
A Novel GUI Testing Framework for Automated
Testing of Android Applications

 Dissertation

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF TECHNOLOGY

 IN

 SOFTWARE TECHNOLOGY

 DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

SUBMITTED BY

ABHISHEK PANDEY

ROLL NO: 2K13/SWT/01

MAJOR PROJECT REPORT II

(Paper Code: CO 821)

Under the guidance of

Dr. Kapil Sharma

SHAHBAD DAULATPUR, MAIN BAWANA ROAD, NEW DELHI, DELHI

110042 INDIA

DELHI TECHNOLOGICAL UNIVERSITY

 NEW DELHI

 STUDENT DECLARATION

I hereby undertake and declare that this submission is my original work and

to the best of my knowledge and believe, it contains no material previously

published or written by another person nor material which has been accepted for

the award of any other degree or diploma of any Institute or other University of

higher learning, except where due acknowledgement has been made in the text.

Project work and published paper associated to the chapters are well discussed

and improved under the guide supervision.

DATE:

SIGNATURE:

ABHISHEK PANDEY

 ROLL NO: 2K13/SWT/01

 DELHI TECHNOLOGICAL UNIVERSITY

NEW DELHI

CERTIFICATE

This is to certify that the thesis entitled “A Novel GUI Testing

Framework for Automated Testing of Android Applicat ions”, is a bona fide

work done by Mr. ABHISHEK PANDEY in partial fulfilment of requirements

for the award of Master of Technology Degree in software technology at

Delhi Technological University (New Delhi) is an authentic work carried out by

him under my supervision and guidance. The matter embodied in the thesis

has not been submitted to any other University / Institute for the award of any

Degree or Diploma to the best of my knowledge.

DATE:

SIGNATURE:

Dr. Kapil Sharma

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERIN G

DELHI TECHNOLOGICAL UNIVERSITY

 ACKNOWLEDGMENT

I am presenting my work on “A Novel GUI Testing Framework for

Automated Testing of Android Applications” with a lot of pleasure and

satisfaction. I take this opportunity to thank my supervisor, Dr. Kapil

Sharma, for guiding me and providing me with all the facilities, which paved

way to the successful completion of this work. His scholarly guidance and

invaluable suggestions motivated me to complete my thesis work

successfully. I am thankful to my friends and colleagues who have been a

source of encouragement and inspiration throughout the duration of this

thesis. I am also thankful to the SAMSUNG who has provided me

opportunity to enrol in the M.Tech Programme and to gain knowledge

through this programme. This curriculum provided me knowledge and

opportunity to grow in various domains of computer science. Last but not

least, I am thankful to all the faculty members who visited the Samsung

premises to guide and teach. Their knowledge and efforts helped me to grow

and learn in the field of computer science. This project has provided me

knowledge in the area of Mobile Application Automation Testing and helped

me in understanding the concept of accessing objects and designing

framework for testing in Mobile Testing domain. I have given ample time

and guidance to complete my project under timeline defined by the

university..

ABHISHEK PANDEY

 ROLLNO: 2K13/SWT/01

 ABSTRACT

Model-based Automation Testing used to implement with Android

that includes the way applications have been modeled, how tests were

designed and execution has been done, kind of problems have been found in

the tested application during the process. By evolving into mass market like

products, smart phones and tablets created an increased need for specialized

software engineering methods. To ensure high quality applications, constant

and efficient testing is crucial in software development. However, testing

mobile applications is still massive, time-consuming and error-prone. The

mobile applications effective testing is an “emerging research area that faces

a variety of challenges due to unique features of mobile devices”. Currently

there are several studies and approaches regarding the testing of the

functionality, security and usefulness of mobile application, still the field of

GUI design testing has not been widely explored. This thesis concentrates

on the design testing, which is the part of usability, though it focuses not on

how well the users can interact with the application, but rather on the visual

appearance of the GUI. The challenge for GUI testing is to verify whether

native applications are correctly displayed on different devices. An

automation of this testing can reduce time, effort, errors and the cost of the

testing process, and increase productivity. Main principle which guided the

project implementation were to implement the variability to elements such

as environment, end points, test data, handling of test devices, core

protocols, locations separated out from the test logic (scripts) and moved

into hierarchical libraries for reusability and to prevent constant modification

in whole test script every time UI changes in new devices.

