A Novel GUI Testing Framework for Automated
Testing of Android Applications

Dissertation

Submitted in partial fulfillment of the requiremsribr the degree of
MASTER OF TECHNOLOGY
IN

SOFTWARE TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

SUBMITTED BY
ABHISHEK PANDEY
ROLL NO: 2K13/SWT/01

M AJOR PROJECT REPORT I
(Paper Code: CO 821)

Underthe guidancef

Dr. Kapil Sharma

SHAHBAD DAULATPUR, MAIN BAWANA ROAD, NEW DELHI, DELHI

110042INDIA

DELHI TECHNOLOGICAL UNIVERSITY

NEW DELHI

STUDENTDECLARATION

| hereby undertake and declare that this submissiany original work and
to the best of my knowledge and believe, it costano material previously
published or written by another person nor matewiaich has been accepted for
the award of any other degree or diploma of antitliie or other University of
higher learning, except where due acknowledgemastbdeen made in the text.
Project work and published paper associated tockiapters are well discussed

and improved under the guide supervision.

DATE:
SIGNATURE:

ABHISHEK PANDEY

ROLL NO: 2K13/SWT/01

DELHI TECHNOLOGICAL UNIVERSN
NEW DELHI

CERTIFICATE

This is to certify that the thesis entitledA “Novel GUI Testing
Framework for Automated Testing of Android Applications’, is a bona fide
work done by Mr. ABHISHEK PANDEY in partial fulfil@nt of requirements
for the award of Master of Technology Degree software technology at
Delhi Technological University (New Delhi) is anthentic work carried out by
him under my supervision and guidance. The mattboglied in the thesis
has not been submitted to any other Universitystitine for the award of any
Degree or Diploma to the best of my knowledge.

DATE:

SIGNATURE:

Dr. Kapil Sharma
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERIN G

DELHI TECHNOLOGICAL UNIVERSITY

ACKNOWLEDGMENT

| am presenting my work on “A Novel GUI Testing Frawork for
Automated Testing of Android Applications” with atlof pleasure and
satisfaction. | take this opportunity to thank mypervisor, Dr. Kapil
Sharma, for guiding me and providing me with adl tacilities, which paved
way to the successful completion of this work. B&holarly guidance and
invaluable suggestions motivated me to complete thgsis work
successfully. I am thankful to my friends and cafjees who have been a
source of encouragement and inspiration throughloitduration of this
thesis. | am also thankful to the SAMSUNG who hasviged me
opportunity to enrol in the M.Tech Programme andgtin knowledge
through this programme. This curriculum provided k®owledge and
opportunity to grow in various domains of compuserence. Last but not
least, | am thankful to all the faculty members whsited the Samsung
premises to guide and teach. Their knowledge aiitehelped me to grow
and learn in the field of computer science. Thisjgmt has provided me
knowledge in the area of Mobile Application AutoioatTesting and helped
me in understanding the concept of accessing abjecid designing
framework for testing in Mobile Testing domain. ave given ample time
and guidance to complete my project under timeldefined by the

university..

ABHISHEK PANDEY
ROLLNO: 2K13/SWT/01

ABSTRACT

Model-based Automation Testing used to implemerth vAndroid
that includes the way applications have been mdddew tests were
designed and execution has been done, kind ofgmbhave been found in
the tested application during the process. By emnglinto mass market like
products, smart phones and tablets created arasenieneed for specialized
software engineering methods. To ensure high quafiplications, constant
and efficient testing is crucial in software deyatent. However, testing
mobile applications is still massive, time-consugnend error-prone. The
mobile applications effective testing is an “emaggresearch area that faces
a variety of challenges due to unique features abila devices”. Currently
there are several studies and approaches regatbagesting of the
functionality, security and usefulness of mobilglagation, still the field of
GUI design testing has not been widely explordus Thesis concentrates
on the design testing, which is the part of usghithough it focuses not on
how well the users can interact with the appliggtiout rather on the visual
appearance of the GUI. The challenge for GUI tgstinto verify whether
native applications are correctly displayed on etght devices. An
automation of this testing can reduce time, effertors and the cost of the
testing process, and increase productiMgin principle which guided the
project implementation were to implement the valighto elements such
as environment, end points, test data, handlingtest devices, core
protocols, locations separated out from the tegicldscripts) and moved
into hierarchical libraries for reusability andgeevent constant modification

in whole test script every time Ul changes in newevides.

CONTENTS

Chapter One: INTRODUCTIONcuuiiiiiiieis e e e et s s e e e e e e e e e e e e aeeeeeennssnnnnae s 1
1.1 SCOPE & MOTIVATION: ...ttt ettt e e e e e e e e e e s e e s s s eeeeeeaeaaeeeas 1
1.2 TESTING AUTOMATION: ...citiiiiieee ettt a e e e e e e e e e b e 3
2 N B (0] ¢ 4 F= 11 o] o LSRR UPPPPPPPTTRRPRTPIN 4
1.2.2 DO you Need aUtOMALIONTccvvviiiiiiiiiiisies e e e e e e e e e e e e e e e ee et s s e e e e eaeaeeeeeeeeeeennnnnes 5
1.2.3 GUI AN GUI TESHING ..vuuuuiiiieieeeeeeie ettt e e e e e e e aaaerab e s e e e e e e e aaaeeeens 6
1.2.4 GUI TeStING APPIOACK:iii i e e e a e e e e e e e e aaeeeeens 6
Chapter TWO: LIterature REVIEWccoiiiiiiiiiiiiiiiiaia e e e e e e e e e ettt s e e e e e e e e e eeeeeeeeeenes 9
2.1 MOBILE OPERATING SYSTEMS: ...ttt 9
P20t 0t Y T [o] [0 LT 9
P2 T © 1 S TSP PPPPPPPRPPPPPPPR 9
2.0.3 SYMDIAN: . a e e et e 10
2.1.4 BlacKBerry OS: ..o a e e et 10
P2t R I 74 = o LU PTTRURPPPR 11
2. 1.8 BADA .ttt e e e e e e e 12
2. 0.7 Palm O i e e e e e e r 12
2.2 TEST AUTOMATION APPROACH OF APP DEVELOPERS........ccccvvvviiiiiiiiieeenn, 12
P2 R = Lo o To 1 1 ¥ o o TR 13
2.2.2 SIG-DIOIO: ettt 14
T N S TSP 15
2.2.4 MONKEYRUNNEY: ..utuiiiiieee et e e e e e et ettt e e e s e e e e e e e e e e e e et eeeaeeaasa s e aaaeeeeeeeaaeeeeennnnnnns 15
2.2.5 MODIGUITAR: ... ettt r e e e et e e aaaeaeaeeeaeeaaaannnnsseennees 16
2.2.6 REWED and TeStWED: ... e e 17
F A A Y o] o118] o TP 18
2.2.8 Image Template MatChing :........ccooiiiiiiiieecr e e e e 18
2.2.9 SIKUI ... e e e e e e aaaan 19
2.3 PROGRAMMING LANGUAGES FOR MOBILE TESTING:.........ooooiiiiiiiiiiiiiee 22
2.3, PYINON: L. et aaaaeaaes 22
A T 1 = PP 23
2.4 LITERATURE GAP S ...ttt ettt e e e e e e e e e e e e s s s e st at e e ereaeaaaaaeeas 25
Chapter Three: PropoSed WOTKcoeuiiiiiiiiiiiiii et e e e e e e e e e e e e eeeeenseannnnes 26
3.1 DATA DRIVEN MODEL: ...cotttiiiiiiiiii ittt e e e e e e e e e e e e e e s e s s s snnnseensneeeees 26
3.2 CLASS DIAGRAM FOR THE HIERARCHY ...ttt 29

3.4 SCRIPTING APPROACH: ... et 34

G 00 N = = VTS o o 1 g To Y o] o] (0 Y= T o USRS 34
3.4.2 Scripting Approach with Proposed Framework.............cccovviiiiiiiiiiiiiii e 35
3.5 RUNTHREADSMANAGER:ttt 37
Chapter FOU RESULTS ...ttt a s s e e e e e e e e e e e eeeeeeeeennnnes 39
4.1 EVALUATING THE FRAMEWORKcoiiiiiiiiiitie ettt 39
4.1.1 Degree of Coupling and Cohesion in the Frameworkccccovvviiiiiiiiiiiinnnnn. 41
4.1.2 High Level REQUIFEMENTScoiiieieeeiiiieie e et s s e e e e e e e e e e e eeenannees 42
4.1.3 AUtOMALIC TESt EXECULION ...coeiiiiiiiiiiiiiiee et e e e e e e e e eeeeeennnees 42
. 1.4 EASE OF USE ...ttt ittt ettt et et e e e e e e e e e e e e e e e e e e s bbb bbb e e e e e 43
4.1.5 MaintaiN@aDIlityccoooiiiie e 43
Chapter Five: Conclusion and FUtUre WOIKccoeiiiiieeiiiiiiieeeeeicses e e e e e e e e e eeaanannees 44

Chapter SiX: REEIENCESiiieiiiiei et e e e e e e e eees 45

Table of Figures

FIQUrEe 1 : ManUal TESHINGcuuueueeiiiiiieee e e e e e e et s e e e e e e e e e e e e e e e e eeseaaanana e e e e aeeeaaaaeees 7
Figure 2 : ReCOrd and Playcooo oottt e e e e e e e eeeeeeneene 7
Figure 3 : Comparison of Available FrameworKccccovieeeiiiiiiiiieeieeee e 21
Figure 4 Interface Diagram for Droid ENGINE.........ccoooiiiiiiiiiiiiiiiiiiiiies e eeeeeeiaeens 27
Figure 5 Framework ArChit@CIUIe...........uuuviiieiiii i e e e e e e e e e e e eeeeaaannnes 28
Figure 6 Devices Grouping Example with Parllel Execution..............ccoovvviiiiiiiiiiiiinnnnn. 31
Figure 7 Flow Chart for Grouping AlQOrithmoooiiiiiiiiiiccee e 33
Figure 8 Raw Scripting Approach EXampleoouuuiiiiiiiiiii e 34
Figure 9 Test Script Writing Approach with the FrameworKcccccoeeeviiiiiiiiiiiiiieennnns 36

Figure 10 Test Script EXECULION FIOWoooiiiiiiiiiiiiii e 38

Chapter OnetfNTRODUCTION

1.1 Scope & motivation:

Each and every product is tested by the software development groupll e s
delivered software have always defects in it. All the &gjineers try to detect these
faults before releasing that product but these always edgeliappear again and again.
These defaults creep in even when they are tested with the bessggs of manual
testing. To increase the effectiveness, efficiency and coveragee software testing,
automation is considered as the best way.

