gambler. With the development of even more powerful 
computers, especially parallel machines, a new momentum in the development of Monte Carlo 
methods has been provided. Indeed, nowadays, Monte Carlo algorithms exist to solve a plethora 
of different computational problems and it is practically impossible to specify a (even barely) 
complete list. Still, Monte Carlo methods can be divided into two main classes: Monte Carlo 
simulations and Monte Carlo numerical methods.  

In the first class, algorithms simulate physical processes and phenomena and these Monte Carlo 
methods are simply tools that mimic the corresponding physical, chemical or biological laws. A 
good example for this class is provided by the Boltzmann Monte Carlo method for the simulation 
of electron transport in semiconductor devices [8]. This algorithm reproduce the dynamics of a 
certain number of electrons which obey the law of classical physics when interacting with an 
external electric field (drift process) and behave quantum mechanically when interacting with the 
quantized lattice vibrations know as phonons (diffusion process).  

In the second class of Monte Carlo methods, we have instead stochastic numerical algorithms for 
the resolution of computational problems such as linear systems, Eigen problems, evaluation of 
multi-dimensional integrals, etc. These algorithms construct artificial random processes, usually 
Markovian, which mathematical expectation represents the solution of a given problem. A good 
example of such algorithms is given by the Monte Carlo method for linear systems discussed in 
[9]. 

In this we will focus only on a Monte Carlo method for the (time-dependent) solution of the 
Wigner equation. Recently several techniques to solve the Wigner equation have been developed 
which scale naturally on parallel machines, one being based on the concept of particle quantum 
affinity [10-13] , the other being based on the concept of signed particles on which we will 
mainly focus in this work [14,15]. The last method is based on the iterative Monte Carlo methods 
for the resolution of linear and non-linear systems of equations (both integral and algebraic). 
Very recently, the Wigner Monte Carlo method based on signed particles has open the way 
towards quantitative, time-dependent, multi-dimensional, single and many-body simulations in 
terms of affordable and reasonable computational resources.  

In practice, it has been applied to the simulation of quantum single body problems in 
technologically relevant situations [16,17], extended to time-dependent quantum many-body 
problems in the framework of density functional theory [18], and has even been generalized to 
the ab-initio simulations of strongly correlated many-body problems [19]. This is the first time 
that the Wigner formalism can be applied to such class of important (and computationally 
demanding) problems. This formalism and its related Monte Carlo method can have a profound 
impact in the field of applied Sciences, especially for physics and chemistry, since it offers a 
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higher level of details in the simulation of quantum systems at a relatively reasonable 
computational cost. We will mainly focus on the recent developments of the Wigner Monte 
Carlo method, its extensions to the quantum many-body problem, and its applications.  

 

2.3 Advantages of Monte Carlo  

Essentially, they reduce a given problem to approximate calculations of some mathematical 
expectation. They represent a very powerful tool when it comes to solve problems in 
mathematics, physics and engineering where the deterministic methods hopelessly break down.  

Indeed Monte Carlo methods do not require any additional regularity of the solution and it is 
always possible to control the accuracy of this solution in terms of the probability error.  

Another important advantage in using Monte Carlo methods consists in the fact that they are 
very efficient in dealing with large and very large computational problems such as multi-
dimensional integration, very large linear systems, partial integro-differential equations in highly 
dimensional spaces, etc.  

Finally, these methods are efficient on parallel processors and parallel machines. Thus, it is not 
surprising that these methods have rapidly found a wide range of applications in applied Science. 

 

2.4 Signed Particles Theory 

In this new theory, quantum systems are described by ensembles of signed particles which 
behave as field-less classical objects which carry a negative or positive sign and interact with an 
external potential by means of creation and annihilation events only. This approach is shown to 
be a generalization of the signed particle Wigner Monte Carlo method which reconstructs the 
time-dependent Wigner quasi-distribution function of a system and, therefore, the corresponding 
Schrodinger time-dependent wave-function. 

Nowadays, many different mathematical formulations of quantum mechanics exist, among which 
the ones suggested by  

E. Schrodinger,  

E. Wigner,  

R. Feynman,  

L.V. Keldysh,  

K. Husimi,  

D. Bohm are the most popular ones. While, at a first glance they seem to be drastically different 
theories, it can be shown that they are all mathematically equivalent. As a matter of fact, they 
offer the same set of predictions and can be seen as complementary points of view. The situation 
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is not any different than what one observes in classical mechanics where different formalisms, 
such as Newtonian, Lagrangian, Hamiltonian, etc., coexist and shed different light on different 
mechanical aspects. 

We introduce a new formulation of quantum mechanics in terms of signed classical field-less 
particles. This suggested theory is based on a generalization and a novel physical interpretation 
of the mathematical Wigner Monte Carlo method, which is able to simulate the time-dependent 
single- and many-body Wigner equation in a quite intuitive fashion, which experimentalists are 
familiar with. Indeed it describes quantum objects in terms of classical particles only. 

One should notice that the signed particle formulation is equivalent to the usual formulations. As 
such, no fundamental new results are introduced. The predictions made are the same as the ones 
made in the more standard theory. However, “there is a pleasure in recognizing old things from a 
new point of view” and the author hopes it can offer a new perspective on the puzzling quantum 
nature of the microscopic world. The new theory is based on classical particles which have a 
position and momentum simultaneously although the Heisenberg principle of uncertainty is still 
respected in the formulation and embedded in terms of unknown initial conditions. In particular, 
we will show that the sign of a particle cannot be evaluated experimentally and no physical 
measurement can be depicted to find differences with other formalisms. Nevertheless, it offers 
some noticeable advantages. On the one hand it is a very intuitive approach which provides a 
new way to describe Nature at a quantum level. On the other hand, it is a computationally 
attractive formulation being based on independently evolving particles, allowing deep levels of 
parallelization in the time-dependent simulation of quantum single- and many-body systems. 

Finally, it allows the inclusion of physical effects which are difficult to treat in other 
formulations of quantum mechanics. We first introduce the three postulates which completely 
define the new mathematical formulation of quantum mechanics in terms of signed particles. We 
then proceed with showing that these three postulates are enough to replicate the results of more 
conventional quantum theories. In particular we show that our suggested approach is a natural 
generalization of the Wigner Monte Carlo method which reconstructs the time-dependent 
Wigner quasi distribution function and, thus, the corresponding Schrodinger wave-function. 

Afterwards, its classical limit is considered in several details. In order to show the applicability 
of the proposed theory, we numerically simulate several experiments involving quantum 
tunnelling. To conclude, we extend the theory to include general relativity in the formalism by 
generalizing the second postulate to the case of particles travelling along space-time geodesics, 
and we show that typical relativistic effects are observable for quantum wave-packets. 
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Chapter 3 

Wigner Formulation in Quantum phase Space 

The aim of this section is to introduce the main tenets of the Wigner formulation of quantum 
mechanics. To this purpose, we start from recalling the principle concepts of the Schrödinger 
approach. This is twofold. On the one hand, it establishes the mathematical notation which will 
be utilized throughout. On the other hand, the initial use of (standard) Schrödinger wave-
functions enables a, somehow, quite natural approach to the Wigner formalism. Incidentally, the 
very first formulation of quantum mechanics in a phase-space was obtained as an attempt of E. 
Wigner to find quantum corrections to the Boltzmann equation of classical statistical physics 
[20] and was completely based on the concept of (pure state) wave functions. 

A recent overview of the generalization of the work of Wigner to the case of mixed states was 
given in [21]. In this enunciation, the invariance of the Wigner equation with respect to the (anti-
) symmetric wave-function defining the initial conditions is relatively simple to prove. We will 
make full use of this result to show how the Pauli Exclusion Principle is naturally embedded in 
the Wigner formalism [22]. Then, we proceed with sketching the work of J.E. Moyal [23], a 
generalization of the Wigner theory. This approach establishes elegant and convenient 
mathematical foundations for the Wigner model in both time-dependent and time-independent 
context and, furthermore, introduces the concept of stargen problem (genproblem). Along with 
the work of Dias and Prata [24], it depicts a quantum mechanical theory which is totally 
independent from the concept of wave-function. In particular, using the approach in [24], 
conditions to determine if a function defined over the phase-space has a physical meaning are 
established. Finally, the Wigner equation is generalized to the case of many-body particles. This 
will be useful when introducing the Monte Carlo techniques for time-dependent ab-initio 
simulations.  

To conclude, a short discussion about the connections between the Wigner quasi-distribution 
function and experimental observations is given, allowing the suggestion of a reasonable 
explanation of the negative values appearing in some area of the phase-space. 