CONTENTS

Chapter One: INTRODUCTION ...1

1.1 SCOPE & MOTIVATION: ...1

1.2 TESTING AUTOMATION: ..3

1.2.1 Automation: ..4

1.2.2 Do you need automation? ...5

1.2.3 GUI and GUI Testing ...6

1.2.4 GUI Testing Approach: ..6

Chapter Two: Literature Review ...9

2.1 MOBILE OPERATING SYSTEMS: ..9

2.1.1 Android: ..9

2.1.2 iOS: ...9

2.1.3 Symbian: ...10

2.1.4 Blackberry OS: ...10

2.1.5 Tizen: ..11

2.1.6 BADA: ..12

2.1.7 Palm OS: ...12

2.2 TEST AUTOMATION APPROACH OF APP DEVELOPERS.................................12

2.2.1 Robotium: ...13

2.2.2 SIG-Droid: ..14

2.2.3 PATS : ...15

2.2.4 MonkeyRunner: ..15

2.2.5 MobiGUITAR: ..16

2.2.6 ReWeb and TestWeb: ...17

2.2.7 Appium: ..18

2.2.8 Image Template Matching : ..18

2.2.9 Sikuli: ..19

2.3 PROGRAMMING LANGUAGES FOR MOBILE TESTING:22

2.3.1 Python: ..22

2.3.2 Java ...23

2.4 LITERATURE GAPS:...25

Chapter Three: Proposed Work ...26

3.1 DATA DRIVEN MODEL: ..26

3.2 CLASS DIAGRAM FOR THE HIERARCHY ...29

3.3 DEVICES GROUPING: MASTER/SLAVE CONCEPT ...31

3.4 SCRIPTING APPROACH: ...34

3.4.1 Raw Scripting Approach ...34

3.4.2 Scripting Approach with Proposed Framework ..35

3.5 RUNTHREADSMANAGER: ...37

Chapter Four: RESULTS ...39

4.1 EVALUATING THE FRAMEWORK ..39

4.1.1 Degree of Coupling and Cohesion in the Framework ..41

4.1.2 High Level Requirements ...42

4.1.3 Automatic Test Execution ..42

4.1.4 Ease of Use ...43

4.1.5 Maintainability ..43

Chapter Five: Conclusion and Future Work ..44

Chapter Six: References ...45

Table of Figures

Figure 1 : Manual Testing ... 7

Figure 2 : Record and Play .. 7

Figure 3 : Comparison of Available Framework .. 21

Figure 4 Interface Diagram for Droid Engine ... 27

Figure 5 Framework Architecture ... 28

Figure 6 Devices Grouping Example with Parllel Execution ... 31

Figure 7 Flow Chart for Grouping Algorithm .. 33

Figure 8 Raw Scripting Approach Example ... 34

Figure 9 Test Script Writing Approach with the Framework ... 36

Figure 10 Test Script Execution Flow .. 38

1

Chapter One: INTRODUCTION

1.1 Scope & motivation:

Each and every product is tested by the software development group, but still the

delivered software have always defects in it. All the test engineers try to detect these

faults before releasing that product but these always edge in and appear again and again.

These defaults creep in even when they are tested with the best processes of manual

testing. To increase the effectiveness, efficiency and coverage of the software testing,

automation is considered as the best way.

Human sitting in front of a computer is considered as the manual testing, who is

carefully going through application and trying various input combinations and methods,

comparing the results to the expected behaviour and recording their observations. Manual

tests are repeated often during development cycles for source code changes and other

situations like multiple operating environments and hardware configurations. An

automated testing tool is able to playback pre-recorded and predefined actions, compare

the results to the expected behavior and report the success or failure of these manual tests

to a test engineer. Once automated tests are created they can easily be repeated and they

can be extended to perform tasks impossible with manual testing. Because of this, savvy

managers have found that automated software testing is an essential component of

successful development projects.

To ensure the quality of a software, software tests have to often be repeated

during the development cycles, whenever the modification is made in the sousecode the

software tests are repeated. For each release of the software it may be tested on all

supported operating systems and hardware configurations. Manually repeating these tests

is costly and time consuming. Once created, automated tests can be run over and over

again at no additional cost and they are much faster than manual tests. Automated

software testing can reduce the time to run repetitive tests from days to hours. A time

savings that translates directly into cost savings.