Human sitting in front of a computer is considered as the maestahd, who is
carefully going through application and trying various input comhonatand methods,
comparing the results to the expected behaviour and recordingliservations. Manual
tests are repeated often during development cycles for souleecbanges and other
situations like multiple operating environments and hardware ceoafigns. An
automated testing tool is able to playback pre-recorded and predatheds, compare
the results to the expected behavior and report the successig tdithese manual tests
to a test engineer. Once automated tests are created thegsily be repeated and they
can be extended to perform tasks impossible with manual testcguBe of this, savvy
managers have found that automated software testing is an @ssemiponent of
successful development projects.

To ensure the quality of a software, software tests have ¢o @¢ repeated
during the development cycles, whenever the modification is nmatheeisousecode the
software tests are repeated. For each release of theasofittvmay be tested on all
supported operating systems and hardware configurations. Manuallyingpbate tests
is costly and time consuming. Once created, automated testsecam over and over
again at no additional cost and they are much faster than masstisl Automated
software testing can reduce the time to run repetitive fests days to hours. A time

savings that translates directly into cost savings.

Importance of mobile applications are day by day increasingudh a situation
guality becomes the highest goal for the companies to providesére these developed
applications. Test engineers in the department of quabtyrasce of these companies
are responsible for the defined level of software quality ensurance.

The mobile applications effective testing is an “emergingaesh area that faces
a variety of challenges due to unique features of mobile deviCestently there are
several studies and approaches regarding the testing of the fulitgticsecurity and
usefulness of mobile application, still the field of GUI desigririgdtas not been widely
explored. This thesis concentrates on the design testing, whibk gart of usability,
though it focuses not on how well the users can interact with thecapph, but rather
on the visual appearance of the GUI. The challenge for GUhdeist to verify whether
native applications are correctly displayed on different devicesavdomation of this
testing can reduce time, effort, errors and the cost of 8tmgeprocess, and increase
productivity. The automation of the software testing process has numieeoedits,
which are described by Melody Y. Ivory in “The State of theiArAutomating Usability
Evaluation of User Interfaces”. The most important advantageisof cost-saving, due
to the reduction in the testing time. Another positive point is thdigiren of the time
and error expenses through the whole application. An additional Seiteefitbe the
expansion of the tested features. The use of automated toolsitadesble to cover all
possible test cases and user interactions, something that isvags achievable with
non-automatic testing. Apart from this, the special tools not onlyperautomatically
the test cases and simulate the user interaction with thensybut are also able to
expertly analyze the obtained results. Not all testers have lenmugpetence in all
aspects of software evaluation. One more advantage is the pgssibthie comparison

between optional designs. During the manual testing only one designed Ul isexlaluat

Some automated tools make it possible to predict and simulatdehsatle and
improved designs and to test them. Finally, the automated testdstabe performed

during the development phase, with the Ul schemes, prototypes andrgggeidicting

the bugs before implementing them. The human testers as atestleonly the
implemented version of the Ul.

Initially, most mobile applications were developed for entertaitrparpose, but
now many industries have arranged application development for ctingétnefit. In
order to support the image of the companies their applications shouldena@t design
requirements and follow the corporate identity.

The current situation shows that there is a need of an autoteatewd) tool that
can evaluate the visual design of the mobile application, accalitng general design
guidelines and the requirements of customers and the company. Sulioamated
design testing tool can improve and simplify the process tifgethe user and corporate
design requirements. The goal of this master thesis is to prappnbach for the
Graphical User Interface automated testing for large scale.r@sult of this work is a
prototype of the automated design testing tool for android applicationdppesdor all
kind of applications whether Ul Objects are available or not. Tiesig includes an
overview on existing systems and different methods of mobilegest general idea of a
unified design testing tool for different devices, a presentatiothe design testing
approach with standardize scripting templates for large testiagns for better
management of scripts for future use, testing and evaluation @ppisach, as well as a
discussion of the challenges and future research questions ineltheofii automated
design testing of mobile applications.

1.2 Testing Automation:

The process in which the software tools execute prescriptédgeon software
application before it is released into production is called automated softatang.te

The object of automated testing is to simplify as much of thente effort as
possible by using minimum lines of code. If there is huge percem@mgsumed by unit
testing quality assurance team's resources, then this proggdsbe a good candidate
for automation testing. Tools of Automated testing are capablexetuting test
scenarios, reporting outcomes and comparing results with e@dieexecutions. Tests

carried out with these tools can be run repeatedly and at any time.

The method which is used to implement automation is called autsnhation
framework. Many frameworks were implemented over the yearimmercial vendors
and testing companies. Automating tests with commercial or operessnftevare can be
complicated sometime, because they almost always requirenuraton. Many
organizations implement automation when it is determined that magstaigt is not
meeting expectation and bringing more human resources does not seems possible.

1.2.1 Automation:

The most well-known kind of application testing tool is automation, which
attempts to replace human activities clicking and checking avitomputer. The most
common kind of test automation is driving the user interface, whérerean records a
series of actions and expected results. Two common kinds of uséagatautomation
are record/playback -- where a tool records the interactiongh@mdautomates them,
expecting the same results -- and keyword-driven -- where tmanisgace elements,
such as text boxes and submit buttons, are referred to by nameondegniven tests are
often created in a programming language, but they do not havetteelpesan resemble a
spreadsheet with element identifiers, commands, inputs and expected results.

Automation tools perform a series of preplanned scenarios wibcted results,
and either check exact screen regions -- in record/playbackoslywhat they are told
to specifically check for -- in keyword-driven. A computer willvee say "that looks
odd," never explore or get inspired by one test to have a new ideavilNa computer
note that a "failure" is actually a change in the requiremérgtead, the test automation
will log a failure and a human will have to look at the falskifaj analyze it, recognize
that it is not a bug and "fix" the test. This creates a rmaarice burden. Test automation
automates only the test execution and evaluation.

Another term for this kind of automation is something Michael BoltonJamdes
Bach call checking -- a decision rules that can be intexghiey an algorithm as pass or
fail. Computers can do this kind of work, and do it well. Having check adt@main at
the code level -- unit tests -- or user interface level catiywenprove quality and catch

obvious errors quickly before a human even looks at the software.

1.2.2 Do you need automation?

Several of the teams we've worked with in the past have found themsethiea
six-week test/fix/retest cycle. During that time, thehtecal staff was producing no new
features. With three releases a year, the technical saafftesting 18 weeks -- which is
more than a third of the time. Long retest cycles make rollingxpgriments essentially
impossible. Test automation is generally a natural fix for, thésve the computer run
automated checks, at least overnight, and you could release every day.

At the user interface (Ul) level, there are many reasonsdautomated tools for
software testing. Preparing a small set of checks that fregsiently, building the
system, verifying if major path of functionality fails and repuaytthe team on failure are
all capabilities that automated testing can handle. This m#iesfeedback cycle
important, so developers who introduced a major bug can find and resajuiekly.
Having these smoke tests in place can reduce the amount of effort theatlesspending
on routine things, add confidence, and vastly reduce the cost of a ¢éstwsthout
requiring years of automation work.

Once the automated checks are running at the GUI level, teders fofd a
different problem: their tests find too many bugs. When softigal@eaking too often,
it's a sign that the team needs automated unit tests verly srohhical tests at the code
level that programmers can put in place. Programmers who run asingutte before
check-in can prevent defects from escaping to the build.

The big problems test automation addresses are compressirgniestinding
defects faster, and, in the case of unit tests, preventingssegne, where a feature may
have worked a day ago but not after a new check-in. If the prodad te fail in ways
that are different and unpredictable, or the Ul is undergoing aiveashange, checking
the same things may have limited value. For example, a newathtids new required
buttons will cause failures of the test suite because the butdemut checked. If the
success factors are less functionality and more usabilityhe product needs to be viral
then focusing on test automation might not be the right approach. & dhess, where

automation is not needed, direct interaction with humans is more important.

1.2.3 GUI and GUI Testing

There can be two types of interfaces in a computer applicaiish.is=Command
Line Interface where you type text and computer responds tedhanhand. Second is

Graphical User Interface where you can interact with the computensysing images.

What is Graphical User Interface Testing?

