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Abstract 

Regression testing is a type of software testing that intends to validate modified software and it 

confirms that modifications made to the software have no adverse side effects. The goal of 

regression testing is to validate the modified software. Due to the resource and time constraints, 

it becomes necessary to develop techniques to minimize existing test suites by eliminating 

redundant test cases and prioritizing them. 

Running all test cases in an existing test suite can consume an inordinate amount of time and 

resources. Thus, it is necessary to select the minimum set of test cases from existing test suite 

with the ability to cover all the faults in minimum execution time. 

When analyzing large test suits, redundancies are identified in test cases, hence, it is necessary to 

reduce these suites, in order to fit the available resources, without severely compromising the 

coverage of the test adequacy criterion being observed. Test case prioritization techniques intend 

to arrange test cases of a test suite in a way, with the goal of maximizing some objective 

function. There are various classical techniques of test case prioritization. In this research we 

proposed a nature inspired meta-heuristic approach for test prioritization. 
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Chapter 1 

INTRODUCTION 

 

1.1 General Idea 

Real World is filled with various hard and complex problems. One such complex problem is an 

optimization problem. Optimization has been an active area of research for several decades. It 

deals with finding the best solution from the set of all feasible solutions. Optimized solutions are 

hard to find so there are no deterministic algorithms that can find exact solution in polynomial 

time. Several techniques have been proposed to solve these hard problems. Computational 

Intelligence (CI) is one of the techniques to solve these problems. Algorithms based on this 

technique are nature inspired computational techniques to address real world‘s complex 

problems for which traditional methodologies can be useless because of the complexities of the 

process or because of the random and stochastic nature of problems. CI algorithms have 

previously been applied to various domains like fault diagnosis, robotics and control, virus 

detection and anomaly identification etc. 

In large domain of applications of intelligence techniques we are interested in finding the 

application of meta-heuristic algorithms to the domain of software testing. Meta-heuristic 

algorithms are guided by the concept of exploration and exploitation. The exploration phase 

refers to the process of investigating the promising area of the search space as wide as possible 

whereas, exploitation refers to the local searching capability around the solutions obtain in 

exploration phase. Reason for the popularity of meta-heuristic algorithm stands on these four 

pillars: simplicity, flexibility, derivation-free mechanism and local optima avoidance. 

Metaheuristic are fairly simple and are inspired by very simple concepts. Inspirations are 

generally from the physical phenomenon, animal behaviours and evolutionary concepts. 

Flexibility refers to the applicability of meta-heuristic to different problem domains without any 

special changes in the structure of the algorithm. Majority of meta-heuristics operates on 

derivation free mechanism in contrast to gradient based optimization approaches since these 

algorithms optimizes problems stochastically. Because of this randomization meta-heuristic have 
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the superior abilities to avoid the local optima as compared to traditional optimization 

techniques. Metaheuristic algorithms like Ant Colony Optimization(ACO), Biogeography based 

Optimization(BBO), Grey Wolf Optimizer(GWO) and Cuckoo Search(CS) have already been 

applied to the various domains like data mining and fraud detection but are not limited to 

computer science domain only and are also fairly well known among other fields like 

biomedical, social science and military applications. 

Area of software testing has also been lit by the application of meta-heuristic algorithms. Our 

research has been inclined towards the application of meta-heuristic algorithms. Developing 

software is difficult but testing and building confidence to use that software is in fact more 

difficult because if software is complex then so does its test suite. Researches have shown that 

more time and cost is consumed testing and maintaining the product rather than developing the 

product. So creation of test cases and thus order of their execution must be done sincerely. In the 

past Hla et. al [1] prioritise the test cases based on the altered part using PSO. Hybrid of genetic 

algorithm and Metaheuristic like PSO has been proposed to choose minimum set of test cases 

that covers all possible faults [2]. 

Regression Testing is the verification process to determine that previous functionalities of the 

software remain the same after software is changed and the previously tested software has not 

been introduced to any new errors. It is a maintenance phase activity. Complete retesting is 

desired after maintenance but re-executing each test case is not feasible during maintenance 

because of time and cost constraints when the software is large. Hence in order to achieve 

complete coverage testing within stipulated amount of time test case prioritization and 

minimization is required. 

1.2 Motivation 

Test suite is as set of test cases that are designed to be used to test some specified behaviour of a 

software program. Test Case is a document which has a set of test data along with preconditions, 

expected results and post-conditions in order to verify the compliance against a specific 

requirement. 

A single test case can be part of multiple test suites. This property of test cases results into 

execution of same test cases again and again. Moreover during regression testing executing all 

test cases are not possible, so there is need of test suite prioritization and minimization. A 
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selective retesting technique reduces the cost of testing a modified program by reusing the 

existing tests. 

Test suite minimization is a process of reducing those test cases whose existence does not 

improve the efficiency of test suite. Only those test cases are selected which are not redundant 

and provide exhaustive testing. So removal of these cases would not hurt the fault tolerance 

characteristics of the system [3]. 

Test suite prioritization is a process of assigning ranks or priorities to test cases based on some 

objective functions like fault tolerance or execution time [4]. Test prioritization provides a more 

efficient and structured way to execute test cases and thus find faults within stipulated time. 

Goals of prioritization can be stated as follows: 

 To increase the rate of fault detection of test suites i.e. the likelihood of revealing faults 

earlier in a run of regression tests using prioritize suites. 

 To increase the coverage of code in the system under test at a faster rate, allowing a code 

coverage criterion to be met earlier in the test process. 

 To increase confidence in the reliability of the system under test at faster rate. 

 To increase the likelihood of revealing faults related to specific code changes earlier in 

the testing process. 

There have been various techniques applied to achieve the above goals some of these are stated 

in next section. 

1.3 Related Work 

Test Case prioritization has been a hot topic of research from past few years. Test Case 

prioritization and minimization has been improved by various techniques in previous researches. 

Li et. al [5] applied greedy algorithm, genetic algorithm and hill climbing based on the principle 

that those test cases are selected which covers maximum testing requirements. Genetic algorithm 

depends upon migration operator and genetic algorithm tends to stuck at local optima. 
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Tallum [6] proposed a new greedy heuristic algorithm for choosing a subset of test cases T‘ from 

test suite T which have the ability to cover all requirements as covered by T. Greedy Approach 

sometime stuck at local maxima. 

In [7] a nature inspired technique is used to modify the process of test minimization and test 

prioritization. 

Singh et. al [8] proposed Ant Colony optimization which works on the real life behaviour of the 

ants. Singh explains how randomness characteristic in ACO helps in exploration of optimal test 

case order. ACO uses single fitness function that helps in optimal solution identification. Major 

fall back of ACO is dependency upon initial factors. 

Yoo and Harman [9] applied evolutionary techniques for structural test case selection. 

Evolutionary algorithms generate solution using operators like crossover, selection, and 

mutation. Nature Inspired algorithms have no particular interest in discontinuity and 

differentiability whereas traditional algorithm like hill climbing are influenced by correlation 

between values like time and fault covered to compare test cases. 

Bob Simon [10] introduced Biogeography Based Optimization which has been applied for test 

suite prioritization, because it proves to be useful in other hard problems.In [40] they try to map 

BBO hybrid SA to prioritize test cases which shows better results than many other meta-heuristic 

algorithms. 

In [12] Ritika Nagar et. al tries to leverage the property of obligate broad parasitism of some 

cuckoo species to solve the prioritization problem of test cases but cuckoo search depends on the 

probability of detecting alien eggs and involves biased generation of new cuckoo eggs. 

Seyedali Mirjalili [11] proposes a new meta-heuristic called Grey Wolf Optimizer (GWO) 

inspired by grey wolves. The GWO algorithm mimics the leadership hierarchy and hunting 

mechanism of grey wolves in nature. Four types of grey wolves which formulate the hierarchy 

are alpha, delta, omega and beta. In addition three main steps of hunting, searching for prey, 

encircling prey and attacking prey are implemented to stimulate the wolves‘ behaviour. Grey 

wolf proves to be comparatively efficient than many other algorithms to solve NP Hard problems 

which requires selecting the optimal solution from the combinatorial search space. This research 

will explore use of grey wolf meta-heuristic for test case prioritization. 
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1.4 Problem Statement 

The Test Case Prioritization Problem: 

Given: T, a test suite; PT, the set of permutations of T; f, a function from PT to the real numbers. 

Problem: Find T’ € PT such that for all T’’ where (T’’ € PT) (T’’ ≠ T’) [f (T’’) ≥ f (T)] 

PT represents the set of all possible prioritization of T, f is function that applied to any such 

ordering yields an fitness value for that ordering  

Grey Wolf optimizer (GWO) has shown promising and more than satisfactory results in the 

various domains like Thermal power systems [14], feature subset selection [13], time forecasting 

[15], vehicle routing [16] and optimizing key values in cryptographic algorithms [17]. GWO has 

been successfully applied to solve binary [13] and multi-objective problems [18]. 

As stated previously various techniques have been applied to solve test prioritization problem. 

Unlike traditional techniques Grey Wolf Optimizer does not incorporate gradient functions 

which were used in various statistical algorithms which were used in [19]. Focus of our research 

will be on the exploration of GWO algorithm in the domain of test case prioritization and 

minimization. 

Adapt GWO for test suite prioritization and minimization and evaluate its performance 

with other nature inspired meta-heuristics. 

1.5 Objective and Scope 

GWO mimics the social hierarchy and hunting behaviour of grey wolves. Social hierarchy 

constitutes the division of the pack of wolves into categories namely alpha, delta, gamma and 

omega. Alpha wolves are the most dominant ones and everyone else follows the dominant 

wolves. Similar concept is used to prioritize and minimise the test cases. GWO uses fault 

detection capability of test suite as cost function to compare two test suites. Major advantage 

which put GWO ahead of other nature based meta-heuristic is number of initial parameters 

required to initialise the algorithm is just two which are: pack size and maximum generation 

limit. 



VISHAL GUPTA|DELHI TECHNOLOGOICAL UNIVERSITY 6 
 

We empirically analysed the performance of GWO and thus compare it with other meta-heuristic 

algorithms under two categories namely Ant Colony Optimization (ACO), Cuckoo Search (CS), 

Biogeography based optimization (BBO) which falls under population based meta-heuristics and 

Simulated Annealing (SA) which is categorised under single solution based meta-heuristics 

based on the following parameters: Number of redundant test cases identified, Number of initial 

parameters required, Number of test cases identified, Convergence rate of algorithm, Variance in  

the final result on multiple runs. 

We have chosen MATLAB programming language to implement GWO, ACO, BBO, SA on 

Jmeter dataset, which is obtained after compiling Jmeter separately for Jmeter‘s Junit test cases. 

The scope of this thesis can be summarised as: 

 Adapt GWO for test case prioritization and minimization 

 Empirical study of GWO for test case prioritization on Jmeter as dataset 

 Comparing the results of GWO, BBO, ACO, SA and Cuckoo. 

 

1.6 Organization of the thesis 

The rest of this paper is organized as follows. 

Chapter 2 provides details about the past research done on improving regression test suite 

optimization.  

Chapter 3 provide details about Earlier approaches like Ant Colony optimization, Biogeography 

based optimization, simulated annealing and cuckoo search in solving Test Suite 

prioritization(TSP) problem. 