2

Importance of mobile applications are day by day increasing. In such a situation

quality becomes the highest goal for the companies to provide the users these developed

applications. Test engineers in the department of quality assurance of these companies

are responsible for the defined level of software quality ensurance.

The mobile applications effective testing is an “emerging research area that faces

a variety of challenges due to unique features of mobile devices”. Currently there are

several studies and approaches regarding the testing of the functionality, security and

usefulness of mobile application, still the field of GUI design testing has not been widely

explored. This thesis concentrates on the design testing, which is the part of usability,

though it focuses not on how well the users can interact with the application, but rather

on the visual appearance of the GUI. The challenge for GUI testing is to verify whether

native applications are correctly displayed on different devices. An automation of this

testing can reduce time, effort, errors and the cost of the testing process, and increase

productivity. The automation of the software testing process has numerous benefits,

which are described by Melody Y. Ivory in “The State of the Art in Automating Usability

Evaluation of User Interfaces”. The most important advantage is that of cost-saving, due

to the reduction in the testing time. Another positive point is the prediction of the time

and error expenses through the whole application. An additional Seite 9 benefit is the

expansion of the tested features. The use of automated tools makes it possible to cover all

possible test cases and user interactions, something that is not always achievable with

non-automatic testing. Apart from this, the special tools not only perform automatically

the test cases and simulate the user interaction with the system, but are also able to

expertly analyze the obtained results. Not all testers have enough competence in all

aspects of software evaluation. One more advantage is the possibility of the comparison

between optional designs. During the manual testing only one designed UI is evaluated.

Some automated tools make it possible to predict and simulate the alternative and

improved designs and to test them. Finally, the automated tests can also be performed

during the development phase, with the UI schemes, prototypes and guidelines predicting

3

the bugs before implementing them. The human testers as a rule test only the

implemented version of the UI.

Initially, most mobile applications were developed for entertainment purpose, but

now many industries have arranged application development for competitive benefit. In

order to support the image of the companies their applications should meet certain design

requirements and follow the corporate identity.

The current situation shows that there is a need of an automated testing tool that

can evaluate the visual design of the mobile application, according to the general design

guidelines and the requirements of customers and the company. Such an automated

design testing tool can improve and simplify the process of testing the user and corporate

design requirements. The goal of this master thesis is to present approach for the

Graphical User Interface automated testing for large scale. The result of this work is a

prototype of the automated design testing tool for android applications, developed for all

kind of applications whether UI Objects are available or not. The thesis includes an

overview on existing systems and different methods of mobile testing, a general idea of a

unified design testing tool for different devices, a presentation of the design testing

approach with standardize scripting templates for large testing teams for better

management of scripts for future use, testing and evaluation of this approach, as well as a

discussion of the challenges and future research questions in the field of automated

design testing of mobile applications.

1.2 Testing Automation:

The process in which the software tools execute prescripted testing on software

application before it is released into production is called automated software testing.

The object of automated testing is to simplify as much of the testing effort as

possible by using minimum lines of code. If there is huge percentage consumed by unit

testing quality assurance team's resources, then this process might be a good candidate

for automation testing. Tools of Automated testing are capable of executing test

scenarios, reporting outcomes and comparing results with earlier test executions. Tests

carried out with these tools can be run repeatedly and at any time.

4

The method which is used to implement automation is called a test automation

framework. Many frameworks were implemented over the years by commercial vendors

and testing companies. Automating tests with commercial or open source software can be

complicated sometime, because they almost always require customization. Many

organizations implement automation when it is determined that manual testing is not

meeting expectation and bringing more human resources does not seems possible.

1.2.1 Automation:

The most well-known kind of application testing tool is automation, which

attempts to replace human activities clicking and checking with a computer. The most

common kind of test automation is driving the user interface, where a human records a

series of actions and expected results. Two common kinds of user-interface automation

are record/playback -- where a tool records the interactions and then automates them,

expecting the same results -- and keyword-driven -- where the user interface elements,

such as text boxes and submit buttons, are referred to by name. Keyword-driven tests are

often created in a programming language, but they do not have to be; they can resemble a

spreadsheet with element identifiers, commands, inputs and expected results.