GUI (Graphical User Interface) testing is the processgsifrtg the system GUI of
the System under Test. Graphical User Interface testing involves chduokibg with the
controls like buttons, menus, icons, and different types of bars like tal fpar, tool
bar, windows and dialogue boxes etc.

Graphical User Interface testing is the process of enstuimgfionality of the
GUI for given application and making it conforms to its specifications.

Additionally GUI testing evaluates design elements like colagouts, fonts,
font sizes, text boxes, labels, captions, text formatting, Istss, buttons, content and
links.

1.2.4 GUI Testing Approach:

Graphical User Interface testing can be done via three ways:
1.2.4.1Manual Testing

In this approach, screens are checked manually by testers forrnante with

the requirements stated in software requirements specification document.

Tester checks for
addition of two
numbers manually
(16+64)

o=

=101 x|

~

v | on | s | e | |

1—-|CE|E|:|1’I
7| 8] o] 1| %]
4|5|ﬁ|'£|

S e e S
1=

o ||

Figure 1 : Manual Testing

1.2.4.2Record and Replay Automation

Graphical User Interface testing can be done using automation tools which used to

= GUI

done in two parts. In Recording process, steps are captured into thadanl@ayback
phase, recorded test steps are executed automatically on the Application uhder Tes

Tester checks for
addition of two
numbers manually
(16+64)

PN

=101 %]

%
I [D] | o
B = |)
2 151 15 e

14| 5| o] ==]
e o2 X D

o L™

—>
1 4

E

EREEE

Ll
L EEEE o

Ettt[&
LLEEEEE

Plagbmk

Figure 2 : Record and Play

1.2.4.3Model Based Testing Process

Model here is a graphical description of system's behaviour whigh uselto
understand and predict the behaviour of system. Models help in gegegticient test
cases using the system requirements. Below points need to be wash$adethis model
based testing:

Prepare and Build the model

Identify Inputs for the model

Calculate expected output for the model

Execute the tests

Compare the actual output with expected output

Decide further actions on the model

Modeling techniques from which test cases can be derived:

Charts - Depicts the state of a system, also checks the state aftengotse i

Decision Tables — These Tables used to determine results for each input applied

Model based testing is an evolving technique for the generationt aftsess from
the requirement specification. This method can determine undesitatds that your
GUI can attain which is the main advantage of this method cochgar@bove two

methods..

Chapter TwoLliterature Review
2.1 Mobile Operating Systems:

Operating system (OS) that allows smart phones, tableeR€sther devices to
run applications and programs is considered as Mobile Operatingnsys/obile
Operating System typically starts up when a mobile devicemmter on, present screen
with tiles and icons that present information and provide applicatia@ssitdity. Mobile
OS also handle cellular and wireless network connection functionafhty phone
accessibility. Some of mobile device operating system exampthsde Apple iOS,
Google Android, BlackBerry OS, Symbian, webOS by Hewlett Rdciarmerly Palm
OS) and Windows Phone OS.

2.1.1 Android:

Google released the first Android OS by the name of ‘AstroSeptember 20)
2008 (Develop Apps | Android Developers). After some period of time nexadgx)
versions ‘Bender’ and ‘Cupcake’ were released. Since then Godgjeed the trend of
naming conventions for Android as any dessert or sweet in alprebetder. Other
successive releases were Donut, Eclair, Froyo, Gingerbreadgyetonb, Ice Cream
Sandwich and Jelly Bean. Latest Version of Android is Marshmahlbigh is Android
6.0. Android platform is not closed like iIOS by Apple, there are ngawg Android apps
built by developers.

Android gained immense popularity into the smart phone and tablets market
because of its beautiful appearance and efficient functionalityreTivere many new
features introduced which played a important role in success of An@®i Android is
one of the top operating systems during current time.
2.1.2i0S:;

Apple introduced iOS was on 29th June 2007 when the first Apple’s iPhase w
announced (iI0OS - Apple (IN)). Post which iOS has been gone with o@gnades and

the latest one is the iOS 9 version.

10

Apple has still kept iIOS as closed Operating System and logtesl any other
company to lay hands on its OS. Unlike Android, Apple has much conteghtva the
performance along with user interface which the reason thaiathe appearance of iOS
is still same as it was in its first iOS version. Overakrface is user-friendly and is one
of the mobile top operating systems in the world. Till now iOS lieen used in all
iPhones, iPod & iPad.

2.1.3 Symbian:

Symbian Operating System is developed by Nokia (All About Symblaany
other company want to use Symbian then that company will have to takegemirom
Nokia before using it. Nokia has been a giant in the low-end mobileedsggment, so
except Java Symbian was the most used in mobile phones couplerofageain the
market. Till now Symbian is widely used in low-end devices but #aahd for such
devices has been continuously reducing. Nokia has upgraded Symbiae @8&bilto
made it capable to run efficiently on smart phones. ANNA and BEiieEhe two latest
updates of Symbian that are currently used in smart phones of Nakeartuhately,
Symbian Operating System is going downwards nowadays due tosingygepularity
of Android and iOS Operating System.

2.1.4 Blackberry OS:

Blackberry Operating System is originally the property dMRResearch In
Motion) and it was first released in 1999 (THE MOBILE INDIANResearch In Motion
has developed this operating system for its Blackberry rangenaft phone devices.
Blackberry is much more different from other operating systémroduced. Interface
style, and the Smartphone design, is different having a trackbdéwwoe for moving on
the menu items and a gwerty keyboard for inputs.

Like Apple’s iOS and Nokia's Symbian, Blackberry OS is alsdogec source
Operating System which means it is not available for anyr atbrapany. Latest release
of this operating system is Blackberry OS 7.1. This version mtesduced in May 2011

11

and it is being used in Blackberry Bold 9930 device. It is considered\eery reliable
Operating System and is capable to resist to almost all the viruses orenalwa

Some of the example of smart phones running on Blackberry OSaaibBrry
Bold, Curve, Torch and Blackberry 8520 devices.
2.1.5Tizen:

Samsung has co-worked with Intel to develop new operatingrsyfstr mobile
devices which is named as Tizen OS. This is a Linux-based platfoiinfrom Nokia
and Intel's ditched MeeGo. It is an open-source, similar to Android n@ans that
manufacturers who choose to adopt it are free to use with théaogtelo make it as
unique as they are. Tizen is a flexible operating system boith needs of all
stakeholders of the mobile and connected devices environment, includunce de
manufacturers, network operators, mobile application developers amgbeimtent
software vendors. Tizen is developed by a developer's community, opdarsource
governance, which is open to all members who wish to contribute.

Tizen operating system is available in multiple profiles twvesas per different
industry requirements. Current Tizen profiles are Tizen in-vehidigainment(IVI),
Tizen Mobile, TV, and Wearables. Additionally, as of Tizen 3.0, allil@ofire built on
a common, infrastructure called Tizen Common infra.

Using Tizen OS, device manufacturer can start with any of {hreddes and can
modify to serve their needs or use the Tizen Common base topgrefile to meet the
memory, power and processing requirements of device and quickly britag tite
consumers.

To meet the needs of specific customer segments Mobile operatorgork with
device partners to customize the OS and user experience. Ftrypdeseand ISVs, OS
offers the power of native application development with support of ungadahi ML5.
This Operating System also offers the potential for apphicadevelopers to extend their
reach to new “smart devices” running on Tizen OS, including weardblices,

consumer electronics, cars and other home appliance devices.

12

2.1.6 BADA:

Samsung owns an operating system that is known as BADA Ope&tstem. It
was designed for mid-range and high-end smart phone segment. Bsidaifisantly
user-friendly and efficient operating system, much similar to @ddrOS, but
unfortunately Samsung did not use Bada OS on large scale for unknown reasons.
Latest version of Bada 2.0.5 was released on March 15th, 2012. Till now only
three phones are there which operates on Bada OS. These smart grieoSassung
Wave, Samsung Wave 2 and Samsung Wave 3. Bada would have achieved reech gre
success if Samsung had promoted it.
2.1.7 Palm OS:

Palm OS was targeted to design to work on touch screen Grapkalnterface
(PalImOS Operating System). Palm OS was developed by Paninln996 for
PDA(Personal Digital Assistance) devices. After some ¥,@awas upgraded and it was
able to support smart phone devices. Unfortunately, this could not maldaasyon the
market and is not being used in any of the latest top devices.

It has been almost nine years since we saw the latest up@@7 for Palm OS .
Palm Operating System was used by many manufacturagdimgl Lenovo, Legend
Group, Janam, Kyocera and IBM eatrlier.

2.2 Test Automation Approach of App Developers

Smartphone applications have recently gained popularity. Millions at ginane
apps are available on various application stores which give useosis/aptions to
choose, however, this also raises concern whether these apps stedebiefore they
released for users. In this study, we are exploring to understangsh@automation
culture among application developers working on Android. Specificaley,want to
emphasis on current state of testing of applications, tools andwakee that are
commonly used by developers, problems faced by developers. A brelyuaper was

published for such study in 2015 (Pavneet Singh, Ferdian, Nachiappan, Thomas, &

13

David, 2015). In this chapter we will present study on various Exishitulpile
Application Testing Tools.
Existing Mobile Application Testing Tools/Frameworks:

This Section presents several existing tools and approaches fautihmated
testing of mobile applications. A number of different currently abéd automated tools
is described in “Test Automation Tools for Mobile Applications: Aebrsurvey”
(Hughes Systique Corporation, 2013). Some of them belong to the standarthaba@ire
used as a basis for more complicated approaches.