Chapter 4 provides general details about grey wolf in algorithm in optimization problems  

Chapter 5 shows the procedure as to how to adapt grey wolf optimizer in solving test 

prioritization 

Chapter 6 provides information about the dataset, simulation environment and Results and its 

analysis  

Chapter 7 is about conclusion and future work and references, where all the research articles 

which contributed to this research are listed.  
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Chapter 2 

LITERAURE SURVEY 

 

In this chapter we introduce the process for test suite prioritization, which is categorized as a NP 

Hard problem in software engineering domain, explained various approaches in software testing 

and thus elaborate key factors driving the heuristic algorithms. Following it we present a 

literature survey on the existing work done in the field of test suite prioritization. This section 

discuss about the past algorithms and techniques applied for test suite prioritization. 

2.1 Test Suite Prioritization 

Test suite is as set of test cases that are designed to be used to test some specified behaviour of a 

software program. It is a container of test cases designed with a problem and its scope in mind. 

Test Cases are grouped together based on different modules or faults in the software under test. 

A test suite reports the execution status of the test cases and it can be in any of the states viz. 

Active, In-process and completed. 

A single test case can be part of any number of test suites. Formation of the test suites is 

followed by formulation of test plans showing the execution cycle of the test suite. A set of large 

number of test cases formed a single test suite. 

A test suite consists of tests which may be based on functional or non-functional requirements. 

Test suite is said to be executed successfully if it completes the testing process by comparing 

each test case with the corresponding post condition. In order to define the completion of the 

testing process we need to define the testing completion criterion. 

Few test completion criterion can be listed as follows: 

 A predefined pre-decided amount of testing coverage has been attained 

 No fatal defects are present in system 

 Only few known lesser priority faults that don't affect the usage of the product in general 

a lot are present in system. 
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Significance of Test completion criterion are: 

 Exit or completion criteria is essential to stop the testing process 

 Certain level of quality of project has to be assured before quitting the testing process.. 

 Defining the amount of resources involved in testing cycle can be useful after successful 

completion of completion criteria 

 

2.1.1 Approaches for Software Testing 

Testing can be done by multiple ways few approaches can be given as follows: 

 Consultative approach: Approaches which may ask the users or non-testers of the system 

to tell you what to test. 

 Model based approaches: In this approach the test process of the software are based on 

UML diagrams like State Chart Diagram, Activity diagram etc. System must behave 

 

Figure 1 Test Suite Design Diagram [55] 
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according to tests that are predicted by the model, and then the system is considered to be 

working. 

 Risk based approaches: Test cases are designed based on the risk determined and 

analyzed during the requirement elicitation and specification phase.  

 Methodical traditional sequential approaches: These approaches are based on some model 

like waterfall model, which are sequential in nature. Methodical test strategies stick to a 

pre-planned, systematized approach gathered from various concepts developed in-house 

and from the outside 

 Heuristic Approaches: These are intelligence based approaches that are based on some 

statistics, fitness functions, probabilities, or operators like crossover, selection and 

mutation. Since they do not make any assumption about the nature of problem, they are 

well suited in solving the problem because of this adaption property. In this thesis we 

focus on heuristic approaches to solve Test suite prioritization problem. 

2.2 Key Operations in Heuristics 

Test suite prioritization problem is an NP-Hard problem. Problem with NP-Hard is that they can 

only be solved in exponential time by using traditional statistical algorithms which are 

deterministic. In order to make Test Suite Optimization problem solvable in polynomial time we 

employee meta-heuristics algorithms like Ant Colony Optimization, Particle Swarm 

Optimization etc. which are based on randomness.  

The process of solving test suite prioritization problem using these meta-heuristics involves 

following key operations[1, 2, 8, 19]: 

 Understanding the problem: First, Problem must be analyzed and the problem domain 

must be understood thoroughly. In our case the test cases of software are to be prioritized 

and minimized, so understanding the urge to priorities and previous techniques applied 

to do so along with their drawbacks is necessary.  

 

 Preparation of parametric table and required data set: After understanding the 

problem and deciding the algorithm to be used a parametric table or data set is collected. 

In this parametric table, we identify all the attributes that are directly or indirectly 

influencing the problem under test. In our problem the parametric table is a matrix, with 
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rows, representing the test cases and columns define the faults in the software covered by 

those test cases. 

 

 Formulate the fitness functions and identify constraints: Fitness function defines a 

formula formulating a numeric value which gives the goodness of the solution based on 

the value of attributes possessed by data set row. The fitness function is formulated 

based on constraints derived from the problem domain. In our problem we decide to use 

average percentage of fault detected as a fitness function. 

 

 Type of Optimization Operation (maximization or minimization): During the 

process of optimization we employee the fitness function to be operated on every 

population over the generation and each generation either maximize or minimize the 

fitness function. The number of generations and the change in fitness function value are 

trivial parameters to prevent algorithm to struck at saddle point, local minima or to 

prevent over fitting and under fitting. 

 

 Optimization Process and Evaluation:  This phase involves the execution of algorithm 

selected on the formulated data set; we either use statistical technique or heuristic 

technique for solving the optimization problem. Since meta-heuristics involves 

randomization their results are evaluated using some known metrics like maximum, 

minimum, mean square (MS), root means square (RMS), variance etc. followed by the 

analysis of the result.  

 

In this work of test suite prioritization and minimization we have used average percentage of 

fault detection (APFD), by a test case ordering, as the fitness function and complete test 

coverage, redundant test cases identified as the constraints against which we minimize and 

prioritize the test cases in the test suite. 
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In order to understand the work done in thesis following key points needs to be understood 

clearly and necessarily [55]: 

 Regression Test minimization is an important problem under testing. It involves 

identification of reusable and redundant test cases which is basic principle of test case 

minimization. 

 Formation of test artifacts like test plans, test strategy and test suite must be performed in 

parallel with requirement, design and coding phase so that accurate and efficient test 

suites can be designed which should reflect the need of the customer. 

 Minimization enables the software tester to include efficient and useable test cases. It 

makes test suite robust by omitting out redundant test cases from test suites. 

 Choosing suitable metric and thus analyzing the results helps in defining the effectiveness 

of the regression test suite ordering. The declaration of priorities of the test case based on 

APFD metric states the effectiveness of algorithm used in deriving those results. 

 

2.3 Related Work 

Utch, Chu, Elbaum, Malishevsky and Harold [20] [21] empirically investigate six test case 

prioritization techniques based on code coverage and fault exposing potential showing that 

prioritising test suite exposes more faults. According to Sanchic [22] test case prioritization is 

useful to reduce the quality assurance cost. 

Elbaum el. al [23] proves that how significant is the order of execution of test case in quickly 

identifying the  faults. Improved rate of fault detection is able to provide faster feedback on the 

system under test and help the tester in locating and correcting faults earlier than otherwise 

possible. In [24] he introduce a metric which incorporates varying test case and fault cost to 

predict the usability and efficiency of test case 

Sudhir Mohapatra and Srinivas [25] applied evolutionary algorithm which prioritise the test case 

based on the code coverage of the test cases rather than their fault detection capability. In their 

implementation they applied genetic algorithm empowered with crossover and mutation 

operator. Major limitation of their technique involves that research was based on prioritization 

based on code coverage rather than fault detection rate. 
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In [26] Mirarab and Talivildari uses Baysian network approach in the prioritization technique 

which incorporates source code changes, software fault proneness and test coverage data. 

Complexity of baysian network and need of lot of training data limits their applicability in large 

softwares. Further, linear regression is traditional technique which tends to stop at local optima 

and provides single solution. Metaheuristic algorithms overcome both these problems hence they 

comes out to be better algorithm. 

Kaur, Arvinder et. al [27] proposes the application of Bee Colony Algorithm to provide solution 

to the problem of regression testing. In their proposed work, bee colony algorithm was used for 

attaining maximum fault coverage in minimum execution time. In [28] they try to do the same 

thing using a hybrid of particle swarm optimization (PSO) and genetic algorithm (GA). Their 

technique merges the exploration process of particle swarm optimization and exploitation was 

obtained by using mutation operator of genetic algorithm. As usual meta-heuristic algorithms 

prove to be extraordinary while performing test suite prioritization because of their randomness. 

Ali Hadar, Aftab et. al [29] proposed a on the fly test suite optimization technique using fuzzy 

logic which incorporates multiple objectives while prioritization. Fuzzy logic stands on the idea 

of generation of set of rules that affects the label attributes but this is not always the case in test 

suite prioritization, as in regression testing we need to achieve maximum coverage based on 

constraints like faults covered and execution time. In fact there can be test cases which do not 

increase the efficiency of the system and test cases at all. So no rule will be generated for those 

test cases. However the idea of test suite prioritization can be beneficial for regression testing 

domain. 

Ryan Carlson el. al [30] implemented a prioritization technique that incorporates a clustering 

approach to help test case prioritization techniques on real data set. Their work proves that the 

test case prioritization technique which incorporates clustering improves the effectiveness of 

prioritization technique. 

Greedy Technique was proposed  to prioritize the test cases which select and orders the test cases 

based on the maximum number of requirements covered by the test case and should have the 

minimum overlap with other selected test cases. The idea was tested on Siemen suite and space 

program. The research was focused on the idea of minimum overlapping but overlapping does 

not affects the testing issues. The main idea of regression testing is to have minimum number of 
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test cases based on complete coverage relying on fault coverage and execution time not on 

overlapping criteria. 

Singh et. al [8] proposed Ant Colony optimization which works on the real life behaviour of the 

ants. Singh explains how randomness characteristic in ACO helps in exploration of optimal test 

case order. ACO uses single fitness function that helps in optimal solution identification. 

Vivekanandan el. al [31] improves the regression testing by incorporating ant colony 

optimization with dynamic dependency injection. The idea was to prepare a set of test cases 

which possess the potential to detect any bug that creeps in after the system starts operating in 

real environment with actual values of the variables. The algorithm was modified by dynamic 

injection dependency on the best route identified by ant colony algorithm. 

Sahar Tahvali et. al [32] proposed an approach for prioritizing test cases based on multiple 

criteria by using Analytic Hierarchy Process (AHP).They applied AHP in a fuzzy environment 

so that criteria value can be specified using fuzzy variables when precise quantified values are 

not available. Approach was also applied for testing non-functional requirements in the system. 

Kumar Harish et. al [33] proposed a hierarchical approach for test case prioritization which were 

based on requirements coved by test cases mapped from the requirement specification document. 

Their approach analysed and assigned values to each requirement based on the comprehensive 

set of twelve factors. The prioritize requirements were mapped on the highly relevant modules 

and then prioritize the set of test cases. 

In [37] support vector machine classifier was used to identify infeasible test cases in the test 

suite. Test cases are termed as infeasible if they terminate prematurely and are responsible for 

wastage of software resources. So in order to reduce wastage in term of computation cost, 

memory usage, processing time and execution resources we need to remove infeasible test cases. 

The method of induced grammar was used to make SVM learn infeasible test cases since method 

of supervised learning is not feasible for software test prioritization. 

