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Abstract 

In my thesis a differential equation governing magnetic field depending on plasma 

frequency(𝜔𝑝𝑒), laser intensity parameter (𝑎0), laser frequency (𝜔𝑙), plasma density which 

varies along transverse direction (𝑛0) and Electric field (𝐸(𝜉)) is derived. This differential 

equation is second order linear and inhomogeneous. For deriving this differential equation I 

have done literature review on laser plasma interaction. I have studied basics of plasma and 

laser systems. I have also gone through the process of generating ultra-short laser pulse which 

is very important for my research as these ultra-short laser pulse are described by high peak 

intensities. These ultra-short laser pulse are amplified by Chirped Pulse Amplification as 

conventional amplifying methods have lot of limitations. Also these ultra-short laser pulse can 

introduce the effect of non linearities in the plasma which can catalyse (Pondermotive Force) 

the process of generation of magnetic field. 

The purpose of my research is to study the characteristics and behaviour of magnetic field for 

respective electric field envelope. Since this magnetic field is self-induced after laser irradiation 

of the target, I have to study the process of self-induced plasma magnetisation such as Biermann 

Battery, Inverse Faraday Effect, Plasma Magnetisation Due to Fast Currents or Fountain Effect, 

magnetisation by Pondermotive force, Weibel Instability etc. 

I had analytically solved the differential equation for different piece wise electric field pulse 

profile such as Sine, Triangular, Sawtooth Increasing, Sawtooth Decreasing, Rectangular 

Triangular and Square pulse. The response of the magnetic field for these profiles were 

analysed and maximum amplitude compared to all other electric field pulse profile was found 

for Square pulse but with heavy oscillations. The second best amplitude was with Sawtooth 

Decreasing and interestingly it had minor oscillation unlike Square profile. The maximum 

amplitudes of Sine, Triangular, Sawtooth Increasing, Rectangular triangular electric field pulse 

profiles were found to be nearly same with minor fluctuations. 

I have also tried to see the variation of magnetic field with laser intensity parameter (𝑎0), 

plasma density (𝑛0), and differential length (𝑑𝑙) for all electric field pulse profiles and 

analysed that the magnetic field increases with increase in laser intensity parameter (𝑎0) and 

plasma density (𝑛0) and decreases with increase in differential length (𝑑𝑙) and this result 

matches computational and theoretical results. 



 My results can be applied in applications where shape of electric field and magnetic field along 

with their peak amplitude are considered. We can choose Square electric field Pulse profile if 

only matter of consideration is peak amplitude and not the oscillations in envelope. If 

oscillations in the envelope and peak both are important better option is Sawtooth Decreasing 

electric field pulse profile 
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Plasma frequency  𝜔𝑝𝑒  radian/sec 

Laser frequency  𝜔𝑙   radian/sec 

Speed of light  c   cm/sec   3 × 1010 

Electric Field  E   V/cm 

Electron charge e   stat coulomb  4.8 × 10−10 

Electron mass  m   grams   9.1 × 10−28 

Laser intensity parameter  𝑎0   no units  0.3 to 0.7 

Plasma density  𝑛0   𝑐𝑚−3   1019 

Differential length  𝑑𝑙              cm   50 × 10−4 

Laser wavelength  𝜆   cm   10−4 
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Chapter 1 

Introduction 

Experience from every day suggests that universe is composed of either solid, liquid or gas but 

actually the 99% universe is composed of plasma. Plasma is fourth state of matter formed after 

ionising the gas either by heating or by electromagnetic irradiation etc. Plasma is defined as 

Quasineutral gas of charged particles and neutral particles exhibiting collective 

behaviour. All the stars including sun in the universe is expected to composed of entirely 

plasma. 

Nuclear fusion is the source of energy in stars. In nuclear fusion two lighter nuclei 

recombine to form single nucleus with release of tremendous amount of energy. But for 

recombining two nuclei one must overcome the repulsive force that is involved. In sun nuclear 

fusion occurs at several thousands of temperature and this temperature provides thermal energy 

so that nuclei recombination takes place [1]. But in practice generating such a large temperature 

for nuclear fusion is highly difficult. Thus here the study of plasma becomes important where 

large temperatures can be attained. 

Various ways have been proposed to attain controlled thermo nuclear fusion in the laboratory. 

Magnetic confinement was the first method produced where initially Deuterium (D) – Tritium  

(T) plasma of density 1014𝑐𝑚−3 is confined using powerful magnetic fields for ten seconds 

[2]. Since magnetic fields are used to confine plasma their study becomes important. With the 

invention of laser, the study of self-induced magnetic fields in plasma became more prominent 

because laser can deposit large amount of energy for very short time as low as femto seconds. 

With the advent of Chirped Pulse Amplification the laser irradiation became dominant in 

plasma study. Chirped Pulse Amplification can deposit several hundreds of mega joules of 

energy in laser pulse which can be as short as of femto seconds. This invention has 

revolutionised completely the study of high intensity laser plasma interaction.  

The topic of connexion of energy from high intensity laser to any other target is of great 

prominence [4,5]. The coupling of laser energy to plasma have been discussed in laser plasma 

interaction chapter of this thesis. When laser interacts with plasma several phenomena can 

occur such as generation of highly energised charged particle, generation of magnetic fields of 

several order. The detailed discussion of self-induced magnetic fields in laser irradiated plasma 

is discussed in one of the chapters of this thesis 
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The magnetic fields are of great importance in laser fusion tests, as they can affect the energy 

movement from the light absorption zone to the ablation region. The thermal conductivity will 

fall with an increase in electron mean free path to the Larmor radius ratio. It is also likely that 

the strength of these fields can become analogous to those that may occur in many cosmological 

bodies. Hence producing models of such cosmological systems in the workroom may open up 

new paths of research in astrophysics. The origin of magnetic fields in laser irradiated plasma 

has been of great relevance in both theory and experiments. 

1.1 Scope of the Project Dissertation 

This project includes basic discussion on plasma and laser systems. It also includes detailed 

mechanisms that are involved in the generation of seed magnetic fields since this topic is part 

of my project. The mechanisms includes Biermann Battery,  Inverse Faraday Effect, Plasma 

Magnetisation Due to Fast Currents or Fountain Effect, magnetisation by Pondermotive force, 

Weibel Instability etc. 

My results can be applied in applications where shape magnetic field follows the shape of 

electric field. I have considered six electric field pulse profiles like sine, triangular, sawtooth 

decreasing, sawtooth increasing, rectangular triangular and square. Depending on our 

requirement we can choose respective pulse profile. We can choose Square electric field Pulse 

profile if only matter of consideration is peak amplitude and not the oscillations in envelope, 

since square has high fluctuations which falls from peak to zero rapidly. If oscillations in the 

envelope and peak both are important better option is Sawtooth Decreasing electric field pulse 

profile. If we don’t require oscillations at all and peak amplitude of magnetic fields is not of 

concern then we can go to triangular or sawtooth increasing electric field pulse profiles as in 

both pulse profiles the shape is smooth unlike sinusoidal or sawtooth increasing or square or 

rectangular triangular. 

1.2 Plasma 

Plasma is considered to be fourth state of matter other being solid, liquid and gas. Sun has 

plasma as one major component. It is formed after heating gas to larger temperature. Hence it 

can be called as superheated gas. At this temperature atoms absorbs sufficient energy to 

separate electrons from itself to form positive ions. Hence plasma is made up of electrons, 

neutrals  and positive ions and it is most abundant state of matter in the whole universe. 
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Fig 1.1 Phases of Matter 

Ionization can be achieved even by different means such as by intense laser or electromagnetic 

field from a microwave generator or by the application of electric field so that the atoms absorbs 

sufficient energy to dissolve into electrons and positive ions. The definition of plasma goes as 

follows “A plasma is Quasineutral gas of charged and neutral particle which exhibits 

collective behaviour.” Collective behaviour means the motion of charged particle is not just 

confined to local region but it effects even remote location in plasma. This means the motion 

of charged particle is dependent on the state of plasma even in the remote region. Hence 

collective behaviour in the definition. Quasineutral means that the plasma is neutral enough so 

that even a minor disturbance or external electric field will not have any effect after small 

distance. This distance is called as Deby length. Thus in plasma particles are shielded from 

external disturbance. Hence at any region in plasma we can take density of electron 𝑛𝑒 as equal 

to the density of ions  𝑛𝑖. 

 𝑛𝑒 ≈  𝑛𝑖 ≈ 𝑛 , 𝑤ℎ𝑒𝑟𝑒 𝑛  is commonly called as plasma density. 

Because of presence of charged particle plasma is electrically conductive and instantly gives 

response to electric and magnetic fields. This feature quite different from solids, liquids, gases 

and hence it is considered to be distinctive state of matter. Like gas plasma also do not have 

any distinctive shape or definite volume unless enclosed in container. But unlike gas it can 

form various structures under the influence of external fields. 

 



4 

 

1.2.1 Plasma Conditions: 

Every ionized gas cannot be called as plasma there are certain conditions that are to be met. 

𝜆𝑑 ≪ 𝐿, 

𝑁𝐷 ≫ 1, 

𝜔𝑝𝜏 > 1, 

where 𝜆𝑑 is the Deby length [2] which is nothing but when an electric field introduced inside 

a plasma the range upto which its effect can be felt. After this length it will not affect any of 

the charged particle. 𝑁𝐷 is total number of particles in the Deby sphere. Deby sphere is the 

spherical volume enclosing the effect of external electric field with radius of Deby length.  𝜔𝑝 

is the plasma frequency with which the charged particle of plasma oscillates. 𝜏 is the mean time 

between collisions with the neutral atom. 

Even the partially ionized gas can have the characteristics of plasma when it can satisfy above 

conditions. Plasma density 𝑛 and 𝑘𝑇𝑒 are important parameters that characterise plasma. The 

plasma density can vary from 106 𝑡𝑜 1034 in order of 1028 and 𝑘𝑇𝑒 can vary from 0.1 to 

106 𝑒𝑉. The importance of the range of density can be visualised if we know that the density 

difference between water and air is just 105. 

1.2.2 Some Parameters of Plasma 

Plasma Electron Frequency: 

This is the natural electron oscillation in plasma and represented 𝜔𝑝𝑒. The electric field inside 

plasma is responsible for this electron oscillation. Its value in cgs is as given 

𝜔𝑝𝑒 = √
4𝜋𝑛0𝑒2

𝑚
, 

where e, m, 𝑛0 are charge of electron, mass of electron and density of plasma. 

Plasma Density: 

Plasma density is one important parameter in my project work. Generally plasma density is 

considered to be uniform but there can be variation or gradient in plasma density also. Plasma 
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density is represented by 𝑛0. In my work I have taken plasma density is varying along 

transverse direction as represented below. 

𝑛0(𝑦) = 𝑛0
0 (1 +

𝑦

𝑑𝑙
) 

We can see from the above expression and can visualise it as density changing as we move 

upwards in plasma space. Where 𝑛0
0 is initial plasma density and 𝑑𝑙 is length gradient which 

according above ramp equation is responsible for its slope. 

1.3 LASERS 

Light Amplificationiby Stimulated Emissioniof Radiation (LASER) 

Laser is radiation emitted by stimulated emission and enhanced by optical amplification. The 

main difference between normal light and laser is it emits light coherently. This coherence 

phenomena allows laser to be focussed at a spot sharply. The other feature of laser is 

collimation which is the spread of laser. Coherence and collimation allows laser to be narrow 

over large distance. Collimation is main property for being laser being used as Laser Pointer. 

1.3.1 Operation and Design of laser: 

 

Fig 1.2 Design of Laser 
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Laser construction has basic component such as gain medium, energy for lasing action, High 

Reflector, output coupler, Laser output beam port. Gain medium is component where 

stimulated emission undergoes amplifications before getting emitted. High Reflector is used in 

the complete reflection of stimulated photon so that it multiplies. After sufficient energy 

supplied for stimulated emission to occur, the emission multiplies with help of high reflector. 

Output reflector is partial reflector which allows part of enhanced stimulated emission to reflect 

back and part to be transmitted as Laser output. Coming to operation of laser. It can be 

explained as follows. When an electron in ground state gets energy moves to excited state then 

after sometime the electron reaches back to ground state. This emission is called as spontaneous 

emission. But instead of this procedure if electron in excited state is forced by external photon 

to move back to lower energy state which can be ground state or some intermediate energy 

state before its time to return, then the resultant emission is called as stimulated emission. Then 

process can be clearly seen in below diagram. 

 

 

Fig 1.3 Process of Stimulated Emission 
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1.3.2 Types of Lasers: 

Laser medium can be solid, liquid or gas and can be chosen depending on requirement. 

Solid state laser have solid crystal structure such as ruby crystal as laser medium. The crystal 

structure acts as active medium. The crystal structure is surrounded by neon flash lamp which 

acts as energy provider for lasing action to happen inside the crystal. Both the ends of crystal 

are properly polished so that one end acts as complete reflector and other end acts as partial 

reflector and partial transmitter. These reflections helps in amplifying the intensity of laser. 

Semiconductor lasers can also be termed as solid state laser but often treated as separate class 

because of difference in pumping process. Semiconductor lasers employ pumping electrically. 

Most commonisolid state laser is neodymium-doped yttriumialuminium garnet (Nd:YAG). 

Neodymium-dopediglass (Nd:glass) and ytterbium-dopediglasses or ceramic 

 

Fig 1.4 Solid State Laser 

The gas laser can have mixture of gases such as helium and neon, carbon dioxide (𝐶𝑂2) laser, 

carbon monoxide laser (CO) inside a tube of length ranging from 0.25m to 1m and the diameter 

around 1cm. Here the lasing action is produced by the discharge of electric current through the 

gas. At both ends we have two reflecting mirror.one can reflect completely and other reflect 
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partially. When dc discharge is provided there will be stimulated emissions which are amplified 

by two reflectors and laser is produced. There are also chemical lasers where discharge is 

produced by chemical reaction. Gas laser are much advantageous as the active medium is 

relatively inexpensive and also the active medium is nearly impossible to be damaged. Also 

heat can be relatively removed quickly from gas lasers when compared with other. He-ne lasers 

are used in reading bar code and making holograms. 

 

Fig 1.5 Gas Laser 

 

Fig 1.6 Liquid Laser 
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Liquid laser uses liquid as reflector and amplification medium of stimulated emission. The 

lasing medium or active medium is generally complex organic dye such as rhodamine 6G 

doped liquid hence also called dye lasers. The pump source can be flash lamp or another laser. 

The operation can be either continuous mode or pulsed mode. These lasers are used in bio 

medical sensing and display screens since they are cost effective. 

1.3.3 3 and 4 level lasers: 

The main mechanism to attain lasing action is population inversion. Population inversion is 

nothing but at a given time for continuous laser operation to occur the number of electrons in 

higher energy state should be more than number electrons in lower energy state most probably 

ground state. This condition is possible when the electron in higher energy state takes more 

time to de- excite.    Consider an atom having only two states that is excited and ground state 

in this case electrons cannot stand for longer time in excited state so we say that 2 level lasers 

are not possible. Now consider a third energy state where electron instead of falling to ground 

state will fall on intermediate state then electron can stay bit longer in intermediate state and 

population inversion is possible. This intermediate energy state is called as Meta Stable state. 