Techniques used in most of the available tools are formed from the keyword name
and a related parameters list. Generally keywords areteliréo a specific Graphical
User Interface object for defining the parameters of objdeats. defining the target
object, keywords use references that accept either object éxtarantent of the targeted
object. Hierarchical structure of Graphical User Interfats® used in the references
taken, by defining the parents of the object searched. Manyea, tising the hierarchy
can be the only way out to identify an object uniquely. Some of the aoelbased on
references being described here.

2.2.1 Rabotium:

Renas Reda, an international authority within test automation developed
Robotium Tool in 2010. Robotium was the leading testing framework fairad
Application Testing during the time. Robotium has been developed by yeans of
dedicated development. This is supported by a highly active comnufnitgvelopers.
Robotium is used by developers across the world, which includes maprasgs as
well as thousands of application studios related to Boutique. Robotitemsisong
technical foundation for any Android Testing company. Still, the intthr@gerating
System and hardware fragmentation creates challenges sigthyfidzoth from a quality
perspective and cost point of view. Robotium founders introduced Robotium fech
address the issues which enables Robotium users to further tidineagnificant power
of Robotium framework. Robotium Recorder is the first commerdmthvis offered by

14

Robotium Tech. Recorder provide Robotium users with an ultimate powerful
productivity framework. This enables Android developers and qualitypeers to create
true Robotium-grade test scenarios.

Robotium is a User Interface testing tool designed for AndroidltQS suitable
framework for tests automation for different successive Androidioes and sub-
versions. Tests Script created by Robotium used to be writtenvim ld3aguage.
Robotium framework libraries were written for unit testing purpdsstrumentation is
abstracted in Robotium, which enables the preparation of grey-box aetbtast cases
for applications. Robotium can be used both for applications with the socodze
available and without code information. With a help of Robotium, it ssipte to write
function, system and acceptance test cases, to find currentiestauitd views and to
make decisions automatically (User Guide Android Studio- Robotium Tech).

2.2.2 SIG-Droid:

SIG-Droid was introduced in 2015 by Nariman Mirzaei, Hamid Baglgyiadh
Mahmood and Sam Malek. A research paper is published in IEEE a®rBid:-
Automated System Input Generation for Android Applications in 2015 (Narikamid,
Riyadh, & Sam, 2015). SIG-Droid is a test framework for systestintg of Android
applications which is backed with automated analysis of framewmrlextraction of
application models and symbolic execution of test script guided bylsnfmteobtaining
test inputs which ensures covering various reachable branchespirognam flow. SIG-
Droid uses two automatically extracted models: Interface Model and BeinaviModel.

Interface Model was used to find values of an application that carde¢ved
through its interfaces and are then exchanged with symbolic veloes deal with
constraints with the help of a symbolic execution engine prograst. tRis Behavior
Model was used to drive the application for symbolic execution anérge event
sequences.

SIG-Droid uses symbolic execution technique, a promising automatiualgtes
technique which can effectively deal with constraints used. Sl@Dmierages the

knowledge of Android’s specification to automatically extract twodels (Interface

15

Model & Behavioural Model) from an application’s source code. Modelsised for the
generation of event sequences that aimed to simulate actual hebafiom user
perspective. Behaviour Model used to capture event driven behaviour gfpieation

including the relationships among event generators and event handlefacénidodel

represents all input interfaces in the application and the widggtsling buttons, input
boxes, checkboxes etc.

2.2.3 PATS:

Parallel Graphical User Interface Test Framework for AmddApplications was
proposed in 2015 by Hsiang-Lin Wen, Chia-Hui Lin, Tzong-Han Hsieh, and Cheng-Z
Yang (Hsiang-Lin, Chia-Hui, Tzong-Han, & Cheng-Zen, 2015). Framework stensi
two kinds of nodes for testing: one node is testing coordinator and secandet of
testing slaves. PATS framework dynamically analyzes GecaphUser Interface
components for generating test scenarios. Reverse engineeringdpwas used in GUI
Ripper technique. GUI structure was dynamically crawled tatergee for GUI as the
state model for Application. For avoiding infinite explored visitetll Gstates of
application, GUI Ripper checks the state depth threshold and statalegoe. Approach
provides a broad testing coverage by going through testing all possdie sequences
of Application. The main difference is that PATS generatetesequences for short-
term testing on the set of slave nodes. Test Cases then assdylifeese short-term
event sequences and schedules them for the slave nodes of the framework.

2.2.4 MonkeyRunner:

Android SDK provided a tool to execute Test in Android devices called
Monkeyrunner. Monkeyrunner provides an API for using commands to exeesit
scenario in Android emulators or Android devices (monkeyrunner | Android Developers).

APIs were used for writing programs which can control an Anddeidce or
emulator from outside. Using monkeyrunner, tester can write Pytlogngon to installs
an Android application or testing package, executes it, sends key tcodesaptures

screenshots of user interface, and saves screenshots on the tworkf€.

16

Monkeyrunner tool was initially designed to test applications and devatethe
functional level or at framework level and for executing unit sestes for application
under test, but tester are free to use it for other purposestofgteSpecific system
included in Android SDK is Monkey, including Monkey tool and MonkeyRunner.
Monkey tool is running directly on the mobile device and allows the ggoerof
random events, like key presses or touching screens to discover ¢émsigbdiugs by
searching the known error patterns. MonkeyRunner is an API build on Momddethat
enables functional testing and requires writing Python scriptmdnage the testing
process. It allows the sending of key events, taking screenshots of aGd)
programmatically controlling the testing process on multiple Anlddevices at the same
time. MonkeyRunner can compare screenshots with reference irmagesidate the
visual correctness of the GUI.

2.2.5 MobiGUITAR:

This framework was introduced to support a wide variety of modelbase
Graphical User Interface testing techniques. The innovation itanatchitecture of
GUITAR framework that uses plug-ins to support extensibility arekibility.
MobiGUITAR uses three basic steps: ripping, generation, and execution.

Mobi-GUITAR acquired a state machine model of Graphical Uderface and it
uses algorithms which better suited for mobile Application PlaigofDomenico, Anna,
& Porfirio, 2015). Ripper in Mobiguitar is an enhanced version of Android Ripipnst
launched the app in a given start state and then obtain eventkitibtaan be performed
on the Graphical User Interface in the state. This listdded with each event as a
separate task in a task list which is used to fire events. Ripp®ves an element from
the task list and then fires that. As an outcome new states and the GUI's focus
changed as the events fired. At the change in currenttb&tepper obtains the list of
new events that can be fired and appends to the task list in thataize path from the
start state is pretended to each event. Thus formally, taslkaguence of events that

always begins with an event in the start state that can be fired.

17

2.2.6 ReWeb and TestWeb:

ReWeb and TestWeb was initially developed for testing of Webiégifmn and
also it supports analysis of Web applications (Maryam, RosziatNogaini, 2015).
ReWeb accepts pages of a Web application to analyse for buildiktMitsmodel in
accordance with Meta model of the web page of the ApplicationWedstwas used
generates and execute test cases suit for a Web applicdtmse wnodel used to be
generated by ReWeb technique. ReWeb and TestWeb were enhantesdifigr mobile
application for Android Operating System. This approach is to wer&naadd-on with
Eclipse IDE such that it accepts java source code of applicatider test as and input.
Proposed adaptation model includes two rudiments for testing webadgplias in the
case of Reweb and TestWeb. Mobile_Analyzer is the first partatialyzes the source
code of the software and derives the UML diagram while the othergenerate test
cases and executes testing scenarios. Mobile_Analyzer usedstdhgainput to the
Apk_Analyzer. ApkAnalyzer is an open source application that helpsniergte UML
from android apk . Apk_Analyzer ias a virtual analysis tool, whialsesl to analyze API
references, view application architecture and dependencies, and rdisi@sgtecodes in
android applications. Apk_Analyser is a complete tool chain that suppodgication
of the applications with more printouts. In the proposed model, Apk_Anahcoapts
the java script source code as input and display its UML usediageam as a output.
UML diagrams are then passed to the test generator to tenleeatest cases for the
Application under Test. Test cases used to be selected based wsttlceiterion or
specification and passed to the test case executor module. Forzimgithe generated
test cases and improve the completeness, use case specificatioto use based on
functional and scenario. Use case specification used in the modabusetased on the
following: (a) Identifying the functions of the SUT. (b) how to detme if SUT is
properly working (c) Testing every functionality based on sceneast cases, one by one
and (iv) Validate if the SUT result.

18

2.2.7 Appium:

Appium has been developed for automation testing of native, mobile , and hybr
applications (Appium: Mobile App Automation Made Awesome.). It is lalée as an
open source Tool. Web apps which used to access using a mobile brawvsalteat as
Mobile Web Apps. Hybrid apps have native controls that enable interagiiborweb
content using wrapper around a web view. Appium uses a webservergbs¢e REST
API. Web server receives connections from client, listensdisrmands, transmit those
commands on a mobile device for execution, and responds with an reapan$€l TP
response which represents the result of the executed commandepCof client/server
architecture provide lot of possibilities like; we can wrigsttscripts in any language
which has http client API, but it is much easier to use librariesppium client. We can
put the server on different machine and our tests are running orediffdest code can
be written and rely on a cloud service to receive and interprebthemands. Test Script
Execution is always performed in the context of a session. Inifzlents create a
session with server in specific way to each library but theghfes by sending a POST
request to the server, with a JSON object. Now server wilt sfarthe session for
Automation with responding a session ID used for sending commantgrfudason
Object” Desired capabilities” are set of keys and valuestedghte Appium server which
tell the server about the kind of automation session interestede @heralso various
capabilities which can be used to modify the behaviour of therséuving automation
execution. As an example, we might set the platformName capabili@S to intimate
Appium that Tester want a session for i0OS , not for a Androiccdexilso we might set
the safariAllowPopups capability to ensure that a Safari automag@esion has been
allowed to use JavaScript for opening up new windows.