Luay Tahat et. al [34] presented and evaluated two model based methods viz. selective method 

and a dependency based method of test prioritization using the state based model of the system 

under test assuming that modification were made on both system under test and the model of the 

system. Information about already executed test cases was used to prioritize. Research was based 
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on the fact that execution of model is inexpensive comparatively to the system under test hence 

the overhead of test prioritization is very less. 

Srivastava et. al. [35] proposed an approach based on meta-heuristic firefly algorithm to generate 

optimal test paths. They modify firefly algorithm by defining appropriate objective function and 

introducing guidance matrix in traversing the graph. Attractiveness of firefly is directly 

proportional to the objective function value of a firefly. 

Gregg Rothermal et. al [36] proposed a regression test selection technique by constructing 

control flow graph for a procedure and its modified version and then select tests that execute 

changed code from the original test suite. The set of tests selected by this technique includes tests 

from the original test suites that can expose fault in program. However this algorithm may select 

some tests that may not expose any fault. 

In [38] research introduced an artificial intelligent concept of case based reasoning which tries to 

minimize the size of the tests and time while preserving the fault detection. But major limitation 

with this technique includes uncontrollable cost issue as same that of testing. 

Jung-Min Kin et. al [42] proposed addition of memory to the regression testing because memory 

less prioritization implicitly assumes that local choices ensure adequate long performance which 

may not be necessarily the case with test prioritization. Instead, they collaborated historic 

execution data with prioritization and conduct experiment to assess its impact on the long run 

performance of regression testing. Research provide the trade-offs which should be considered 

while using prioritization technique over a series of software release. 

In the next chapter we try to adapt various meta-heuristic algorithms like ACO, BBO and 

Cuckoo search in solving test case prioritization and minimization problem. We also juxtaposes 

simulated annealing, a trajectory based single population Metaheuristic in solving test case 

prioritization, so as to bring in to light the clear comparison. We will then, discuss in detail about 

adapting GWO for test case prioritization. 
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Chapter 3 

Review of Metaheuristic Algorithm for Test Suite Prioritization 

This chapter describes the algorithm of Ant Colony Optimization (ACO), Biogeography Based 

Optimization (BBO), Cuckoo Search (CS) and Simulated Annealing (SA) for test case 

prioritization. 

Metaheuristic algorithms are problem independent procedures that provide a framework to 

develop heuristic optimization algorithm. Metaheuristic algorithms involve trade-off of 

randomization and local search. Randomizations provide reliant way to deviate from the local 

search to the search on global level. Thereby, almost every meta-heuristic algorithm is suitable 

for global optimization. Metaheuristic Algorithms have the capability to achieve solution with 

limited information and computational capacity [56]. Among the found solution it is expected 

that some are of optimal acceptable quality though there is no guarantee. 

For difficult optimization problems like test suite prioritization finite amount of time to solve the 

problem increases exponentially. Deterministic heuristics may fail to find good solution in 

reasonable amount of time. Here meta-heuristic algorithms perform extraordinary well. 

Moreover Metaheuristic intends to learn from the solutions and fitness functions used are not 

based on differentiability and smoothness of the curves. 

The meta-heuristics taken into the account are Ant Colony Optimization (ACO), Biogeography 

Based Optimization (BBO), Cuckoo Search (CS), Grey Wolf Optimizer (GWO) and Simulated 

Annealing (SA). 

We divide the applied algorithms in two categories viz. earlier approach and proposed approach 

based on the time frames in which algorithms are proposed. 

The category of earlier approaches includes Ant Colony Optimization (ACO), Biogeography 

Based Optimization (BBO) and Cuckoo Search (CS) which are population based meta-heuristic 

and Simulated Annealing which is single solution meta-heuristic algorithm. 

Proposed approach includes test case prioritization using grey wolf optimizer which is a 

population based Metaheuristic. 
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Test suite prioritization techniques are illustrated on real world test suite of Jmeter. Faults 

covered by these test cases are categorised into 11  classes viz. Resource not found, File cannot 

be created, Function not found, Invalid variable or Parameter, Invalid Query, Alias, Invalid file 

access, In valid results, Out of range, End of file and divide by zero. Thus test case formulated to 

be used as test data for the implemented algorithms. Based on fault detection value and time to 

implement metric named average percentage of fault detected (APFD) proposed by Elbaum [23] 

is calculated for each test case ordering to rank the test cases. The ranking thus obtained is used 

to assist in test case minimization, details of which are explained in later chapters. 

3.1 Ant Colony Optimization 

Ant Colony Optimization (ACO) is a population based meta-heuristic algorithm used to solve 

NP Hard optimization problems. Ant colony optimization inspired from the mimicking behavior 

of some ant species. These ants deposit some pheromone on the ground in order to mark 

favorable path that should be followed by other members. Ant colony optimization exploits a 

similar mechanism for solving optimization problems. ACO forms the numerical information 

from pheromone content that will provide solution to the problem. It involves formation of 

acyclic graph based on continuous communication between ants via pheromone trails. 

Pheromone values are used and updated by the ACO algorithm while searching. During ACO‘s 

search ants try to adapt them using pheromones showing learning.  

Ants initially wander randomly, and upon finding food return to their colony while leaving 

behind a chemical named pheromone as trail while returning. If other ants roaming randomly 

find such a path with high pheromone deposit they stop travelling randomly and start following 

the trail and reinforce it while returning. Mean of communication between ants are sound, touch 

and pheromone. The use of pheromones as chemical signals is most developed in ants. When 

better found source is identified by some ant then ant stop marking trails while returning and the 

start following the new trail helping ants to adapt the changing environment. Successful trails are 

followed by more ants resulting into more reinforcement and hence a better shorter path is 

identified. Pheromone evaporates with time reducing its attraction strength. Longer paths turned 

into greater evaporation so shorter paths at last are inevitable. Evaporation of pheromone helps in 

avoiding convergence to local solutions. The idea of the ant colony algorithm is to mimic this 

behavior of ants with virtual simulated agents walking over the graph, representing the problem 

to be solved. 
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An ant in ACO signifies a simple computation agent, whose movement results in optimization of 

the problem. ACO arrives at the solution iteratively. In every iteration, there is change in 

ordering from, say x to y, where y is closer to the optimal solution. The movement of any ant 

from state x to state y depends on: 

 Attractiveness Level (  ) : priori probability of that move based on some heuristic. 

 Trail Level    (  )  posteriori probability is the indication of desirability of the move.  

During each generation in test suite prioritization, we try to update APFD of each test case, with 

simultaneously keeping older values, forming a trail and new values are responsible for 

attractiveness. Hence the movement of a test case from APFD x to APFD y is stated through 

following probability formula: 

  (  )  
  (  )  (  )

∑   (  )  (  )
 

  (  ) is amount of pheromone (APFD value) in the trail array whereas   (  ) is amount of 

pheromone that determine the attractiveness quotient.  And β are parameter values for 

controlling the influence.  

3.1.1 Applications of Ant Colony Optimization 

ACO has found it application in domains like network routing for routing packets, image 

processing for edge detection [43], bioinformatics in which it is used in DNA sequencing and 

DNA matching, vehicle routing problems. Moreover, ACO has been used in solving traditional 

color problem, travelling salesman problem, 3-SAT problem and partition problem. 

ACO has already been implemented in various domain of software engineering like software 

quality estimation, software requirements prioritization, software project time line design and 

test suite prioritization as it can be used to solve problems in less time with lesser complexity 

[44].  

3.1.2 Algorithm of ACO for Test Suite Prioritization 

ACO has been applied in the process of generation of test suites for state based software testing. 

A state based dynamic graph of the software under test was assessed using group of ants to 

generate optimal test suites ordering [45]. Prioritization of test cases/suites is done so that 



VISHAL GUPTA|DELHI TECHNOLOGOICAL UNIVERSITY 18 
 

maximum faults can be recovered in minimum time. Since nature inspired algorithm are efficient 

in time constraint optimization problems, ACO serves better in prioritization of test cases. 

Below, we have provided an algorithm of ACO for solving Test Suite Optimization (TSO) 

problem. In solving Test Prioritization, the word pheromone is synonymous to value of average 

percentage of fault detected metric. 

 

Formulate a parametric table, with rows defining the test cases and columns defining the faults 

covered by those test cases for Jmeter‘s data set. 

Each Ant represents a different test case ordering, which can be a potential solution. 

Objective Function: Average Percentage of fault detection 

Initial pheromone value: Average fault percentage detection considering two test cases i and j 

only for the entry Pij where P is Pheromone matrix 

Terminating Condition: Number of iterations 

I. Define initial pheromone value 

II. Place each ant on initial state with empty memory. 

III. While not the Number of iterations as described  

a. For each Ant: 

a. Until all test cases are covered  

Ants move from its initial empty ordering to selecting the prospective next 

test case in the ordering based on the probability values depends upon 

pheromone level which is defined by average percentage of fault 

detection. 

b. Calculate fitness of ant using Objective Function 

c. Check for the best order obtained 

d. If the transition of ants showed improvement from previously obtained best order, 

update the global best obtained 

e. Update Trails : 

For each ant: 

Evaporate a fixed amount of pheromone from each ant 

f. Update the pheromone table 
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IV. End While 

V. Best Ant obtained represents the prioritized order of test cases. 

VI. Identify the redundant test cases using the following function: 

a. From least ranked test case to highest ranked test case: 

i. If faults covered by test case is already covered by higher ranked test cases 

Remove the test case 

ii. Else 

Add test case to front of test cases to be executed 

VII. Final list contained the prioritized and minimized set of test cases 

 

3.2 Biogeography Based Optimization 

Biogeography Based optimization (BBO) is a population bio-inspired meta-heuristic algorithm 

based on evolutionary algorithm which optimizes the function by the virtue of randomization 

iteratively. BBO is a swarm intelligence algorithm which has the ability to solve NP Hard 

problem. Unlike traditional algorithms BBO does not uses gradients of function which makes it 

indifferent to complex differential equations. BBO maintains population of solutions and thus 

creating new solutions by combining the existing ones using operators like speciation, migration 

and extinction. 

 

Biogeography can be understood as study of distribution of species and in geographical space. 

Modern biogeography is extensively observed on evolution on species on islands because of 

their easy observations [46]. This biogeography is thus mathematically model on the foundation 

of speciation of new species, migration of special between islands and extinction of species from 

the islands. By speciation we mean evolution of new species, migration involves movement of 

the species between the islands and extinction removes the species from the habitat. Island is any 

habitat which is geographically separated from other habitats. Emigration of species occur as 

species can float, swim or ride he wind to reach neighboring habitat. Areas with highly favorable 

conditions are said to have high habitat suitability index. Emigration from the habitat does not 

mean that the species completely disappears from its original habitat only a few representatives 

of species emigrate, so an emigrating species remains present on its original habitat while at the 

same time migrating to a neighboring habitat. Habitats with high HSI support more species and 
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habitat with low HSI can support few species. Biogeography is nature‘s way of distributing 

species, and is analogous to general problem solutions. 

 

The features variable correlating with HIS that determine the nature of habitat is known as 

Suitability Index Variable (SIV). Each habitat represents a candidate solution to an optimization 

problem. Habitats with high value for Habitat suitability Index not only have a high emigration 

rate, but they also have a low immigration rate because of the high number of inhabitants in that 

habitat. Habitats with high value of habitat suitability index results in death of immigrant due to 

high competition for resources whereas habitat with low value of habitat suitability index have 

high value of immigration rate as a result large species will migrate to these islands. Low 

population keeps the competition very less but there will be increase in diversity being a good 

migration candidate. When there will be high immigration on the island having low HSI, its HSI 

value will increase. 