So we can say that to attain population inversion we must require atleast 3 energy levels. But 

even with 3 level laser continuous lasing is not possible, because for only a certain period of 

time population inversion exists as electron from Meta stable state moves back to ground state. 

So if we eliminate the possibility of electron falling back to ground state from Meta stable state 

by placing one more energy state above ground state then  continuous population inversion can 

be achieved and resulting in continuous lasing action. 

 

Fig 1.7 3 & 4 Level Laser Operation 
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In 3 level laser case T3 is fast decay and T2 is far greater than T3. Similarly in 4 level laser 

case T4 is fast decay and T3, T2 both are far greater than T4. Population inversion can be 

achieved at E3 or E2. 

1.3.4 Generating short Pulse Laser: 

In my work I have dealt with ultra-short laser pulse of duration in femto seconds (≈ 10−15𝑠𝑒𝑐). 

Ultra-short laser pulses are defined by high peak intensities and they lead nonlinear interactions 

with medium they interact with. Since pondermotive force is nonlinear interaction in plasma 

we can say that ultra-short laser pulse enhances this force in laser plasma interaction. Hence it 

is of important consideration to know the mechanism these ultra-short laser pulse generation. 

There are generally two methods with these pulses can be generated they are 

1. Q-Switching 

2. Mode locking 

1 Q-Switching: 

It’s the method of generating ultra-short laser pulse using concept of varying Q factor inside 

laser resonator. A variable attenuator is kept inside the laser resonator and this acts as Q switch. 

To increase Q factor we must stop partial reflection at output coupler of laser resonator for 

some time and this can be done by placing variable attenuator before output coupler. So when 

attenuator is ‘ON’ the radiation does not pass towards output coupler and instead completely 

reflected back continuously for some time. So for this time being there will not be any laser 

output and instead due to increase in reflections, the intensity of stimulated emissions keep on 

increasing. Now when the variable attenuator is ‘OFF’ the operation of out coupler comes into 

play and we can get short pulse laser with increased intensity. Again after some time the 

variable attenuator gets ‘ON’ and the entire procedure repeats. Basically the variable attenuator 

acts as an ‘ON-OFF’ switch hence the name Q-Switching. But Q Switching produces nano 

second laser pulse and to get femto second laser pulse we must use mode locking 

2 Mode locking: 

Inside the laser resonator there are multiple modes that will be oscillating. The phase of each 

mode is different and is not fixed which severely effects the intensity of laser. In mode locking 

method the different modes that oscillate independently are made to oscillate at fixed phase. 

So we can say all the modes are phase locked and due to these all oscillating pulses contribute 
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constructively in attaining a peak intensity for particular duration which can be upto femto 

seconds long. We can visualise this process with formation of tides in ocean. As minor ripples 

whose phase are similar in ocean work constructively to form huge tide which can exist for 

some time here also the different oscillating modes when made to oscillate at a fixed phase will 

work constructively to form high peak laser for short duration. 

1.3.5 Chirped Pulse Amplification: 

The laser pulse used in my work is of large intensity and ultra-short duration. We use chirped 

amplification process in amplifying the ultra-short laser pulse. Chirped Pulse amplification has 

been of great importance in gaining high power short laser pulse. In conventional laser the 

amplification is done only by chain of optical amplifiers which can be problematic if we have 

application of high power laser as at high power generation number of nonlinear distortions 

like self-focussing, self-phase modulation, filamentation come into play in optical amplifiers. 

So at high power laser generation chirped pulse amplification is used. In the first step of chirped 

pulse amplification the pulse is stretched temporally by using a pair of gratings as shown in 

figure. 

 

 

Fig 1.8 Process of Chirped Pulse Amplification 
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 The stretching is done by relative delay of different frequency components in the low power 

short laser pulse. This process is called chirping. Now this stretched pulse is amplified by 

conventional optical amplifiers. Since the stretched pulse is of low power there will not be any 

distortions that I mentioned above come into play. Now the stretched amplified pulse is again 

compressed by suitable grating arrangement as shown in figure so that pulse duration remains 

same as original pulse but with large peak value. The distance between the gratings decides the 

stretching and compressing phenomena pulse. 

1.3.6 Various Pressures inside Laser produced plasma: 

There are different kinds of pressure experienced on the plasma produced by laser. They are 

as follows 

1. Light Pressure 𝑃𝐿 

2. Electron Pressure 𝑃𝑒 

3. Ion Pressure 𝑃𝑖 

4. Ablation pressure 𝑃𝑎 

Light Pressure 𝑃𝐿 is caused directly by laser after its irradiation on Target. Its expression is 

given as follows 

𝑃𝐿 =
𝐼𝐿

𝑐
(1 + 𝑅) ≅ 3.3𝑀𝑏𝑎𝑟 (

𝐼𝐿

1016 𝑊
𝑐𝑚2

) (1 + 𝑅), 

where R is laser reflectivity whose value ranges from 0 to 1 and c is the speed of light. If 

irradiance is large then we can have light pressure as close to 1Gbar which effects significantly 

in magnetic field generation. 

Second and third Pressure are in the corona region i.e. cold electron pressure, hot electron 

pressure and ion pressure. These pressures are associated with different temperature range of 

cold electron 𝑇𝑒, hot electron 𝑇𝐻 and for ions 𝑇𝑖. The hot and cold electron temperatures are 

obtained in the corona if the electrons have different velocity distribution as seen from Fountain 

Effect. After knowing ideal gas equation can be used to get respective pressure. 

𝑃𝑒 = 𝑛𝑒𝑘𝐵𝑇𝑒 ≅ 1.6𝑀𝑏𝑎𝑟 (
𝑛𝑒

1021𝑐𝑚−3
) (

𝑇𝑒

𝐾𝑒𝑣
), 
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𝑃𝐻 = 𝑛𝐻𝑘𝐵𝑇𝐻 , 

𝑃𝑖 = 𝑛𝑖𝑘𝐵𝑇𝑖. 

Ablation is the fourth kind of pressure which is associated with flow of heated plasma from 

solid target. This ablation pressure drives a shock wave into the target which causes it to 

compress. 

1.3.7 Laser Intensity Parameter 𝒂𝟎 

Lasers having intensities of order 1018 𝑊/𝑐𝑚2 has Electric Field Intensity of order 1012𝑉/𝑐𝑚 

and this can easily ionise atoms to generate plasma. This generation of Plasma was possible 

because the Laser induced electric field will be much greater than the columbic attraction force 

within atoms. Electrons that will be oscillating within laser electric field attain energy which is 

called as quiver energy. The intensity of laser can be 𝐼𝐿 can be expressed in terms of normalized 

laser vector potential 𝑎0 which in turn can be expressed in terms of quiver momentum as 

follows 

𝑎0=

𝑃𝑜𝑠𝑐𝑖𝑙𝑙𝑎𝑡𝑖𝑜𝑛 𝑜𝑟 (𝑞𝑢𝑖𝑣𝑒𝑟 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 = 𝑚𝑣𝑜𝑠𝑐)

𝑚𝑐
 

𝑎0 =
𝑒𝐸

𝑚𝜔𝑐
= √

𝐼𝐿𝜆𝑢𝑚
2

1.37 × 1018
 , 

where I is intensity and 𝜆𝑢𝑚is wavelength. So we can say value of  𝑎0is relativistic measure of 

laser intensity I. Depending on the value of 𝑎0 < 1 𝑜𝑟𝑎0  > 0  the intensity 𝐼𝐿   will be above 

or below the relativistic limit. The relativistic factor can be calculated as follows. 

𝛾 = √(1 + 𝑎0
2) for circularly polarised laser. 

𝛾 = √1 +
𝑎0

2

2
  for linearly polarised Laser.. 
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Chapter 2 

Review of Literature 

The purpose of my research is to study the characteristics and behaviour of magnetic field for 

respective electric field envelope. Since this magnetic field is self-induced after laser irradiation 

of the target, I have to study the process of self-induced plasma magnetisation such as Biermann 

Battery, Inverse Faraday Effect, Plasma Magnetisation Due to Fast Currents or Fountain Effect, 

magnetisation by Pondermotive force, Weibel Instability etc.  

2.1 Laser Plasma Interaction to generate self-Induced Magnetic 

Fields  

In this we are going to see various mechanisms for which magnetic fields can be generated in 

plasma when it interacts with laser. Study of generation of magnetic fields in different topics 

of physics such as in cosmic environment, laser produced plasma etc., has been important since 

many decades. Main consideration is how initially magnetic field free plasma can generate 

huge magnetic field in itself. It can be understood if we can know the mechanisms with which 

we are getting electron current density 𝑗𝑒 along with electric field E. If we can understand these, 

then from Maxwell’s equation ∇ × 𝐵 = 𝑢0𝑗 𝑎𝑛𝑑 ∇ × 𝐸 = −
𝜕𝐵

𝜕𝑡
 , we can easily infer the 

generation of magnetic field [6,7,8,9,10,11,12,13]. In plasma, a separation must be created 

between ions and electrons so that electric field is established which in turns is responsible for 

the generation of current by accelerating electron against the force of attraction of ions. This 

work is accomplished by generation of hot electrons when intense laser interacts with plasma. 

The generated current or current density creates magnetic field as interpreted from Maxwell’s 

equations. There are different method with which a magnetic field can be created in plasma 

after laser interactions such as Biermann Battery, Inverse Faraday Effect, Pondermotive Force 

developed from the interaction if intense ultra-short laser pulse with plasma, Weibel 

Instabilities, Thermal Instabilities etc. All these methods or mechanisms describe how ions and 

electrons are separated suitably to get electric field E which in turns accelerate the electrons 

providing current density ultimately paving path for magnetic field generation. Also these 

methods are cable of generating small to large magnetic fields. Here we mainly concentrated 

on first three methods of magnetic field generation which are discussed in detailed below. 
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2.1.1 The 𝛁𝒏𝒆 × 𝛁𝑻𝒆 Mechanism (Biermann Battery or Thermo Electric 

Mechanism): 

Sclutter and Biermann [14], about sixty years ago demonstrated this Biermann Battery 

mechanism for rotating magnetized stars in non-relativistic plasma regime. They stated that the 

non-parallel density gradient ∇𝑛𝑒  [15] and temperature gradient ∇𝑇𝑒will create a rotating 

magnetic field whose magnitude depends on the angle between the two gradients.   When we 

write equation of motion for plasma then one of the force terms on the right hand side will be 

due to pressure gradient. This pressure gradient ∇𝑃𝑒is responsible for this Biermann Battery.  

where 𝑃𝑒 = 𝐾𝐵𝑛𝑒𝑇𝑒 , where  𝐾𝐵 𝑖𝑠 𝑏𝑜𝑙𝑡𝑧𝑚𝑎𝑛𝑛 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

Now neglecting linear and nonlinear inertia of electron, i.e., 𝑚
𝜕𝑣

𝜕𝑡
= 0 and writing equation 

of motion, we obtain 

0 = −∇𝑃𝑒 − 𝑒𝑛𝑒𝐸, 

Getting Electric field from this, we get 

𝐸 = −
∇𝑃𝑒

𝑒𝑛𝑒
 , 

 

 

 Fig 2.1 Biermann Battery 
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But from one of Maxwell’s equation   

  ∇ × 𝐸 = −
1

𝑐

𝜕𝐵

𝜕𝑡
. 

Substitute E from above in Maxwell’s equation and also 𝑃𝑒 = 𝐾𝐵𝑛𝑒𝑇𝑒 , we obtain 

𝜕𝐵

𝜕𝑡
=

𝑐

𝑒𝑛𝑒
∇ × ∇𝑃𝑒 , 

𝜕𝐵

𝜕𝑡
=

𝑐𝑘𝐵

𝑒𝑛𝑒
∇ × ∇(𝑛𝑒𝑇𝑒) . 

Now using vector identity we can solve above equation to obtain 

𝜕𝐵

𝜕𝑡
=

𝑐𝑘𝐵

𝑒𝑛𝑒
∇𝑇𝑒 × ∇𝑛𝑒 . 

If we carefully analyse above equation we see that when temperature gradient ∇𝑇𝑒and density 

gradient ∇𝑛𝑒 are non-parallel then there always exists a rotating magnetic field B. it can be 

noted this phenomena is most dominant in generation of toroidal magnetic field [16]. 

 

 

This Biermann battery can also be visualised from above diagram. 

For target irradiated with large intensity laser this Biermann mechanism can most probably 

occur on the outer region of laser spot [17]. The density gradient is at the edge of laser spot on 

surface plasma and the temperature gradient points towards the axis of laser beam. The 

generated magnetic field is toroidal and has scale size is comparable to the laser spot which 

falls to zero at the centre of laser spot. Magnetic field of approximately 340 MG [18]have also 

been at critical density surface of laser induced plasma. 

2.1.2 The Inverse Faraday Effect: 

The Inverse Faraday Effect is the phenomena where magnetic field gets created due to 

rotational electromagnetic waves. A circularly polarised laser can induce magnetic field using 

this phenomena in plasma the field gets created because electron quivers with energy attained 

𝜕𝐵

𝜕𝑡
=

𝑐𝑘𝐵

𝑒𝑛𝑒
∇𝑇𝑒 × ∇𝑛𝑒 . 
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from high intensity laser and if the laser is circularly polarised then electron follows or gain 

circular motion resulting in formation flowing electric current which in turns assists in 

generation of magnetic field. The creation of magnetic field from inverse Faraday Effect in 

cold plasma can be established as follows. 

 

 

Fig 2.2 Inverse Faraday Effect 

The equation of motion due to applied electric field E only can be as shown 

𝑚𝑒

𝜕𝑣

𝜕𝑡
= −𝑒𝐸 , 

where v is electron velocity due to applied electric field E which came into existence due to 

plasma interaction with laser. Now since laser is to be circularly polarise along �̂� directions its 

equation can be written as 

𝐸 = 𝐸0 (
𝑥 + 𝑖�̂�

√2
) 𝑒−𝑖(𝜔𝑡−𝑘𝑧) , 
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where �̂� 𝑎𝑛𝑑 �̂� are unit vector along x and y direction ,respectively. 

Substituting this circularly polarised electric field in equation shown above , we obtain 

𝑚𝑒

𝜕𝑣

𝜕𝑡
= −𝑒𝐸0 (

𝑥 + 𝑖�̂�

√2
) 𝑒−𝑖(𝜔𝑡−𝑘𝑧), 

Solving above partial differential equation for v we get 

𝑣 = 𝑣0 (
�̂� + 𝑖�̂�

√2
) 𝑒−𝑖(𝜔𝑡−𝑘𝑧). 

We can clearly see from above equation for circularly polarised laser or electric field induced 

by laser interaction with cold plasma, will induce electron motion also in circular direction 

Since electrons also satisfy continuity equation, the continuity equation can be written as 

follows. 

𝜕𝑛𝑒

𝜕𝑡
= −∇. (𝑛𝑒𝑣). 

The electron density is assumed to be consisting of all background component 𝑛0 and perturbed 

component 𝑛1. 

𝑛𝑒 = 𝑛0 + 𝑛1. 