3.1 The Schrödinger formalism 

The time-dependent and time-independent Schrödinger equations are two linear partial 
differential equations describing the state of a given quantum mechanical system [25]. Both have 
played a crucial role in the comprehension of Nature at a quantum level and can be considered 
the quantum analogues of Newton’s second law. Nowadays, this approach is considered the 
standard in quantum mechanics. It is, thus, not surprising that E. Wigner utilized one of these 
equations (time-dependent) as a starting point to create his own formalism [20]. In this section 
we briefly recall the main tenets of the Schrödinger formulation of quantum mechanics. We 
adhere to the exposition of L.D. Landau and limit ourselves to the non-relativistic case. 

The Born rule. A (complex, normalized) wave-function ψ = ψ(x) represents the most complete 
description of a given system which squared modulus ψ^2(x)dx is the probability of finding a 
particle around the position x in the interval dx Operators. To any physical quantity A, there is a 
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corresponding Hermitian (linear) mathematical operator ˆA which eigenvalues an are the 
possible outcomes of measuring A. 

The time-independent Schrödinger equation. The time-independent Schrödinger equation is an 
Eigen problem which unknowns are the energy levels of a system along with the corresponding 
Eigen functions. It describes quantum systems in the presence of time-independent external field 
and reads  

………………………………………….(1) 

 

…………………(2) 

with m the mass of the particle and U = U(x) the potential energy of the particle in an external 
field and the operator 

 

The solution can be formally written as (En,ψn) for n = 0, 1, 2, . . . , where the wave-functions 
ψn are also called stationary states, and the function ψ0 and the energy E0 are known as the 
ground state and the zero-point energy respectively. 

In particular, this equation implies the possibility for quantized energies. The time-dependent 
Schrödinger equation. The time-dependent Schrödinger equation represents the most general 
description of a system in the wave-function formalism [25] and reads: 

                                   (3) 

One should note that being a linear partial differential equation, the principle of superposition 
holds. 

3.2. The Wigner formalism 

In 1932, in his search for quantum corrections to classical thermodynamic, E. Wigner came up 
with a very elegant and intuitive formulation of quantum mechanics in terms of phase-space and 
distribution functions [20]. In this section, we focus on the development of this formalism 
starting from the original work of Wigner in a pure quantum state. This approach is extended to 
the case of mixed states by exploiting the concept of density matrix. Then, we proceed with 
presenting the work of J. Moyal which puts the theory on firm mathematical foundations. A 
study on the admissible states in the phase-space formulation, developed by Tatarskii, Prata and 
Dias, is presented, showing the (important) mathematical properties quasi-distribution functions 
must have in order to be valid descriptions of quantum systems and putting the Wigner theory on 
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totally independent foundations with respect to the work of Schrödinger. Afterwards, we 
generalize the single-body Wigner equation to the quantum many-body case and to systems of 
identical particles (with a particular attention to Fermions). 

We conclude this section by commenting on a possible physical interpretation of the negative 
values appearing in quasi-distribution functions and its relation with experimental observations 
in quantum tomography. 

3.2.1. Pure states 
Assuming that the state of a single-body quantum system is represented by the wave-function 
ψ(x; t), it is possible to construct the following expression: 

     (4) 

(We remind that d = 1, 2, 3 is the dimension of the spatial domain). It can be shown that the 
function fW = fW(x; p; t) is real but not positive definite [20], thus it cannot be considered a 
proper distribution function. However this function has convenient and useful mathematical 
properties: when integrated with respect to p it gives the quantity  

 

 

which represents the probability of finding the particle in a certain position, while when 
integrated with respect to x it gives the 
probability for the momentum, i.e. 

 

 

Accordingly, it follows that one can calculate the space-dependent and space-independent 
expectation values ¯A(x) and ⟨A⟩ of any function (macroscopic variable) of coordinates and 
momenta A = A(x; p), i.e. 

and   (5) 

Therefore, it follows that despite the function fW is a quasi-distribution function it can still be 
utilized in practical situations for the calculation of the average values ⟨A⟩ and ¯A(x) of a given 
macroscopic variable A(x; p). Yet the quantity fW(x; p; t) cannot be interpreted as a simultaneous 
probability for both position and momentum of a particle (despite they are independent 
variables). 
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Exploiting the fact that the wave-function ψ(x; t) evolves according to the time-dependent 
Schrödinger equation (26), it is possible to derive the corresponding evolution equation for the 
quasi-distribution function fW(x; p; t). Indeed, by making use of the definition (27), it is possible 
to calculate the time derivative of the function fW(x; p; t) [20]: 

 

    (6) 

Where, from (3) one has: 

  (7) 

Furthermore, from the complex conjugate of (3) one has: 

           (8) 

Thus, by substituting (7) and (8) into (20), replacing the differentiations with respect to x by 
differentiations with respect to x′ , and performing partial integrations for the terms containing 
the operator ∇2 x , one can easily show that [11]: 

  

                       (9) 

from which (by replacing the differentiations with respect to x′ back to x) one finally obtains the 
(time-dependent) Wigner equation: 

                           (10) 

where 

                 (11) 

referred to as the Wigner kernel (or, sometimes, the Wigner potential) and where the external 
potential U = U(x; t) can be varying in time. Eq. (10) is known as the Wigner equation and 
describes the dynamics of a system consisting of a single particle in the presence of an external 
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potential U(x; t). This equation is of paramount importance in the Wigner formulation of 
quantum mechanics and will be the focus of this review effort. The Wigner equation (10) 
represents what the Schrödinger equation (3) represents in the standard formalism (indeed in the 
next section we show that they are mathematically equivalent). 

It is a statistical approach to quantum mechanics, although not in a classical sense as the function 
f(W )can have negative values. Unlike classical statistics which can be regarded as a crypto-
deterministic theory and the whole uncertainty of a system is contained in the initial conditions, 
in the Wigner approach the time evolution of fW is not necessarily crypto deterministic (in a 
classical sense at least) [1]. Moreover, the definition (11) gives an important insight as it shows 
the quantum mechanical nature of the quasi-distribution fW. Indeed, one possible interpretation 
of the kernel VW(x; p; t) is given in [20]: VW represents the probability for a particle to jump in 
the phase-space and have a momentum p; this jump happens discontinuously and in discrete 
amounts equivalent to half the momenta of light quanta, as if the potential were composed of 
light.  

Finally, it is important to note that if the potential U = U(x; t) can be developed in a Taylor 
series, then the Wigner equation (10) reads:  

                  (12) 

 

                                                                              (13) 

which is known as the Vlasov equation (or the Boltzmann equation in the ballistic case) and 
describes a classical system in terms of a distribution function f = f (x; p; t) (i.e. non-negative 
definite). Thus, the emergence of classical mechanics from quantum mechanics can be easily 
explained in this context. Additionally, one should note that when the potential U(x) can be 
expressed as a polynomial of second order, it is easy to prove that the Wigner equation (12) 
reduces again to the Vlasov equation (13), which solution can be found analytically by means of 
the method of characteristics (for the case of a time-independent potential, the Vlasov equation 
reduces to a scalar hyperbolic equation). 

3.2.2. Mixed states 

When conducting an experiment, it is not always possible to know which quantum state is 
currently being manipulated. This situation arises, for example, in systems in thermal 
equilibrium or in systems with a random preparation history. In this case, the pure state approach 
depicted in Eqs. (1) and (3) is not useful any longer and the concept of density matrix is more 
suitable. In the following, we use the mathematical approach described in [56] and we show that 



23 
 

the evolution equation for the Wigner function remains unchanged. In the coordinate 
representation, the density matrix ρ(x; x′; t) is defined as:  

                                                         (14) 

where pi is the statistical weight of the pure (normalized) state ψ(x). The corresponding 
evolution equation, known as the Liouville–von Neumann equation (or the Von Neumann 
equations tout court), was depicted for the first time by J. von Neumann [60] and reads: 

 

where the brackets [., .] denote the commutator [X, Y] = XY − YX. Now, by exploiting the 
definition of a macroscopic variable (5), it is possible to express the Wigner quasi-distribution 
function fW(x; p; t) in terms of the density matrix ρ(x; x′) [30]: 

 

By applying the transform (16) to Eq. (15), it is possible to show that the evolution equation for 
the Wigner function corresponding to the mixed state regime essentially remains the same as 
(10) [30]. In other words, despite the mixed states definition (16) differs from the pure state 
definition (4), the evolution equation does not change. This is certainly not surprising if one 
reminds that the density matrix is a combination of pure states and the Wigner function is a 
bilinear combination of these states. 