 

Figure  The variation of immigration and emigration probabilities in BBO 

λ here means immigration probability and   δ means emigration probability. For any species k, its 

immigration rate is   k and its emigration rate is  k.  
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The prominent factors that affect the working of the algorithms are: 

 The migration operator 

 The mutation operator 

 The probabilities of immigration and emigration 

Migration operator works on the fitness values of the individuals based on the curve formed from 

immigration and emigration probabilities affecting the working of Biogeography Based 

Optimization algorithm. By this we are taking into account species from different habitat. 

Mutation operator brings in diversity in the population and provides assurance of convergence 

with development of Pareto fronts and not just one optimal solution. Mutation operator is often 

used in an optional manner, in cases like when random probability is less than mutation 

probability or when the archive array is not showing diversity in the population. The mutation 

operator is inversely proportional to the number of species and probability of the habitat. If 

individual has lower value for probability of speciation then it has higher value of probability of 

mutation and hence it can be considered as a better individual. Similarly, the individual with 

higher values for speciation will have lower mutation probability rates and hence it will not 

easily mutate with other individuals.  

3.2.1 Application of Biogeography based Optimization 

The application of biogeography to engineering is similar to what has been achieved in the past 

few decades with other computational intelligence algorithms like genetic algorithms (GAs), 

neural networks, fuzzy logic, particle swarm optimization (PSO), and many others because it 

relies on same evolutionary meta-heuristic. In fact Yang et. al. [48] shows that BBO is superior 

than GA, PSO and ABC. Problems like power flow [47], case based reasoning for retrieving 

ground water possibility, satellite image classification etc. were solved efficiently using 

Biogeography based optimization.  

Like PSO, GA and ACO biogeography based optimization has already been implemented in 

various domain of software engineering like software quality estimation, software requirements 

prioritization, software project time line design and test suite prioritization as it can be used to 

solve problems in less time with lesser complexity [40]. Since nature inspired algorithm are 

efficient in time constraint optimization problems, BBO performed excellently in prioritization 
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of test cases. Below, we have provided an algorithm of BBO for solving Test Suite Optimization 

(TSO) problem. In solving TSO, the word habitat is synonymous to single test case ordering. 

3.2.2 Algorithm of BBO for Test Prioritization 

Formulate a parametric table, with rows defining the test cases and columns defining the faults 

covered by those test cases for Jmeter‘s data set. 

Each habitat represents a different test case ordering, which can be a potential solution. 

{data} k represents in Boolean table, showing faults covered by each test case, k= {1, 2, N} 

Terminating Condition: Number of iterations 

I. Define an Elite array for selection best individual in each generation and set its size ratio 

nKeep of the size of population 

II. Immigration Rate= 1- Migration Rate 

III. Mutation probability (σ) <- values [0, 1] 

IV. Define an initial random population  

V. While (not the maximum generation limit achieved) 

a. Define a Random number 

b. For each {data} k, set the emigration probability δk  proportional to fitness of 

{data} k, δ є [0, 1] 

c. For each {data}k , set the immigration probability λk  , λk  <- 1- δk  

d. Set {temp}<-{data} 

e. For each individual {temp} 

i. Use immigration probability to identify the individual which has be 

emigrated 

ii. Selection of immigrant is based on roulette wheel  

iii. Perform mutation with probability pMutation 

f. Keep nKeep number of good habitat along with Population-nKeep*Population 

new population for next iteration 

VI. End While 

VII. Best Habitat obtained represents the prioritized order of test cases 

VIII. Identify the redundant test cases using the following function: 
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a. From least ranked test case to highest ranked test case: 

i. If faults covered by test case is already covered by higher ranked test cases

 Remove the test case 

ii. Else 

Add test case to front of test cases to be executed 

IX. Final list contained the prioritized and minimized set of test cases 

 

Algorithm of Mutation modified for Test Prioritization 

i. For i=1: number_of_habitats(N) 

ii. Do 

a. If random < mutation_probability 

b. Replace X(i) with a random Sutability Index Variable 

c. End if 

iii. End for 

 

Algorithm of Migration modified for Test Prioritization 

i. For i=1: number of individual (N) 

ii. Do 

a. Select _individual < probability_immigration 

b. If random < probability_immigration 

c. Select_source_individual ‗j‘ using Roulete Wheel Mechanism 

d. Random selection of a variable ‗k‘ to select X(j,k) from X(j). 

e. Replacing X(i,k) with X(j,k). 

f. End if 

iii. End for 
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3.3 Simulated Annealing 

Classification of meta-heuristic can be done in numerous ways. One way is to classify them as: 

population-based and trajectory-based meta-heuristic. For example, genetic algorithms are 

population-based as they use a set of strings; similar is the particle swarm optimization (PSO) 

which uses multiple agents or particles. 

Simulated annealing on the other hand uses a single agent or solution which moves through the 

design space or search space in a piecewise style. A better move or solution is always accepted 

while a not-so-good move can be accepted with a certain probability considering that this not-so-

good trajectory can also lead to the global optimum. The steps or moves trace a trajectory in the 

search space and this trajectory gives us the global optima. 

Simulated annealing (SA) is developed in 1983as optimization technique inspired by the 

annealing process of metals. It is a trajectory-based search algorithm starting with an initial guess 

solution at a high temperature, and gradually cooling down the system. A move or new solution 

is accepted if it is better; otherwise, it is accepted with a probability, which makes it possible for 

the system to escape any local optima. It is then expected that if the system is cooled down 

slowly enough, the global optimal solution can he reached. Unlike the gradient-based methods 

and other deterministic search methods which have the disadvantage of being trapped at local 

minima, the main advantage of simulated annealing is its ability to avoid being trapped in local 

minima 

Simulated annealing (SA) is one of the earliest and yet most popular meta-heuristic algorithm. It 

mimics the annealing process in material processing when a metal cools and freezes into a 

crystalline state with the minimum energy and larger crystal size so as to reduce the defects in 

metallic structures. The annealing process involves the careful control of temperature and its 

cooling rate, often called annealing schedule. This complete method is known as Metropolis 

method and markov‘s process is followed until equilibrium is achieved. It has been proved that 

simulated annealing will converge to its global optimality if enough randomness is used in 

combination with very slow cooling. 

Simulated annealing is a search algorithm via  Markov chain. However using markov chains may 

not be very efficient. Practically, it is usually beneficial to use multiple Markov chains in parallel 

to increase the overall efficiency of algorithm. In fact, the algorithms such as particle swarm 
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optimization can he viewed as multiple interacting Markov chains, though such theoretical 

analysis remains almost intractable.  

In every aspect, a simple random walk can also be considered as a Markov chain. Briefly 

speaking, a random variable α is a Markov process if the transition probability, from state αt = Si 

at time t to another state αt+1 = Si+1, depends only on the current state. The sequence of random 

variables generated by a Markov process is known as Markov chain. 

The basic idea of the simulated annealing algorithm is to use random search in terms of a 

Markov chain, which not only accepts changes that improve the objective function, but also 

keeps some changes that are not ideal. In a maximization problem, for example, any better 

moves or changes that decrease the value of the objective function f will be accepted however, 

some changes that decrease f will also be accepted with a probability P. This probability P, also 

called the transition probability is determined 

    
  
   

, where k is the Boltzmann‘s constant, and let say for simplicity, we can use value of k to be 1. T 

is the temperature for controlling the annealing process. E is the change of the energy level. This 

transition probability is based on the Boltzmann distribution in statistical mechanics. 

The simplest way to link E with the change of the objective function ∆f is to use 

       

where    is a real constant. For simplicity without losing generality, we can use   = 1. Thus, the 

probability P simply becomes 

    
  
  

Whether or not we accept a change, we usually use a random number r as a threshold. Thus, if P 

> r 

    
  
    

the move will be accepted. 
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3.3.1 Application of Simulated Annealing 

Simulated Annealing has been successfully applied in multiple domains of engineering like 

design optimization of automobile suspension system [49], structural optimization, water 

distribution system, circuit board design problem and selection of fixture elements. Simulated 

Annealing has also been applied to popular computer problems like maximum cut problem and 

independent set problem. However, due to single solution tendency of Simulated Annealing with 

main principle rely on Markov‘s chain simulated annealing tends to struck at local optima‘s. 

SA has already been implemented in various domain of software engineering like software 

quality estimation, software reliability forecasting, software requirements prioritization and 

software project time line design. Simulated Annealing algorithm principle is used more as an 

algorithm enhancing tools rather than self-independent algorithm because of its single population 

nature.SA is also implemented to solve test case prioritization problem since nature of the 

problem is very similar to travelling salesman problem and TSP can be very easily solved by 

simulated annealing algorithm 

3.3.2 Algorithm of SA for Test Prioritization 

Formulate a parametric table, with rows defining the test cases and columns defining the faults 

covered by those test cases for Jmeter‘s data set. 

 

Objective function f(x): Average Percentage Fault Detection Metric 

Terminating Condition: Number of iterations 

I. Initialize initial temperature T0 and initial guess initial starting solution 

II. Set final temperature Tf and max number of iterations N 

III. Define cooling schedule T = αT, (0 < α < 1) 

IV. While (T> Tf and n <N) 

a. Move to new test case ordering:  = x + e, where e is selected to be 2-opt or double 

bridge move based on Roulete Wheel Selection 

b. Calculate  f = fn+1(xn+1) - fn,(xn) 

c. Accept the new solution if better 

d. if not improved 
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i. Generate a random number r 

ii. Accept if      
  

  

e. end if 

f. Update the best solution  

g. n = n + 1 

V. End While 

VI. Best solution obtained in all iterations represents the prioritized order of test cases 

VII. Identify the redundant test cases using the following function: 

a. From least ranked test case to highest ranked test case: 

i. If faults covered by test case is already covered by higher ranked test cases

 Remove the test case 

ii. Else 

Add test case to front of test cases to be executed 

VIII. Final list contained the prioritized and minimized set of test cases 

 

3.4 Cuckoo Search 

Cuckoo search (CS) is among the latest nature-inspired meta-heuristic algorithms, based on the 

brood parasitism of some cuckoo species. In addition, this algorithm is further enhanced by the 

Lévy flights rather than using simple isotropic random walks for movement. Recent studies show 

that CS is potentially far more efficient than its pear of the same group like PSO and genetic 

algorithms. For optimization problem, the quality or fitness of a solution can simply be 

proportional to the value of the objective function. Forms of fitness can be defined in a similar 

way to the fitness function defined in genetic algorithms. The idea of Cuckoo Search algorithm is 

to mimic this behavior of cuckoos with virtual simulated agents walking from generation over 

generation, representing the problem to be solved. 