Automation tools perform a series of preplanned scenarios with expected results,

and either check exact screen regions -- in record/playback -- or only what they are told

to specifically check for -- in keyword-driven. A computer will never say "that looks

odd," never explore or get inspired by one test to have a new idea. Nor will a computer

note that a "failure" is actually a change in the requirements. Instead, the test automation

will log a failure and a human will have to look at the false failure, analyze it, recognize

that it is not a bug and "fix" the test. This creates a maintenance burden. Test automation

automates only the test execution and evaluation.

Another term for this kind of automation is something Michael Bolton and James

Bach call checking -- a decision rules that can be interpreted by an algorithm as pass or

fail. Computers can do this kind of work, and do it well. Having check automation run at

the code level -- unit tests -- or user interface level can vastly improve quality and catch

obvious errors quickly before a human even looks at the software.

5

1.2.2 Do you need automation?

Several of the teams we've worked with in the past have found themselves with a

six-week test/fix/retest cycle. During that time, the technical staff was producing no new

features. With three releases a year, the technical staff was testing 18 weeks -- which is

more than a third of the time. Long retest cycles make rolling out experiments essentially

impossible. Test automation is generally a natural fix for this; have the computer run

automated checks, at least overnight, and you could release every day.

At the user interface (UI) level, there are many reasons to use automated tools for

software testing. Preparing a small set of checks that runs frequently, building the

system, verifying if major path of functionality fails and reporting the team on failure are

all capabilities that automated testing can handle. This makes the feedback cycle

important, so developers who introduced a major bug can find and resolve it quickly.

Having these smoke tests in place can reduce the amount of effort the testers are spending

on routine things, add confidence, and vastly reduce the cost of a test cycle without

requiring years of automation work.

Once the automated checks are running at the GUI level, teams often find a

different problem: their tests find too many bugs. When software is breaking too often,

it's a sign that the team needs automated unit tests very small, technical tests at the code

level that programmers can put in place. Programmers who run a unit test suite before

check-in can prevent defects from escaping to the build.

The big problems test automation addresses are compressing test time, finding

defects faster, and, in the case of unit tests, preventing regressions, where a feature may

have worked a day ago but not after a new check-in. If the product tends to fail in ways

that are different and unpredictable, or the UI is undergoing a massive change, checking

the same things may have limited value. For example, a new UI that adds new required

buttons will cause failures of the test suite because the button was not checked. If the

success factors are less functionality and more usability -- if the product needs to be viral

then focusing on test automation might not be the right approach. In these areas, where

automation is not needed, direct interaction with humans is more important.

6

1.2.3 GUI and GUI Testing

There can be two types of interfaces in a computer application. First is Command

Line Interface where you type text and computer responds to that command. Second is

Graphical User Interface where you can interact with the computer system using images.

What is Graphical User Interface Testing?

GUI (Graphical User Interface) testing is the process of testing the system GUI of

the System under Test. Graphical User Interface testing involves checking the UI with the

controls like buttons, menus, icons, and different types of bars like tool menu bar, tool

bar, windows and dialogue boxes etc.

Graphical User Interface testing is the process of ensuring functionality of the

GUI for given application and making it conforms to its specifications.

Additionally GUI testing evaluates design elements like colors, layouts, fonts,

font sizes, text boxes, labels, captions, text formatting, lists, icons, buttons, content and

links.

1.2.4 GUI Testing Approach:

Graphical User Interface testing can be done via three ways:

1.2.4.1 Manual Testing

In this approach, screens are checked manually by testers for conformance with

the requirements stated in software requirements specification document.

7

Figure 1 : Manual Testing

1.2.4.2 Record and Replay Automation

Graphical User Interface testing can be done using automation tools which used to

done in two parts. In Recording process, steps are captured into the tool and in playback

phase, recorded test steps are executed automatically on the Application under Test.

Figure 2 : Record and Play

8

1.2.4.3 Model Based Testing Process

Model here is a graphical description of system's behaviour which help us to

understand and predict the behaviour of system. Models help in generating efficient test

cases using the system requirements. Below points need to be considered for this model

based testing:

Prepare and Build the model

Identify Inputs for the model

Calculate expected output for the model

Execute the tests

Compare the actual output with expected output

Decide further actions on the model

Modeling techniques from which test cases can be derived:

Charts - Depicts the state of a system, also checks the state after some inputs.