𝑛0 does not depend on time 𝑏𝑢𝑡 𝑛1 is dependent on time as follows 

𝑛1 ≈ 𝑒−𝑖𝜔𝑡 . 

Substituting  
𝜕

𝜕𝑡
= −𝑖𝜔; 

𝑖𝜔𝑛1 = 𝑣. (∇𝑛0). 

Now the current density can be obtained from 

𝐽 = −𝑒 < 𝑛1𝑣 >, 

where < > indicates median or average value to be taken. 

Substituting 𝑛1 from above in current density equation, we get 
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𝐽 =
𝑖𝑒

𝜔
< 𝑣. (∇𝑛0)𝑣 >. 

Substituting v from above calculations in J we finally get 

𝐽 =
𝑒3𝐸0

2

2𝑚𝑒𝜔3
∇𝑛0 × �̂�, 

�̂� is unit vector along z direction. Also wave number vector k is parallel to z direction. 

We can infer from above current density equation that the generated current density is due to 

density gradient ∇𝑛0 on the surface of plasma and it is toroidal due to cross product. This 

current density generates axial magnetic field B according to following Maxwell’s equation. 

∇ × 𝐵 =
4𝜋

𝑐
𝐽. 

Solving for B we can get magnetic field from inverse Faraday Effect. Studies have shown that 

several order of Mega Gauss fields can be generated from inverse Faraday Effect. 

2.1.3 Magnetic Field from Fountain Effect for finite geometry of Plasma: 

In this process resonance absorption plays the important role. When laser hits the plasma target 

hot electrons created due to resonance absorption will flow in the direction of density gradient 

which is along the edge of the focal spot on surface of the plasma. This effect has counter effect 

of cold electrons flowing inwards creating Toroidal Magnetic Field due to net current density 

gradient or net current from inward and outward flow of electron. This is called as Fountain 

Effect [19] and is considered in finite geometry of plasma only as in infinite plasma the net 

current would be zero resulting in zero magnetic field. The direction or orientation of the 

magnetic field generated from this effect is same as from the Biermann or thermoelectric effect. 

Here the generated field can also be asymmetrical depending on the angle of incidence of laser 

on plasma and process of resonance absorption.  

The mathematics involved can be shown as follows [20]. 

The electric field generated during return current interaction is given as  

𝐸 = 𝜂𝑗𝑏 , 

where 𝜂 𝑖𝑠 resistivity and 𝑗𝑏 is return current density. 
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Applying Quasineutrality we will get the net current density as  

𝑗 = 𝑗𝑏 + 𝑗𝑓𝑎𝑠𝑡 , 

where j is total current density and 𝑗𝑓𝑎𝑠𝑡 is current density due to fast or hot electrons. 

From Maxwell’s equation, we have   

∇ × 𝐵 = 𝜇0𝑗𝑏 . 

The total electric field is given by  

𝐸 = −𝜂𝑗𝑓𝑎𝑠𝑡 +
𝜂

𝜇0
∇ × 𝐵. 

Now we can get magnetic field directly as shown below. 

𝜕𝐵

𝜕𝑡
= ∇ × 𝜂𝑗𝑓𝑎𝑠𝑡 − ∇ ×

𝜂

𝜇0
∇ × 𝐵. 

 

Fig 2.3 Magnetic field generation due to fast electrons 

Clark et al have recorder the maximum magnetic field due to Fountain Effect using high energy 

proton is as close to as 32MGauss which shows the importance of the Fountain Effect in 

magnetic field generation of finite geometry plasma [21,22]. 
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2.1.4 Plasma Magnetisation by a Pondermotive Effect: 

The nonuniform nature of electromagnetic beam, in this case laser is responsible for 

pondermotive force. If the laser pulse is of nonuniform nature then pondermotive force have 

been considered as alternative mechanism in the magnetic field generation in plasma. The term 

pondermotive force is the radiation pressure exerted by the nonuniform intense laser or high 

energy nonuniform electromagnetic beam that are interacting with plasma. The nonlinear 

Lorentz force in the magnetic and electric fields of nonuniform electromagnetic wave is 

responsible for the creation of low frequency pondermotive force which mainly acts on the 

electron as their mass is less compared to ions. This effect on the electron effects in the 

generation of current density which in turn creates the magnetic field. Thus plasma is 

magnetised by the pondermotive force or nonuniform electromagnetic beam. The 

pondermotive force is proportional to the intensity of the laser beam can swiftly push the 

electron from the high intensity field region and pile up in the low intensity field region [22]. 

Consider single particle motion n the electromagnetic field. 

Let us assume the monochromatic electromagnetic field due to intense laser is given by 

𝐸 = 𝐸0 cos(𝜔𝑡). 

From Maxwell’s equation 

𝜕𝐵

𝜕𝑡
= −∇ × 𝐸. 

Thus these here we have sum up some of the mechanisms which are responsible for the 

magnetisation of plasma especially magnetic field due Biermann Battery, Magnetic field due 

to Inverse Faraday Effect, Magnetic field generated from Fountain effect, Magnetic field 

Generated from Nonlinear nature of electromagnetic pulse. Each of the mechanism has the 

potential to generate stationary or non-stationary magnetic fields whose intensity depends on 

various plasma conditions. Such as density gradient, temperature gradient, nature of incident 

laser or electromagnetic beam, geometry of plasma etc. the generated magnetic are critically 

important in understanding the behaviour of plasma. In my work I have considered these effects 

and attained a second order non homogenous equation in magnetic field. We have analytically 

solved the differential equation for various pulse profiles which are discussed in next chapter 

to study the behaviour generated magnetic field [24]. 
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Chapter 3 

Report on the Present Investigation 

3.1 Second Order Differential Equation in Magnetic Field 

Plasma density is one important parameter in my research. Generally plasma density is 

considered to be uniform but there can be variation or gradient in plasma density also. Plasma 

density is represented by 𝑛0. In this work we have taken plasma density is varying along 

transverse direction as represented below. 

𝑛0(𝑥) = 𝑛0
0 (1 +

𝑦

𝑑𝑙
). 

We can see from above expression and can visualise it as density changing as we move upwards 

in plasma space. Where 𝑛0
0 is initial plasma density and 𝑑𝑙 is length gradient which according 

above ramp equation is responsible for its slope. 

Now the current density can be obtained from following equation 

𝐽𝑎 = −𝑛0(𝑥)𝑒𝑣2. 

Equation of Motion 

𝑚
𝑑�⃗�2

𝑑𝑡
+ (𝑣1⃗⃗⃗⃗⃗. ∇⃗⃗⃗)�⃗�1 = −𝑒𝐸2 −

𝑒

𝑐
(𝑣1⃗⃗⃗⃗⃗ × 𝐵1

⃗⃗⃗⃗⃗). 

Since 𝐸2 is small we can neglect −𝑒𝐸2 from above equation; 

Substituting 
𝑑

𝑑𝑡
= −𝑖2𝜔𝑙 𝑎𝑛𝑑 ∇= 𝑖2𝑘 in the above equation 

𝑚(−𝑖2𝜔𝑙)𝑣2⃗⃗⃗⃗⃗ = −
𝑒

𝑐
(𝑣1⃗⃗⃗⃗⃗ × 𝐵1

⃗⃗⃗⃗⃗). 

Obtaining 𝑣2 from above expression 

�⃗�2 =
𝑒

4𝑖𝑚𝜔𝑙𝑐
(�⃗�1 × �⃗⃗�1). 

𝐵 =
𝑐

𝜔
(�⃗⃗� × �⃗⃗�) from Maxwell’s equation 
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But we have �⃗�1 =
𝑒𝐸1

𝑖𝑚𝜔
 also𝐵1 = 𝐵. Substitute these in above 

�⃗�2 =
−𝑒2𝐸1

2𝐾

4𝑚2𝜔𝑙
3

𝑥. 

Substitute this �⃗�2 𝑖𝑛 𝐽𝑎 𝑎𝑏𝑜𝑣𝑒 𝑎𝑛𝑑 𝐸1 = 𝐸  

𝐽𝑎 = 𝐽𝑥 = 𝑛0(1 +
𝑦

𝑑𝑙
)

𝑒3𝐸2𝐾

4𝑚2𝜔𝑙
3

𝑥. 

From Maxwell’s equation 

∇⃗⃗⃗ × 𝐵𝑎 =
4𝜋

𝑐
𝐽𝑥 +

1

𝑐

𝜕𝐸𝑎

𝜕𝑡
. 

Taking curl on both sides 

∇⃗⃗⃗ × ∇⃗⃗⃗ × 𝐵𝑎 =
4𝜋

𝑐
∇⃗⃗⃗ × 𝐽𝑥 +

1

𝑐

𝜕

𝜕𝑡
(∇⃗⃗⃗ × �⃗⃗�𝑎). 

Calculating  ∇⃗⃗⃗ × 𝐽𝑥  𝑎𝑛𝑑 𝑓𝑟𝑜𝑚 𝑀𝑎𝑥𝑤𝑒𝑙𝑙 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 ∇⃗⃗⃗ × 𝐸𝑎 =
−1

𝑐

𝜕𝐵𝑎

𝜕𝑡
 , we obtain 

−∇⃗⃗⃗2𝐵𝑎 =
−4𝜋

𝑐

𝑛0𝑒3𝐸2𝐾

𝑑𝑙4𝑚2𝜔𝑙
3

�̂� +
4𝜔2

𝑐2
𝐵𝑎. 

 

 

 

 

where 𝐸2 𝑖𝑛 𝑎𝑏𝑜𝑣𝑒 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑖𝑠 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜  

 

where 𝑓(𝜉) describes the shape of various electric field pulse profile. The detailed description 

of each profile with expression is shown in next chapter. 

Now adjusting above equation in terms of  𝜔2
𝑝𝑒 =  

4𝜋𝑛0𝑒2

𝑚
 𝑎𝑛𝑑 𝑎0

2 =
𝑒2𝐸0

2

𝑚2𝑐2𝜔𝑙
2
 . 

 

∇⃗⃗⃗2𝐵𝑎 +
4𝜔𝑙

2

𝑐2
𝐵𝑎 =

4𝜋

𝑐

𝑛0𝑒3𝐸2𝐾

𝑑𝑙4𝑚2𝜔𝑙
3

�̂�, 

 

𝐸2 = 𝐸2(𝜁) = 𝐸0
2 𝑓(𝜉), 
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𝑊𝑒 𝑔𝑒𝑡 𝑠𝑒𝑐𝑜𝑛𝑑 𝑜𝑟𝑑𝑒𝑟 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑡𝑒𝑟𝑚𝑠 𝑜𝑓 𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑐 𝑓𝑖𝑒𝑙𝑑 𝐵𝑎(𝜁) 𝑎𝑛𝑑 

 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 𝑓𝑖𝑒𝑙𝑑 𝑝𝑢𝑙𝑠𝑒 𝑒𝑛𝑣𝑒𝑙𝑜𝑝𝑒 𝑓(𝜁) 𝑎𝑠 𝑓𝑎𝑙𝑙𝑜𝑤𝑠 

𝜕2𝐵𝑎

𝜕𝜉2
+

4𝜔𝑙
2

𝑐2
𝐵𝑎 =

𝜔𝑝𝑒
2𝑐𝑚𝐾𝑎0

2

𝜔𝑙𝑒𝑑𝑙
𝑓(𝜉), 

This derivation is arrived by considering cgs system, where 𝑓(𝜉) is envelope or our electric 

field pulse profile. 

3.2 Electric Field Pulse Profiles 

The deferential equation in the magnetic field from the previous chapter is dependent on 𝑓(𝜉) 

which is our pulse profile function. This function is part of electric field as shown below. 

𝐸2(𝜉) = 𝐸0
2 𝑓(𝜉). 

The description of each of the pulse profile in detailed is as shown. 

3.2.1 Sine Pulse Electric Field Pulse Profile: 

The electric field can be represented as follows 

𝐸2(𝜉) = 𝐸0
2 𝑓(𝜉), 

where 𝑓(𝜉) describes the sine electric field pulse profile whose expression is as follows [24] 

𝑓(𝜉) = sin (
𝜋𝜉

𝐿
) ,  𝑓𝑜𝑟 0 ≤ 𝜉 ≤ 𝐿. 

The shape of the pulse profile is follows. 

 

Fig 3.1 Sine Electric Field Pulse Profile. 
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3.2.2 Triangular Electric Field Pulse Profile: 

The electric field can be represented as follows 

𝐸2(𝜉) = 𝐸0
2 𝑓(𝜉), 

where 𝑓(𝜉) describes the Triangular electric field pulse profile whose expression is as follows. 

The practical triangular electric field pulse can be constructed from sinusoidal or cosine term 

as follows. This pulse is piece function with two limits [25]. 

f(𝜉)     = 1 − cos (
𝜋𝜉

𝐿
) ,  𝑓𝑜𝑟 0 ≤ 𝜉 ≤

𝐿

2
 , 

  = 1 + cos (
𝜋𝜉

𝐿
) 𝑓𝑜𝑟 

𝐿

2
≤ 𝜉 ≤ 𝐿. 

 

The shape of the pulse profile is as shown 

 

Fig 3.2 Triangular Electric Field Pulse Profile. 

3.2.3 Sawtooth Decreasing Electric Field Pulse profile: 

The electric field can be represented as follows 

𝐸2(𝜉) = 𝐸0
2 𝑓(𝜉), 

where 𝑓(𝜉) describes the Sawtooth Decreasing electric field pulse profile whose expression 

is as follows. The practical Sawtooth Decreasing electric field pulse can be constructed from 

sinusoidal or cosine term as follows. This pulse is piece function with two limits [25]. 
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f(𝜉)     = 1 − cos (
29𝜋𝜉

𝐿
) ,  𝑓𝑜𝑟 0 ≤ 𝜉 ≤

𝐿

30
, 

  = 1 + cos (
𝜋𝜉

𝐿
) 𝑓𝑜𝑟 

𝐿

30
≤ 𝜉 ≤ 𝐿. 

 

The pulse shape looks as follows 

 
Fig 3.3 Sawtooth Decreasing Electric Field Pulse Profile. 

3.2.4 Sawtooth Increasing Electric Field Pulse Profile: 

The electric field can be represented as follows 

𝐸2(𝜉) = 𝐸0
2 𝑓(𝜉), 

where 𝑓(𝜉) describes the Sawtooth Increasing electric field pulse profile whose expression is 

as follows. The practical Sawtooth Increasing electric field pulse can be constructed from 

sinusoidal or cosine term as follows. This pulse is piece function with two limits [25]. 

f(𝜉)    = 1 − cos (
30𝜋𝜉

58𝐿
) ,  𝑓𝑜𝑟 0 ≤ 𝜉 ≤

29𝐿

30
, 

 = 1 + cos (
15𝜋𝜉

𝐿
) ,  𝑓𝑜𝑟 

29𝐿

30
≤ 𝜉 ≤ 𝐿. 

The pulse profile looks as follows 
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Fig 3.4 Sawtooth Increasing Electric Field Pulse Profile. 