3.3. The Wigner formalism for the many-body problem 

In this section, we introduce the time-dependent quantum many-body problem for an arbitrary 
number n of particles in the Wigner formalism. At a first glance, this formulation does not seem 
to introduce any particular advantage over the standard approach, as the mathematical 
expressions involved are incredibly complicated. But later we will see that, thanks to the Monte 
Carlo techniques nowadays available, the Wigner formalism actually brings an important pool of 
possibilities which are hardly imaginable in other formulations of quantum mechanics. 

We show that a many-body quasi-distribution function can be defined for such systems and an 
evolution equation can be delineated. For the sake of clarity and completeness, we start from 
describing the problem in the Schrödinger formalism. Then we introduce the many-body Wigner 
equation. Finally we conclude by discussing the simulation of systems of indistinguishable 
particles in the phase-space quantum theory. 

3.3.1. The many-body Schrödinger and von Neumann equations 

In the presence of a quantum system composed of n interacting particles, a time-dependent 
Schrödinger equation similar to (3) can be depicted. In particular, the space of configurations 
now consists of the coordinates of n particles, and is  denoted as x = (x1, x2, . . . , xn) , (17) 
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where xi = (xi, yi, zi) are the spatial coordinates of the ith particle, and i = 1, 2, . . . , n. 
Accordingly, the wave-function is a function of the n-body configuration space and the many-
body time-dependent Schrödinger equation reads 

                                  (18) 

where the Hamiltonian operator Hˆ is generalized as 

       (19) 

 

In the same way, the Liouville–von Neumann equation is modified to take into account the 
many-body configuration space. In this context, this equation now reads: 

         (20) 

which can be seen as a generalization of the single-body Liouville–von Neumann (15), with the 
operator Hˆ as in (20). One should note that despite the mathematical structure of the many-body 
Eq. (20) is essentially the same as Eq. (15), this equation represents an incredibly more complex 
mathematical challenge, even when approached by numerical techniques. 

The same applies to the many-body Schrödinger equation as both models are defined over a n · 
d-dimensional configuration space. 

 

3.3.2. The many-body Wigner equation 

The Wigner formulation of quantum mechanics allows the description of systems consisting of n 
interacting particles by means of a quasi-distribution function fW = fW(x; p; t), where the phase-
space is now a 2 · n · d-dimensional space (x; p) = (x1, x2, . . . , xn; p1, p2, . . . , pn), where xi 
and pi have the usual meaning. In this new context, the pure state Wigner function reads: 

   (21) 

 

  (22) 
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By applying the transform (21) to the many-body Schrödinger equation (18), one obtains the 
corresponding time dependent many-body Wigner equation: 

             (23) 

          (24) 

 

The function U = U(x; t) = U (x1, x2, . . . , xn) is the potential acting over the n particles, and, in 
general, can vary in time and further details are provided in the next section. 

3.3.3. Many-body potential 

Usually, the potential U = U(x) is expressed as a sum of two terms  

U(x) = Vext (x) + Vee(x)                                                                            (25) 

where Vext (x) and Vee(x) represent the external and electron–electron interaction potentials. 
More specifically, the term Vext most commonly describes either an external potential applied to 
the system, such as one obtained by connecting leads providing an applied electrostatic potential 
(typical in the simulation of electron transport in electronic devices) or the potential due the 
nuclei (if a molecular system is studied). The term Vee represents, instead, the inclusion of 
electron–electron electrostatic interactions due to their Coulombic potential. Usually, this term is 
given by the Hartree approximation (in atomic units): 

                                                                     (26) 

with e the elementary charge. In particular, for an isolated molecular system one has: 

                                             (27) 

where the first term represents the superposition of Coulombic potentials due to the nuclei 
(which atomic number is Zj for the jth nucleus). 

3.3.4. Identical particles 

A very interesting case for applied quantum physics and quantum chemistry is represented by 
systems consisting of indistinguishable Fermions. In order to treat this case in the many-body 
Wigner formalism, we follow the reasoning reported in [30]. In a previous section, we have 
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shown that, starting from the many-body Liouville–von Neumann equation (20), and by applying 
the transform (22) to it, one recovers the many-body Wigner equation (23). One should note that, 
in the process, no assumption has been made on the symmetry properties of the system [30]. 

Now, it is well known that indistinguishable Fermions in the standard formalism are described 
by antisymmetric wave functions, i.e. 

          (28) 

Therefore, taking into account the antisymmetric nature of the system, one can define a Weyl 
map for Fermions 

  (29) 

where Ψ−(x1, . . . , xn) is an antisymmetric many-body wave-function. The case for mixed states 
is obtained in a similar way in [56]. It is possible to show that the many-body Wigner equation 
for indistinguishable Fermions is again (23). Indeed, the outcome of applying the transform (22) 
to Eq. (20) does not depend on the symmetry properties of the system. 

This proves that the whole Wigner formalism does not need any change to treat the case of 
antisymmetric systems [30]. In particular, an important point is that the Pauli Exclusion Principle 
is directly embedded into the Wigner formalism and does not necessitate to be imposed. 

As a consequence, the antisymmetric properties of the system are defined through the initial 
conditions only. Thus, in order to handle systems of Fermions, one simply starts from a Slater 
determinant imposed at a initial time, say t = 0: 

 

It can be shown that this is equivalent to express the initial Wigner function as a sum of reduced 
single-particle Wigner functions and a number of integral terms. As a matter of fact, this couples 
the involved Fermions together, in agreement with the fact that the corresponding initial Wigner 
function cannot be expressed as multiplications of independent wave-packets only. 

3.4. Contribution of Moyal formalism 

In 1949 J. Moyal published an important contribution to the theory of quantum mechanics in 
phase-space. In a brilliant attempt to understand if the Wigner approach was a proper statistical 
theory, he merged the works of E. Wigner [20], J. von Neumann, H. Weyl and H. Groenewold in 
a elegant and firm mathematical framework [1]. This formulation is statistical and provides a 
way to connect classical mechanics to quantum mechanics, allowing a natural comparison 
between these drastically different theories of Nature. Moreover, the work of Moyal allows to 
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completely avoid the use of operators for observables, a very intuitive perspective especially if 
compared to the standard approach of quantum mechanics. In the following, for simplicity we 
introduce the theory for the one-dimensional space, being the generalization to higher 
dimensional spaces trivial. 

Weyl map: A fundamental mathematical tool in the Moyal theory is represented by the Weyl  
map. The Weyl map MW, also known as the Weyl correspondence rule or the Wigner–Weyl 
transform, is an isomorphism from the space of linear operators ˆA with a product · and a 
commutator [., .] to the space of functions A(x; p) defined over the phase-space with a (Non-
commutative) product ∗, known as the Groenewold product and bracket [., .] M, known as the 
Moyal bracket [1]: 

 

In particular, given a quantum operator ˆA = ˆA(ˆx; ˆp), expressed in terms of the position and 
momentum operators ˆx and ˆp respectively, the Weyl map is mathematically defined as: 

                 (31) 

where Tr[.] is the trace of an operator and the exponential of an operator is defined as 

 An important property of the Wigner mapping is that it is invertible [58]. The 
Groenewold ∗-product and Moyal bracket [., .] can be defined in terms of the Weyl map. As a 
matter of fact, given two operators ˆA and ˆB which corresponding Weyl transforms are the 
functions A = A(x; p) and B = B(x; p) one has: 

                                                                             (32) 

                                                           (33) 

In this formalism, the Wigner quasi-distribution function is defined as the Weyl transform of the 
density matrix operator times a normalization factor, i.e.: 

                                                             (34) 

and, for the particular case of pure states, it is possible to show that [24]: 

  

i.e. formula (4). One can also show that the function fW(x; p; t) is square integrable, normalized 
and real, but not positive defined. 
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3.4.1. Evolution equations  

The time-independent equation. One important point of the work of Moyal is represented by the 
so-called ∗-genproblem, essentially corresponding to the time-independent Schrödinger equation 
in the Wigner formalism. If an operator ˆA is given with a non-degenerate spectrum and, in the 
Dirac notation, |a⟩ is one of its eigenvectors corresponding to the eigenvalue a, i.e. 

A |a⟩ = a |a⟩, then it is possible to show that the corresponding Wigner function, defined as 
 is the solution of the following problem 

                            (35) 

known as a ∗-genvalue problem (and it is possible to generalize this result to the case of 
degenerate spectrum [24]). Eq. (35) is a ∗-genvalue problem and represents in the Moyal 
formalism what the time-independent equation (1) represents in the Schrödinger formalism, 
when A(x; p) = H(x; p) = MW(Hˆ ) (with Hˆ defined in (2)). 