Decision Tables – These Tables used to determine results for each input applied

Model based testing is an evolving technique for the generation of test cases from

the requirement specification. This method can determine undesirable states that your

GUI can attain which is the main advantage of this method compared to above two

methods..

9

Chapter Two: Literature Review

2.1 Mobile Operating Systems:

Operating system (OS) that allows smart phones, tablet PCs and other devices to

run applications and programs is considered as Mobile Operating System. Mobile

Operating System typically starts up when a mobile device gets power on, present screen

with tiles and icons that present information and provide application accessibility. Mobile

OS also handle cellular and wireless network connection functionality and phone

accessibility. Some of mobile device operating system examples include Apple iOS,

Google Android, BlackBerry OS, Symbian, webOS by Hewlett Packard (formerly Palm

OS) and Windows Phone OS.

2.1.1 Android:

Google released the first Android OS by the name of ‘Astro’ on September 20th,

2008 (Develop Apps | Android Developers). After some period of time next upgraded

versions ‘Bender’ and ‘Cupcake’ were released. Since then Google adopted the trend of

naming conventions for Android as any dessert or sweet in alphabetical order. Other

successive releases were Donut, Éclair, Froyo, Gingerbread, Honeycomb, Ice Cream

Sandwich and Jelly Bean. Latest Version of Android is Marshmallow which is Android

6.0. Android platform is not closed like iOS by Apple, there are many good Android apps

built by developers.

Android gained immense popularity into the smart phone and tablets market

because of its beautiful appearance and efficient functionality. There were many new

features introduced which played a important role in success of Android OS. Android is

one of the top operating systems during current time.

2.1.2 iOS:

Apple introduced iOS was on 29th June 2007 when the first Apple’s iPhone was

announced (iOS - Apple (IN)). Post which iOS has been gone with many upgrades and

the latest one is the iOS 9 version.

10

Apple has still kept iOS as closed Operating System and not allowed any other

company to lay hands on its OS. Unlike Android, Apple has much concentrated on the

performance along with user interface which the reason that the basic appearance of iOS

is still same as it was in its first iOS version. Overall interface is user-friendly and is one

of the mobile top operating systems in the world. Till now iOS has been used in all

iPhones, iPod & iPad.

2.1.3 Symbian:

Symbian Operating System is developed by Nokia (All About Symbian). If any

other company want to use Symbian then that company will have to take permission from

Nokia before using it. Nokia has been a giant in the low-end mobile device segment, so

except Java Symbian was the most used in mobile phones couple of years ago in the

market. Till now Symbian is widely used in low-end devices but the demand for such

devices has been continuously reducing. Nokia has upgraded Symbian mobile OS to

made it capable to run efficiently on smart phones. ANNA and BELLE are the two latest

updates of Symbian that are currently used in smart phones of Nokia. Unfortunately,

Symbian Operating System is going downwards nowadays due to increasing popularity

of Android and iOS Operating System.

2.1.4 Blackberry OS:

Blackberry Operating System is originally the property of RIM (Research In

Motion) and it was first released in 1999 (THE MOBILE INDIAN). Research In Motion

has developed this operating system for its Blackberry range of smart phone devices.

Blackberry is much more different from other operating systems introduced. Interface

style, and the Smartphone design, is different having a trackball on device for moving on

the menu items and a qwerty keyboard for inputs.

Like Apple’s iOS and Nokia’s Symbian, Blackberry OS is also a close source

Operating System which means it is not available for any other company. Latest release

of this operating system is Blackberry OS 7.1. This version was introduced in May 2011

11

and it is being used in Blackberry Bold 9930 device. It is considered as a very reliable

Operating System and is capable to resist to almost all the viruses or malware.

Some of the example of smart phones running on Blackberry OS are Blackberry

Bold, Curve, Torch and Blackberry 8520 devices.

2.1.5 Tizen:

Samsung has co-worked with Intel to develop new operating system for mobile

devices which is named as Tizen OS. This is a Linux-based platform built from Nokia

and Intel's ditched MeeGo. It is an open-source, similar to Android OS, means that

manufacturers who choose to adopt it are free to use with the interface to make it as

unique as they are. Tizen is a flexible operating system built from needs of all

stakeholders of the mobile and connected devices environment, including device

manufacturers, network operators, mobile application developers and independent

software vendors. Tizen is developed by a developer’s community, under open source

governance, which is open to all members who wish to contribute.