3.2.5 Rectangular Triangular Electric field Pulse Profile: 

The electric field can be represented as follows 

𝐸2(𝜉) = 𝐸0
2 𝑓(𝜉), 

were 𝑓(𝜉) describes the Rectangular Triangular electric field pulse profile whose expression 

is as follows. The Rectangular Triangular electric field pulse can be constructed from 

sinusoidal or cosine term as follows. This pulse is piece function with three limits [24]. 

f(𝜉) = √(1 − cos (2𝜋𝜉/𝐿)),  𝑓𝑜𝑟 0 ≤ 𝜉 ≤ 𝐿/4, 

        = 1, 𝑓𝑜𝑟 
𝐿

4
≤ 𝜉 ≤ 2𝐿/3,   

        = √(1 + 𝑐𝑜 𝑠 (
3𝜋𝜉

𝐿
))/2, 𝑓𝑜𝑟

2𝐿

3
≤ 𝜉 ≤ 𝐿 

 

The Rectangular Triangular Electric Field Pulse profile looks as follows 

 

Fig 3.5 Rectangular Triangular Electric Field Pulse Profile. 
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3.2.6 Square Electric Field Pulse Profile: 

The electric field can be represented as follows 

𝐸2(𝜉) = 𝐸0
2 𝑓(𝜉), 

where 𝑓(𝜉) describes the Square electric field pulse profile whose expression is as follows. 

The Square electric field pulse can be constructed from sinusoidal or cosine term as follows. 

This pulse is piece function with three limits [24]. 

f(𝜉)   = 0,  𝑓𝑜𝑟 0 ≤ 𝜉 ≤ 𝐿/6, 

           = 1, 𝑓𝑜𝑟 
𝐿

6
≤ 𝜉 ≤ 10𝐿/12,   

           = 0, 𝑓𝑜𝑟 
10𝐿

12
≤ 𝜉 ≤ 𝐿. 

The shape of Square Electric Field Pulse is follows 

 

Fig 3.6 Square Electric Field Pulse Profile. 

3.3 Solving the Differential Equation for Respective Pulse Profiles 

The second order linear inhomogeneous differential equation which we obtained is as follows 

∇⃗⃗⃗2𝐵𝑎 +
4𝜔𝑙

2

𝑐2
𝐵𝑎 =

4𝜋

𝑐

𝑛0𝑒3𝐸2𝐾

𝑑𝑙4𝑚2𝜔𝑙
3

�̂�. 

Now adjusting above equation in terms of  𝜔2
𝑝𝑒 =  

4𝜋𝑛0𝑒2

𝑚
 𝑎𝑛𝑑 𝑎0

2 =
𝑒2𝐸0

2

𝑚2𝑐2𝜔𝑙
2
; 

𝜕2𝐵𝑎

𝜕𝜉2
+

4𝜔𝑙
2

𝑐2
𝐵𝑎 =

𝜔𝑝𝑒
2𝑐𝑚𝐾𝑎0

2

𝜔𝑙𝑒𝑑𝑙
𝑓(𝜉). 
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This derivation is arrived by considering cgs system, where 𝑓(𝜉) is envelope or our electric 

field pulse profile, 𝜔𝑙 laser frequency, 𝜔𝑝𝑒 is plasma frequency, 𝑎0 laser intensity parameter, 

𝑒 is charge of electron, 𝑑𝑙 differential length parameter describing the slope of  density ramp 

which varies along transverse direction, 𝑚 is mass of electron, 𝑛0 is density at origin, c is the 

speed of light, K is given by 
𝜔𝑙

𝑐
. 

Now assigning constants particular variable as follows 

𝑈2 =
4𝜔𝑙

2

𝑐2 , 

𝐴2 =
𝜔𝑝𝑒

2𝑐𝑚𝐾𝑎0
2

𝜔𝑙𝑒𝑑𝑙
, 

𝐷2 =
𝜕2

𝜕𝜉2
 𝑎𝑛𝑑 𝐵𝑎 = 𝐵(𝜉). 

Therefore the above differential equation reduces to 

(𝐷2 + 𝑈2)𝐵(𝜉) = 𝐴2𝑓(𝜉). 

Now employing constant coefficients method to solve the above differential equation. The 

solution to the homogenous part or the complementary solution is as follows and this solution 

is same for all the electric field pulse profiles as there is no dependence of the solution on 𝑓(𝜉) 

or 𝑓(𝜉) = 0. 

(𝐷2 + 𝑈2)𝐵𝑐(𝜉) = 0. 

The solution to this homogenous part is  

𝐵𝑐(𝜉) = 𝑐1 cos(𝑈𝜉) + 𝑐2 sin(𝑈𝜉), 

where 𝐵𝑐(𝜉) is the complementary solution of magnetic field. 

Now we can see this part of solution gets added to the solution of all the electric field pulse 

profiles irrespective of the shape of pulse profile. 

Now the solution of differential equation with inhomogeneous part is purely dependent on the 

components with which 𝑓(𝜉) is built. This part of solution is called as particular solution. So 
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we have calculated the Particular solution of differential equation individually for individual 

pulse profiles. 

3.3.1 Sine Electric Field Pulse Profile: 

The electric field can be represented as follows 

𝐸2(𝜉) = 𝐸0
2 𝑓(𝜉), 

where 𝑓(𝜉) describes the sine electric field pulse profile whose expression is as follows [24] 

𝑓(𝜉) = sin (
𝜋𝜉

𝐿
) ,  𝑓𝑜𝑟 0 ≤ 𝜉 ≤ 𝐿. 

 

Now substituting this pulse profile in the differential equation 

(𝐷2 + 𝑈2)𝐵(𝜉) = 𝐴2 sin (
𝜋𝜉

𝐿
), 

𝐵𝑝(𝜉) =
𝐴2 sin (

𝜋𝜉
𝐿 )

(𝐷2 + 𝑈2)
 , 𝑓𝑜𝑟 0 ≤ 𝜉 ≤ 𝐿, 

where 𝐵𝑝(𝜉) particular solution to the magnetic field 

According to the constant coefficients methods for sinusoidal pulse of form sin(bx) or cos(bx), 

substitute 𝐷2 = −𝑏2  

Here in our problem 𝑏 =
𝜋

𝐿
. 

Substituting these we finally get  

𝐵𝑝(𝜉) =
𝐴2 sin (

𝜋𝜉
𝐿 )

(−(
𝜋
𝐿)2 + 𝑈2)

 , 𝑓𝑜𝑟 0 ≤ 𝜉 ≤ 𝐿. 

Now the total solution to magnetic field is sum of complementary solution and particular 

solution 

𝐵(𝜉) = 𝐵𝑐(𝜉) + 𝐵𝑝(𝜉) 𝑓𝑜𝑟 0 ≤ 𝜉 ≤ 𝐿, 
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𝐵(𝜉) = 𝑐1 cos(𝑈𝜉) + 𝑐2 sin(𝑈𝜉) +
𝐴2 sin (

𝜋𝜉
𝐿 )

(− (
𝜋
𝐿)

2
+ 𝑈2)

, 𝑓𝑜𝑟 0 ≤ 𝜉 ≤ 𝐿. 

This is the solution to magnetic field for sine electric field pulse profile. Applying boundary 

condition to get 𝑐1 𝑎𝑛𝑑 𝑐2  

Taking 𝑎0 = 0.3,  𝑑𝑙 = 50 × 10−4𝑐𝑚, 𝑎𝑛𝑑 𝑛0 = 1019𝑐𝑚−3. 

where 𝑎0 laser intensity parameter,  𝑑𝑙 differential length affecting slope of density ramp, 𝑛0 

is plasma density at beginning or origin. Taking remaining all values in cgs the final solution 

which we get is 

 

 

 

Thus this is the final solution to the differential equation for sinusoidal electric field pulse 

profile. 

We have tried to write a program of this solution in Matlab and analyse the result. The program 

is also helpful to us in analysing the variation of magnetic field with respect to laser intensity 

parameter (𝑎0), (𝑑𝑙) differential length parameter describing the slope of density ramp and 

(𝑛0) density at origin 

Code: 

l=1.5*10^-3; 

t=[0:0.0000001:l]; 

f=1/l; 

y=sin(pi*f*t); 

subplot(1,2,1); 

plot(t,y); 

x=[0:0.000001:1.5*10^-3]; 

L=1.5*10^-3; 

g=pi/L; 

wl=1.8*10^15; 

𝐵(𝜉) = 18.8558 sin (
𝜋𝜉

𝐿
) + 0.3144 sin(𝑈𝜉) ,  𝑓𝑜𝑟 0 ≤ 𝜉 ≤ 𝐿. 

 



32 

 

c=3*10^10; 

k1=wl/c; 

k2=1.256*10^5; 

k3=k2^2; 

dl=30*10^-4; 

e=4.38*10^-10; 

m=9.1*10^-28; 

f= 3.1816e+009; 

n0=1*10^19; 

wpe=sqrt(f*n0); 

a0=0.3; 

A=(wpe^2*m*k1*a0^2*c)/(4*wl*e*dl); 

c2=A*pi/(k3*L*k2); 

ba1=c2*sin(k2*x)+(A/k3)*sin(g*x); 

subplot(1,2,2); 

plot(x,ba1,'b'); 

xlabel('pulse length=L'); 

ylabel('generated magnetic field'); 

hold on; 

This is the program clearing involving the steps to solve the differential equation for sinusoidal 

electric field pulse profile. 

The output to the above program is as shown  
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If we carefully concentrate on the shape of magnetic field pulse we see its envelope is following 

the shape of electric field pulse profile but there is significant amount of oscillation or 

fluctuations in magnetic field whose account can be understood from the dominance or 

significant presence of sinusoidal terms in the complementary solution. Since for every pulse 

profile, the complementary solution is same and since the complementary solution is composed 

of sinusoidal terms there will be significant oscillations in the envelope of magnetic field of all 

the pulse profiles unless the value of constants 𝑐1 𝑎𝑛𝑑 𝑐2 governing  the complementary 

solution is either negligible or zero. 

The maximum value of magnetic field for sinusoidal electric field pulse profile observed is 

19.163 Gauss for laser intensity parameter (𝑎0 = 0.3), (𝑑𝑙 = 50 × 10−4𝑐𝑚) differential 

length parameter describing the slope of density ramp and (𝑛0 = 1019𝑐𝑚−3) density at 

origin for sinusoidal electric field pulse profile. 

Table showing variation of magnetic field with respect to the respect to laser intensity 

parameter (𝑎0), (𝑑𝑙) differential length parameter describing the slope of density ramp and 

(𝑛0) density at origin for sinusoidal electric field pulse profile. 

 

 

Table 3.1 Variation in Amplitude of Magnetic Fields for Sine Electric Field Pulse Profiles. 
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Matlab output showing variation of magnetic field with respect to laser intensity parameter 

(𝑎0). 

 

Matlab output showing variation of magnetic field with respect to (𝑑𝑙) differential length 

parameter describing the slope of density ramp. 
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Matlab output showing variation of magnetic field with respect to plasma density (𝑛0) 

 

From these plots we can realise that magnetic field increases with increase in laser intensity 

parameter and plasma density. Magnetic field decreases with increase in (𝑑𝑙) differential 

length parameter describing the slope of density ramp. 

Thus this is the general solution of magnetic field for Sine Electric Field Pulse profile. 

3.3.2 Triangular Electric Field Pulse Profile: 

The electric field can be represented as follows 

𝐸2(𝜉) = 𝐸0
2 𝑓(𝜉), 

where 𝑓(𝜉) describes the Triangular electric field pulse profile whose expression is as follows. 

The practical triangular electric field pulse can be constructed from sinusoidal or cosine term 

as follows. This pulse is piece function with two limits [25]. 

f(𝜉)     = 1 − cos (
𝜋𝜉

𝐿
) ,  𝑓𝑜𝑟 0 ≤ 𝜉 ≤

𝐿

2
, 

  = 1 + cos (
𝜋𝜉

𝐿
) , 𝑓𝑜𝑟 

𝐿

2
≤ 𝜉 ≤ 𝐿. 

 
Now obtaining particular solution of nonhomogeneous part we get two particular solution since 

the triangular electric field pulse profile is piecewise built with two limits. The magnetic field 
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from the first limit is represented as 𝐵1𝑝(𝜉) and the second limit is represented as 𝐵2𝑝(𝜉).  Now 

the mathematics involved is as shown. 

(𝐷2 + 𝑈2)𝐵1𝑝(𝜉) = 𝐴2 (1 − cos (
𝜋𝜉

𝐿
)), 𝑓𝑜𝑟 0 ≤ 𝜉 ≤

𝐿

2
, 

𝐵1𝑝(𝜉) =
𝐴2

𝑈2
−

𝐴2 cos (
𝜋𝜉
𝐿 )

𝑈2 − ((
𝜋

𝐿
)

2

)
, 𝑓𝑜𝑟 0 ≤ 𝜉 ≤

𝐿

2
. 

Thus this the particular solution of first limit. The total solution of the first limit is sum of 

complementary solution and particular solution which is as shown. 𝐵1(𝜉) represents the total 

solution upto first limit of triangular electric field pulse profile. 

𝐵1(𝜉) = 𝐵𝑐(𝜉) + 𝐵1𝑝(𝜉), 𝑓𝑜𝑟 0 ≤ 𝜉 ≤
𝐿

2
, 

𝐵1(𝜉) = 𝑐1 cos(𝑈𝜉) + 𝑐2 sin(𝑈𝜉) +
𝐴2

𝑈2
−

𝐴2 cos (
𝜋𝜉
𝐿 )

𝑈2 − ((
𝜋

𝐿
)

2

)
, 𝑓𝑜𝑟0 ≤ 𝜉 ≤

𝐿

2
.  

This is the solution upto first limit magnetic field for triangular electric field pulse profile. 

Applying boundary condition to get 𝑐1 𝑎𝑛𝑑 𝑐2  

Taking 𝑎0 = 0.3,  𝑑𝑙 = 50 × 10−4𝑐𝑚, 𝑎𝑛𝑑 𝑛0 = 1019𝑐𝑚−3, 

where 𝑎0 laser intensity parameter,  𝑑𝑙 differential length affecting slope of density ramp, 𝑛0 

is plasma density at beginning or origin. Taking remaining all values in cgs the final solution 

which we get is 

 

 

 

Now obtaining particular solution to second limit of electric field pulse profile, we get 

(𝐷2 + 𝑈2)𝐵2𝑝(𝜉) = 𝐴2 (1 + cos (
𝜋𝜉

𝐿
)), 𝑓𝑜𝑟 

𝐿

2
≤ 𝜉 ≤ 𝐿. 

𝐵1(𝜉) = −18.861 cos (
𝜋𝜉

𝐿
) + 18.8558,  𝑓𝑜𝑟 0 ≤ 𝜉 ≤

𝐿

2
, 
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𝐵2𝑝(𝜉) =
𝐴2

𝑈2
+

𝐴2 cos (
𝜋𝜉
𝐿 )

𝑈2 − ((
𝜋

𝐿
)

2

)
, 𝑓𝑜𝑟 

𝐿

2
≤ 𝜉 ≤ 𝐿. 

Thus this the particular solution of second limit. The total solution of the second limit is sum 

of complementary solution and particular solution which is as shown. 𝐵2(𝜉) represents total 

solution upto second limit of triangular electric field pulse profile. 