The time-dependent equation: In the very same way, it is possible to obtain the time-dependent 
evolution equation for the Wigner function fW(x; p; t). Indeed, supposing that the wave-
functions ψ(x; t) is a solution of the Schrödinger equation (3), one can show that the function fW 
obeys to the following evolution equation: 

                                  (36) 

which corresponds the single-body Wigner equation in the Moyal formalism and it is equivalent 
to Eq. (10). In this formulation of quantum mechanics, this corresponds to the time-dependent 
Schrödinger equation (3). 

 

3.5. Admissible states in phase-space 

More recently, the work of Tatarskii and Dias and Prata [30] have shown what the definition, 
conditions and properties for admissible pure and mixed states are in the phase-space 
formulation of quantum mechanics [30]. This is twofold. On the one hand, it helps us to define 
what properties a phase-space function (a c−number) must have in order to be a valid description 
of a state in the Wigner formalism (in other words, not every function defined over the phase 
space is a valid physical description). On the other hand, it shows that the Wigner formalism can 
be defined in a completely independent form from the Schrödinger formulation. 

Definition of quantum pure states: A distribution function fW(x; p) is said to represent a pure 
quantum state in the Wigner formalism if it can be expressed in terms of only one pure state 
wave-function. Formula (4) is an example of pure state. Pure quantum states correspond to valid 
descriptions of physical systems. Thus, an important question that raises from these definitions 
is, given a real valued and normalized function defined over the phase-space f = f (x; p), how to 



29 
 

determine if it is a pure state. In the following we report mathematical properties that all phase-
space functions must satisfy to be valid representations of a pure state in the Wigner formalism.  

Condition 1: Given a real valued, normalized function f = f (x; p) defined over the phase-space, 
one can show that it represents a pure state if and only if it satisfies the following condition: 

                                                          (37) 

Thus, given a function defined by (4) with ψ a normalized complex valued function, it satisfies 
condition (37). Conversely, given a normalized real valued function fulfilling property (37), it is 
a valid pure state in the Wigner formalism. While this is a very elegant and concise way to check 
whether a phase-space function represents a pure state, in practice it may be difficult to evaluate 
the ∗-product involved in (37). A more practical way is provided by the following condition. 

Condition 2: Let f = f (x; p) be a square integral phase-space function and  

 

 a function of the position x and variable j. The function f (x; p) can be expressed in the form: 

 

with ψa(x) and ψb(x) two complex square integral functions, if the function Z(x; j) satisfies the 
following (non-linear) partial differential equation: 

                                                  (38) 

Moreover, if the function f (x; p) is real and normalized then it represents a pure quantum state in 
the Wigner formalism. Conversely, if the function f (x; p) is a pure state then it satisfies (38). An 
alternative (but equivalent) way to check if a phase-space function represents a pure state is 
obtained by introducing the following function:  

 

It can be shown that a normalized real valued function f (x; p) is a quantum pure state if and only 
if 

                                          (39) 

Eq. (39) represents an alternative way to the condition (38) which might be easier to evaluate 
depending on the specific case. We call Eq. (38) the pure state quantum condition which was 
introduced in 1983 by V. Tatarskii [66]. In the following, we report several properties for pure 
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quantum states valid in the phase-space formulation of quantum mechanics. While we do not 
make any direct use of these results here, it is important to report them since they allow a direct 
connection to the Schrödinger formalism. Indeed they provide a way to calculate the 
corresponding wave-functions of a given phase-space function. Moreover, these theorems 
provide conditions which must be fulfilled by a phase-space function to be a proper Wigner 
quasi-distribution describing a physical system.  

Theorem 1: Let the time-dependent function f = f (x; p; t) satisfies the pure state quantum 
condition (38) at initial time t = 0, and let its time evolution be governed by the Moyal equation 
(36). Then the function f (x; p; t) satisfies the pure state quantum condition for every t. 

Theorem 2: Given a generic and linear operator ˆA and a corresponding phase-space function A 
= A(x; p) defined as  then the solution of the following ∗-genvalue problem 

A(x; p) ∗ f (x; p) = af (x; p), 

f (x; p) ∗ A(x; p) = bf (x; p),                                                                                       (40) 

with a and b belonging to the spectrum of ˆ A, is a pure state and its corresponding wave-
functions satisfy the eigenvalue problems  

 

 

Theorem 3: If a function fW(x; p) satisfies the ∗-genvalue problem (35), then the associated 
wave-function ψ is given by  

                                                            (41) 

where N is a normalization constant. The function ψ(x) satisfies the Eigen problem (1). 

In particular, these theorems prove that the solutions of the general ∗-genvalue problem (40) are 
pure states associated to the wave-functions satisfying the corresponding eigenvalue problem and 
are given by (41). These results provide a complete generalization and specification for pure 
states in the Wigner formalism. Finally, it is important to note that the pure state quantum 
condition (38) implies the Heisenberg principle of uncertainty [58]. Following the example of 
Tatarskii let us consider a Hamiltonian quadratic in position and momentum. In the specific case 
of a simple harmonic oscillator, the Hamiltonian of the system reads 

                       

and the Moyal equation (36) reduces to the (classical) Liouville equation [30] 
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                                     (42) 

It is possible to show that, in this case, any function of the Hamiltonian H(x; p) is a solution of 
(42). In particular we construct the following solution 

                                                                          (43) 

(where a is  positive real constant) which is real, normalized and square integral. The position 
and momentum dispersions read 

      ,     Thus       

which has no lower bound since a is an arbitrary constant, in disagreement with the uncertainty 
principle of Heisenberg. This means that the proposed solution is not an acceptable quantum 
state in the Wigner formalism. This is an important point. As a matter of fact, this example 
shows in a clear manner that not every phase-space function is an acceptable state in the Wigner 
formalism. The pure state condition (38) must be fulfilled. If we, now, impose this condition to 
fW one obtains: 

   which now introduces the following relation    

I.e. an even more restrictive condition than the uncertainty principle of Heisenberg. 

3.6. Interpretation of negative probabilities 

The Wigner quasi-distribution function defined in (4), (16) for single-body problem (in pure and 
mixed state respectively),and in (21), (22) for the many-body problem (in pure and mixed states 
respectively), retains many of the properties of a classical distribution function. As a matter of 
fact, one can use it to compute the average value of a macroscopic variable. 

The only difference consists in the negative values the Wigner function can have in some region 
of the phase-space. In this section, we suggest a reasonable interpretation of these negative 
probabilities based on the experimental evidences presented in [2,3], and [4] in the context of 
quantum tomography. To this aim, we start by discussing the convolution of the Wigner 
function. Then we briefly sketch how the Wigner function of an experiment setting is 
reconstructed. From the previous two points we suggest an interpretation of the (sometimes 
occurring) negative values. 

Convolution of the Wigner function: In order to compute the average value of a macroscopic 
variable A = A (x; p), one utilizes formula (5) which is essentially a convolution of the Wigner 
function. This creates a direct connection to classical (statistical) mechanics. In the convolution 
process, the Wigner function fW = fW (x; p; t) is multiplied by a function A (x; p) which can be 
naturally interpreted as the phase-space probability of possible states of a measurement device 
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(distributed over an area of order ¯h or larger). In particular, when the resolution of the 
measuring device is degraded away, such that the Heisenberg uncertainty principle do not play 
any important role any longer, localized regions of fW (x; p; t) (which may contain negative 
values) are washed out and formula (5) becomes completely classical [30]. 

Quantum tomography: We have seen that the probability distribution of any physical 
observable corresponds to an integration of the Wigner function. Therefore, it seems that any 
measurement cannot provide localized values of the fW (x; p; t). Despite these difficulties, an 
experimental technique known as quantum tomography has been developed which can 
reconstruct the Wigner function of an experimental setting [29, 30]. Essentially, the technique 
relies on the fact that an experiment can be prepared and repeated a large amount of times, thus 
providing a projection of the Wigner function.  

For example, one may first measure the position of a particle for a large enough number of times 
and then repeat the same experiment measuring the momentum of the particle. In practice, this 
provides a projection of the Wigner function over the position and momentum directions of the 
phase-space frame. Then, it is possible to apply an inverse Radon transformation which 
reconstruct the (higher dimensional) function fw, along with its (eventual) negative values. 

 
Fig 3.6: Artistic representation of a Wigner quasi-distribution function along with its projections (integral) over space and momentum. 