2.2.8 Image Template Matching :

An automated software testing system invented by John A. Gregaly @V.
Pope, F. Stone, & John, 1994)can be used to automate the testing and to ¢benpare

design of different versions of the system. During the executitimeafystem under test,

19

the tool records all inputs, such as keystrokes and mouse eventgvasdthem in the
script. Furthermore, it captures the screen images of thersyatben the next version of
the system under test is executed, the tool plays the inputdeddoefore to operate the
system and captures the screen images again. The screenghetdirst version of the
system are compared to the correlating screenshots of thedseersion called by the
same inputs. The tool displays the differences of the imagetand svhat components
of the Ul design have been changed. This tool does not evaluateahdefsign of the
system, but demonstrates the visual differences between twongeof the same screen
via image capturing. This technique could be used to compare thappdightion screen
with the Ul image created by the designer.

2.2.9 Sikuli:

Sikuli is developed by Tom Yeh, Tsung-Hsiang Chang and Robert CerMill
Sikuli image recognition tool to automate the testing experiaricthe GUI which
includes visual scripting APl with an integrated development environifMichael,
Nikolaus, & Tom, 2014). Sikuli is based on the finding of target pattennthe screen
and does not need access to the source code. Therefore it can be luded detktop
and mobile applications. However, mobile applications can be tested otilg desktop
screen running in simulator or getting the application screehemuldésktop connecting
the device via VNC server. The second option can be used for Android &ppica
without problems, but not for iOS devices, since VNC servers areavalable for
iPhone/iPad. The tool provides two core functionalities — Sikuli SarigtSikuli Search.
With Sikuli Script it is possible to write visual scripts ythlbbn (combination of Java and
Python) and to refer to Ul elements using the provided librarymdtions and action
commands. It allows the taking of a screenshot of the needed datplonent, adding it
to the script and defining the action that this element should perfdrentool searches
for a given component on the applications screen with a pattern nmatguhnique,
using opensource computer vision library. It compares the target patteri tegan on
the screen of the same size, trying to find the most similar and is suitable for small

patterns, such as buttons or icons. Sikuli also has an algorithmett teger patterns,

20

like a window or dialog box using a combination of matching elemerttseinelation to
the target pattern. Applying grayscale or multiple scalesntlslements, Sikuli is able
to identify color change and resized images to detect possiblegehan screen
resolution. The system also provides the possibility to find texhexiés using optical
character recognition (OCR). Sikuli Search is a part of yeem that enables the search
of information about the selected Ul object in the online documentatiazontains
mentioned three components: First is a screenshot engine, Secandlisor querying

the search engine and third is a Ul for adding screenshots.

21

Generic script Automatic
System Application | Testing Multiple Devices based ’ Tuple Concept for Analysis
Framework / Features | Functional Classification Y : pp ; . € P Grouping — Easy Maintability (Output
Testing Testing Devices Parllely (Hierchical pe . e
Concept " ; and Reusability interpritation &
Libraries) :
bug Detection)
SIG-Droid
Behaviour and Interface Driven Yes Yes No No No No Less
(IEEE, 2015)
Mobi-Guitar GUI ripping, mﬂ.aE:o:. and Yes Yes No No No No Less
(IEEE,2015) execution
PATS Parllel GUI Ripping and ! :
(IEEE, 2015) Execution Yes Yes Yes No No No Less
ReWeb & TestWeb UML Based Application y y
(IEEE, 2015) Testing No Yes No No No No Less
Robotium . lication Testi
. or application Testing. : ;
(Apache License, 2014) (Create Event Based TCs) No Yes No No No No Less
Sikuli Image recog) : : ;
(IEEE, 2014) GUI cottipornciits No Yes No No No No Less
Appium Native Apps and System
_u.—. . Testing with background API Yes Yes Yes No Partial No Less
(appium.io) Support
Generic with Background
Proposed Framework | API Support (Hierchical Yes Yes Yes Yes Yes Most

Libraries)

Comparison of Available Framework

Figure 3

22

2.3Programming languages for mobile testing:

In recent years, Mobile application development industry had beereckatlthe
stage which was unexpected for most of us. It is changingdliefbusinesses function
across the world. Enterprises are aligning mobile applicatmmiseir productivity with
the rapid innovation in mobile devices across platforms. Enterprisef@amobile app
developers to write versions of an application for many diffegatforms with a
common language with of reusable code. To realize the ide&imésto validate, and
narrow down on the platform you would like to build your application. As soaniss
decided, it's time to select language, keeping in mind the strategy which you build.
2.3.1 Python:

Python was developed through the PEP (Python Enhancement Proposal)
convention. PEP process was the basic mechanism to propose majeaheest and to
collect input on an issue from community, and for documenting the ndesigisions
which have gone into Python development. PEPs were reviewed and cominetited
Python community (Our Documentation | Python.org). The major academereocd
on Python was named as PyCon. Many special mentoring programméliRgladies
were there.

Python is high-level language which is widely used, general-peypasd
interpreted dynamic programming language. Design philosophytbbRPemphasizes on
code readability, syntax that allows programmers to express cerngdptv lines of code
than in languages like Java or C++. Language provides constructs ighintended to
enable clear programs on small and large both scales.

Python language supports many programming paradigms which incbgbes-
oriented, functional programming or procedural style programminovVvide a dynamic
type system with an automatic memory management and has actarmggehensive
standard libraries. Python interpreters are available foetyanf operating systems that
allow Python code execution on different systems. By using thitg-gaols, like

Py2exe, Pyinstaller, code can be packaged into various execotagtams for some of

23

the popular operating systems by allowing the distribution of Pythseebsoftware to
use on vartous.

CPython is the implementation of Python which is free and open-saftoae;
also follows development model based on community based model forall fof its
development. It is managed by the Python Software Foundation whicn iprofitable
organization. Most of the Python implementations can function as a cumlime
interpreter, by which the user writes sequential statementgexeives the immediate
results.

Python integrated development environments are also consist browsgr-base
IDES, intended for science and math-related development and hosting environment.
Language Enhancement goes along with CPython development. Pubkseselof
Python come in three categories. Version number used to incremerdecmgsthese
distinct types.

Major releases are those which are largely compatible amddiding new
features in the version. In this case the second part of the versioher used to
increment. Such releases used to schedule to occur every secorahgezach major
version supported for bug fixing after its release for sewyerals. Bugfix releases do not
include any new features but only the fixing of bugs reportethis case, the third and
final part of the version number used to increment for the version nwmpbate. Such
releases are made periodically when sufficient number of axgs been fixed since last
released version. Security vulnerabilities also used to fixed in such seleasmons.

2.3.2 Java

Java is a high-level programming language originally developedSbg
Microsystems and released in 1995 which was later acquired @réwode Corporation.
It provided a system for developing application software and diegidt in a cross-
platform computing environment.Oracle Corporation is the current owrtkie affficial
implementation of the Java SE platform, following their acquisio8un Microsystems
on January 27, 2010. This implementation is based on the original impleorerdht

Java by Sun. The Oracle implementation is available for Micra®oftlows (still works

24

for XP, while only later versions currently "publicly” supported), M&$ X, Linux and
Solaris.

The Oracle implementation is packaged into two different distohsatiThe Java
Runtime Environment (JRE) which contains the parts of the JavaaB&rpi required to
run Java programs and is intended for end users, and the Java Develpni#bK),
which is intended for software developers and includes developnmatsioch as the
Java compiler, Javadoc, Jar, and a debugger.
2.3.2.1Java Platform

Portability was one of the design goal of java, that meangrgms designed for
the Java platform may run same as any combination of haréndroperating system
with an accurate support of runtime. By compiling the java lareygade this can be
achieved to an intermediate depiction called Java byte code, r thtre directly to
architecture particular machine code. Java byte code are intemded executed by a
virtual machine which is particularly written for the host hanshyéut it is considered
that Java byte code instructions are comparable to machine doel&nd users use a
Java Runtime Environment (JRE) which is installed either on tveir machine for
standalone Java applications or for java applets in a web browser.

Graphics, networking and threading are some of the host speeaificds which
were provided to access in a generic way by Standard librdies.porting can be
simplified by the use of universal byte code. Although, the overheadevpretation of
byte code into machine instructions makes programs always rum stowly than
native executables. Just-in-time was introduced for compilatiogtefdndes to machine
code during runtime. Java is a platform-independent language wi@ahsnit can be
adapted to any platform to run on by a Java virtual machine (Java Softwarte).Orac
2.3.2.2Uses

Java was choosen to be used as a key pillar by Google and Androld the
creation of the Android operating system which is an open souod®lemoperating

system. Whilst the Android operating system which was built orLitgx kernel was

25

written mostly in C,the java language was used by the Android Si3kthe basis for
Android applications. Though, Android using Java byte code as an intetenstip
while not using java virtual machine and finally targeting Android's @alvik virtual
machine or more recently Android Runtime which actually compilesicabipins to
native machine code upon installation.