Cuckoos are fascinating birds not because of the sounds they make but also because of their 

aggressive and unique reproduction technique. Few cuckoo species like ani and Guira lay their 

eggs in communal nests i.e. nest managed by some other bird, though they may eliminate other‘s 

eggs to increase their own egg hatching probability [50].  
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There are three types of brood parasitism: nest takeover, co-operative breeding and intraspecific 

brood parasitism. A notable number of species engage in obligate brood parasitism by laying 

their own eggs in the nests of other host birds more often in some other species nest. Some host 

birds can engage in direct conflict with the intruding cuckoos. If a host bird found that the eggs 

are not their own, they will either throw away found alien eggs or simply leave its own nest and 

build a new nest somewhere else. Some cuckoo species such as the New World brood-parasitic 

Tapera have evolved to such extent that they can mimic colour and pattern of the eggs of a few 

chosen host species. This reduces the probability of their eggs being destroyed and thus increases 

their reproduction probability. Timing of laying egg of some species is also fascinating. In 

general, the cuckoo eggs hatch slightly earlier than their host eggs. Once the first cuckoo 

offspring is hatched, the first action it will take is to evict the host eggs by blindly throwing the 

eggs out of the nest, which increases the cuckoo offspring‘s share of food provided by its host 

bird. Cuckoo search idealized such breeding behaviour, and thus can be applied for various 

optimization problems. 

Cuckoo Search is simulated by set of independent nests. Eggs in the nest represent an 

independent separate solution and a cuckoo egg represents a possible new solution. The goal is to 

use the new potentially better solutions (cuckoos) to replace a bad solution in the nests. For 

simplicity, it can be considered that each nest contain one egg that is, one solution but in the case 

of optimizing multi-objective function multiple egg in a nest represents multiple solution 

corresponding to several objectives. The algorithm can further be extended to more complicated 

cases according to the need of situation and problem. 

CS is idealized based on these three simple rules: 

 Each cuckoo generates one solution at a time, and dumps it into a randomly chosen nest 

 The nests containing the best solutions possessing high quality will be carry over to the next 

generation only 

 Total number of available hosts nests are fixed, and the solution generated by a cuckoo is 

discovered by the host bird with a probability P € [0, 1].  For simplicity this assumption can 

be approximated by the fraction P of the total n nests must be replaced by new nests with 

random new solution 
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Studies have shown that flight behavior of many animals, insects and bird possessed the typical 

characteristics of Levy flights demonstrating a straight flight paths punctuated by a sudden 90
o
 

turn. Levy flights are  random walks step length of whose is driven by Levy distributions. When 

such behavior was applied to optimization and optimal search algorithms then results show 

promising capability. Similar is the case with Cuckoo Search, when Levy Flight is incorporated 

with CS performance has been improved drastically. Levy Flights maximizes the efficiency of 

searches in unpredictable environments. 

New solutions i.e. cuckoo are generated via levy flights using following equation 

 (   )   ( )          

where   > 0 is the step size which should be scaled to the problem of interest. 

3.4.1 Application of Cuckoo Search 

Cuckoo Search has shown promising efficiency into engineering optimization problems. For 

example, for problems like spring design, structural optimization and welded beam design 

cuckoo search achieved better results than existing algorithms. Cuckoo search algorithm is 

discretised to solve nurse scheduling problem, travelling salesman problem [51], Knapsack 

problems. Cuckoo search has been proposed for data fusion in wireless sensor networks. 

Comparison of the cuckoo search with other computational algorithms like Particle swarm 

optimization, Differential evolution and Artificial bee colony algorithm shows that Cuckoo 

search provide more robust results than PSO and ABC algorithm. Cuckoo Search is highly 

suitable for large scale problems. CS is successfully applied to train neural networks with 

improved performance. More recently, cuckoo search algorithm is used for solving boundary 

value problem. 

Cuckoo search was illustrated to efficiently generate independent test paths for structural 

software testing [52] and test data generation [53]. In addition, a new software testing approach 

has also been proposed based on cuckoo search. Like PSO, GA and ACO Cuckoo Search has 

already been implemented in various domain of software engineering like software quality 

estimation, software requirements prioritization, software project time line design and test suite 

prioritization as it can be used to solve problems in less time with much lesser complexity and 

hassle. Since nature inspired algorithm are efficient in time constraint optimization problems, CS 
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performed excellently in prioritization of test cases. Below, we have provided an algorithm of CS 

for solving Test Suite Optimization (TSO) problem. In solving TSO, the word nest is 

synonymous to one test case ordering. 

3.4.2 Algorithm of CS for Test Prioritization 

We used the simple representations that each egg in a nest represents a potential test case 

ordering, and a cuckoo egg represents a new test case ordering with the aim is to use the new and 

potentially better solutions to replace bad solutions in the nests. Levy Flight is implemented by 

making a double-bridge move. 

Fitness function f(x): Average Percentage Fault Detection Metric 

Terminating Condition: Number of iterations 

I. Generate initial population of n host nests each nest representing one test case ordering 

II. while (Number of iterations) 

a. Get a cuckoo (new solution) randomly by Levy flights. Levy here represents 

double bridge move and 2-opt move 

b. Evaluate its fitness Fi 

c. Choose a nest among n (say, j) randomly 

i. if (Fi > Fj) 

Replace j by the new solution; 

ii. End if 

d. Fraction P of worse nests are abandoned and new ones are built; 

e. Keep the best solutions (or nests with high APFD value); 

f. Rank the solutions and find the current best 

III. End While 

IV. Best solution obtained in all iterations represents the prioritized order of test cases 

V. Identify the redundant test cases using the following function: 

a. From least ranked test case to highest ranked test case: 

i. If faults covered by test case is already covered by higher ranked test cases

 Remove the test case 

ii. Else 

Add test case to front of test cases to be executed 

VI. Final list contained the prioritized and minimized set of test cases 
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Chapter 4 

Grey Wolf Optimizer (GWO) 

In this chapter we will elaborate the Grey Wolf Optimization technique, its applications in 

engineering and its general algorithm to solve optimization problems. 

Grey Wolf Optimizer (GWO) is a meta-heuristic inspired by the hunting and leadership system 

of grey wolves, particularly Canis lupus belonging to Canidae family. Hunting mechanism of 

wolf is successfully modeled mathematically to solve optimization problems as Grey wolves are 

thought of as pioneer predators leading the food chain at the top alongside tigers and lions.  

4.1 Inspiration for Grey Wolf Optimizer 

Grey wolves live in a pack and depend on each other for food because they hunt in group. Grey 

wolves are categorized into four types which are: alpha, beta, delta, and omega based on their 

leadership hierarchy and social status. The group size is generally 5–12 on average. 

4.1.1 Social Hierarchy in Grey Wolves 

The ones, male or female, leading the pack are called alphas. An Alpha is responsible for taking 

trivial decisions like when and what to hunt, where to sleep, at what time to wake i.e. all trivial 

decision necessary for survival. Decision taken by alpha is followed by the complete pack. The 

alpha wolves are called the dominant wolf since their instructions has been followed by the pack. 

But surprisingly, alphas may not be the extra ordinary member of the pack but they are suitable 

for managing the pack hence empathizing that the organization of wolves and discipline in a 

pack is more importance than its strength.  

The second in the hierarchy comes are beta wolves. Betas are helping wolves to the alphas in 

taking decisions and other activities of the pack. The beta wolves are stated as next best 

candidate to become alpha in case alpha wolf retired. The beta wolf respect alpha wolves and 

take order from alpha, but dictate decisions on lower-level wolves. So they play the role of an 

advisor to the alpha and gives feedback to the alpha and act as discipline implementer for the 

group. 
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The least prioritized grey wolf is omega. Omega wolves take order from all the other more 

aggressive wolves. Omega may not seem to be important from the perspective of pack but it is 

observed that pack may become unstable in case of losing the omega. Presence of omegas assists 

in satisfying the entire pack and maintaining their dominance structure.  

If a wolf is none of the above classified wolves then they belong to subordinate group named 

delta. Delta wolves follow the alphas and betas, but they over power the other left wolves i.e. 

omega. They are also responsible for watching the privacy and security of group and warning the 

group when there is possible danger. Grey wolf‘s shows a very strict social dominant hierarchy 

as shown in Figure 2 

 

4.1.2 Activities in Grey Wolves 

In addition to the social hierarchy of wolves, the other three main steps of hunting viz.  

 Looking out  for prey,  

 Encircling  an blocking the prey, 

 Attack on prey, are implemented 

Figure 3 shows all the above steps 

 

 
Figure 2 Hierarchy of Grey Wolf [11] 
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Group hunting is a fascinating social behavior of grey wolves. The dominant phases of grey wolf 

hunting are following: 

 Drawing closer to prey. 

 Chasing, surrounding, and exhausting the prey until it quit moving. 

 Attacking the prey 

 

4.2 Mathematical Mapping of GWO 

Mathematical models of the social behavior, tracking, encircling, and attacking on prey by grey 

wolves are provided as followed. 

4.2.1 Social hierarchy 

Social hierarchy in the wolves while designing GWO can be outlined as follow: 

 Consider alpha (α) as the best solution.  

 Similarly, second and third best solutions are chosen as beta (β) and delta (∆) 

respectively. 

[A] Looking out for prey, chasing, approaching, and tracking prey [B–D] and 

encircling [E] Attack on prey [11] 

Figure 3 Hunting Pattern of grey wolves 
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 All reminder solutions in the group are considered as omega (Ω).  

In the GWO algorithm the optimization of problem is guided by α, β, and ∆ wolves. The 

reminder Ω wolves tend to move toward these three dominant wolves. 

4.2.2 Prey Encircling 

As stated already, while chasing grey wolves encircle prey. To mathematically represent 

encircling mechanism of grey wolf the following equations are proposed [11]: 

       ⃗  ̂  ( )    ⃗  ̂ ( )  

 (   )      ( )    ⃗  ⃗⃗⃗ 

Where, 

 i represents the current iteration,  

 ⃗ and  ⃗ are coefficient vectors, 

  ̂   States the position vector of the prey, 

 ̂ States the position vector of a grey wolf. 

The vectors  ⃗ and  ⃗ are obtained as follows [11]: 

 ⃗      ⃗    ⃗⃗⃗⃗⃗    ⃗ 

 ⃗         ⃗⃗⃗⃗⃗ 

where value of  ⃗ is linearly decreased from 2 to 0 over each iterations and r1, r2 are random 

vectors such that r1,r2 € [0, 1]. 

To illustrate the impact of above two equations, a two-dimensional position vector along with 

some of the possible neighbors are illustrated in Fig. 4. It can be observed from the figure, a grey 

wolf standing at position (U, V) can change its position according to the position of the prey 

which is at (U*, V*). Neighboring place near the current agent can be obtained by adjusting the 

value of  ⃗ and  ⃗ vectors. For instance, (U*–U, V*) can be obtained by making  ⃗ = (1, 0) and  ⃗ 

= (1, 1) [11]. The possible updated positions, in three dimensional spaces, of a grey wolf are 

illustrated in Fig. 3. Random Vectors r1 and r2 allow wolves to obtain any nearby position 
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between the points shown in Fig. 4. So a grey wolf can update its position inside the space 

around the prey to any random location by using     |  ⃗  ̂  ( )   ⃗  ̂ ( )| and   (   )  

   ( )   ⃗  ⃗⃗⃗ 

 

  

The n dimensions problems can be solved using similar concept then the grey wolves will move 

in hyper-cubes because n dimension can be represented in hypercube. 