 

An interpretation of the negative values in fw can now be provided. The Wigner quasi- 
distribution function is the quantum mathematical object which most closely corresponds to a 
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classical distribution function. It is utilized to compute the average value of macroscopic 
variables but it is not a proper distribution function as it may have localized negative values. 

Now, classical particles are always localized in a precise point of the phase-space, and an 
ensemble of classical particles can define a proper distribution function. But when dealing with 
quantum particles, the Heisenberg principle of uncertainty prevents such localization, forcing the 
description of a particle to an area of the phase-space bigger ΔxΔp = ¯h2. In other words, this 
means that if the position is well known, i.e. highly localized, then the momentum is delocalized 
and vice versa.  

This feature has to be included in a proper description of the quantum world and is clearly 
exhibited by the appearance of negative values in the Wigner function. Therefore, one may infer 
that areas of the phase-space with a negative sign are essentially regions which are 
experimentally forbidden by the uncertainty principle 
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Chapter 4 

Ballistic conduction 

The transport of electron in a medium has 2 main theories on the basis of which we study the 
electron characteristics. 

1) Diffusive transport                2) Ballistic Transport 

1) Diffusive Transport: whenever the mean free path of electron travel inside a conductor is less 
than the length of conducting medium than this transport is called diffusive transport this occur 
mostly when loss of energy is high due to collision and scattering.  

2) Ballistic transport is the transport of electrons in a medium having negligible electrical 
resistivity caused by scattering. Without scattering, electrons simply obey Newton's second law 
of motion at non-relativistic speeds. In general, the resistivity exists because an electron, while 
moving inside a medium, is scattered by impurities, defects, the atoms/molecules composing the 
medium that simply oscillate around their equilibrium position (in a solid), or, generally, by any 
freely-moving atom/molecule composing the medium, in a gas or liquid. 

 

Ballistic conduction is observed in quasi-1D structures, such as carbon nanotubes or silicon 
nanowires, because of extreme size quantization effects in these materials. Ballistic conduction is 
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not limited to electrons (or holes) but can also apply to phonons. It is theoretically possible for 
ballistic conduction to be extended to other quasi-particles, but this has not been experimentally 
verified. 

 

 

 

 

                                          Fig 4.1: Diffusion (a) and Ballistic (b) transport of electrons in 1D. 
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Section 2 

Mathematical Interpretation and coding  
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Chapter 5 

Algorithm for Nano-Archimedes code 
This is an important section of this thesis. All details provided here need attention to be 
understood. The next two sections, and the applications shown at the end of this thesis, depend 
on this section. They cannot be understood without a comprehension of this section. 
Furthermore, an implementation of the Wigner MC method described here is available. 

5.1 Principle of Nano-Archimedes  

This chapter provides the frame work to create the code for Nano-archimedes. 

5.1.1 Semi-discrete phase-space 

We recall that in the Wigner formulation of quantum mechanics a quantum system consisting of 
one particle is completely described in terms of a phase-space quasi-distribution function fW(x; 
p; t) evolving according to Eq. (5.10). Thus, our aim is to reconstruct the function fW at a given 
time. We start by reformulating the Wigner equation in a semi-discrete phase-space with a 
continuous spatial variable x and a discretized momentum p described in terms of a step , 
where LC is a free parameter defining the discretization and a study on the dependence of the 
quality of a solution in function of LC has been carried out. Now, the semi-discrete Wigner 
equation reads: 

         (44) 

where, for convenience, we use the notation fW(x;M; t) = fW(x;MΔp; t), with M = (M1, . . . 
,Md) a set of integers with d elements, and MΔp = (M1Δp1, . . . ,MdΔpd). In particular, once one 
knows the Wigner function of a system, it is useful to evaluate the expectation value ⟨A⟩ (t) of 
some generic physical quantity, described by a phase-space function, or c-number, A = A(x; k) at 
a given time t. Thus, our computational problem reduces to the calculation of the inner product 
(A, fW) with the solution of (10). It can be shown that this task can be reformulated in a way 
which involves the solution of the ad joint equation. Doing this, we first obtain an integral form 
of (10), and then the ad joint equation. 

5.1.2. Integral formulation 

The semi-discrete Wigner equation (44) can be reformulated in a integral form. First, one defines 
a function γ as  
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                     (45) 

where V+w is the positive part of Vw, i.e. it gives VW if Vw > 0 and 0 otherwise, and  

V−w is the negative part defined similarly. Let us, now, add and subtract the term γ (x(t′)) to 

Eq. (44). Furthermore, let us introduce the following quantity: 

             (46) 

By integrating over the interval (0, t), supposing that initial conditions are imposed at time 0, one 
can include both boundary and initial conditions in the formulation and obtain the following 
equation: 

 

  (47) 

where, to ensure the explicit appearance of the variables Q = (x,M, t) and Q′ = (x′,M′, t′), the 
kernel has been augmented by the θ and δ functions which retain the value of the integral 
unchanged. In particular θD keeps the integration within the simulation domain (if any). In the 
same way, the expectation value of the physical quantity A at time τ is augmented and reads: 

     (48) 

(note the implicit definition of the symbol Aτ (Q)). 

5.1.3. Adjoint equation 

One can rewrite the expectation value (48) by formally introducing the adjoint equation of (47) 
which has a solution g and a free term g0 determined below: 

 

We now multiply the first equation by g(Q), and integrate over Q. Then, we multiply the second 
equation by f (Q′) and integrate over Q′ . Finally, we subtract the two equations. One obtains: 
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where the dummy variables have been exchanged for a more convenient comparison with (48). 
In particular, this shows that: 

       (49) 

where x′(y) is the trajectory initialized by (x′,M′, t′), and x(0) = x′ . Thus, one obtains the adjoint 
equation by integration on the unprimed variables: 

(51) 

In the same way, by reverting the parameterization of the field-less trajectory, Eq. (49) is 
reformulated, with the initialization changing from (x′,M′, t′) to (xi = x′(0),M′, 0) 

   (52) 

5.2. Signed particle method 

By consecutive iterations of (50) into (52) it is now possible to depict a numerical method based 
on particles. The zeroth order term reads:  

      

By applying the Monte Carlo theory for the computation of integrals, one can interpret part of 
the integrand as a product of conditional probabilities in the following way. Assuming that fi is 
normalized to unity, one generates a set of random points (xi,M′) at time 0 which initialize the 
particle trajectories xi(y). Thus, the exponent gives the probability for a particle to remain over 
the trajectory provided that the change-of-trajectory rate is represented by the function γ. In 
practice, this probability filters out these particles, such that the randomly generated change-of-
trajectory time is less than τ . If a particle stays in the trajectory until time τ , then it contributes 
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to ⟨A⟩0(τ ) with a value equal to the rest of the integrand, i.e. fi(xi;M′)A(xi(τ ),M′). Otherwise, 
particles which have experienced a change-of-trajectory event do not contribute at all.  

Finally, ⟨A⟩0(τ ) is estimated by averaging over the set of N initialized particles. Similarly, the 
first order term of the iteration term is obtained by replacing the term g(xi(t′);M′; t′) in (52) by 
the kernel of (51) specifically rewritten (in other words in (51) we substitute x′ with x1 = xi(t′)). 
Note that the trajectory in the exponent is now initialized by the values (x1,M, t′)

 

Then, we replace the function g(x1(t); M; t) with the free term of Eq. (51) at point 
A(x1(t),M,t)δ(t−τ ). Finally, we augment the equation by completing some of the probabilities 
enclosed in curly brackets and we partially reorder some of the terms to obtain:  

 

One can give a similar Monte Carlo interpretation. A particle is now initialized at (xi,M′, 0). It 
follows the trajectory until time t′, i.e. the time the particle leaves the initial trajectory (or 
equivalently changes its coordinates in the phase-space). The time t′ is given by the probability 
density in the first curly brackets. Indeed, the enclosed term, if integrated over the time interval 
(0,∞), gives unity. Furthermore, the exponent represents the probability for a particle of staying 
in the same trajectory until time t′ , while γ (xi(t′))dt′ is the probability to leave that trajectory in 
the interval (t′, t′ + dt′). The phase space position now becomes (x1 = xi(t′),M′) at t′ and the 
evolution continues (if the particle is still in the simulation domain, otherwise its contribution is 
zero). The term in the next curly bracket is interpreted as a source of momentum change from M′ 
to M (locally in space at point x1 and at the time of scattering t′). Thus, at moment t′ the particle 
initializes the trajectory (x1,M) and, with the probability given by the exponent in the last curly 
brackets, remains over the trajectory until time τ . In particular, t is set to τ by the δ function 
provided that t′ < τ , otherwise the contribution is zero. We note however that in this case the 
particle has a contribution to the zeroth iteration term. 