Android also does not provide the full Java SE standard library, whidst t
Android class hierarchy has an independent subset for its implementation.
2.4 Literature Gaps:

Current work done in the field of mobile application testing shows thiea¢ are
still holes in effective automated testing considering the vispmksentation of the GUI
elements. In particular, currently available Mobile Applicatiorstiig framework has
various limitations and seems to be especially hard for mobilepaoies to adapt for
their Native Applications Testing. In recent years thereldees an increased focus in
this area.

Prior Studies have generally focused on the way to establish aiméetween
Automation Tool and the lower level of mobile devices in order to egdbet scenarios
automatically. A well defined approach to adapt such tools have rarely focused

Scripting efforts are rarely considered. Reusability ofgespts is the area where
we require a framework with well defined hierarchy so thaipsog efforts can be
optimized.

Approach for making generic scripts for different devices witimilar
functionality has not been addressed which should be addressed in dr&nvelmich
would give an edge to mobile testers

Making a group of device dynamically as per requirement for péatiscenario
is not addressed. Devices grouping as Master and Support devices t&stpease
requirement is an important area which should be implemented at framework core.

Maintainability is the important area for reusing the scriptdong time with the

Ul changes which should be focused at framework level.

26

Chapter ThreeProposed Work

Current work done in the field of mobile application testing showstkiese are
still holes in effective automated testing of Ul design, considerthe visual
representation of the GUI elements. In this chapter a hieraft@méwork have been
proposed to address the limitation with the existing framework in the literatissv.

3.1 Data Driven Model:

Main principle which guided the project implementation were to implg the
variability to elements such as environment, end points, test data, ngardlitest
devices, core protocols, locations separated out from the test (sgripts). We
introduced library approach. All test paths has been divided into funcpartsl and put
in methods. If such method could be divided into other smaller functional whrch
could be used in other methods — new methods could be made. All methods mave bee
grouped into thematic libraries resulting in creation of hatriaal Framework. Objective
representation of the mobile Ul is accomplished by DroidManagerevewramework
is not dependent only on that. For achieving the Test Scripts Vigysatid flexibility,
This Framework was created. Moreover, for achieving utilityciefficy and ease of use
ADB(Android Debug Bridge) is a adaptable command line tool thakes you
communicate with an emulator instance or connected Android-powered.d&biBdets
you communicate and form a bridge for establishing communication é&etwmebile
device and PC running the tool. Core Methods are gathered indb@rilower level.
DroidManager contains methods which are used by all helper &brafihey are the
lowest in terms of level of abstraction. Most of them are givire basic Ul interaction
functionalities like pressing the buttons, clicking particular objectsliding on the
touchscreen. They are binding Droid engine and higher level methods.

27

Low Medium High
DroidMa

nager.py

Test
Scripts

Helper
Librarie

Figure 4 Interface Diagram for Droid 'Engine

Aside from above libraries which are implementing test cagesution paths,
there are others, responsible for background functionalities.

One of the most important RuninThreads.py which is taking care of connected
samples management depending on the test script type. Differtecsides need different
samples count to be properly performed. For example sending SMIS aedeast 2
samples; one is sending the message and the second one is receGatigforwarding
on the other hand needs at least 3 samples; one is making the Wiseccad one is
forwarding it, and at the end the third one is receiving the calhahalle all connected
devicesRuninThreads is setting them into groups which contain sample count needed to
execute the test. Each group consists of 1 Master device anddglages. Masters and
Slaves roles should be defined in GUI before the test. As itewplsined before, core
functionalities like sending messages, needed for performingdsst are grouped into
thematic libraries likenelpers. Test execution paths on the other hand are the highest
level of Framework abstraction and are located in Test Sciiglst Scripts consists
mainly of test case logic and test path. They are only refeseto other Framework

methods arranged respectively to test case characteristic.

Framework Architecture

28

Test Scripts

[TSLpy] [TS2.py] [TS3.py] [TS4.py] [TS5.py]

~] Pl P
Framework Libraries \
4 L)
Helper_Libraries
Helper_Con Helper_Cal Helper_Net Helper Cal | |
tacts Is work culator
\ J
[RunThreadManager] [SearchObjects] [Constants

J

DroidMana
ger

DevicesMa CMDMana HighLevel
nager ger Manager

TestResult
Manager

~N

o

/

Figure 5 Framework Architecture

29

There are several ways to control a mobile device from a 8&.iJ using two of
them:
ADB: Android Debug Bridge is a command line utility included with Googhgisiroid
SDK that allows communicating with connected Android devices. With ADB
possible to execute Linux like powerful system commands and gessattc lower layer
functions like installing applications, running activities & intents, pulling &
pushing files, getting device properties.
Droid Engine Libraries: Droid Engine interact with the device and use intents, Ul
Objects, Activities to interact with device. ADB and Platformoid Engine are therefore
responsible for communication and controlling the mobile devices from PC.

3.2Class Diagram for the Hierarchy

Helper libraries are the classes in which functions are groajpeltcations wise.
These functions uses lower level libraries like HighLevelltger, DroidManager in the
functions. DevicesManager and RunThreadManager controls execution of test scripts.

As it was explained before, core functionalities like sendieggages, needed for
performing test cases are grouped into thematic librarieshikmers. Test execution
paths on the other hand are the highest level of Framework alestract are located in
Test Scripts. Test Scripts consists mainly of test cagie &and test path. They are only

references to other Framework methods arranged respectively to teshaaszeristic.

hModel:bain

= o nirmiminr WA
reculew Palny [— SLIFEL: Saring.
#_H“ﬁ ﬁ. srhreme: bonloas,
Hommge: boslors i Sy " L — semefireDicven rad- Eoalioes
b sy HeOnbag Pty
ddoronDesrdand: bnloan sl Ty Saring mﬂ Fn
drerciesTo: exing Srng VR T SrEe T . s iioRuil .
i1 E smctines Saring goth pracrind wicelssr Pkl
AnoTaER M) el sz bt} || getiicdn]] m
#__przolesidomrgoly [T m—ﬂ
e e e T T [sdiscorencilall b sy Al Birmerer Tsbm]
AMom g T sl Frrl eccerd ng sl K
+arariErage: il =g) *ngylohiclfiebinis TalleCiN
= T = W b i P Tl
dnradiV ey ﬁm-'ﬂ
arrrotes BT m
dpmilmaldcsrg = Hzldalaaliry
dnmailmad i
srcrotesiiee]
#oriorRrd plonteSuly retArsText()
drrmn A I cesr s)
ey g bkt
drrmd Roprrtd twock]
Coerdd Muanger
suiariX: lnicge
SwiariY; g
.__l__ldrf## B el T et
sutopar inisger aj=be Lt
o g sgrillaropiim Tracchacki)
il Sriay
poreriony Y bttt
*wmlor ALl rarlia | srharklicwior Procrrdi orei'|
" sprusmil
wlark() #printra ks s by Tre oo o]
"'Q]..._._n"““'“ Bl MY
= prisfims bas s by TroadCiaragm{]
srrmmioCaram{]
o}
AREL{} 1
sulorpl]
smabsSoreaaptea)
et s bt st
I '.I*_’
Drriceirmpar—ite -rlu':l-li—:-l-
e, =,
KTy 5 etakr Crimpelag|] Drvice
_chork St Stan(} sk Dngrmmislogd
= ke o My tader Logai] *ebvion: sdiclivmy
el sriere] | e ii=og]
Eﬁp mﬂ.u sl oSk
m sarlovlor S Traet)
e T e ke
‘e ritork s mertrd(] sgotisdeinlioviore)
FEotwTa Ty sgetlruierHudirs(]
:.-nl.n-hu gty
= g ke e = gotFrreiam Siop])
s g TE Recnndiag]

31

3.3Devices Grouping: Master/Slave Concept

Framework can handle multiple groups of test devices at samelé¢jpesding on
Test Script Type. Different test cases may need diffecennt of Test Devices to be
properly performed. For example sending SMS needs at least 2esamphe is sending
the message and the second one is receiving it. Call forwarding oth#rehand needs
at least 3 samples — one is making the voice call, second onsv&dorg it, and at the
end the third one is receiving the call. Tester may also wapérform same test case
parllely on different Mobile Phone which can be overcome with the concept introduced.

Master devices are the devices which should be tested and resuits.r Slave
devices are not to be tested, but could be used to help in testing. Master devickeni.e. w
Test Script requires minimum two devices and we are testirygome Master.Each Test
Script is concentrating on testing one Master device at auiitiethe help of Slave

devices. Other Master devices are tested in parallel if proper Slave cavailable.

Masters : ['0: G925F, ‘1:G537FZ’, ‘2: N915FY’] Slaves: ['3: G928F’]]

-
Group of Devices:

[0: G925F, 3:G928F,]; [1: G357FZ, 2: N915FY];
[2: N915FY, 3: G928F

.
[G925F, G928F ‘ G935FZ, G928FY]
[Test Script Execution] lL [Test Script Execution] ﬂ
[N915FY, G928F]

[Test Script Execution]

Figure 6 Devices Grouping Example with Parllel Execution

32

A

Result=0

Tested Master=0

Masters = Devices [Master]
Slaves = Devices [Slaves]

v

Remove Devices which fai

A\ 4

Masters = remove failed masters
Slaves = remove failed slaves

v

If (len(master)
+len(Slave))< sample
need to execute?

Ye

A\ 4

Group can not be formed
:minimum device not connected”

If Len (master)

<len(tested
No master) ?
Yes
A 4
Yy |_master =0,]_Slave =0
Stop tmpSlaves = X for X in slaves
subtestgroups =[]
v
I_master=.