𝐵2(𝜉) = 𝐵𝑐(𝜉) + 𝐵2𝑝(𝜉), 𝑓𝑜𝑟 
𝐿

2
≤ 𝜉 ≤ 𝐿, 

𝐵2(𝜉) = 𝑐1 cos(𝑈𝜉) + 𝑐2 sin(𝑈𝜉) +
𝐴2

𝑈2
+

𝐴2 cos (
𝜋𝜉
𝐿 )

𝑈2 − ((
𝜋

𝐿
)

2

)
, 𝑓𝑜𝑟 

𝐿

2
≤ 𝜉 ≤ 𝐿. 

This is the solution upto second limit magnetic field for triangular electric field pulse profile. 

Applying boundary condition to get 𝑐1 𝑎𝑛𝑑 𝑐2  

Taking 𝑎0 = 0.3,  𝑑𝑙 = 50 × 10−4𝑐𝑚, 𝑎𝑛𝑑 𝑛0 = 1019𝑐𝑚−3, 

where 𝑎0 laser intensity parameter,  𝑑𝑙 differential length affecting slope of density ramp, 𝑛0 

is plasma density at beginning or origin. Taking remaining all values in cgs the final solution 

which we get is 

 

 

 

The total solution for the magnetic field for triangular electric field pulse profile is as shown 

below. 

 

 

 

 

 

 

 

𝐵2(𝜉) = 18.861 cos (
𝜋𝜉

𝐿
) + 18.858, 𝑓𝑜𝑟

𝐿

2
≤ 𝜉 ≤ 𝐿.   

 

𝐵(𝜉) = −18.861 cos (
𝜋𝜉

𝐿
) + 18.8558,  𝑓𝑜𝑟 0 ≤ 𝜉 ≤

𝐿

2
, 

 = 18.861 cos (
𝜋𝜉

𝐿
) + 18.858, 𝑓𝑜𝑟

𝐿

2
≤ 𝜉 ≤ 𝐿.   
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We have tried to write a program of this solution in Matlab and analyse the result. The program 

is also helpful to us in analysing the variation of magnetic field with respect to laser intensity 

parameter (𝑎0), (𝑑𝑙) differential length parameter describing the slope of density ramp and 

(𝑛0) density at origin 

Code: 

l=1.5*10^-3; 

t1=[0:0.0000001:l/2] 

e1=1-cos(pi*t1/l); 

t2=[l/2:0.0000001:l]; 

e2=1+cos(pi*t2/l); 

subplot(1,2,1); 

plot(t1,e1);hold on;plot(t2,e2); 

syms c2 c3 

x1=[0:0.000000001:0.75*10^-3]; 

L=1.5*10^-3; 

g=pi/L; 

wl=1.8*10^15; 

c=3*10^10; 

k1=wl/c; 

k2=1.256*10^5; 

k3=k2^2; 

dl=50*10^-4; 

e=4.38*10^-10; 

m=9.1*10^-28; 

f= 3.1816e+009; 

n0=1*10^19; 

wpe=sqrt(f*n0); 

a0=0.3; 

A=(wpe^2*m*k1*a0^2*c)/(4*wl*e*dl); 

b1=A/k3-(A/(k3-(g)^2))*cos(g*x1); 

bg=7.19*10^-3; 

b1g=(A/(k3-(g)^2))*g; 
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eqn1=[0.99*c2-0.047*c3-0;-0.047*k2*c2+0.99*k2*c3-b1g+(A/(k3-

(g)^2))*g*sin(g*L/2)]; 

S=solve([eqn1]); 

x2=[0.75*10^-3:0.000001:1.5*10^-3]; 

b2=subs(S.c2)*cos(k2*x2)+subs(S.c3)*sin(k2*x2)+A/k3+(A/(k3-

(g)^2))*cos(g*x2); 

subplot(1,2,2); 

plot(x1,b1,'b'); hold on; plot(x2,b2,'b'); 

hold on; 

This is the program clearing involving the steps to solve the differential equation for triangular 

electric field pulse profile. 

The output to the above program is as shown 

 

 

 

If we carefully concentrate on the shape of magnetic field pulse we see its envelope is following 

the shape of electric field pulse profile. Also when compared to response for sine electric field 

pulse profile there are no significant oscillation or fluctuations in magnetic field.  

Since for every pulse profile, the complementary solution is same and since the complementary 

solution is composed of sinusoidal terms there will be significant oscillations in the envelope 

of magnetic field of all the pulse profiles unless the value constants 𝑐1 𝑎𝑛𝑑 𝑐2 governing  the 
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complementary solution is either negligible or zero. Here in this case we can see in solution 

that these complementary constants are zero. Thus there are no oscillations in the envelope. 

The maximum value of magnetic field for triangular electric field pulse profile observed is 

18.858 Gauss for laser intensity parameter (𝑎0 = 0.3), (𝑑𝑙 = 50 × 10−4𝑐𝑚) differential 

length parameter describing the slope of density ramp and (𝑛0 = 1019𝑐𝑚−3) density at 

origin for sinusoidal electric field pulse profile. This is lesser than the maximum value for 

sinusoidal pulse profile but the difference margin is very less. 

Table showing variation of magnetic field with respect to the laser intensity parameter (𝑎0), 

(𝑑𝑙) differential length parameter describing the slope of density ramp and (𝑛0) density at 

origin for sinusoidal electric field pulse profile. 

 

Table 3.2 Variation in Amplitude of Magnetic Fields for Triangular Electric Field Pulse 

Profiles. 

The table clearly shows that magnetic field increases with increase in laser intensity parameter 

and plasma density. Magnetic field decreases with increase in (𝑑𝑙) differential length 

parameter describing the slope of density ramp. These can also be seen in the Matlab output 

plots as follows. 
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Matlab output showing variation of magnetic field with respect to laser intensity parameter 

(𝑎0) 

 

Matlab output showing variation of magnetic field with respect to (𝑑𝑙) differential length 

parameter describing the slope of density ramp. 
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Matlab output showing variation of magnetic field with respect to plasma density (𝑛0) 

 

3.3.3 Sawtooth Decreasing Electric Field Pulse Profile: 

The electric field can be represented as follows 

𝐸2(𝜉) = 𝐸0
2 𝑓(𝜉), 

where 𝑓(𝜉) describes the Sawtooth decreasing electric field pulse profile whose expression is 

as follows. The practical Sawtooth decreasing electric field pulse can be constructed from 

sinusoidal or cosine term as follows. This pulse is piece wise function with two limits [25]. 

f(𝜉)     = (1 − cos (
29𝜋𝜉

𝐿
))/2 , 𝑓𝑜𝑟 0 ≤ 𝜉 ≤

𝐿

30
, 

  =
1 + cos (

𝜋𝜉
𝐿 )

2
, 𝑓𝑜𝑟 

𝐿

30
≤ 𝜉 ≤ 𝐿. 

 

Now obtaining particular solution of nonhomogeneous part, we get two particular solutions 

since the sawtooth decreasing electric field pulse profile is piecewise built with two limits. The 

magnetic field from the first limit is represented as 𝐵1𝑝(𝜉) and the second limit is represented 

as 𝐵2𝑝(𝜉).  Now the mathematics involved is as shown. 

(𝐷2 + 𝑈2)𝐵1𝑝(𝜉) =
𝐴

2

2

(1 − cos (
29𝜋𝜉

𝐿
)) ,  𝑓𝑜𝑟 0 ≤ 𝜉 ≤

𝐿

30
, 
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𝐵1𝑝(𝜉) =
𝐴2

2𝑈2
−

𝐴2 cos (
29𝜋𝜉

𝐿 )

2 (𝑈2 − ((
29𝜋

𝐿
)

2

))

, 𝑓𝑜𝑟 0 ≤ 𝜉 ≤
𝐿

30
. 

Thus this the particular solution of first limit. The total solution of the first limit is sum of 

complementary solution and particular solution which is as shown. 𝐵1(𝜉) represents total 

solution upto first limit of sawtooth decreasing electric field pulse profile. 

𝐵1(𝜉) = 𝐵𝑐(𝜉) + 𝐵1𝑝(𝜉), 𝑓𝑜𝑟 0 ≤ 𝜉 ≤
𝐿

30
. 

𝐵1(𝜉) = 𝑐1 cos(𝑈𝜉) + 𝑐2 sin(𝑈𝜉) +
𝐴2

2𝑈2
−

𝐴2 cos (
29𝜋𝜉

𝐿 )

2 (𝑈2 − ((
29𝜋

𝐿
)

2

))

, 0 ≤ 𝜉 ≤
𝐿

30
.  

This is the solution upto first limit magnetic field for sawtooth decreasing electric field pulse 

profile. Applying boundary condition to get 𝑐1 𝑎𝑛𝑑 𝑐2  

Taking 𝑎0 = 0.3,  𝑑𝑙 = 50 × 10−4𝑐𝑚, 𝑎𝑛𝑑 𝑛0 = 1019𝑐𝑚−3, 

where 𝑎0 is laser intensity parameter,  𝑑𝑙 differential length affecting slope of density ramp, 

𝑛0 is plasma density at beginning or origin. Taking remaining all values in cgs the final 

solution which, we get is 

 

 

 

Now obtaining particular solution to second limit of electric field pulse profile ,we get 

(𝐷2 + 𝑈2)𝐵2𝑝(𝜉) =
𝐴

2

2

(1 + cos (
𝜋𝜉

𝐿
)), 𝑓𝑜𝑟

𝐿

30
≤ 𝜉 ≤ 𝐿, 

𝐵2𝑝(𝜉) =
𝐴2

2𝑈2
+

𝐴2 cos (
𝜋𝜉
𝐿 )

2𝑈2 − 2 ((
𝜋

𝐿
)

2

)
, 𝑓𝑜𝑟 

𝐿

30
≤ 𝜉 ≤ 𝐿. 

𝐵1(𝜉)      = 2.876 cos(𝑈𝜉) − 12.3056 cos (
29𝜋𝜉

𝐿
) + 9.427,  𝑓𝑜𝑟 0 ≤ 𝜉 ≤

𝐿

30
. 
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Thus this is the particular solution of second limit. The total solution of the second limit is sum 

of complementary solution and particular solution which is as shown. 𝐵2(𝜉) represents total 

solution upto second limit of Sawtooth decreasing electric field pulse profile. 

𝐵2(𝜉) = 𝐵𝑐(𝜉) + 𝐵2𝑝(𝜉), 𝑓𝑜𝑟 
𝐿

30
≤ 𝜉 ≤ 𝐿. 

𝐵2(𝜉) = 𝑐1 cos(𝑈𝜉) + 𝑐2 sin(𝑈𝜉) +
𝐴2

2𝑈2
+

𝐴2 cos (
𝜋𝜉
𝐿 )

2𝑈2 − 2 ((
𝜋

𝐿
)

2

)
, 𝑓𝑜𝑟

𝐿

30
≤ 𝜉 ≤ 𝐿. 

This is the solution upto second limit magnetic field for Sawtooth decreasing electric field pulse 

profile. Applying boundary condition to get 𝑐1 𝑎𝑛𝑑 𝑐2  

Taking 𝑎0 = 0.3,  𝑑𝑙 = 50 × 10−4𝑐𝑚, 𝑎𝑛𝑑 𝑛0 = 1019𝑐𝑚−3, 

where 𝑎0 laser intensity parameter,  𝑑𝑙 differential length affecting slope of density ramp, 𝑛0 

is plasma density at beginning or origin. Taking remaining all values in cgs the final solution 

which we get is 

 

 

 

 

The total solution for the magnetic field for triangular electric field pulse profile is as shown 

below. 

 

 

 

 

 

 

We have tried to write a program of this solution in Matlab and analyse the result. The program 

is also helpful to us in analysing the variation of magnetic field with respect to laser intensity 

parameter (𝑎0), (𝑑𝑙) differential length parameter describing the slope of density ramp and 

(𝑛0) density at origin 

𝐵2(𝜉) = 5.7968 cos(𝑈𝜉) + 0.6023 sin(𝑈𝜉) + 9.4300 cos (
𝜋𝜉

𝐿
) + 9.427, 

𝑓𝑜𝑟
𝐿

30
≤ 𝜉 ≤ 𝐿.   

𝐵(𝜉)      = 2.876 cos(𝑈𝜉) − 12.3056 cos (
29𝜋𝜉

𝐿
) + 9.427,  𝑓𝑜𝑟 0 ≤ 𝜉 ≤

𝐿

30
, 

  = 5.7968 cos(𝑈𝜉) + 0.6023 sin(𝑈𝜉) + 9.4300 cos (
𝜋𝜉

𝐿
) + 9.427, 

𝑓𝑜𝑟
𝐿

30
≤ 𝜉 ≤ 𝐿.   
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Code: 

syms c2 c3 

l=1.5*10^-3; 

t1=[0:0.0000001:l/30]; 

e1=(1-cos(29*pi*t1/l))/2; 

t2=[l/30:0.00000001:l]; 

e2=(1+cos(pi*t2/l))/2;  

subplot(1,2,1) 

plot(t1,e1);hold on;plot(t2,e2); 

x1=[0:0.00001:5*10^-5]; 

L=1.5*10^-3; 

g=pi/L; 

wl=1.8*10^15; 

c=3*10^10; 

k1=wl/c; 

k2=1.256*10^5; 

k3=k2^2; 

dl=50*10^-4; 

e=4.38*10^-10; 

m=9.1*10^-28; 

f= 3.1816e+009; 

n0=1*10^19; 

wpe=sqrt(f*n0); 

a0=0.3; 

A=(wpe^2*m*k1*a0^2*c)/(4*wl*e*dl); 

c1=(-(A/k3)+(A/(k3-(29*g)^2)))/2; 

b1=c1*cos(k2*x1)+0.5*A/k3-(0.5*A/(k3-(29*g)^2))*cos(29*g*x1); 

bg=c1*cos(k2*L/30)+0.5*A/k3-(0.5*A/(k3-

(29*g)^2))*cos(29*g*L/30); 

b1g=-k2*c1*sin(k2*L/30)+(0.5*A/(k3-

(29*g)^2))*29*g*sin(29*g*L/30); 

eqn1=[0.99*c2-0.00318*c3-bg+(0.5*A/k3)+(0.5*A/(k3-

(g)^2))*cos(pi/30);0.00318*k2*c2+0.99*k2*c3-b1g+(0.5*A/(k3-

(g)^2))*g*sin(g*L/30)]; 
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S=solve([eqn1]); 

x2=[5*10^-5:0.0001:1.5*10^-3]; 

b2=subs(S.c2)*cos(k2*x2)+subs(S.c3)*sin(k2*x2)+0.5*A/k3+(0.5*A

/(k3-(g)^2))*cos(g*x2); 

subplot(1,2,2) 

plot(x1,b1,'b'); hold on; plot(x2,b2,'b'); 

hold on; 

This is the program clearing involving the steps to solve the differential equation for Sawtooth 

decreasing electric field pulse profile. 

The output to the above program is as shown in the next page. 