In the very same way, one can calculate the first three terms and sum them up to show how to 
continue with higher order terms: 
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The initialization coordinates of the novel trajectories are denoted by the symbol ⇑. 

It is clear that the iteration expansion of ⟨A⟩ branches, and the total value is given by the sum of 
all branches. Thus instead of changing trajectory, one may interpret the sum as three new 
trajectory pieces or, equivalently, three signed particles appearing: 

  (53) 

A short analysis of the last term suggests that the initial (parent) particle survives and two more 
particles (one positive and 

one negative) are generated with the first two probabilities (in curly brackets). Equivalently, one 
generates the first state M − M′ = L with probability  

 

Thus, using the same probability, or simply a new random number, one generates another value, 
say L′ , and obtains a second state M′ − M = L′ . It is easy to see that, actually, these values can 
be combined into a single choice of L by reordering the sum over M for the second term so that 
V−w (x1,M − M′) appears in the place of V+w . Indeed, we recall that if V+w (L) is not zero 
then V+w (−L) = 0 and V−w (−L) = V+w (L). In this way the following two states, with the 
second one having a flipped sign, have the same probability to appear: M − M′ = L, M − M′ = 
−L;or equivalently M = M′ + L, M = M′ − L. 

We can now summarize the outcomes obtained so far. By applying the kernel of (51) in the form 
(53), one can order the terms of the resolving expansion of (52). This is utilized to construct a 
transition probability for the numerical Monte Carlo trajectories which consist of pieces of 
Newton trajectories linked by a change of the momentum from M to M′ according to Γ . These 
trajectories are interpreted as moving particles under events which change their phase-space 
coordinates. The exponent in the formulas gives the probability that a particle remains on its 
field-less Newton trajectory with a changing rate equal to γ . If the particle does not change 
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trajectory until time τ , particles contribute to ⟨A⟩0(τ ) with the value fi(xi;M′)g(xi(τ );M′), 
otherwise they contribute to a next term of the expansion. It can be proved that a particle 
contributes to one and only one term of this expansion. Thus, the macroscopic value ⟨A⟩(t) is 
estimated by averaging over N particles. 

Therefore, by exploiting the appearance of the term Γ , it is possible to depict a Monte Carlo 
algorithm for the ballistic, single-body, semi-discrete Wigner equation (44). After any free flight 
the initial particle creates two new particles with opposite signs and momentum offset (around 
the initial momentum) equal to +L and −L where L = M − M′ . The initial particle and the two 
newly created represent three contributive terms of the series. We, thus, have a Monte Carlo 
algorithm for our model. 

5.3. The annihilation technique 

It can be demonstrated that the process of creation of new couples is exponential. By noting that, 
in the above depicted Monte Carlo method, particles are indistinguishable and annihilate when 
they belong to the same phase-space cell and have opposite signs, it is possible to remove a 
significant number of particles during the simulation. The technique has been largely 
documented in and we only sketch the main tenets here. If one fixes a recording time step at 
which we check if particles belong to the same region of the phase-space with negative signs, 
then they are removed and all no annihilating particles are kept in the simulation. These 
observations highlight the possibility of removing, periodically, all particles not contributing to 
the calculation of the Wigner function or, in other words, one can apply a renormalization of the 
numerical average of the Wigner quasi-distribution by means of a particles annihilation process. 
This is in accordance to the Markovian character of the evolution to progress at consecutive time 
steps so that the final solution at a given time step becomes the initial condition for the next step. 

This technique has proved to be very efficient, especially for the simulation of realistic objects 
which typically involve several tens or even hundreds of millions of initial particles. Without this 
technique, time-dependent Monte Carlo simulations of the Wigner equation would be practically 
impossible tout court.  

5.4. Extension to density functional theory 

The simulation of quantum many-body systems is a complex task which is well-known to require 
immense computational resources. It is also an important problem which touches many aspects 
of our everyday life. For example, they allow the comprehension, and thus the design and 
exploitation, of complex chemical reactions, new materials, new electronics, etc. Therefore it is 
not surprising that a very early interest has been shown in this direction. In 1926 a first attempt to 
simplify the quantum many-body problem, although in the stationary case, was done by 
introducing an approximate method to find the electronic structure in terms of a one-electron 
ground-state density ρ(x). The Thomas–Fermi theory, as it is known today, introduces too many 
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oversimplifications to be of any practical use but it represents a foundational result for the 
development of DFT. Later on, Slater combined the ideas of Thomas and Fermi with the 
Hartree’s orbital method, introducing for the first time a local exchange potential. Then the 
Hohenberg–Kohn theorem proved that, in principle, an exact method using the one-electron 
ground-state density ρ(x) can be depicted and the Kohn–Sham system was introduced from the 
homogeneous quantum electron gas theory. The time-dependent counterpart of the Hohenberg–
Kohn theorem was introduced in 1984 which is known as the Runge–Gross theorem . One 
should note that this theorem guarantees the validity of the time-dependent Kohn–Sham system 
only for the calculations of the ground-state properties.Nothing is proved about the excited 
states. Finally, it is also known that the mapping from a given time-dependent potential to time-
dependent density is not invertible and a time-dependent current-density functional theory is 
required. Nowadays, the density functional theory (DFT) can be considered the most popular and 
utilized tool. In this section we introduce an extension of the Wigner MC method to DFT as a 
way to simulate many-body problems. This section is based on the work described in [37]. 

5.4.1. The Kohn–Sham density functional theory 

DFT relies on our capability of calculating the wave-function of a single-electron Schrödinger 
equation. Essentially, the quantum many-body problem is reduced to a system of coupled single-
electron equations, known as the Kohn–Sham system, and effects such as electron–electron 
interaction are described in terms of the so-called density functional. This is the essence of both 
time-independent and time-dependent approaches in DFT. This simplification allows the 
simulation of many-body problems in acceptable computational times, but the price to pay for it 
is that the exact mathematical expression for the density functional is known only for simple 
cases and further approximations are introduced for more complex systems. Despite the 
difficulties, nowadays one can choose among a plethora of functional, e.g. the local density 
approximation (LDA), the generalized gradient approximation and the B3LYP. 

Now, the dynamics of quantum many-body systems is described by the many-body Schrödinger 
equation: 

            (54) 

where the unknown is the (complex) wave-function Ψ = Ψ(x1, . . . , xn), and the Hamiltonian Hˆ 
, accounts for the various forces involved in the problem (see formulas (20) and (27) for 
example). The resolution of (54) represents an incredible mathematical challenge even when 
approached by numerical techniques. It is worth to mention that attempts in this direction have 
been made but, up to now, they only allow the calculation of the stationary ground state. 

Despite its limitations, the time-dependent Kohn–Sham system greatly reduces the difficulties 
involved in (54) and allows practical and useful simulations of quantum many-body systems. 
Indeed, we now deal with a set of n single-body Schrödinger equations coupled to each other by 
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means of an artificial density functional veff(x) which is local. One should note that the locality 
of this functional introduces severe restrictions to the time dependent simulations of strongly 
correlated electron systems. 

In practice, the time-dependent Kohn–Sham system consists of the following set of equations (i 
= 1 . . . n)  

     (55) 

from which the one-electron density can be calculated in the following way: 

      (56) 

where the sum is performed over the states below the Fermi energy. The many-body effects are 
included in the effective potential Ueff = Ueff(x) which can be expressed in terms of an external 
potential (usually representing the potential due to the nuclei of a molecule), the Hartree 
potential and an exchange–correlation potential  

         (57) 

Finally, one should note that there is no unique way to express the density functional Uxc. Many 
choices are available. In any case, given a functional, it is possible to solve the set of Eq. (55) 
from which one obtains the one electron density ρ(x). 

5.4.2. The Wigner density functional theory 

By applying the Wigner–Weyl transform (31) to every Schrödinger equation of the set (55), with 
U(x) = Ueff(x), one obtains a new time-dependent Kohn–Sham system expressed in terms of the 
corresponding n Wigner equations, i.e.: 

              (58) 

where the Wigner potential is expressed in terms of an effective potential 

      (59) 
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Given an adequate effective potential Ueff(x) which, in turn, depends on the choice of the 
exchange–correlation functional, the quantum many-body problem now consists of solving the 
set of coupled equations (58). This system, of course, being based on the same assumptions, is 
affected by the same problems of standard DFT. The choice of the exchange–correlation 
potential is not unique and difficult to select, there is no guarantee that the excited states are 
correct, etc. This approach, if applied to any computational quantum problem, will essentially 
give the same answers given by the standard DFT. 