If(

Test group=[] Result append

i_master<=len(

33

No

No

|_master<len(masters)and
(masters(i_masters))in
tested masters ?

|_masters<
len (masters)?

Yes
Tmp slave append(masters[i_masters]
Test group append i_masters+=1
(masters[i_masters])
i_masters+=1

No

If
t_sample<sample
need to execute-1

I_slave<len(tm
pslaves)?

Len(test group)
==(samples needed to
execute)?

Yes

Test group
append(tmpslaves|
i_slaves])i_slaves+=1

|_masters<len

(ters)? Sub test groups append
masters)”

(test groups) tested
mastersappend (test

group[Q])

Test droup append(masters[i_mastefs
]) i_masters+=1, t_sample+=1

Figure 7 Flow Chart for Grouping Algorithm

34

3.4 Scripting Approach:

Android provides methods and mechanisms allowing certain Ul functiesatit
be performed with Ul interaction at its top layer and withouirtdraction at its lower
layers using Intents, KeyCode. All intent, attributes, objeabrin&tion are captured
using Dumpsys for scripting.

3.4.1 Raw Scripting Approach

Tester can for simulate simple methods like pressing hardmatens ,touch
objects, clicking objects on the mobile screen. Droid Engine providésodse like
press(), or clickObject() with which interaction with mobile devidser Interface is

possible. Such methods can be used to write test scripts with desired test scenarios

press(*KEYCODE_HOME”",DOWN)

press(*KEYCODE_HOME”,UP)

setSearchObject(text = “Applications”)

clickObject(u“Application”, u“Applications”, “android.widget.TextView ”, “",0)
setSearchObject(u“Messages”, u“Messages”, “android.widget. TextView”, *,0)
clickObject(u“Messages”, u“Messages”, “android.widget. TextView”, “",0)

press(*KEYCODE_HOME”,DOWN)

press(*KEYCODE_HOME”,UP)

setSearchObject(text = “Applications”)

clickObject(u“Application”, u“Applications”, “android.widget.TextView ”, “",0)
setSearchObject(u“Messages”, u“Messages”, “android.widget. TextView”, *,0)
clickObject(u“Messages”, u“Messages”, “android.widget. TextView”, “",0)

e Y

Figure 8 Raw Scripting Approach Example

35

In above example there are two test scripts which are implamgesome
different test scenarios, but they are sharing at some pomg path. They are all
openingMessages app by going to home screen, clickiagplications and therMessages
object. Such approach is sufficient when we assume that tgsssame written only for
specific device and the test path will not change. But if we wakadtd apply those test
scripts to other device with different Ul, we would have to prepase test scripts or
modify old ones. For above example, if new device will have objedt teit Apps
instead ofApplications, we would have to change this text in every place in all test scripts
which could be very time-consuming.

3.4.2 Scripting Approach with Proposed Framework

To prevent constant modification in all places every time Ulngha in new
devices, library approach has been used. All test paths has been ditid&dhctional
parts and put in methods. If such method could be divided into other sfoalt&onal
parts which could be used in other methods — new methods was madethtisbave
been grouped into thematic libraries resulting in creation of rol@al Framework
Examples of such thematic libraries are helpers which are gigpupethods module
wise. Example :

Lib/Helpers/messages.py Methods related with messaging test cases:
sendSMS(), receiveSMS(), sendMMS(), receiveMMS(), eraseAllGsatien(),
MessagesMenu()...

Lib/Helpers/calls.py :Methods related with calling test cases: callNumber(),
answerCall(), disconnectCall(), rejectCall(), goToPhoneMoreSs{lingendSSCode()...

Lib/constants.py : Storing most frequently used constants like delays, Packages
Names

DroidPropertiesFileManager.py : Managing user configuration file which
contains properties needed for Test Scripts and Framework, elg.aapp accounts
credentials

DeviceProperties.py: Getting the mobile device properties, e.g. network name,

model name, network type, packet data availability, SIM state, etc.

36

Aside from above libraries which are implementing test cagesution paths,
there are others, responsible for background functionalities. One wiotemportant is
RuninThreads.py which is taking care of connected samples managdepending on
the test script type.

TS1.py TS2.py
helpers.messages. gotoMessages() helpers.Messages. gotoMessages()
|
vV
/Lib/HeIpers/messages.py \ /I_ib/DroidManager.py \
def goToMessages(): def goToHome():
self.goToHome() R press(u’KEYCODE_HOME,UP)
self.dev.clickObjectWith(text="Apps”) 1
self.dev.clickObjectWith(text="Messages”) def clickObjectWith(text,talkback):
......................... setSearchObject(text)

- AN J

Figure 9 Test Script Writing Approach with the Framework

Above figure is showing implementation from figure given in ravipsoag approach, but
with the approach given. The code which was responsible for openingddssg#, was
divided into smaller functional methods and was put in correspondingiddfrdow in
test scripts instead of redundant code, we have only one line whidallisg
goToMessages() method, which is defined in Lib/Helpers/messgghistpry. This
compared to raw STP scripting gives us benefits such as:

Flexibility : No need to change all test scripts in case of small matidn. Proper
change can be done in corresponding method only and it will takeé affienatically in

all test scripts in which it is used

37

Versatility : No need to create different test script versions for diffedentces. All Ul
changes can be handled in corresponding methods which are maintaiAatbimation
team to be compatible with all devices

Readability: Hierarchical framework structure makes test scripts éaggad as they
only consist of logical references to high level methods whiol @efined in
corresponding helper libraries

Saves development tila: No need to write new Test Scripts from scratch, some
functionalities could be already implemented

3.5RunThreadsManager:

RuninThreadManager is the core for the execution of test satlphe classes
which controls execution flow are defined in RunThreadManager. Dévroeiping
algorithm, Sequencing of Methods required to be followed, MultiThreadiog all

defined under RunThreadManager.

Perform Test Case Controller:
As it was explained before, core functionalities like sendieggages, needed for

performing test cases are grouped into thematic librakesHelpers. Test execution
paths on the other hand are the highest level of Framework alastract are located in
Test Scripts. Test Scripts consists mainly of test aagie hnd test path. Common Test
Script structure has been made and divided into below parts.

Preconditions: checking if mobile device is well prepared for the partictdst, e.g.
correct sample count, SIM card inserted. Executed in parallel on all connected device
Set Up: setting up the devices to meet the test requirements, ergyicganetwork mode
to 2G if testing some GSM only functionalities. There can bg@styf Set Ups. Set Up
Master: Executed on Master device from each test group; SetlldypsS executed in
parallel on all Slave devices from each test group

Do Test: Implementing test case execution path — interactions b/w Master and Slave
Result: TestResultManager used to take care of test result.Indicating propesaiid r

Pass: performed successfully and pass criteria were met

38

Fail: failed if pass criteria were not met or object was not found

Skip: was not performed due to not met preconditions

Error: encountered an exception due to Script or Framework exception

Clean Up: changing back settings which were modified during Set Up pagcuEed in

parallel on all devices from the test group

Preconditions

A\ 4

.

Create Groups

T

[Setup Master] [

Setup Slaves]

\/

r

Do Test
(Test Procedure)

A\ 4

Test Result

Pass
(Test Suceede (Test Faile)

Fail] [Error

Skip
(Syntax Error) (NA for Device

T~

[Take Logs

]

A

Clean Ug

Figure 10 Test Script Execution Flow

39

Chapter FOUrRESULTS

In this chapter we are evaluating the usability of the framlewlmat has been
presented. We will evaluate the areas which were discussed litedature gap in
chapter 2.The first implementation task of the pilot is to cremtdotypes of the
framework how well they have been met. it is that test automas a very large and
non-trivial subject.

4.1 Evaluating the Framework

Feature from the framework while working with the frameworkgrsuping
related test cases together into test suites. Librariee ha&en designed keeping
functional cohesion and coupling focused. Libraries have been kepteatdiffayers to
group the similar functionality together.

Next tasks were writing helper classesataomated tests for Call and SMS
functionality using both the data-driverand keyword-driven approaches and using them
latter also in other modules which might need similar functipna other modules.
Librariesproceeded without any surprises and in the end automated tests could be executed
for large scaleLibraries at core contain methods which can be used acrobelpér

classes. Some of these methods are like below:

Return Type Method and Description
Boolean typeText() . .
To type any text eg. in messages, emails etc
Boolean startActivity()

Start activities eg. Phone,Settings etc.
setSearchText/Talkback ()

Boolean
Find object with text or talkback on the screen
Boolean checklfCheckboxChecked()
Check if some options is enabled or disabled
Boolean clickCheckboxWithName()
Change status of options with checkbox
clickRadioButtonWithName()
Boolean) .
Selection of radiobutton among the group
slideHorizontalToClickSObject ()
Boolean

Slide horizontal to click something on the screen

40

Boolean
Boolean
Boolean
String
String
Boolean

Boolean

Boolean

Boolean

Boolean

Boolean
Boolean
Boolean
Boolean

Boolean

Int

Int

Double

home()/back()/menu()

Enters Home Screen/ Go to the previous screen/ Enters Menu
makeScreenCapture()

Captures Screenshot

unlockScreen()

Unlock Screen of the device

getPhoneNumber()

Get own phone number from phonebook

getScreenResolution()

Get Screen Resolution of the device

clickObjectWith()

Click Object on the screen with perticular attribute

hideKeyboard()

Hides the Key Board from the screen

scrollBackward()

Performs a backward scroll with the default number of scroll stef
(59).

scrollBackward(int steps)

Performs a backward scroll.

scrollForward()

Performs a forward scroll with the default number of scroll steps
(55).

scrollForward(int steps)

Performs a forward scroll.

scrollToBeginning(int maxSwipes)

Scrolls to the beginning of a scrollable layout element.
scrollToBeginning(int maxSwipes, int steps)

Scrolls to the beginning of a scrollable layout element.
scrollIToEnd(int maxSwipes)

Scrolls to the end of a scrollable layout element.
scrollIToEnd(int maxSwipes, int steps)

Scrolls to the end of a scrollable layout element.
getChildCount(UiSelector childPattern)

Counts child Ul element instances matching the childPattern
argument.

getMaxSearchSwipes()

Gets the maximum number of scrolls allowed when performing &
scroll action in search of a child element.