If we carefully concentrate on the shape of magnetic field pulse we see its envelope is following 

the shape of sawtooth decreasing electric field pulse profile. Also when compared to response 

for sine electric field pulse profile there will be significant oscillation or fluctuations in 

magnetic field. The oscillations are not seen in the output since we have increased the step size 

to properly show the envelope. The actual output with oscillations can be seen when we 

decrease the step size. It has been shown in next page 

 

 

Since for every pulse profile, the complementary solution is same and since the complementary 

solution is composed of sinusoidal terms there will be significant oscillations in the envelope 

of magnetic field of all the pulse profiles unless the value constants 𝑐1 𝑎𝑛𝑑 𝑐2 governing  the 

complementary solution is either negligible or zero. Here in this case we can see in solution 
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that these complementary constants are much significant. Thus there will be oscillations in the 

envelope. 

 

 

Table 3.3 Variation in Amplitude of Magnetic Fields for Sawtooth Decreasing Electric Field 

Pulse Profiles. 

Above Table shows variation of magnetic field with respect to the laser intensity parameter 

(𝑎0), (𝑑𝑙) differential length parameter describing the slope of density ramp and (𝑛0) density 

at origin for sinusoidal electric field pulse profile. 
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The maximum value of magnetic field for sawtooth decreasing electric field pulse profile 

observed is 24.606 Gauss for laser intensity parameter (𝑎0 = 0.3), (𝑑𝑙 = 50 × 10−4𝑐𝑚) 

differential length parameter describing the slope of density ramp and (𝑛0 = 1019𝑐𝑚−3) 

density at origin for sinusoidal electric field pulse profile. This is significantly larger than the 

maximum value for sinusoidal or triangular electric field pulse profile. 

Matlab output showing variation of magnetic field with respect to laser intensity parameter 

(𝑎0) 

 

Matlab output showing variation of magnetic field with respect to (𝑑𝑙) differential length 

parameter describing the slope of density ramp. 

 

Matlab output showing variation of magnetic field with respect to plasma density (𝑛0) 
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These plots clearly shows that magnetic field increases with increase in laser intensity 

parameter and plasma density. Magnetic field decreases with increase in (𝑑𝑙) differential 

length parameter describing the slope of density ramp. 

 

3.3.4 Sawtooth Increasing Electric Field Pulse Profile: 

The electric field can be represented as follows 

𝐸2(𝜉) = 𝐸0
2 𝑓(𝜉), 

where 𝑓(𝜉) describes the Sawtooth increasing electric field pulse profile whose expression is 

as follows. The practical Sawtooth increasing electric field pulse can be constructed from 

sinusoidal or cosine term as follows. This pulse is piece wise function with two limits [25]. 

f(𝜉)    = 1 − cos (
30𝜋𝜉

58𝐿
) ,  𝑓𝑜𝑟 0 ≤ 𝜉 ≤

29𝐿

30
, 

 = 1 + cos (
15𝜋𝜉

𝐿
) ,  𝑓𝑜𝑟 

29𝐿

30
≤ 𝜉 ≤ 𝐿. 

 

Now obtaining particular solution of nonhomogeneous part, we get two particular solutions 

since the sawtooth increasing electric field pulse profile is piecewise built with two limits. The 

magnetic field from the first limit is represented as 𝐵1𝑝(𝜉) and the second limit is represented 

as 𝐵2𝑝(𝜉).  Now the mathematics involved is as shown. 
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(𝐷2 + 𝑈2)𝐵1𝑝(𝜉) = 𝐴2 (1 − cos (
30𝜋𝜉

58𝐿
)) ,  𝑓𝑜𝑟 0 ≤ 𝜉 ≤

29𝐿

30
, 

𝐵1𝑝(𝜉) =
𝐴2

𝑈2
−

𝐴2 cos (
30𝜋𝜉
58𝐿

)

𝑈2 − ((
30𝜋

58𝐿
)

2

)
, 𝑓𝑜𝑟 0 ≤ 𝜉 ≤

29𝐿

30
. 

Thus this the particular solution of first limit. The total solution of the first limit is sum of 

complementary solution and particular solution which is as shown. 𝐵1(𝜉) represents total 

solution upto first limit of sawtooth increasing electric field pulse profile. 

𝐵1(𝜉) = 𝐵𝑐(𝜉) + 𝐵1𝑝(𝜉), 𝑓𝑜𝑟  0 ≤ 𝜉 ≤
29𝐿

30
. 

𝐵1(𝜉) = 𝑐1 cos(𝑈𝜉) + 𝑐2 sin(𝑈𝜉) +
𝐴2

𝑈2
−

𝐴2 cos (
30𝜋𝜉
58𝐿

)

𝑈2 − ((
30𝜋

58𝐿
)

2

)
, 𝑓𝑜𝑟 0 ≤ 𝜉 ≤

29𝐿

30
. 

This is the solution upto first limit magnetic field for sawtooth increasing electric field pulse 

profile. Applying boundary condition to get 𝑐1 𝑎𝑛𝑑 𝑐2  

Taking 𝑎0 = 0.3,  𝑑𝑙 = 50 × 10−4𝑐𝑚, 𝑎𝑛𝑑 𝑛0 = 1019𝑐𝑚−3, 

where 𝑎0 laser intensity parameter,  𝑑𝑙 differential length affecting slope of density ramp, 𝑛0 

is plasma density at beginning or origin. Taking remaining all values in cgs the final solution 

which we get is 

 

 

 

 

Now obtaining particular solution to second limit of electric field pulse profile we get 

(𝐷2 + 𝑈2)𝐵2𝑝(𝜉) = 𝐴2 (1 + cos (
15𝜋𝜉

𝐿
)), 𝑓𝑜𝑟

29𝐿

30
≤ 𝜉 ≤ 𝐿. 

𝐵1(𝜉) = −18.858 cos (
15𝜋𝜉

58𝐿
) + 18.858,  𝑓𝑜𝑟 0 ≤ 𝜉 ≤

29𝐿

30
, 
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𝐵2𝑝(𝜉) =
𝐴2

𝑈2
+

𝐴2 cos (
15𝜋𝜉

𝐿 )

𝑈2 − ((
15𝜋

𝐿
)

2

)

, 𝑓𝑜𝑟 
29𝐿

30
≤ 𝜉 ≤ 𝐿. 

Thus this the particular solution of second limit. The total solution of the second limit is sum 

of complementary solution and particular solution which is as shown. 𝐵2(𝜉) represents total 

solution upto second limit of Sawtooth increasing electric field pulse profile. 

𝐵2(𝜉) = 𝐵𝑐(𝜉) + 𝐵2𝑝(𝜉), 𝑓𝑜𝑟 
29𝐿

30
≤ 𝜉 ≤ 𝐿. 

𝐵2(𝜉) = 𝑐1 cos(𝑈𝜉) + 𝑐2 sin(𝑈𝜉) +
𝐴2

𝑈2
+

𝐴2 cos (
15𝜋𝜉

𝐿 )

𝑈2 − ((
15𝜋

𝐿
)

2

)

, 𝑓𝑜𝑟
29𝐿

30
≤ 𝜉 ≤ 𝐿. 

This is the solution upto second limit magnetic field for Sawtooth increasing electric field pulse 

profile. Applying boundary condition to get 𝑐1 𝑎𝑛𝑑 𝑐2  

Taking 𝑎0 = 0.3,  𝑑𝑙 = 50 × 10−4𝑐𝑚, 𝑎𝑛𝑑 𝑛0 = 1019𝑐𝑚−3, 

where 𝑎0 laser intensity parameter,  𝑑𝑙 differential length affecting slope of density ramp, 𝑛0 

is plasma density at beginning or origin. Taking remaining all values in cgs the final solution 

which we get is 

 

 

 

 

The magnetic field response for sawtooth increasing electric field pulse profile is as shown 

  

 

 

 

𝐵2(𝜉) = 0.473 cos(𝑈𝜉) + 5.203 sin(𝑈𝜉) + 20.114 cos (
15𝜋𝜉

𝐿
) + 18.858, 

𝑓𝑜𝑟
29𝐿

30
≤ 𝜉 ≤ 𝐿.   

𝐵(𝜉) = −18.858 cos (
15𝜋𝜉

58𝐿
) + 18.858,  𝑓𝑜𝑟 0 ≤ 𝜉 ≤

29𝐿

30
, 

  

     = 0.473 cos(𝑈𝜉) + 5.203 sin(𝑈𝜉) + 20.114 cos (
15𝜋𝜉

𝐿
) + 18.858, 

𝑓𝑜𝑟
29𝐿

30
≤ 𝜉 ≤ 𝐿. 
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We have tried to write a program of this solution in Matlab and analyse the result. The program 

is also helpful to us in analysing the variation of magnetic field with respect to laser intensity 

parameter (𝑎0), (𝑑𝑙) differential length parameter describing the slope of density ramp and 

(𝑛0) density at origin 

Code: 

syms c2 c3 

l=1.5*10^-3; 

t1=[0:0.000001:29*l/30]; 

e1=1-cos((30/58)*pi*t1/l); 

t2=[29*l/30:0.000001:l]; 

e2=1+cos(15*pi*t2/l); 

subplot(1,2,1); 

plot(t1,e1);hold on;plot(t2,e2); 

x1=[0:0.00001:1.45*10^-3]; 

L=1.5*10^-3; 

g=pi/L; 

wl=1.8*10^15; 

c=3*10^10; 

k1=wl/c; 

k2=1.256*10^5; 

k3=k2^2; 

dl=50*10^-4; 

e=4.38*10^-10; 

m=9.1*10^-28; 

f= 3.1816e+009; 

n0=1*10^19; 

wpe=sqrt(f*n0); 

a0=0.3; 

A=(wpe^2*m*k1*a0^2*c)/(4*wl*e*dl); 

b1=A/k3-(A/(k3-(30/58*g)^2))*cos(30*g*x1/58); 

bg=A/k3; 

b1g=(A/(k3-(30/58*g)^2))*30*g/58; 
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eqn1=[0.99*c2-0.09*c3-0;0.09*k2*c2+0.99*k2*c3-b1g-(A/(k3-

(15*g)^2))*15*g]; 

S=solve([eqn1]); 

x2=[1.45*10^-3:0.00001:1.5*10^-3]; 

b2=subs(S.c2)*cos(k2*x2)+subs(S.c3)*sin(k2*x2)+A/k3+(A/(k3-

(15*g)^2))*cos(15*g*x2); 

subplot(1,2,2); 

plot(x1,b1,'b'); hold on; plot(x2,b2,'b'); 

hold on; 

This is the program clearing involving the steps to solve the differential equation for Sawtooth 

increasing electric field pulse profile. 

The output to the above program is as shown  

 

If we carefully concentrate on the shape of magnetic field pulse we see its envelope is following 

the shape of electric field pulse profile. Also when compared to response for sine electric field 

pulse profile there are no significant oscillation or fluctuations in magnetic field. Even the 

variation in step size recorded same output 

Since for every pulse profile, the complementary solution is same and since the complementary 

solution is composed of sinusoidal terms there will be significant oscillations in the envelope 

of magnetic field of all the pulse profiles unless the value constants 𝑐1 𝑎𝑛𝑑 𝑐2 governing  the 

complementary solution is either negligible or zero. Here in this case we can see in solution 
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that these complementary constants are zero for 𝐵1(𝜉) . Thus there are no oscillations in the 

envelope of the magnetic field. 

The maximum value of magnetic field for sawtooth increasing electric field pulse profile 

observed is 18.858 Gauss for laser intensity parameter (𝑎0 = 0.3), (𝑑𝑙 = 50 × 10−4𝑐𝑚) 

differential length parameter describing the slope of density ramp and (𝑛0 = 1019𝑐𝑚−3) 

density at origin for sinusoidal electric field pulse profile. This is lesser than the maximum 

value for sawtooth decreasing, sinusoidal pulse profile but exactly equal to triangular electric 

field pulse profile response. The difference of margin between sawtooth increasing and sine 

pulse response is very less 

Table showing variation of magnetic field with respect to the respect to laser intensity 

parameter (𝑎0), (𝑑𝑙) differential length parameter describing the slope of density ramp and 

(𝑛0) density at origin for sinusoidal electric field pulse profile. 

 

Table 3.4 Variation in Amplitude of Magnetic Fields for Sawtooth Increasing Electric Field 

Pulse Profiles. 
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Matlab output showing variation of magnetic field with respect to laser intensity parameter 

(𝑎0) 

 

Matlab output showing variation of magnetic field with respect to (𝑑𝑙) differential length 

parameter describing the slope of density ramp. 
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Matlab output showing variation of magnetic field with respect to plasma density (𝑛0) 

 

These plots clearly shows that magnetic field increases with increase in laser intensity 

parameter and plasma density. Magnetic field decreases with increase in (𝑑𝑙) differential length 

parameter describing the slope of density ramp. 

3.3.5 Rectangular Triangular Electric Field Pulse Profile: 

The electric field can be represented as follows 

𝐸2(𝜉) = 𝐸0
2 𝑓(𝜉), 

where 𝑓(𝜉) describes the Rectangular triangular electric field pulse profile whose expression 

is as follows. The practical rectangular triangular electric field pulse can be constructed from 

sinusoidal or cosine term as follows. This pulse is piece wise function with three limits [24]. 

f(𝜉) = √(1 − cos (2𝜋𝜉/𝐿)),  𝑓𝑜𝑟 0 ≤ 𝜉 ≤ 𝐿/4, 

        = 1, 𝑓𝑜𝑟 
𝐿

4
≤ 𝜉 ≤ 2𝐿/3, 

        = √[(1 + cos (3𝜋𝜉/𝐿))]/2, 𝑓𝑜𝑟 
2𝐿

3
≤ 𝜉 ≤ 𝐿. 

The profile can be reduced to following form by applying laws of trigonometry 

f(𝜉) = √2sin (𝜋𝜉/𝐿),  𝑓𝑜𝑟 0 ≤ 𝜉 ≤ 𝐿/4, 

        = 1, 𝑓𝑜𝑟 
𝐿

4
≤ 𝜉 ≤ 2𝐿/3, 

        = − cos (
3𝜋𝜉

2𝐿
) 𝑓𝑜𝑟 

2𝐿

3
≤ 𝜉 ≤ 𝐿. 
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Now obtaining particular solution of nonhomogeneous part, we get three particular solutions 

since the rectangular triangular electric field pulse profile is piecewise built with three limits. 

The magnetic field from the first limit is represented as 𝐵1𝑝(𝜉) , second limit is represented as 

𝐵2𝑝(𝜉)  and the third limit is represented as 𝐵3𝑝(𝜉) . Now the mathematics involved is as 

shown. 

(𝐷2 + 𝑈2)𝐵1𝑝(𝜉) = 𝐴2√2sin (𝜋𝜉/𝐿),  𝑓𝑜𝑟 0 ≤ 𝜉 ≤ 𝐿/4, 

𝐵1𝑝(𝜉) =
𝐴2√2sin (𝜋𝜉/𝐿)

𝑈2 − ((
𝜋

𝐿
)

2

)
, 𝑓𝑜𝑟 0 ≤ 𝜉 ≤

𝐿

4
. 

Thus this the particular solution of first limit. The total solution of the first limit is sum of 

complementary solution and particular solution which is as shown. 𝐵1(𝜉) represents total 

solution upto first limit of rectangular triangular electric field pulse profile. 