Tizen operating system is available in multiple profiles to serve as per different

industry requirements. Current Tizen profiles are Tizen in-vehicle infotainment(IVI),

Tizen Mobile, TV, and Wearables. Additionally, as of Tizen 3.0, all profiles are built on

a common, infrastructure called Tizen Common infra.

Using Tizen OS, device manufacturer can start with any of these profiles and can

modify to serve their needs or use the Tizen Common base to develop profile to meet the

memory, power and processing requirements of device and quickly bring it to the

consumers.

To meet the needs of specific customer segments Mobile operators can work with

device partners to customize the OS and user experience. For developers and ISVs, OS

offers the power of native application development with support of unparalleled HTML5.

This Operating System also offers the potential for application developers to extend their

reach to new “smart devices” running on Tizen OS, including wearable devices,

consumer electronics, cars and other home appliance devices.

12

2.1.6 BADA:

Samsung owns an operating system that is known as BADA Operating System. It

was designed for mid-range and high-end smart phone segment. Bada is significantly

user-friendly and efficient operating system, much similar to Android OS, but

unfortunately Samsung did not use Bada OS on large scale for unknown reasons.

Latest version of Bada 2.0.5 was released on March 15th, 2012. Till now only

three phones are there which operates on Bada OS. These smart phones are Samsung

Wave, Samsung Wave 2 and Samsung Wave 3. Bada would have achieved much greater

success if Samsung had promoted it.

2.1.7 Palm OS:

Palm OS was targeted to design to work on touch screen Graphical User Interface

(PalmOS Operating System). Palm OS was developed by Palm Inc in 1996 for

PDA(Personal Digital Assistance) devices. After some Years, it was upgraded and it was

able to support smart phone devices. Unfortunately, this could not make any place on the

market and is not being used in any of the latest top devices.

It has been almost nine years since we saw the latest update in 2007 for Palm OS .

Palm Operating System was used by many manufactures including Lenovo, Legend

Group, Janam, Kyocera and IBM earlier.

2.2 Test Automation Approach of App Developers

Smartphone applications have recently gained popularity. Millions of smart phone

apps are available on various application stores which give users various options to

choose, however, this also raises concern whether these apps were tested before they

released for users. In this study, we are exploring to understand the test automation

culture among application developers working on Android. Specifically, we want to

emphasis on current state of testing of applications, tools and frameworks that are

commonly used by developers, problems faced by developers. A brief survey paper was

published for such study in 2015 (Pavneet Singh, Ferdian, Nachiappan, Thomas, &

13

David, 2015). In this chapter we will present study on various Existing Mobile

Application Testing Tools.

Existing Mobile Application Testing Tools/Frameworks:

This Section presents several existing tools and approaches for the automated

testing of mobile applications. A number of different currently available automated tools

is described in “Test Automation Tools for Mobile Applications: A brief survey”

(Hughes Systique Corporation, 2013). Some of them belong to the standard tools that are

used as a basis for more complicated approaches.

Techniques used in most of the available tools are formed from the keyword name

and a related parameters list. Generally keywords are directed to a specific Graphical

User Interface object for defining the parameters of objects. For defining the target

object, keywords use references that accept either object ID or text content of the targeted

object. Hierarchical structure of Graphical User Interface also used in the references

taken, by defining the parents of the object searched. Many a times, using the hierarchy

can be the only way out to identify an object uniquely. Some of the tools are based on

references being described here.

2.2.1 Robotium:

Renas Reda, an international authority within test automation developed

Robotium Tool in 2010. Robotium was the leading testing framework for Android

Application Testing during the time. Robotium has been developed by many years of

dedicated development. This is supported by a highly active community of developers.

Robotium is used by developers across the world, which includes many enterprises as

well as thousands of application studios related to Boutique. Robotium is a strong

technical foundation for any Android Testing company. Still, the inhanced Operating

System and hardware fragmentation creates challenges significantly, both from a quality

perspective and cost point of view. Robotium founders introduced Robotium Tech to

address the issues which enables Robotium users to further utilize the magnificant power

of Robotium framework. Robotium Recorder is the first commercial which is offered by

14

Robotium Tech. Recorder provide Robotium users with an ultimate powerful

productivity framework. This enables Android developers and quality engineers to create

true Robotium-grade test scenarios.