4.2.3 Hunting Mechanism of Grey Wolf 

Grey wolves can identify the position of prey and trap them. Alpha made the decision for 

hunting. The beta and delta may also make hunting decisions sometimes. But practically in 

unknown search space we don‘t know the position of the optima‘s. For mathematically 

representation of the hunting mechanism of grey wolves, it is considered that the alpha, beta, and 

delta (best solution among the pack) possess better knowledge about the location of optima. 

Therefore, we store the first three best solutions obtained so far and other search wolves update 

their positions according to the position of the alpha agents. The following formulas are 

proposed in this regard [11] 

  ⃗⃗⃗⃗ ⃗⃗        ⃗⃗ ⃗⃗ ⃗     ⃗⃗ ⃗⃗ ⃗⃗ ⃗   ⃗   

Figure 4 2D and 3D position vectors and their possible next locations.[11]  
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  ⃗⃗⃗⃗ ⃗⃗        ⃗⃗ ⃗⃗ ⃗     ⃗⃗ ⃗⃗ ⃗⃗ ⃗   ⃗   

  ⃗⃗⃗⃗ ⃗⃗        ⃗⃗ ⃗⃗ ⃗     ⃗⃗ ⃗⃗ ⃗⃗⃗   ⃗   

  ⃗⃗⃗⃗⃗⃗      ⃗⃗⃗⃗⃗⃗      ⃗⃗⃗⃗⃗⃗     ⃗⃗⃗⃗ ⃗⃗  

  ⃗⃗⃗⃗⃗⃗      ⃗⃗⃗⃗⃗⃗      ⃗⃗⃗⃗⃗⃗     ⃗⃗ ⃗⃗ ⃗⃗  

  ⃗⃗⃗⃗⃗      ⃗⃗⃗⃗⃗⃗      ⃗⃗⃗⃗⃗⃗     ⃗⃗⃗⃗ ⃗⃗  

  ⃗⃗⃗⃗ (   )  
(   ⃗⃗⃗⃗⃗⃗      ⃗⃗⃗⃗⃗⃗      ⃗⃗⃗⃗⃗)

 
 

 

Fig. 5 illustrates how omega wolf changes its position according to position of alpha, beta, and 

delta in a two dimensional space. From the figure it is observed that the final position of omega 

agents would be in a random place in between the positions of alpha, beta, and delta in the search 

space. In simple, we can conclude that alpha, beta, and delta drives towards the location of the 

prey. 

4.2.4 Attacking prey (exploitation) 

As stated above the grey wolves complete the hunt process by attacking the prey when it 

becomes stable. To mathematically represent this, the value of  ⃗ is decreased gradually. Also 

Figure 5. Position updating in GWO [11] 
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value of  ⃗ is in the range [2a, 2a] where value of  ⃗ is changed from 2 to 0 over each new 

iteration.  

Values of  ⃗ as [1, 1] signifies that the next position of a searching agent is towards prey and can 

be anywhere in between its current position and the estimated position of the prey.  

However, the GWO algorithm with the operators proposed so far is tend to stuck at local 

solutions. It is observed that the trapping mechanism provides exploration, but GWO needs few 

more for thorough exploration. 

4.2.5 Search for prey (exploration) 

Grey wolves explore the search space according to the location of the alpha, beta, and delta 

wolves. They tend to deviate from each other to look out for prey and may be converge to attack 

the prey. Divergence of the system can be mathematically modeled by making value of  ⃗ greater 

than 1 or less than -1. This makes exploration strong and allows the GWO algorithm to search 

globally. Fig. 5(b) also shows that |A| > 1 forces the grey wolves to deviate in hope to find a 

better prey. 

 ⃗ provides random weights for prey and favors exploration and help GWO in enforcing a more 

random behavior in optimization process favoring exploration and ignoring local optima. An 

obstacle in the hunting paths of wolves makes approaching few preys difficult.  ⃗ tends to 

replicate this behavior. Depending on the location of a wolf, it can give the prey a random weight 

and make it difficult to reach and so is the vice versa.  

Following key points summarizes the complete Grey Wolf Optimization process:  

 Alpha, beta, and delta wolves locate the probable position of the prey (global solution).  

 Every other wolf which can be a solution updates its distance from the prey.  

 The value of parameter a is changed from 2 to 0 in to achieve exploration and 

exploitation.  

 Possible solutions diverge from the prey when |A|> 1 and converge towards the prey 

when |A| < 1.  

 Finally, the GWO algorithm is terminated by stopping criteria. 
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Some points may be noted to illustrate how GWO theoretically solve optimization problems:   

 Social hierarchy assists GWO to look out for the best solutions obtained so far over the 

period of iterations.  

 Encircling mechanism defines a probable surrounding around the solution which can be 

extended to higher ‗n‘ dimensions as a hypercube. 

 Hunting method allows possible solutions to identify the position of the prey. 

 Exploration and exploitation are guaranteed by the making wise decision for the values of 

 ⃗ and A. 

 

4.3 Algorithm for Continuous grey wolf optimization algorithm [11] 

Input: n Number of grey wolves in the pack, 

Stopping Criteria: Number of iterations for optimization 

Output: xα which represents optimal grey wolf position 

I. Initialize a population of n grey wolves‘ positions randomly. 

II. Find the α, β and δ solutions based on their fitness values. 

III. While Stopping criteria not met do 

a. For each Wolf in pack  

b. do 

 Update current wolf's position according to    ⃗⃗⃗⃗ (   )  
(   ⃗⃗⃗⃗ ⃗⃗      ⃗⃗⃗⃗⃗⃗      ⃗⃗⃗⃗⃗⃗ )

 
 

c. end 

d. Update a, A, and C: 

e. Evaluate the positions of individual wolves 

f. Update α; β; and δ: 

IV. End While 
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Initialize a population of n grey wolves‘ 

positions randomly 

Identify the α, β and δ test ordering based on 

their fitness values 

While 

stopping 

criteria  

For each Wolf in pack Update current wolf's 

position according to getUpdatedWolf 

procedure 

Identify the α, β and δ wolves‘ based on their 

fitness values 

Evaluate the fitness of all new wolves‘ 

generated 

Update Parameters of Wolf Optimizer 

END 

Start 

Figure 5 Flow Chart of GWO 



VISHAL GUPTA|DELHI TECHNOLOGOICAL UNIVERSITY 40 
 

4.4 Applications of GWO 

GWO has been utilized for various domain of engineering liker training neural nets, for solving 

economic dispatch problems, feature Subset Selection approach [54]. Vehicle Routing Problem 

has been solved using GWO. GWO was able to provide highly competitive results compared to 

well-known heuristics such as PSO, GSA, DE, EP, and ES. Results on real problems also show 

that GWO shows high performance in both unconstrained problems and constrained problems as 

well.  



VISHAL GUPTA|DELHI TECHNOLOGOICAL UNIVERSITY 41 
 

Chapter 5 

PROPOSED APPROACH TO TEST CASE PRIORITIZATION 

This chapter provides the implementation details of the proposed Grey Wolf Optimizer in test 

prioritization. The detailed explanation pertaining to implementation can be divided into three 

sections. The first section provides a brief description of how grey wolf is discretized; the second 

section discusses the algorithm for test prioritization using discretization described in section 

first. 

In this chapter we will cover how Grey Wolf Optimizer is mapped to solve Test prioritization 

problem. This algorithm is a part of computational intelligence technique and performs 

optimization which is inspired by the nature.   

Test suite prioritization process using Grey Wolf Optimizer is illustrated on real world test suite 

of Jmeter. Faults covered by these test cases are categorised into 11  classes viz. Resource not 

found, File cannot be created, Function not found, Invalid variable or Parameter, Invalid Query, 

Alias, Invalid file access, In valid results, Out of range, End of file and divide by zero. Thus test 

case formulated to be used as test data for the implemented algorithms. Based on fault detection 

value and time to implement metric named average percentage of fault detected (APFD) 

proposed by Elbaum [23] is calculated for each test case ordering to rank the test cases. The 

ranking thus obtained is used to assist in test case minimization, results of which are explained in 

next chapters. 

5.1 Discrete Grey Wolf 

A discretized version of the grey wolf optimization is required to represent the positioning of 

wolves in respect to ordering of test case. Grey wolf optimizer (GWO) is among the latest nature 

inspired optimization approaches which mimics the hunting process of grey wolves in nature.  

In the continuous grey wolf optimization wolves regularly change their positions to whatever 

point in the space. The discrete version introduced here is performed using two operators chosen 

by strategy described below then stochastic crossover strategy is used to identify the updated 

discrete grey wolf position. This approach for discrete grey wolf optimization is applied in the 
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test case prioritization domain for finding test case ordering maximizing average Percentage of 

fault detected metric while minimizing the number of test case selected.  

5.1.1 Representation of  Test Case Ordering 

A solution representation for the test suite prioritization is a permutation representation as 

illustrated by Figure below. 

 

 

 

In this case, there is no distinction between wolf and a single priority order, as each wolf 

corresponds to one solution. In this representation, elements of array represents test case and the 

index represents the order of a tour. 

5.1.1.1 The wolf 

If we assume that a wolf represents a single solution, we can give wolf the following properties: 

 Each wolf is separate independent potential solution represented by one individual in the 

population.  

 In our case wolf represents single test case prioritization order of test cases. 

 Difference between the positions of wolves decides the size of steps. 

 Every test case can be place after every other test case in all wolves assuming that no test 

case repeats itself in single prioritization order. 

 

5.1.1.2 The pack 

In GWO, the following features can be imposed concerning a pack: 

 The numbers of wolves are fixed.  

 In our case pack represents a complete set of multiple test case orderings. 

 A pack is an individual of the population and the number of wolves in the pack is equal to 

the size of the population 

Test cases 

Test Case priority order 

 Figure 6 The permutation representation of a solution 
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 Alpha wolf is represented by the fittest solution in the iteration.  

By the projection of these features on test prioritization, we can say that a nest is shown as an 

individual in the population with its own prioritization order.   

5.1.2 Operators in Grey Wolf 

In continuous problems, the meaning of divergence and convergence towards prey is obvious. 

However, for combinatorial problems, the notion of divergence and convergence requires that 

the given solution must be generated by the perturbation. Perturbation must make the minimum 

changes on the candidate solution. 

This leads to the 2-opt move and double bridge move for a new solution which are explained as 

following: 

5.1.2.1 2-Opt Operator 

The minimum number of non-contiguous edges that we can delete is two. So breaking of two 

edges and reconnecting them in other way to make new solution with minimum changes as 

shown in the Figure below. Here dots represent the test cases and ordering of test case is path 

followed from S to E 

 

 

 (A) Initial ordering from S to E (B) The ordering created by 

2-opt move from S to E [the edges (a, b) and (c, d) are 

removed, while the edges (a, c) and (b, d) are added]  

Figure 7. 2-opt move 
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5.1.2.2 Double-Bridge Operator 

Double Bridge perturbation cuts four edges and introduces four new ones as shown in Figure. 