𝐵1(𝜉) = 𝐵𝑐(𝜉) + 𝐵1𝑝(𝜉), 𝑓𝑜𝑟 0 ≤ 𝜉 ≤
𝐿

4
. 

𝐵1(𝜉) = 𝑐1 cos(𝑈𝜉) + 𝑐2 sin(𝑈𝜉) +
𝐴2√2sin (𝜋𝜉/𝐿)

𝑈2 − ((
𝜋

𝐿
)

2

)
, 𝑓𝑜𝑟 0 ≤ 𝜉 ≤

𝐿

4
. 

This is the solution upto first limit magnetic field for rectangular triangular electric field pulse 

profile. Applying boundary condition to get 𝑐1 𝑎𝑛𝑑 𝑐2  

Taking 𝑎0 = 0.3,  𝑑𝑙 = 50 × 10−4𝑐𝑚, 𝑎𝑛𝑑 𝑛0 = 1019𝑐𝑚−3, 

where 𝑎0 laser intensity parameter,  𝑑𝑙 differential length affecting slope of density ramp, 𝑛0 

is plasma density at beginning or origin. Taking remaining all values in cgs the final solution 

which, we get is 

 

 

 

 

Now obtaining particular solution to second limit of electric field pulse profile, we obtain 

𝐵1(𝜉) = 26.6696 sin (
𝜋𝜉

𝐿
) − 0.4447sin (𝑈𝜉),  𝑓𝑜𝑟 0 ≤ 𝜉 ≤ 𝐿/4. 
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(𝐷2 + 𝑈2)𝐵2𝑝(𝜉) = 𝐴2𝑓𝑜𝑟 
𝐿

4
≤ 𝜉 ≤ 2𝐿/3,   

𝐵2𝑝(𝜉) =
𝐴2

𝑈2
𝑓𝑜𝑟 

𝐿

4
≤ 𝜉 ≤ 2𝐿/3. 

Thus this the particular solution of second limit. The total solution of the second limit is sum 

of complementary solution and particular solution which is as shown. 𝐵2(𝜉) represents total 

solution upto second limit of rectangular triangular electric field pulse profile. 

𝐵2(𝜉) = 𝐵𝑐(𝜉) + 𝐵2𝑝(𝜉), 𝑓𝑜𝑟 
𝐿

4
≤ 𝜉 ≤ 2𝐿/3, 

𝐵2(𝜉) = 𝑐1 cos(𝑈𝜉) + 𝑐2 sin(𝑈𝜉) +
𝐴2

𝑈2
, 𝑓𝑜𝑟

𝐿

4
≤ 𝜉 ≤ 2𝐿/3. 

This is the solution upto second limit magnetic field for rectangular triangular electric field 

pulse profile. Applying boundary condition to get 𝑐1 𝑎𝑛𝑑 𝑐2  

Taking 𝑎0 = 0.3,  𝑑𝑙 = 50 × 10−4𝑐𝑚, 𝑎𝑛𝑑 𝑛0 = 1019𝑐𝑚−3, 

where 𝑎0 laser intensity parameter,  𝑑𝑙 differential length affecting slope of density ramp, 𝑛0 

is plasma density at beginning or origin. Taking remaining all values in cgs the final solution 

which we get is. 

 

 

 

 

 

Now obtaining particular solution to third limit of electric field pulse profile ,we get 

(𝐷2 + 𝑈2)𝐵3𝑝(𝜉) = −𝐴2 cos (
3𝜋𝜉

2𝐿
) 𝑓𝑜𝑟 

2𝐿

3
≤ 𝜉 ≤ 𝐿, 

𝐵3𝑝(𝜉) =
−𝐴2cos (3𝜋𝜉/2𝐿)

𝑈2 − ((
3𝜋

2𝐿
)

2

)
, 𝑓𝑜𝑟 

2𝐿

3
≤ 𝜉 ≤ 𝐿. 

𝐵2(𝜉) = −0.0095 cos(𝑈𝜉) − 0.766 sin(𝑈𝜉) + 18.8558, 𝑓𝑜𝑟 
𝐿

4
≤ 𝜉

≤ 2𝐿/3;   
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Thus this the particular solution of third limit. The total solution of the third limit is sum of 

complementary solution and particular solution which is as shown. 𝐵3(𝜉) represents total 

solution upto third limit of rectangular triangular electric field pulse profile. 

𝐵3(𝜉) = 𝐵𝑐(𝜉) + 𝐵3𝑝(𝜉), 𝑓𝑜𝑟 
2𝐿

3
≤ 𝜉 ≤ 𝐿. 

𝐵3(𝜉) = 𝑐1 cos(𝑈𝜉) + 𝑐2 sin(𝑈𝜉) +
−𝐴2cos (3𝜋𝜉/2𝐿)

𝑈2 − ((
3𝜋

2𝐿
)

2

)
, 𝑓𝑜𝑟

2𝐿

3
≤ 𝜉 ≤ 𝐿. 

This is the solution upto third limit magnetic field for rectangular triangular electric field pulse 

profile. Applying boundary condition to get 𝑐1 𝑎𝑛𝑑 𝑐2  

Taking 𝑎0 = 0.3,  𝑑𝑙 = 50 × 10−4𝑐𝑚, 𝑎𝑛𝑑 𝑛0 = 1019𝑐𝑚−3, 

where 𝑎0 laser intensity parameter,  𝑑𝑙 differential length affecting slope of density ramp, 𝑛0 

is plasma density at beginning or origin. Taking remaining all values in cgs the final solution 

which we get is 

 

 

 

 

 

The magnetic field response for rectangular triangular electric field pulse profile is as shown 

 

 

 

 

 

 

 

 

 

𝐵3(𝜉) = −0.0213 cos(𝑈𝜉) − 0.772 sin(𝑈𝜉) − 18.867 cos (
3𝜋𝜉

2𝐿
), 

𝑓𝑜𝑟 
2𝐿

3
≤ 𝜉 ≤ 𝐿. 

𝐵(𝜉)        = 26.6696 sin (
𝜋𝜉

𝐿
) − 0.4447sin (𝑈𝜉),  𝑓𝑜𝑟 0 ≤ 𝜉 ≤ 𝐿/4, 

       = −0.0095 cos(𝑈𝜉) − 0.766 sin(𝑈𝜉) + 18.8558, 𝑓𝑜𝑟 
𝐿

4
≤ 𝜉 ≤ 2𝐿/3, 

= −0.0213 cos(𝑈𝜉) − 0.772 sin(𝑈𝜉) − 18.867 cos (
3𝜋𝜉

2𝐿
), 

𝑓𝑜𝑟 
2𝐿

3
≤ 𝜉 ≤ 𝐿. 
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We have tried to write a program of this solution in Matlab and analyse the result. The program 

is also helpful to us in analysing the variation of magnetic field with respect to laser intensity 

parameter (𝑎0), (𝑑𝑙) differential length parameter describing the slope of density ramp and 

(𝑛0) density at origin 

Code: 

syms c2 c3 c4 c5  

t1=[0:0.00001:0.38*10^-3]; 

e=1; 

d=pi/(1.5*10^-3); 

e1=e*sqrt(1-cos(2*d*t1)); 

t2=[0.375*10^-3:0.00001:1*10^-3]; 

t3=[1*10^-3:0.00001:1.5*10^-3]; 

e3=e*sqrt((1+cos(3*d*t3))/2); 

subplot(1,2,1) 

plot(t1,e1);hold on;plot(t2,e);hold on;plot(t3,e3); 

L=1.5*10^-3; 

x1=[0:0.000001:L/4]; 

g=pi/L; 

wl=1.8*10^15; 

c=3*10^10; 

k1=wl/c; 

k2=1.256*10^5; 

k3=k2^2; 

dl=50*10^-4; 

e=4.38*10^-10; 

m=9.1*10^-28; 

f= 3.1816e+009; 

n0=1*10^19; 

wpe=sqrt(f*n0); 

a0=0.3; 

A=(wpe^2*m*k1*a0^2*c)/(4*wl*e*dl); 

c1=-(1.414*A*g/(k3-(g)^2))/k2; 

b1=c1*sin(k2*x1)+(1.414*A/(k3-(g)^2))*sin(g*x1); 
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x2=[L/4:0.000001:10^-3]; 

bg=c1*sin(k2*L/4)+(1.414*A/(k3-(g)^2))*sin(g*L/4); 

b1g=k2*c1*cos(k2*L/4)+(1.414*A/(k3-(g)^2))*g*cos(g*L/4); 

eqn1=[-0.99*c2+0.023*c3-bg+A/k3;0.023*k2*c2-0.99*k2*c3-b1g]; 

S=solve([eqn1]); 

b2=subs(S.c2)*cos(k2*x2)+subs(S.c3)*sin(k2*x2)+A/k3; 

bg2=subs(S.c2)*cos(k2*2*L/3)+subs(S.c3)*sin(k2*2*L/3)+A/k3; 

b2g=-subs(S.c2)*k2*sin(k2*2*L/3)+subs(S.c3)*k2*cos(k2*2*L/3); 

eqn2=[0.99*c4-0.063*c5-bg2+(-A/(k3-

(1.5*g)^2))*cos(1.5*g*2*L/3);0.061*k2*c4+0.99*k2*c5-

b2g+(A/(k3-(1.5*g)^2))*1.5*g*sin(1.5*g*2*L/3)]; 

D=solve([eqn2]); 

x3=[10^-3:0.00001:L]; 

b3=subs(D.c4)*cos(k2*x3)+subs(D.c5)*sin(k2*x3)+(-A/(k3-

(1.5*g)^2))*cos(1.5*g*x3); 

subplot(1,2,2) 

plot(x1,b1,'b'); hold on; plot(x2,b2,'b'); hold on; 

plot(x3,b3,'b'); hold on; 

This is the program clearing involving the steps to solve the differential equation for 

Rectangular triangular electric field pulse profile. 

The output to the above program is shown in the next page. 
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If we carefully concentrate on the shape of magnetic field pulse we see its envelope is following 

the shape of rectangular triangular electric field pulse profile. Also when compared to response 

for triangular or sawtooth increasing electric field pulse profile there will be significant 

oscillation or fluctuations in magnetic field.  

Since for every pulse profile, the complementary solution is same and since the complementary 

solution is composed of sinusoidal terms there will be significant oscillations in the envelope 

of magnetic field of all the pulse profiles unless the value constants 𝑐1 𝑎𝑛𝑑 𝑐2 governing  the 

complementary solution is either negligible or zero. Here in this case we can see in solution 

that these complementary constants are much significant. Thus there will be oscillations in the 

envelope. 

Table showing variation of magnetic field with respect to the respect to laser intensity 

parameter (𝑎0), (𝑑𝑙) differential length parameter describing the slope of density ramp and 

(𝑛0) density at origin for sinusoidal electric field pulse profile is in the next page. 

 

Table 3.5 Variation in Amplitude of Magnetic Fields for Rectangular Triangular Electric Field 

Pulse Profiles. 
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The maximum value of magnetic field for rectangular triangular electric field pulse profile 

observed is 19.6288 Gauss for laser intensity parameter (𝑎0 = 0.3), (𝑑𝑙 = 50 × 10−4𝑐𝑚) 

differential length parameter describing the slope of density ramp and (𝑛0 = 1019𝑐𝑚−3) 

density at origin for sinusoidal electric field pulse profile. This is lesser than the maximum 

value for sawtooth decreasing but it is slightly larger than triangular and sawtooth increasing. 

The margin of difference is much smaller. Its maximum value is almost equal to the maximum 

value of sinusoidal. 

 

Matlab output showing variation of magnetic field with respect to laser intensity parameter 

(𝑎0) 
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Matlab output showing variation of magnetic field with respect to (𝑑𝑙) differential length 

parameter describing the slope of density ramp. 

 

 

Matlab output showing variation of magnetic field with respect to plasma density (𝑛0) 

 

These plots clearly shows that magnetic field increases with increase in laser intensity 

parameter and plasma density. Magnetic field decreases with increase in (𝑑𝑙) differential length 

parameter describing the slope of density ramp. 
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3.3.6 Square Electric Field Pulse Profile: 

The electric field can be represented as follows 

𝐸2(𝜉) = 𝐸0
2 𝑓(𝜉), 

where 𝑓(𝜉) describes the Square electric field pulse profile whose expression is as follows. 

The practical Square electric field pulse can be constructed as follows. This pulse is piece wise 

function with three limits. 

f(𝜉)   = 0,  𝑓𝑜𝑟 0 ≤ 𝜉 ≤ 𝐿/6, 

           = 1, 𝑓𝑜𝑟 
𝐿

6
≤ 𝜉 ≤

10𝐿

12
, 

           = 0, 𝑓𝑜𝑟 
10𝐿

12
≤ 𝜉 ≤ 𝐿. 

 
Now obtaining particular solution of nonhomogeneous part, we get three particular solutions 

since the square electric field pulse profile is piecewise built with three limits. The magnetic 

field from the first limit is represented as 𝐵1𝑝(𝜉) , second limit is represented as 𝐵2𝑝(𝜉)  and 

the third limit is represented as 𝐵3𝑝(𝜉) . Now the mathematics involved is as shown. 

(𝐷2 + 𝑈2)𝐵1𝑝(𝜉) = 0,  𝑓𝑜𝑟 0 ≤ 𝜉 ≤ 𝐿/6, 

𝐵1𝑝(𝜉) = 0, 𝑓𝑜𝑟 0 ≤ 𝜉 ≤
𝐿

6
. 

Clearly the particular solution to the first limit is same as complementary solution since the 

first limit of square electric field pulse profile is zero.  The total solution of the first limit is 

sum of complementary solution and particular solution which is as shown. 𝐵1(𝜉) represents 

total solution upto first limit of rectangular triangular electric field pulse profile. 

𝐵1(𝜉) = 𝐵𝑐(𝜉) + 𝐵1𝑝(𝜉), 𝑓𝑜𝑟 0 ≤ 𝜉 ≤
𝐿

4
. 

𝐵1(𝜉) = 𝑐1 cos(𝑈𝜉) + 𝑐2 sin(𝑈𝜉) + 0, 𝑓𝑜𝑟 0 ≤ 𝜉 ≤
𝐿

6
. 

This is the solution upto first limit magnetic field for square electric field pulse profile. 

Applying boundary condition to get 𝑐1 𝑎𝑛𝑑 𝑐2  

Taking 𝑎0 = 0.3,  𝑑𝑙 = 50 × 10−4𝑐𝑚, 𝑎𝑛𝑑 𝑛0 = 1019𝑐𝑚−3, 
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where 𝑎0 laser intensity parameter,  𝑑𝑙 differential length affecting slope of density ramp, 𝑛0 

is plasma density at beginning or origin. Taking remaining all values in cgs the final solution 

which we get is 

 

 

 

 

Now obtaining particular solution to second limit of electric field pulse profile, we get 

(𝐷2 + 𝑈2)𝐵2𝑝(𝜉) = 𝐴2;  
𝐿

6
≤ 𝜉 ≤ 10𝐿/1,   

𝐵2𝑝(𝜉) =
𝐴2

𝑈2
, 𝑓𝑜𝑟

𝐿

6
≤ 𝜉 ≤ 10𝐿/12. 