Robotium is a User Interface testing tool designed for Android OS. It is suitable

framework for tests automation for different successive Android versions and sub-

versions. Tests Script created by Robotium used to be written in Java language.

Robotium framework libraries were written for unit testing purpose. Instrumentation is

abstracted in Robotium, which enables the preparation of grey-box automated test cases

for applications. Robotium can be used both for applications with the source code

available and without code information. With a help of Robotium, it is possible to write

function, system and acceptance test cases, to find current activities and views and to

make decisions automatically (User Guide Android Studio- Robotium Tech).

2.2.2 SIG-Droid:

SIG-Droid was introduced in 2015 by Nariman Mirzaei, Hamid Bagheri, Riyadh

Mahmood and Sam Malek. A research paper is published in IEEE as SIG-Droid:

Automated System Input Generation for Android Applications in 2015 (Nariman, Hamid,

Riyadh, & Sam, 2015). SIG-Droid is a test framework for system testing of Android

applications which is backed with automated analysis of framework for extraction of

application models and symbolic execution of test script guided by models for obtaining

test inputs which ensures covering various reachable branches in the program flow. SIG-

Droid uses two automatically extracted models: Interface Model and Behavioural Model.

Interface Model was used to find values of an application that can be received

through its interfaces and are then exchanged with symbolic values which deal with

constraints with the help of a symbolic execution engine program. Post this Behavior

Model was used to drive the application for symbolic execution and generate event

sequences.

SIG-Droid uses symbolic execution technique, a promising automated testing

technique which can effectively deal with constraints used. SIGDroid leverages the

knowledge of Android’s specification to automatically extract two models (Interface

15

Model & Behavioural Model) from an application’s source code. Models are used for the

generation of event sequences that aimed to simulate actual behaviours from user

perspective. Behaviour Model used to capture event driven behaviour of the application

including the relationships among event generators and event handlers. Interface Model

represents all input interfaces in the application and the widgets including buttons, input

boxes, checkboxes etc.

2.2.3 PATS :

Parallel Graphical User Interface Test Framework for Android Applications was

proposed in 2015 by Hsiang-Lin Wen, Chia-Hui Lin, Tzong-Han Hsieh, and Cheng-Zen

Yang (Hsiang-Lin, Chia-Hui, Tzong-Han, & Cheng-Zen, 2015). Framework consists of

two kinds of nodes for testing: one node is testing coordinator and second is a set of

testing slaves. PATS framework dynamically analyzes Graphical User Interface

components for generating test scenarios. Reverse engineering approach was used in GUI

Ripper technique. GUI structure was dynamically crawled to create tree for GUI as the

state model for Application. For avoiding infinite explored visited GUI states of

application, GUI Ripper checks the state depth threshold and state equivalence. Approach

provides a broad testing coverage by going through testing all possible event sequences

of Application. The main difference is that PATS generates event sequences for short-

term testing on the set of slave nodes. Test Cases then assembled by these short-term

event sequences and schedules them for the slave nodes of the framework.

2.2.4 MonkeyRunner:

Android SDK provided a tool to execute Test in Android devices called

Monkeyrunner. Monkeyrunner provides an API for using commands to execute test

scenario in Android emulators or Android devices (monkeyrunner | Android Developers).

APIs were used for writing programs which can control an Android device or

emulator from outside. Using monkeyrunner, tester can write Python program to installs

an Android application or testing package, executes it, sends key codes to it, captures

screenshots of user interface, and saves screenshots on the workstation PC.

16

Monkeyrunner tool was initially designed to test applications and devices at the

functional level or at framework level and for executing unit test suites for application

under test, but tester are free to use it for other purposes of testing. Specific system

included in Android SDK is Monkey, including Monkey tool and MonkeyRunner.

Monkey tool is running directly on the mobile device and allows the generation of

random events, like key presses or touching screens to discover the potential bugs by

searching the known error patterns. MonkeyRunner is an API build on Monkey tool that

enables functional testing and requires writing Python scripts to manage the testing

process. It allows the sending of key events, taking screenshots of GUI and

programmatically controlling the testing process on multiple Android devices at the same

time. MonkeyRunner can compare screenshots with reference images to validate the

visual correctness of the GUI.

2.2.5 MobiGUITAR:

This framework was introduced to support a wide variety of model-based

Graphical User Interface testing techniques. The innovation is in the architecture of

GUITAR framework that uses plug-ins to support extensibility and flexibility.