Notice that each bridge is a 2-change, but neither of the 2-changes individually keeps the graph 

connected. Strength of Double Bridge move is four. Here dots represents the test cases and 

ordering of test case is path followed from S to E 

5.1.2.3 Difference function between two wolves 

Distance between the position of two wolves decides that weather a 2-opt move or double bridge 

move is selected based on the value of variable cstep calculated by following equation 

      
 

   (    (            ))
 

D_wolf represents the difference in position of two wolves which is calculated by element wise 

subtraction of two test ordering and then counting number of non-zero elements in the result. 

  

 (A) Initial ordering from S to E. (B) The ordering created by double-bridge 

move [the edges (a, b), (c, d), (e, f) and (g, h) are replaced by the edges (a, 

f), (c, h), (e, b) and (g, d), respectively]  

 Figure 8.  Double-bridge move. 
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5.2 Objective Function 

Each wolf representing a solution in the search space is associated with a numeric objective 

value. So the quality of a solution is proportional to the value of the objective function. In GWO, 

a wolf of better quality will attract other wolves to move towards itself. This means that the 

quality of a wolf is directly related to its ability to converge towards global solution. For the test 

case prioritization problem, the quality of a solution is related to the value of Average Percentage 

of fault detected metric. The best solution is the one with the highest average percentage of fault 

detection value. 

Mathematically, 

Let T be a test suite containing n test cases and let F be a set of m faults revealed by T. Let TFi 

be the first test case in ordering T‘ of T which reveals fault i. The Average Percentage of fault 

detected metric (APFD) for test suite T‘ is given by the equation [24]:  
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5.3 Framework for Algorithm 

This section provides the steps necessary to apply discrete GWO for test suite prioritization. 

The data set for test suite optimization consists of a binary matrix with rows defining the test 

cases and columns defining the faults covered by those test cases for Jmeter‘s data and a 

separate table represents test cases along with their execution time. 

Start 

Retrieve the source code of software 

under test and execute the test cases 

Create a Boolean table with row 

representing test cases and column 

representing faults 

Create an table with row representing 

test case and column representing their 

execution time 

Define the fitness/cost function for test 

suite prioritization 

Apply propose discrete grey wolf 

optimizer algorithm on the formulated 

data set 

Evaluate and analyze results 

END 
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 Create a database file containing the data set on which testing has been performed. It is 

essential. 

 Create a file consisting of m x n matrix where m represents the test cases and n represents 

faults which are covered by those test cases. 

 Define the cost function used in GWO algorithm. In test suite prioritization the cost 

function is the average percentage of fault detected.  

 Grey Wolf optimizer is an open problem optimization algorithm with its generic set of 

parameter viz. no of wolfs in population which need to be adjusted as per the problem 

domain. 

 GWO population parameter is adjusted as per size of test data 

 Cost Function: Fault Detection Rate, that is Number of Faults covered per Execution 

Time. 

 Generation Limit: It defines the number of iteration of the BBO algorithm. 

 Elite Solution List: It is multidimensional real-valued matrix which selects best candidate 

solution that will be preserved for next generation. 

 Elite Cost List: the cost associated with the elite solution will be stored in minimum cost 

list. 

 Sorting: The sorting order should be either descending or ascending depending on the 

problem. In our case we need to maximize APFD metric so descending order is desired. 

 Apply the Discrete Grey Wolf Optimizer algorithm as stated above 

 Evaluate the performance by identifying the minimized set of test cases and priorities that 

can be assigned to the test cases. 

 The algorithm can be applied to larger data set. 

 

5.4 Algorithm of Proposed GWO for Test Prioritization 

Formulate a parametric table, with rows defining the test cases and columns defining the faults 

covered by those test cases for Jmeter‘s data set. 

 

Objective function f(x): Average Percentage Fault Detection Metric 

Input: n Number of grey wolves in the pack, 
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Stopping Criteria: Number of iterations for optimization which depends upon the size of 

optimization data 

Output: xα which represents optimal grey wolf test case ordering 

I. Initialize a population of n grey wolves‘ positions randomly. Each wolf representing a 

test case ordering such that value in ordering € [1 no_testcases] 

II. Find the α, β and δ solutions based on their fitness values. 

III. While Stopping criteria viz. number of iterations for optimization are not reached do 

a. For each Wolf in pack  

b. do 

 Update current wolf's position according to getUpdatedWolf procedure 

c. end 

d. Update a, A, and C 

e. Evaluate the positions of individual wolves 

f. Update α; β; and δ: 

IV. End While 

V. Identify the redundant test cases using the following function: 

a. From least ranked test case to highest ranked test case: 

i. If faults covered by test case is already covered by higher ranked test cases

 Remove the test case 

ii. Else 

Add test case to front of test cases to be executed 

VI. Final list contained the prioritized and minimized set of test cases 

5.4.1 Algorithm for getUpdatedWolf Procedure 

The main updating equation can be formulated as stated below: 

      
 

   (    (            ))
 

Where A is calculated used equation  

 ⃗      ⃗    ⃗⃗⃗⃗⃗    ⃗ 
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and D_wolf is calculated using difference in position of two wolves which is calculated by 

element wise subtraction of two test ordering and then counting number of non-zero elements in 

the result. 

Algorithm: 

I. Define two random numbers r1 and r2 € [0, 1] 

II. Calculate the value of A1,A2,A3 and C1, C2, C3 using equation  ⃗⃗⃗      ⃗⃗    ⃗⃗⃗⃗⃗    ⃗⃗ and 

 ⃗⃗         ⃗⃗⃗⃗⃗ for different values of r1 and r2 while calculating 

III. Calculate cstep( ), cstep( ), cstep( ) using  

     ( )  
 

   (    (        ( )    ))
 

IV. For alpha, beta, delta 

a. If cstep>=rand 

  Choose Double Bridge move 

b. Else 

  Choose 2-opt move 

V. End for 

VI. Perform Crossover(x, y, z) using simple stochastic crossover strategy  

X=

{
 
 

 
 

   

          
 

 

     
 

 
      

 

 

          
 

 

 

VII. Return X as updated wolf position 
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5.5 Flow Chart of  Discrete Grey Wolf Algorithm 

 

 

Initialize population, each wolf in population 

representing a test case ordering 

Identify the α, β and δ test ordering based on 

their fitness values 

While no 

of 

iterations 

reached 

For each Wolf in pack Update current wolf's 

position according to getUpdatedWolf 

procedure 

Identify the α, β and δ test ordering based on 

their fitness values 

Evaluate the fitness of individual solution 

Update Parameters of Wolf Optimizer 

Minimize the prioritize test 

suite 

END 

Start 

Figure 9. Flow Chart of  Discrete Grey Wolf Algorithm 
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5.6 Discussion on Proposed Algorithm 

 

1) Generate test case population. Formulate a parametric table, with rows defining the test cases 

and columns defining the faults covered by those test cases. 

 

For example, consider there are 10 test cases A, namely A, B, C, D, E, F, G, H, I, J with 

following fault identification table 

TC/Fault F1 F2 F3 F4 F5 F6 F7 F8 

A 0 0 0 0 0 0 0 0 

B 1 1 0 0 0 0 0 0 

C 1 1 1 0 0 0 0 0 

D 0 1 1 0 0 0 0 0 

E 1 0 0 0 0 0 0 1 

F 0 0 0 0 0 0 0 1 

G 0 1 0 0 0 0 0 0 

H 0 0 0 1 0 0 0 1 

I 1 1 1 1 1 0 0 0 

J 0 0 0 0 1 1 1 0 

 

2) Initialize a random pack of ‗n‘ wolves 

a. Wolf represents single test case prioritization order of test cases 

b. Pack represents a complete set of multiple test case orderings. 

c. The number of wolves in the pack is equal to the size of the population 

d. Alpha wolf is represented by the fittest solution in the iteration.  

e. Beta and Omega are represented by second and third best in the  pack 

f. Stopping Criteria is no of iteration done to update wolf ordering 

 

Let there are four wolves in population with test case ordering represented as follow: 

             

{
 

 
          

                             (    )      

                              (  )        

                             (     )     

                           (    )      

 

Wolf 2 with high average percentage of fault detection value will become alpha and act as the 

goal position for all the rest of wolves in the population and Wolf 1,3,4 then try to become closer 
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to Wolf 2 by updating itself according to the ordering of alpha. Wolf 2 also update itself for 

exploitation. Fitness Values are calculated using equation        
                    

   
   

 

   
 

For Wolf 1 fitness value can be calculated as follows: 

       
               

    
   

 

    
                 

Similarly, fitness value of all wolf can be calculated..  

3) Implementation 

a. Process repeats till any stopping criteria satisfy. For the considered problems stopping 

criteria are the maximum number of iterations. In the proposed algorithm maximum 

numbers of iterations for processing the algorithm are fixed before processing the 

algorithm. 

b. Update every wolf according to 2-opt or double bridge move 

c. Calculate fitness value of test case sequence using following  

       
                    

   
   

 

   
 

d. Rank all the solution and find the optimally best result. 

 

Algorithm converges after two iterations which is stopping criteria in our case. In current 

iteration every wolf changes its ordering including alpha to explore local search space using 

getUpdatedWolf Procedure. Now let say position of wolf becomes using 2-opt operator as 

follows where in Wolf 1 where edge between B-G and J-C are removed in Wolf 1 and replaced 

by edge B-C and F-G respectively. Similarly C-H and A-D are replaced by C-D and G-H 

respectively and recalculate the fitness value as calculated before. Marking in red color below 

shows the change in test case ordering for all wolves. 

Wolf 1: A–B– C–D–E–F–G–H–I–J (43.7%) delta 

Wolf 2: I–J–E–B–C–D–F–G–H–A (90.0%)   alpha 

Wolf 3: A-C-B-F-G-D-E-J-I-H (51.25%) omega 

Wolf 4: I-A-D-F-J-E-B-C-H-G (81.25%) beta 

Now Wolf 2 will become alpha wolf in next iteration because of high fitness value obtained and 

thus represent the location of goal point for ordering updation.  
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If we set no of iteration for algorithm to two then the above wolf 2 represents the suggested 

prioritized optimal order of test cases. 

So prioritize order of test case is given by I–J–E–B–C–D–F–G–H–A 

4) Minimize the prioritize order of test cases. 

Reduced set of test case are selected using the reduce function which is based on whether the 

faults covered by current test are covered by higher prioritize test case or not if faults are covered 

by higher prioritized test case then current test case is excluded using the following function 

∑     

   

   

                              

 

Where Ti is the test case to be selected and Tj are the test case having greater priority to the test 

case Ti.   operator here identifies that whether test case all faults covered by Ti are covered by 

Tj or not, if covered then this function return 1 and test case Ti is excluded. Above stated 

function is applied on prioritized order I–J–E–B–C–D–F–G–H–A. So faults covered by test 

cases B,C,D,F,G,H,A  are already covered by higher prioritized test case I,J,E so they can be 

excluded and hence test suite is minimized the reduced test case can be given as follows: 

Reduced Test Case: I-J-E 

In the following chapter the results obtained after applying the proposed algorithm, simulation 

environment require for algorithm execution are discussed.  
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Chapter 6 

Dataset, Simulation Environment, Results and Discussion 

This chapter also provides a summarization of results obtained after applying GWO on test data 

and thus compares it to the previously applied meta-heuristic techniques. The implementation 

details of GWO in test prioritization are already discussed in previous chapter. 