Thus this the particular solution of second limit. The total solution of the second limit is sum 

of complementary solution and particular solution which is as shown. 𝐵2(𝜉) represents total 

solution upto second limit of square electric field pulse profile. 

𝐵2(𝜉) = 𝐵𝑐(𝜉) + 𝐵2𝑝(𝜉), 𝑓𝑜𝑟 
𝐿

6
≤ 𝜉 ≤ 10𝐿/12. 

𝐵2(𝜉) = 𝑐1 cos(𝑈𝜉) + 𝑐2 sin(𝑈𝜉) +
𝐴2

𝑈2
, 𝑓𝑜𝑟

𝐿

6
≤ 𝜉 ≤ 10𝐿/12. 

This is the solution upto second limit magnetic field for square electric field pulse profile. 

Applying boundary condition to get 𝑐1 𝑎𝑛𝑑 𝑐2  

Taking 𝑎0 = 0.3,  𝑑𝑙 = 50 × 10−4𝑐𝑚, 𝑎𝑛𝑑 𝑛0 = 1019𝑐𝑚−3, 

where 𝑎0 laser intensity parameter,  𝑑𝑙 differential length affecting slope of density ramp, 𝑛0 

is plasma density at beginning or origin. Taking remaining all values in cgs the final solution 

which we get is 

 

 

 

𝐵1(𝜉) = 0,   𝑓𝑜𝑟 𝑜 ≤ 𝜉 ≤
𝐿

6
 . 

 

𝐵2(𝜉) = −19.0414 cos(𝑈𝜉) + 0.3058 sin(𝑈𝜉) + 18.8558 , 𝑓𝑜𝑟  
   𝐿

6
≤ 𝜉 ≤

𝐿

1.2
.   
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Now obtaining particular solution to third limit of square electric field pulse profile we get 

(𝐷2 + 𝑈2)𝐵3𝑝(𝜉) = 0𝑓𝑜𝑟 
10𝐿

12
≤ 𝜉 ≤ 𝐿. 

𝐵3𝑝(𝜉) = 0, 𝑓𝑜𝑟 
12𝐿

10
≤ 𝜉 ≤ 𝐿. 

Thus this the particular solution of third limit and this is equal to the complementary solution 

since inhomogeneous part is zero. 𝐵3(𝜉) represents total solution upto third limit of square 

electric field pulse profile. 

𝐵3(𝜉) = 𝐵𝑐(𝜉) + 𝐵3𝑝(𝜉), 𝑓𝑜𝑟 
12𝐿

10
≤ 𝜉 ≤ 𝐿. 

𝐵2(𝜉) = 𝑐1 cos(𝑈𝜉) + 𝑐2 sin(𝑈𝜉) + 0, 𝑓𝑜𝑟
12𝐿

10
≤ 𝜉 ≤ 𝐿. 

This is the solution upto third limit magnetic field for square electric field pulse profile. 

Applying boundary condition to get 𝑐1 𝑎𝑛𝑑 𝑐2  

Taking 𝑎0 = 0.3,  𝑑𝑙 = 50 × 10−4𝑐𝑚, 𝑎𝑛𝑑 𝑛0 = 1019𝑐𝑚−3, 

where 𝑎0 laser intensity parameter,  𝑑𝑙 differential length affecting slope of density ramp, 𝑛0 

is plasma density at beginning or origin. Taking remaining all values in cgs the final solution 

which we get is 

 

 

 

 

 

The magnetic field response for square electric field pulse profile is as shown 

 

 

 

 

 

𝐵3(𝜉) == −0.1706 𝑐𝑜 𝑠(𝑈𝜉) − 1.293 𝑠𝑖 𝑛(𝑈𝜉) ,  𝑓𝑜𝑟  𝐿/1.2 ≤ 𝜉 ≤ 𝐿. 

𝐵(𝜉)        = 0 𝑓𝑜𝑟 0 ≤ 𝜉 ≤ 𝐿/6, 

       = −19.0414 cos(𝑈𝜉) + 0.3058 sin(𝑈𝜉) + 18.8558 , 𝑓𝑜𝑟  
   𝐿

6
≤ 𝜉 ≤

𝐿

1.2
, 

                   = −0.1706 cos (𝑈𝜉) − 1.293 sin (𝑈𝜉),  𝑓𝑜𝑟  𝐿/1.2 ≤ 𝜉 ≤ 𝐿. 
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We have tried to write a program of this solution in Matlab and analyse the result. The program 

is also helpful to us in analysing the variation of magnetic field with respect to laser intensity 

parameter (𝑎0), (𝑑𝑙) differential length parameter describing the slope of density ramp and 

(𝑛0) density at origin 

Code: 

l=1.5*10^-3; 

t1=[0:0.000001:l/6]; 

b1=0; 

t2=[l/6:0.000001:l/1.2]; 

b2=1; 

t3=[l/1.2:0.000001:l]; 

b3=0; 

subplot(1,2,1); 

plot(t1,b1);hold on;plot(t2,b2);hold on;plot(t3,b3); 

syms c2 c3 c4 c5 

L=1.5*10^-3; 

g=pi/L; 

wl=1.8*10^15; 

c=3*10^10; 

k1=wl/c; 

k2=1.256*10^5; 

k3=k2^2; 

dl=50*10^-4; 

e=4.38*10^-10; 

m=9.1*10^-28; 

f= 3.1816e+009; 

n0=1*10^19; 

wpe=sqrt(f*n0); 

a0=0.3; 

A=(wpe^2*m*k1*a0^2*c)/(4*wl*e*dl); 

x1=[0;0.000001:L/6]; 

b1=0; 
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x2=[L/6:0.000001:L/1.2]; 

eqn1=[0.99*c2-0.0159*c3+A/k3;0.0159*k2*c2+0.99*k2*c3+0]; 

S=solve([eqn1]); 

b2=subs(S.c2)*cos(k2*x2)+subs(S.c3)*sin(k2*x2)+A/k3; 

bg=subs(S.c2)*cos(k2*L/1.2)+subs(S.c3)*sin(k2*L/1.2)+A/k3; 

b1g=-subs(S.c2)*k2*sin(k2*L/1.2)+subs(S.c3)*k2*cos(k2*L/1.2); 

x3=[L/1.2:0.000001:L]; 

eqn2=[0.99*c4-0.0159*c5-bg;0.0159*k2*c4+0.99*k2*c5-b1g]; 

D=solve([eqn2]); 

b3=subs(D.c4)*cos(k2*x3)+subs(D.c5)*sin(k2*x3); 

subplot(1,2,2); 

plot(x1,b1,'b'); hold on; plot(x2,b2,'b'); hold on; 

plot(x3,b3,'b'); 

hold on; 

This is the program clearing involving the steps to solve the differential equation for Square 

electric field pulse profile. 

The output to the above program is shown 

 

If we carefully concentrate on the shape of magnetic field pulse we see its envelope is following 

the shape of rectangular triangular electric field pulse profile but with huge oscillations. The 
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oscillations are much larger than what we have seen in the case sinusoidal, sawtooth decreasing 

or rectangular triangular electric field pulse profile. 

Since for every pulse profile, the complementary solution is same and since the complementary 

solution is composed of sinusoidal terms there will be significant oscillations in the envelope 

of magnetic field of all the pulse profiles unless the value constants 𝑐1 𝑎𝑛𝑑 𝑐2 governing  the 

complementary solution is either negligible or zero. Here in this case we can see in solution 

that these complementary constants are much significant. Thus there will be oscillations in the 

envelope. Another reason for oscillations can also be given as follows. Since this pulse is not 

practically feasible and also this pulse can be constructed by sum of infinite number sinusoidal 

terms. As the differential equation is linear, if solution to sinusoidal will also be sinusoidal and 

solution to infinite sinusoidal will be sum of infinite sinusoidal. Thus output has significant 

oscillations since we can construct square wave with infinite sinusoidal wave. 

Table showing variation of magnetic field with respect to the respect to laser intensity 

parameter (𝑎0), (𝑑𝑙) differential length parameter describing the slope of density ramp and 

(𝑛0) density at origin for sinusoidal electric field pulse profile is as shown 

 

Table 3.6 Variation in Amplitude of Magnetic Fields for Square Electric Field Pulse Profiles. 
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The maximum value of magnetic field for sawtooth increasing electric field pulse profile 

observed is 37.8997 Gauss for laser intensity parameter (𝑎0 = 0.3), (𝑑𝑙 = 50 × 10−4𝑐𝑚) 

differential length parameter describing the slope of density ramp and (𝑛0 = 1019𝑐𝑚−3) 

density at origin for sinusoidal electric field pulse profile. This is much larger than the 

maximum value for remaining pulse profile that we have taken. But important consideration is 

even though its maximum value is largest it also has larger fluctuations which almost falls to 

zero. 

Matlab output showing variation of magnetic field with respect to laser intensity parameter 

(𝑎0) can be seen in the next page. 

 

 

Matlab output showing variation of magnetic field with respect to (𝑑𝑙) differential length 

parameter describing the slope of density ramp. 
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Matlab output showing variation of magnetic field with respect to plasma density (𝑛0) 

 

These plots clearly shows that magnetic field increases with increase in laser intensity 

parameter and plasma density. Magnetic field decreases with increase in (𝑑𝑙) differential length 

parameter describing the slope of density ramp. 
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Chapter 4 

4.1 Results and Discussion 

In the previous chapter we have solved the second order linear differential equation to obtain 

magnetic field response for different electric field profiles like sine, triangular, sawtooth 

decreasing, sawtooth increasing, rectangular triangular and square. Here we try to analyse the 

results that we obtained in the previous chapter. The magnetic field response of all the pulses 

combine is as shown below. Here we should note that the values of laser intensity parameter 

(𝑎0 = 0.3), (𝑑𝑙 = 50 × 10−4𝑐𝑚) differential length parameter describing the slope of 

density ramp and (𝑛0 = 1019𝑐𝑚−3) density at origin for sinusoidal electric field pulse 

profile. 

 

Observing above magnetic field response of all pulses combine and trying to analyse individual 

pulse we get 

4.1.1 Sine pulse: 

The magnetic field response follows the path of sine electric field pulse profile but has 

oscillations in the output envelope. These oscillations are due to complementary solution of the 

differential equation which we have already seen in earlier chapter. The maximum magnetic 
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field that was observed was 19.163 Gauss. For this pulse we can say that it can be used only if 

we are interested in getting exactly sine magnetic field response. 

4.1.2 Triangular pulse: 

The magnetic field response follows the shape of electric field response but the interesting 

thing here is that this pulse profile is oscillations free and the curve is smooth. The decreasing 

the step size also does not alter the shape. This means in this profile complementary solution 

does not have any effect resulting in no oscillations. The maximum electric field that was 

observed with this profile is 18.858 Gauss which is slightly less than the sine pulse but margin 

is very small. We can use this pulse profile when we want complete oscillations free magnetic 

field response with less importance to peak amplitude. 

4.1.3 Sawtooth Increasing Pulse: 

The magnetic field response follows the shape of electric field response but the interesting 

thing here is that this pulse profile is oscillations free and the curve is smooth similar to the 

response of triangular pulse profile.. The decreasing the step size also does not alter the shape. 

This means here in this profile complementary solution does not have any effect resulting in 

no oscillations as in the case of triangular pulse profile. The maximum electric field that was 

observed with this profile is 18.858 Gauss which exactly same as that of maximum value of 

triangular pulse and is slightly less than the sine pulse but margin is very small. We can use 

this pulse profile when we want complete oscillations free magnetic field response with less 

importance to peak amplitude as with the case of triangular pulse profile. 

4.1.4 Rectangular Triangular Pulse: 

This profile response can be compared to that of the sine electric field pulse profile. The 

magnetic field response follows the path of rectangular electric field pulse profile but has 

oscillations in the output envelope similar to sine pulse. These oscillations are due to 

complementary solution of the differential equation which we have already seen in earlier 

chapter. The maximum magnetic field that was observed was 19.6228 Gauss. For this pulse we 

can say that it can be used only if we are interested in getting exactly rectangular triangular 

magnetic field response. 
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4.1.5 Sawtooth Decreasing pulse: 

This pulse profile offers the interesting result as we can see its peak value is significantly larger 

than remaining pulse except square pulse and the envelope has fluctuations. The fluctuations 

can be observed if decrease the step size and the reason for the fluctuations on the envelope is 

significant complementary solution. The magnetic field response follows the shape of sawtooth 

decreasing electric field pulse profile. The maximum amplitude that can be seen for this pulse 

profile is 24.0616 Gauss. We can use this pulse if we are interested in shape, high peak 

amplitude and low oscillations. 

4.1.6 Square Pulse: 

The maximum amplitude with this pulse profile is 37.8997 Gauss which largest of compared 

to all the remaining pulse profile. Even here the magnetic field envelope follows the shape of 

square pulse profile. But interesting consideration is that even though it has largest peak 

amplitude it also has heavy fluctuations on the envelope which falls to as low as zero. The 

complementary solution is highly significant for this pulse profile. We can opt for this pulse 

profile only if criteria for consideration is maximum peak amplitude and we do not care about 

occurrence of oscillations. Else we can opt for other pulse profile. 

Also magnetic field increases with increase in laser intensity parameter (𝑎0) and plasma density 

(𝑛0). Magnetic field decreases with increase in (𝑑𝑙) differential length parameter describing 

the slope of density ramp. This result is followed by all the pulse profile.  

4.2 Bar Graphs: 

The variation of magnetic field of all the pulse profile with respect to laser intensity parameter 

(𝑎0) is as shown 
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The variation of magnetic field of all the pulse profile with respect to plasma density (𝑛0) is as 

shown 
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The variation of magnetic field of all the pulse profile with respect to (𝑑𝑙) differential length 

parameter relating the slope of density ramp is shown. 
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Chapter 5 

Conclusion and Summary 

In this project dissertation we have established the response of magnetic field for various 

electric field pulse profiles such as sine, triangular, sawtooth decreasing, sawtooth increasing, 

rectangular triangular and square pulse. Second order linear differential equation was derived 

for laser irradiated plasma. This equation is solved for above mentioned electric field pulse 

profiles to obtain magnetic field response. The response of the magnetic field for these profiles 

were analysed and maximum amplitude compared to all other electric field pulse profile was 

found for Square pulse but with heavy oscillations. The second best amplitude was with 

Sawtooth Decreasing and interestingly it had minor oscillation unlike Square profile. The 

maximum amplitudes of Sine, Triangular, Sawtooth Increasing, Rectangular triangular electric 

field pulse profiles were found to be nearly same with minor fluctuations. 

Also for all these electric field profiles magnetic field increases with increase in laser intensity 

parameter (𝑎0) and plasma density (𝑛0). Magnetic field decreases with increase in (𝑑𝑙) 

differential length parameter describing the slope of density ramp. This result is followed by 

all the pulse profile. 

In future we can try to improve the amplitude of magnetic field pulse profiles without effecting 

the shape of the pulse profile by employing different methods such as taking different plasma 

density profile instead ramp varying along transverse direction, introducing the effect of 

temperature gradient etc. This procedure can also be applied for the relativistic case of laser 

irradiated plasma. 
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