DS

getSwipeDeadZonePercentage()

41

Returns the percentage of a widget's size that's considered as a/ no-
touch zone when swiping.

4.1.1 Degree of Coupling and Cohesion in the Framework

Higher Level of cohesion and lower level of coupling lead to goodvaodt
design. Cohesion partitions functionality so that it is concise apsksi to the data
relevant to it, however decoupling ensures that the functional implatizents isolated
from the rest of the system.

Low cohesion means that the class does a great variety iohsa@nd is not
focused on what it should do. High cohesion would then mean that the dia=ssisd on
what it should be doing, i.e. only methods relating to the intention of the class.

As explained in the class diagram given there are differerarids at different
layer which have grouped the functionality category wise.

DroidManager - Contains all the methods which directly interacwvith the
Lower Layer of Android

HighLevelManager — Contains all the methods which are common ahdewil
required for execution of various steps in different mobile applications

TestResultManager — All the functionality related to Test Reduhnagement
have been kept under this

Constants — All the constants which would be required in Test Sarquikl be
kept here

Devicemanager — Functions related to devices managemenep@reirder this
libraries

CLI Manager — All the functionality which needs to be controlleanf CLI are
covered in this library

Helper Classes — Different Helper Classes used to bdemrids per the
Requirement. For Message Application Testing all the functiolasetkto Messaging
would be kept here. Whenever tester needs any function related sagegbke/she can

find in this libarary.

42

Decoupling allows you to change the implementation without affecting othsr par
of your software. The most effective method of decreasing couplmgnterface. As
explained all the modules are separated and mostly independent I8tz lower
level can be made without affecting the other parts. Frankewbrcore hardly get
changed as all the functions written either interact at Ldvesel of Android or its
related with device/framework management/Result Managenidns. way, higher

degree of Cohesion and Lower Level Of Coupling have been achieved in the framework.

4.1.2 High Level Requirements

* The framework MUST execute test cases automatically. That include®als
example verifying results, handling errors and reporting results.
* The framework MUST be easy to use without programming skills.

* The framework MUST be easily maintainable.

4.1.3 Automatic Test Execution

» The framework introduced is able to execute tests unattended after stagting t
Test.

» Tester should be able to start and stop test execution manually at any time.

» Itis possible to start test execution automatically at any time whightre
predefined.

» After certain events tester should be possible to start test execution acatynat

* There should be handling for Non-fatal errors caused by the Device Under Test or
the test environment must without aborting the test execution.

» Test results must be verified.

» Every executed test case must give output as either Pass, Fail or Soript Err

» Error and Failed test cases should have a short message explaining the failure
reason.

* Logs should be maintained for Test execution.

43

» Test execution SHOULD be logged using different, configurable logging levels.

* Result report must be created automatically after test.

4.1.4 Easeof Use

» The framework should use keyword-driven or Object driven approach.

» The framework must support creating Helper Classes to group similar
functionality together.

* The framework should be able to support specifying common set up and tear
down functionality for test cases.

» The framework should support grouping of test devices dynamically with the
execution of test script into test suites.

4.1.5 Maintainability

* The framework must follow modular approach for easy maintainability.

» The framework should be implemented using object oriented programming
languages.

* The testware in the framework must be under version control.

* The framework must have coding and naming conventions.

* Framework must have followed coding documentation standard. .

» Usability of the tested system must be increased as much as possible.

However, that the framework works well at least in similar exist as in the
pilot. Proving that it works in general in system and component émagptance testing
would require a larger study but there does not seem to be anynpsopteventing it.
Based on the positive experiences and good results it can bedhisatrtine framework
concept presented in this thesis is valid.

44

Chapter FiveConclusion and Future Work

This report intended to present a new Data Driven Frameworkl lmes@ython
Language. Framework has concept of grouping related testtogs#iser into test suites.
Framework designed in Chapter 3 is based on the requirementsedaitheChapter 2.
Using data driven and hierarchal approaches were considered mostaint lower level
requirements in terms of ease-of-use and maintainability and teermied concept
naturally had these capabilities. Although the experimental resdtpreliminary, yet in
the pilot run everything went pretty much as expected. The approagiedvwery well
and proved to be useful. Keyword-driven pilots proceeded without prolslemell and
results were even better than anticipated. Pilot experienaesogbected together and
based on them the overall framework was declared feasibleng€haaffected also
detailed requirements specified earlier and a revised requirement qatesasted.

Framework derives many interesting issues which can be funbhestigated in
the future implementation. As example, here are some crusiaddo the practical use

of it. First, we have found the inconsistency problem for the Opegjllications like

camera, Browser etc. For Such Applications libraries can be developed based on OpenCV

to access applications using Image Processing methods. | hoje tthe near future the
framework can also be released as an open source in one forntagrobiat way ideas
presented in this thesis would be easily available in a functiomakt for everyone and
other people could extend the framework into new directions. Whilengdor that to
happen, however, it is time to write the final period of this thesis.

45

Chapter SixReferences

All About Symbian. (n.d.). Retrieved 05 15, 2016, from
http://www.allaboutsymbian.com/: http://www.allaboutsymbian.com/

Appium: Mobile App Automation Made Awesome. (n.d.). Retrieved May 07, 2016, from
http://appium.io/: http://appium.io/introduction.html?lang=en

Develop Apps | Android Developers. (n.d.). Retrieved 05 14, 2016, from Android
Developers: https://developer.android.com/index.html

Domenico, A., Anna, F. R., & Porfirio, T. (2015). MobiGUITAR Automated Model-
Based Testing of Mobile AppSoftware , 53-59.

Hsiang-Lin, W., Chia-Hui, L., Tzong-Han, H., & Cheng-Zen, Y. (2015). PATS: A
Parallel GUI Testing Framework for Android Applicati@@omputer Software and
Applications Conference (COMPSAC), 2015 IEEE 39th Annual. Volume: 2, pp. 210-215.
Taichung: IEEE.

Hughes Systique Corporation. (2013). Test Automation Tools for Mobile Applications: A
brief survey. 11.

i0S- Apple (IN). (n.d.). Retrieved 05 13, 2016, from http://www.apple.com/ios/what-is/:
http://www.apple.com/ios/what-is/

Java Software | Oracle. (n.d.). Retrieved 04 20, 2016, from Oracle Technology Network
for Java Developers | Oracle Technology Network | Oracle:
https://docs.oracle.com/javase/tutorial/

M. Pope, G., F. Stone, J., & John, A. G. (19%&tent No. USH5335342 A.

Maryam, A., Rosziati, I., & Noraini, |. (2015). Adaptation Model for Testing Android
Application. Computing Technology and Information Management (ICCTIM), 2015
Second International Conference (pp. 130-133). Johor: IEEE.

Michael, K., Nikolaus, C., & Tom, Y. (2014). Abstracting Perception and Manipulation
in End-User Robot Programming using Sik@014 |EEE International Conference on
Technologies for Practical Robot Applications (TePRA) (pp. 1-6). Woburn, MA: IEEE.
monkeyrunner | Android Developers. (n.d.). Retrieved May 05, 2016, from
http://developer.android.com:
http://developer.android.com/tools/help/monkeyrunner_concepts.html

Nariman, M., Hamid, B., Riyadh, M., & Sam, S. M. (2015). SIG-Droid: Automated
System Input Generation for Android ApplicatioBsftware Reliability Engineering
(ISSRE), 2015 IEEE 26th International Symposiumon (pp. 461-471). Gaithersbury, MD:
IEEE.

Our Documentation | Python.org. (n.d.). Retrieved 04 24, 2016, from Python Software
Foundation [US]: https://www.python.org/dev/peps/

PalmOS Operating System. (n.d.). Retrieved 05 14, 2015, from PalmOS Operating
System: http://www.operating-system.org/betriebssystem/_afggigpalmos.htm
Pavneet Singh, K., Ferdian, T., Nachiappan, N., Thomas, Z., & David, L. (2015).
Understanding the Test Automation Culture of App Develo@&ds |EEE 8th
International Conference on Software Testing, Verification and Validation (ICST) (pp. 1-
10). Graz: IEEE.

46

THE MOBILE INDIAN. (n.d.). Retrieved 05 15, 2016, from THE MOBILE INDIAN:
http://www.themobileindian.com/talktime/question/What-is-the-operatysgjem-in-
Blackberry-Q-

Tschernuth, M., Lettner, M., & Mayrhofer, R. (201Eyal uation of Descriptive User
Interface Methodol ogies for Mobile Devices. Berlin: Springer-Verlag.

User Guide Android Studio- Robotium Tech. (n.d.). Retrieved 05 10, 2015, from
Robotium Tech: http://robotium.com/pages/user-guide-android-studio