The proposed discrete versions is compared to two of the common optimizers used in this 

domain namely Ant Colony Optimization (ACO), Cuckoo Search (CS), Biogeography based 

optimization (BBO) which falls under population based meta-heuristics and Simulated 

Annealing (SA) which is trajectory based single population optimization problem. A set of 

assessment indicators are used to evaluate and compared the different techniques over  Results 

prove the capability of the proposed discrete version of grey wolf optimization  to generate test 

prioritization order regardless of the initialization and the used stochastic operators 

6.1 Introduction to JMeter 

Apache JMeter is a completely Java based computer application was initially designed for load 

testing functional behavior and measure their performance.  

JMeter is a load testing tool developed by Apache project for analyzing the performance of 

different type of services with emphasis on applications developed for web since it was 

originally designed for web and is later extended to other domains like JDBC database 

connections, FTP, JMS,.HTTP etc. 

6.1.1 Dataset based on Jmeter 

Dataset is formed by compiling the Jmeter‘s source code and thus executing Junit‘s unit test 

cases to formulate each data point where each row represents the test case and each column 

represents the faults covered by those test cases. A Boolean matrix is prepared where 1 signifies 

that the fault is covered by the test case. 

Faults covered by these test cases are categorised into 11  classes viz. Resource not found, File 

cannot be created, Function not found, Invalid variable or Parameter, Invalid Query, Alias, 
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Invalid file access, In valid results, Out of range, End of file and divide by zero. Thus test case 

formulated to be used as test data for the implemented algorithms. Based on fault detection value 

and time to implement metric named average percentage of fault detected (APFD) proposed by 

Elbaum [21] is calculated for each test case ordering to rank the test cases. The ranking thus 

obtained is used to assist in test case minimization. 

TC/Fault F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 
Test 
Case 

Time 
(ms) 

TC1 1 1 1 0 0 0 0 0 0 0 0 TC1 1 

TC2 1 0 0 0 0 0 0 0 0 0 0 TC2 6 

TC3 0 0 0 1 0 0 0 0 0 0 0 TC3 1 

TC4 1 0 0 1 1 0 0 0 0 0 0 TC4 1 

TC5 1 0 0 0 0 1 0 0 0 0 0 TC5 4 

TC6 0 0 0 0 0 0 1 0 0 1 0 TC6 1 

TC7 1 0 0 0 1 0 0 0 0 0 0 TC7 2 

TC8 0 0 0 0 0 1 0 1 0 0 0 TC8 1 

TC9 0 0 0 0 0 0 0 0 1 0 0 TC9 1 

TC10 0 0 0 1 0 0 0 1 0 0 0 TC10 1 

TC11 1 0 0 0 0 1 0 1 0 0 0 TC11 2 

TC12 0 0 0 0 0 0 0 0 0 1 0 TC12 1 

TC13 0 0 0 0 0 1 0 1 0 0 0 TC13 1 

TC14 1 0 0 0 0 0 0 0 0 0 0 TC14 1 

TC15 0 0 0 0 0 0 0 1 0 0 0 TC15 1 

TC16 0 0 0 0 0 0 0 0 1 0 0 TC16 1 

TC17 0 0 0 1 0 0 0 0 0 0 0 TC17 1 

TC18 0 0 0 0 0 0 0 1 0 0 0 TC18 104 

TC19 0 0 0 0 1 1 1 1 0 0 0 TC19 16 

TC20 0 0 0 0 1 1 1 1 0 0 0 TC20 6 

TC21 0 0 0 1 0 0 0 0 0 0 0 TC21 1 

TC22 0 0 0 0 0 0 0 1 0 0 0 TC22 1 

TC23 0 0 0 0 0 0 0 0 1 0 1 TC23 2 

TC24 0 0 0 1 0 0 0 1 0 0 0 TC24 2 

 

The above figure shows a sample test data which was used to during the research. F stands for 

Fault Covered and Time stands for Execution Time(ET) of test case. The highest domain value 

in ET is 104 and lowest domain value is ET is 1. 

  

Data set for prioritization 
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6.2 Simulation Environment 

The section provides information about the tools used in deriving the results in this research. The 

parameters based on which the comparison was done are Number of initial parameters required, 

Number of test cases identified, Convergence rate of algorithm, Variance in  the final result on 

multiple runs. 

The data set was generated after the application of 24 test cases on 11 faults in Jmeter. Different 

parameters of meta-heuristic algorithms were taken in to consideration viz. mutation probability, 

elite solution, generation limit, cost function, emigration probability, and immigration 

probability, population size and processing time in term of total actual iterations. 

 

6.2.1 Brief Description about MatLab 

MATLAB is a high performance language for technical computing. It integrates computation, 

visualization and programming in an easy-to-use environment where problems and solutions are 

expresses in familiar mathematical notation. Typical uses include:  

• Math and computation  

• Algorithm, simulation and prototyping  

• Modeling, simulation and prototyping  

• Data analysis, exploration and visualization  

• Scientific and engineering and visualization  

• Application development, including graphical user interface building 

 

MATLAB is an interactive system whose basic data element is an array that does not require 

dimensioning. This allows you to solve many technical computing problems, especially those 

with matrix and vector formulations in a fraction of the time it would take to write a program in a 

scalar non interactive language such as C or FORTRAN. 

 

S.No Simulation Variables Value 

1. Programming Language MATLAB 

2. Data Base  Excel 

3. Data Set Repository Jmeter 

Table 1 Simulation Environment for the Research work 
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6.3 Results and Analysis 

The section shows the results obtained. The research was carried out in a system with 2 GB 

RAM, 500 GB HDD and 1.6 GHz core i5 Intel Processor. 

 

Priority order of test cases 

The above figure shows the priorities order of the test case. After simulation of the algorithm on 

the data set for 30 iterations, we obtained the prioritized order. The priorities are ordered in 

ascending order with test case at index 1 as the highest priority and 24 being the least. The result 

showed that test case 1 is much more important than rest of test cases. Test case 14 is least 

prioritized in testing the concerned application.  

 

Reduced Test Cases 

Test cases after test case 21 in priority order has been reduced to zero which showed that these 

test case can be excluded during regression test suite selection. These test cases are found to be 

redundant and have been identified as worthless by Grey Wolf Optimizer. 

S.no Parameters BBO ACO GWO Cuckoo SA 

1. Mutation 

Probability 

0.4 - - - - 

2. Elite Solution Best habitat Phoneme 

Matrix  

Alpha, beta 

delta 

Best 

cuckoo 

 

3. Generation 

Limit 

1000 100 1000 1000 1000 /12 

4. Cost Function Average 

Percentage 

of fault 

detected 

Average 

Percentage of 

fault detected 

Average 

Percentage 

of fault 

detected 

Average 

Percentage 

of fault 

detected 

Average 

Percentage 

of fault 

detected 

5. Discovery rate 

of alien 

eggs/solutions 

 

0.2 (keep 

rate) 

- - 0.25 

 

- 

6. Population 10 10 15 15 1 

7. Initial temp - - - - 0.025 

8. Alpha - 1 - - 0.99 

9. Beta - 1.5 - - - 

10. Rho - 0.05 - - - 

Table 2 Parameter setting during research 
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After careful evaluation of figure drawn below it is evident that modified GWO has higher 

tendency towards test suite minimization juxtaposes with the tendency to achieve complete 

coverage.  

 

As evident from the above box graph Grey wolf shows the least variation in the APFD value 

with most of the results lie near the median resulting into vary sharp 25% and 75% boxes around 

the median making them even unrecognizable in graph with minimum value of APFD  being 

maximum all the algorithms making GWO most efficient. 

 

Cuckoo GWO BBO SA ACO 

Maximum 94.68804 94.68804 94.68804 94.48435 94.28066 

Minimum 92.66188 94.09841 93.82326 93.3194 90.93589 

Variance 0.251797 0.035818 0.098946 0.087572 0.523622 

SD 0.501794 0.189257 0.314556 0.295926 0.723617 

Table 3 Maximum, Minimum and Variance in APFD value in various algorithms 

  

89

90

91

92

93

94

95

Cuckoo GWO BBO SA ACO

Figure 7 Box Graph of test case ordering for various algorithms 

(in term of APFD metric) 
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Moreover from the above table APFD value of GWO is least varied in comparison to other 

algorithms. ACO shows highest variance in performance making it least stable. However in 30 

runs Cuckoo GWO and BBO all obtain similar maximum APFD value. Minimum APFD over 30 

runs is highest in GWO making GWO most promising even in its vulnerable state. 

S.no Characteristics BBO ACO GWO Cuckoo SA 

1. Complete 

coverage test cases 

identified (low is 

better) 

5 5 5 5 5 

2. Number of initial 

parameters 

required 

4 7 2 3 4 

3. Redundant  test 

case identified 

(high is better) 

19 19 19 19 19 

4. Total Processing 

Iterations 

24000 24000 10000 33125 12000 

5. Total 

Executi

on Time 

of 

reduced 

test 

cases 

Worst 25 113 21 113 23 

Best 6 6 6 6 6 

6. Average 

Convergence rate 

of algorithm (in 

term of processing 

iterations) 

19002 12989 3069 18935 11723 

7. Variance in the 

APFD value 

0.098
946 

0.52362
2 

0.0358

18 

0.2517
97 

0.0875
72 

8. Reduction in test 

suite 
79% 79% 79% 79% 79% 

Table 4 Comparison Table of various algorithms based on different factors   
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Since all algorithms compared here are efficient meta-heuristic algorithms so number of 

worthless test case identified and usable test case are same for all algorithms but the major 

difference is present in convergence rate of the algorithm in term of internal processing 

requirement which shows that GWO requires least processing with minimum resource 

requirement. 

Moreover the convergence rate of GWO is also high which can also be empirically implied from 

the above stated table. So, GWO perform considerably better than all algorithms stated above in 

term of speed also. In fact the combined execution time of reduced test cases even in the worst 

case is minimum in case of GWO. However in best case the proposed time is same because of 

meta-heuristic problem solving capability of all algorithms. 
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Chapter 7 

CONCLUSION AND FUTURE WORK 

This chapter discusses the conclusions inferred from this research and presents the possibilities 

of extension of this work in future. 

Regression Testing is very crucial activity to bring about success in software development after 

some minor or major defect has been encountered during execution. It is generally carried out as 

a maintenance phase activity, which is considered as the most expensive phase, if premeditation 

about the phase has not been carried out. 

 

There has been large algorithm been proposed and used in the refining the process of regression 

testing but all these algorithm suffers from constraint problem, elitism problem, loss of coverage 

and determining the redundant test cases in the test cases. Grey wolf optimization is meta-

heuristic technique being implemented and used widely in various field like remote sensing, job 

scheduling, classification and selection.  

 

This novel technique has been modified in this paper and compared with other already acclaimed 

meta-heuristic techniques. GWO algorithm produced sufficient reduction in test cases after its 

execution irrespective of the setting of initial parameters. In generations we obtained, state of the 

art result. GWO is compared with ACO,BBO,SA and Cuckoo for test case minimization. 

 

GWO can be extended to multi-objective test suite optimization by altering the comparison 

mechanism using the pareto dominance and optimal front operator where a single wolf contain 

multiple solution and nature of wolves are identified using these pareto operators. 
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