Nevertheless, two important advantages appear in this new model. First, the Wigner formalism is 
based on the concept of a quasi-distribution function and, as such, offers a much more intuitive 
representation of the simulated system. For example, one can discuss the system in terms of 
single-electron distribution functions and visualize the time-dependent energy distribution which 
can give profound insights about the dynamics involved. Second, the Wigner MC method, based 
on the Iterative MC method, is known to be highly scalable outperforming other numerical 
approaches (one can reach very deep levels of parallelization almost trivially). This opens the 
way towards simulations of very complex structures.  

5.5. The Wigner Monte Carlo method for many-body systems 

Traditionally ab-initio simulations, based on first principles of quantum mechanics, are known to 
be an incredibly difficult task to perform. As a matter of fact, they require an immense amount of 
computational power. Although their complexity, it is important to be able to simulate such 
systems, since they allow the simulation of so-called strongly correlated systems, which are 
relevant in both applied physics and chemistry. In this section, the Wigner MC method for the 
single-body equation is generalized to the quantum many-body problem without introducing any 
supplementary physical approximation. 

5.5.1. Semi-discrete phase-space 

As done previously for the single-body Wigner equation, one starts by reformulating the many-
body Wigner equation (23) in a semi-discrete phase-space with continuous spatial coordinates x 
and discretized momenta p expressed as multiples of the quantity where LC is the 
usual parameter which specifies the momentum discretization. The semi-discrete many-body 
Wigner equation reads: 

          (60) 
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5.5.2. Integral formulation 

Eq. (60) can be rewritten in an integral form. To this aim, we first define the function γ in a 
many-body context as: 

 

where V+W is, again, the positive part of VW. Then, Eq. (60) can be rewritten by adding and 
subtracting the term γ (x). In the same way, the quantity Γ can be generalized and has the 
following expression: 

 

As usual, we assume that the evolution of an initial condition fi(x;M) starts at time 0 and, by 
following the same strategy employed in the single-body Wigner MC method, one can rewrite 
the semi-discrete many-body Wigner equation in the form of a Fredholm integral equation of 
second kind: 

 

  (63) 

One note that, in order to ensure the explicit appearance of the variables Q = (x;M; t) and Q′ = 
(x′;M′; t′), the kernel has been augmented by the θ and δ functions. Following the generalization 
of the signed particle MC method, one expresses the many-body expectation value of the 
physical quantity A = A(Q) at time τ as: 

      (64) 
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5.5.3. Signed particle method 

Formally speaking, one quickly realize that the equations so far recovered are in the same shape 
as the ones of the single particle Wigner MC method. This suggests that one can simply follow 
the same procedure and express the expectation value (64) as a Liouville–Neumann series which 
help depicting a signed particle MC method for the many-body Wigner equation. Thus, it is 
straightforward to obtain the zeroth order term of the series which reads: 

 

As usual, the mathematical Monte Carlo theory for solving integrals suggests to consider part of 
the integrand as a product of conditional probabilities and, if fi is normalized to unity, one 
generates random phase-space points (x;M′) at the initial time 0 (note that, in this context, a 
virtual particle represents now a set of n phase-space coordinates). These points initialize the 
trajectories of the particles x(y) and the exponent, as for the single-body case, gives the 
probability for a particle to remain over the trajectory provided that the out-of-trajectory event 
rate is γ . This probability filters out these particles, such that the randomly generated out-of-
trajectory time is less than τ . If the particle remains in the same trajectory till time τ , it has a 
contribution to ⟨A⟩0(τ ) equal to fi(x,M′)A(x(τ ),M′), otherwise it does not contribute at all. Thus, 
⟨A⟩0(τ ) is estimated by the mean value obtained from the N initialized particles. 

In the same way, one can proceed further and show that the first order term of the many-body 
Liouville–Neumann series reads: 

 

and, again, a physical interpretation can be given which is a generalization of the single-body 
case. In particular, now a particle is initialized at (x,M′, 0) which follows the trajectory until time 
t′ given by the probability density in the first curly brackets. Then, the particle phase-space 
position is x′ = (x(t′);M′; t′) and the evolution continues if the particle is still in the simulation 
domain (otherwise the contribution is zero). A similar interpretation can be given to the term in 
the next curly bracket which brings the particle from M′ to M (locally in space at the time t′). 
Thus, at moment t′ the particle initializes the trajectory (x′; M) and, with the probability given by 
the exponent in the last curly brackets, remains over the trajectory until time τ. 

The first three terms of the Liouville–Neumann series show how to continue with higher order 
terms [38]. As for the single-body case, the expansion of ⟨A⟩ branches and the total value is 
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given by the sum of all branches. We can, thus, equivalently talk in terms of three appearing 
particles even for the many-body WMC method (note that, in this context, by particle one means 
a mathematical point defined in a nd-dimensional phase-space), in other words: 

    (65) 

According to the last term, the initial parent particle survives and a couple of new signed 
particles are generated with the first two probabilities. In other words, we generate the first 
many-body momentum state M − M′ = L with probability: 

 

and, with the same probability, we generate another value, say L′ , for the second state M′ − M = 
L′ . In the same way, by exploiting the term Γ (x; M; M′), it is possible to depict a MC algorithm 
for the integration of the many-body semi-discrete Wigner equation (60). After any free flight 
the initial particle creates two new particles with opposite signs and momentum offset (around 
the initial momentum) equal to +L and −L with L = M − M′ . The initial particle and the created 
couple represent three contributive terms to the many-body Liouville–Neumann series. 

As a concluding remark, one should note that this method implies high scalability of the 
algorithm (being a MC method). In particular, the scalability does not depend on the number of 
particles involved in the many-body problem. Indeed, the solution is constructed by an ensemble 
of field-less Newtonian particles which are independent from each other. This represents an 
important advantage for complex systems where the number of involved bodies can be relatively 
large.  

5.5.4. Notes on computational complexity 

Some comment on the computational complexity of the many-body Wigner MC method are 
given. It is relatively easy to demonstrate that the complexity of the part of the algorithm dealing 
with the evolution of the phase-space coordinates of the virtual particles increases linearly with 
the number of bodies involved [55]. But the calculation of the Wigner kernel (24) is now the 
bottle neck of the algorithm, as it is equivalent to the calculation of a function defined over a 
space which dimensions increase exponentially with the number of bodies involved. While this 
does not represent a problem for noninteracting fermions (where the function γ = γ (x1, . . . , xn) 
is time-independent, even in the case of entangled particles), it is a severe limitation when all 
interactions have to be taken into account in a consistent way, since the Coulombic interactions 
have to be updated at every time step 
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Chapter 6 

Coding of Nano-Archimedes 

This chapter provides the codes of Nano-Archimedes. 

Assume a problem in mathematics, for solving this problem we use different types of method. 
But whatever method we use it provide the same result. To increase the calculation speed we use 
calculator. To solve this problem with the help of algorithm we code the formulation and use 
computer processing speed. 

  
Fig 6.1: Representation of a Problem and way to solution 

Same way when we talk about Quantum system problem there are many different types of 
method called formulation to define a quantum system. Code of Nano-Archimedes uses the 
Wigner formulation to find the probability of particle at quantum level and uses Monte Carlo 
method for fast calculation of introdifferential equations. 

 

Fig 6.2: Nano-Archimedes Algorithm representation 
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6.1 Programming Language 

Code of Nano-Archimedes is written in C language due to its high Compatibility with all type of 
machine or simply it makes the code platform independent. Nano- Archimedes code is written to 
simulate the particles characteristics at quantum level using 1D ballistic conduction technique. 

To simulate the result whole code is divided into 10 files.9 files are Header files and 1 is nano-
archimedes.c file. Nano-Archimedes also takes the help of inbuilt library of C to provide the 
result and better interface during the simulation. Now we will see the codes and understand each 
file one by one 

 

6.1.1 wmc.h    

This Header file is use to provide the Monte Carlo Method for fast calculation 
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6.1.2 random.h 

This header file is use for random selection of particles. 
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6.1.3 Kernel.h 

This header file is used by Gamma function in gamma.h 

 

 

6.1.4 gamma.h 

This header file calculate the number of pairs created after annihilation per unit of time  
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6.1.5 density.h 

This file calculates the probability density of particle in x and k space. 

 

6.1.6 distribution.h 

This header file takes the sign of particle in quantum level to calculate the distribution of 
particles 
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6.1.7 annihilation.h 

This header file use to recombine the two particle which have opposite polarities due to which 
the original characteristic of particles is been destroyed.  
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6.1.8 save.h 

This header file is use to save the result in .dat format. 
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6.1.9 config.h 

This header file contains the initial conditions of wave packets 
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6.1.10  nano-archimedes.c 

This is the main program written in C to provide the initial condition for simulation of code. 
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Chapter 7 

Result 

 

Simulation of Nano-archimedes code is done on Linux environment which produces (.dat) files. 
To generate the graphical result I uses GNUplot tool. All the result shown in this chapter is taken 
at different time intervals.  

7.1 Potential difference 

 
7.2 Gamma Function
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7.3 Wigner distribution of elctron in X-space 

 
Fig 7.1.a: electron Probability density in x-space at 108 ns 

 
Fig 7.1.b: electron Probability density in x-space at 1617 ns 
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Fig 7.1.c: electron Probability density in x-space at 3148 ns 

 
Fig 7.1.d: electron Probability density in x-space at 4000 ns 
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7.4 Wigner distribution of electron in k-space 

 
Fig 7.2.a: electron Probability density in k-space at 41 ns

 
Fig 7.2.b: electron Probability density in k-space at 1464 ns 
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Fig 7.2.c: electron Probability density in k-space at 2985 ns 

 
Fig 7.2.d: electron Probability density in k-space at 4000 ns 

 

 



68 
 

Conclusion 
The simulator used to obtain the results is a modified version of Archimedes, the GNU package 
for the simulation of carrier transport in semiconductor devices which was first released in 2005 
under the GNU Public License (GPL). In this particular project, named Nano-archimedes, our 
aim has been study the result obtains by a full quantum time-dependent simulator. The code is 
entirely developed in C and optimized to get the best performance from the hardware. 

Results provide the information about the probability of electron density inside a semiconductor 
crystal at different lattice regions in x-space and k-space. x-space is provides the coherent length 
of semiconductor crystal. On the other hand k-space information provides the probability of 
electron density per unit length of crystal. Due to which we can find the frequency of electron 
generation. 
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Appendix A: FORMULATIONS OF CLASSICAL MECHANICS  
 

The formulations of classical mechanics known to us are the following: 

1. Newtonian 
2. Lagrangian 
3. Hamiltonian 
4. Hamilton’s principle (called by Feynman and Landau ‘‘the principle of least action’’) 
5. the Maupertuis principle of least action (also associated with the names of Euler, 

Lagrange, and Jacobi) 
6. Least constraint (Gauss) 
7. least curvature (Hertz) 
8. Gibbs–Appell 
9. Poisson brackets 
10. Lagrange brackets 
11. Liouville 
12. Hamilton–Jacobi 

 

 

 

More formulation of Quantum Mechanics 

1. The matrix formulation (Heisenberg) 
2. The wave function formulation (Schrödinger) 
3. The path integral formulation (Feynman) 
4. Phase space formulation (Wigner) 
5. Density matrix formulation 
6. Second quantization formulation 
7. Variation formulation 
8. The pilot wave formulation (de Broglie–Bohm) 
9. The Hamilton–Jacobi formulation 
10. The many-worlds interpretation (Everett) 
11. The transactional interpretation (Cramer) 
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Appendix B: Configuration and Installation of Archimedes and Nano-
Archimedes 

A) System configuration and installation 

Hardware: 

1. 2 GB RAM 

2. 5 GB hard disk 

3. 2 GHz Intel Processor 

Software: 

1. Linux (Ubuntu), UNIX, Linux/GPL 

2. Nano-archimedes source code 

3. Dependent library 

B) Installation 

We report here some guidelines, just to have an idea on what it takes to install it. As one will see, 
there is nothing special to install it and the installation is pretty straightforward. 

First of all, the system requirements are the following: 

You will need a C and C++ compiler. The following is a list of packages for debian Distributions 
/ Linux packages that should be installed. 

 
gcc  
g++  
libssl-dev   
make   
patch   
subversion   
libx11-dev   
libxext-dev 
libfreetype6-dev   
libxft-dev   
libxrandr-dev   
libpng12-dev   
libjpeg62-dev 
libtiff4-dev   
libxpm-dev 
(Other distribution's package names may differ slightly. The version numbers don't matter. For example, libpng12-
dev or libpng14-dev can be used. ) 
Bindings will be built for whatever languages are found installed on your system. 

>>>>>>command to install this package<<<<<<<<< 

1. Open the Terminal window (ctrl + t) in your Linux environment 
2. Get root privilege  by typing     >> sudo  -i      or sudo  su 
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3. Install the following package  >>  sudo apt-get  install <package name> 
Archimedes Installation steps: 

1. Download the source code from http://www.gnu.org/software/archimedes/#TOCdownloading 
2. Extract folder and save to the desktop 
3. Open terminal  (ctrl + T) 
4. Get root access by typing   >> sudo –i 

>> start the installation of Archimedes<< 
5. cd Desktop/Archimedes/src                      //move to Archimedes source folder      
6. ./configure 
7. Make 
8. Make install                                 // Archimedes start installation which take 15 minute depending on 

                                                          your system configuration  
9. Now start the Archimedes by typing 

>> Archimedes  
Now you are in Archimedes tool 
 
>>for more information you can check Archimedes user manual [2] <<< 
 

2.2 Nano-archimedes Installation 
 

1. Download the source code from http://www.nano-archimedes.com/download/nano-archimedes-ballistic-
1D-2D-1body-2bodies-2.0.tar 

2. Extract folder and save to the desktop 
3. Open terminal  (ctrl + T) 
4. Get root access by typing   >> sudo –i 

>> start the installation of Nano-archimedes<< 
5. cd Desktop/nano-archimedes/src           //move to nano-archimedes source folder      
6. gcc nano-archimedes.c -Wall -lm -Ofast -o nano-archimedes 
7. ./nano-archimedes                            // Nano-archimedes start installation which take 15 minute depending                   

                                                            on your system configuration  
8. Now start the Nano-archimedes by typing 

>> Archimedes  
Now you are in Nano-archimedes tool 

C) Script, compilation and running 
This section is design to provide the information related to compilation and running of script files. But the section is 
not contain the actual programming or study related to programming syntax. Code of Archimedes and Nano-
archimedes is written in C Language. All the input file is called script which contain the series of instruction for 
kernel to simulate the output. 

Script: it is a file which contains set of command, functions and procedure to run inside the terminal. 

 Archimedes Programming Syntax: 
For Archimedes syntax check the user manual [2] 
 
Nano-archimedes Programming Syntax: 
 The parameters defining the problem can be found in the file nano-archimedes.c, 

   Where: 
 
   - MSTAR            = effective mass 
   - INUM                = initial maximum number of particle per phase-space cell 
   - LX                     = length of the spatial domain 
   - LC                     = length defining the momentum discretization 
                           (Sometimes referred to as "coherence length" or "cut-off length") 
   - NX                     = number of cells in x-direction 

http://www.gnu.org/software/archimedes/#TOCdownloading
http://www.nano-archimedes.com/download/nano-archimedes-ballistic-
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   - DT                     = time step 
   - ITMAX                  = total number of time steps 
   - SIGMA_WAVE_PACKET      = wave packet dispersion 
   - X0_WAVE_PACKET         = wave packet initial position 
   - BARRIER_POTENTIAL      = value of the potential barrier 
   - BARRIER_POSITION       = barrier center position 
   - BARRIER_WIDTH          = barrier width 
   - K0_WAVE_PACKET         = wave packet initial wave vector 
   - ANNIHILATION_FREQUENCY = number of time steps at which annihilation occurs.                           
                                                                    

 
 D) Coding, Compilation and running 

This section did not teach you how to program but provide a small introduction about making a script file and how 
to run them. 

Archimedes 

1. start writing a code in C language and then save this file  in .inp format 
2. After saving the file open the terminal (ctrl +T) 
3.  Start Archimedes by typing  >>>  archimedes 
4. Go to the file folder  cd ~/                        // where file saved 
5. archimedes file.inp                                // it will start the simulation 
6.  output of the file is come in .xyz format 

>>to get a graphical output you can use Rapture <<< 
  Nano-archimedes 

1. start writing a code in C language and then save this in .c format 
2. After saving the file open the terminal (ctrl +T) 
3. Start Nano-archimedes by typing  >>>  ./nano-archimedes.c 
4. output of the file is come in .dat format 

 

 

 

 

 

 

 

 

 

 