MobiGUITAR uses three basic steps: ripping, generation, and execution.

Mobi-GUITAR acquired a state machine model of Graphical User Interface and it

uses algorithms which better suited for mobile Application Platforms (Domenico, Anna,

& Porfirio, 2015). Ripper in Mobiguitar is an enhanced version of Android Ripper. It first

launched the app in a given start state and then obtain events list which can be performed

on the Graphical User Interface in the state. This list is added with each event as a

separate task in a task list which is used to fire events. Ripper removes an element from

the task list and then fires that. As an outcome new states occur and the GUI’s focus

changed as the events fired. At the change in current state the ripper obtains the list of

new events that can be fired and appends to the task list in a way that the path from the

start state is pretended to each event. Thus formally, task is a sequence of events that

always begins with an event in the start state that can be fired.

17

2.2.6 ReWeb and TestWeb:

ReWeb and TestWeb was initially developed for testing of Web Application and

also it supports analysis of Web applications (Maryam, Rosziati, & Noraini, 2015).

ReWeb accepts pages of a Web application to analyse for building its UML model in

accordance with Meta model of the web page of the Application. TestWeb was used

generates and execute test cases suit for a Web application whose model used to be

generated by ReWeb technique. ReWeb and TestWeb were enhanced for testing mobile

application for Android Operating System. This approach is to work as an add-on with

Eclipse IDE such that it accepts java source code of application under test as and input.

Proposed adaptation model includes two rudiments for testing web application as in the

case of Reweb and TestWeb. Mobile_Analyzer is the first part that analyzes the source

code of the software and derives the UML diagram while the other part generate test

cases and executes testing scenarios. Mobile_Analyzer used to pass the input to the

Apk_Analyzer. ApkAnalyzer is an open source application that helps to generate UML

from android apk . Apk_Analyzer ias a virtual analysis tool, which is used to analyze API

references, view application architecture and dependencies, and disassemble bytecodes in

android applications. Apk_Analyser is a complete tool chain that supports modification

of the applications with more printouts. In the proposed model, Apk_Analyzer accepts

the java script source code as input and display its UML use case diagram as a output.

UML diagrams are then passed to the test generator to generate the test cases for the

Application under Test. Test cases used to be selected based on the test criterion or

specification and passed to the test case executor module. For minimizing the generated

test cases and improve the completeness, use case specification used to be based on

functional and scenario. Use case specification used in the model used to be based on the

following: (a) Identifying the functions of the SUT. (b) how to determine if SUT is

properly working (c) Testing every functionality based on scenario test cases, one by one

and (iv) Validate if the SUT result.

18

2.2.7 Appium:

Appium has been developed for automation testing of native, mobile , and hybrid

applications (Appium: Mobile App Automation Made Awesome.). It is available as an

open source Tool. Web apps which used to access using a mobile browser are called as

Mobile Web Apps. Hybrid apps have native controls that enable interaction with web

content using wrapper around a web view. Appium uses a webserver that exposes REST

API. Web server receives connections from client, listens for commands, transmit those

commands on a mobile device for execution, and responds with an response as a HTTP

response which represents the result of the executed command . Concept of client/server

architecture provide lot of possibilities like; we can write test scripts in any language

which has http client API, but it is much easier to use libraries of Appium client. We can

put the server on different machine and our tests are running on different. Test code can

be written and rely on a cloud service to receive and interpret the commands. Test Script

Execution is always performed in the context of a session. Initially Clients create a

session with server in specific way to each library but they finishes by sending a POST

 request to the server, with a JSON object. Now server will start up the session for

Automation with responding a session ID used for sending commands further. Jason

Object” Desired capabilities” are set of keys and values sent to the Appium server which

tell the server about the kind of automation session interested. There are also various

capabilities which can be used to modify the behaviour of the server during automation

execution. As an example, we might set the platformName capability to iOS to intimate

Appium that Tester want a session for iOS , not for a Android device. Also we might set

the safariAllowPopups capability to ensure that a Safari automation session has been

allowed to use JavaScript for opening up new windows.

2.2.8 Image Template Matching :

An automated software testing system invented by John A. Gregory et al. (M.

Pope, F. Stone, & John, 1994)can be used to automate the testing and to compare the

design of different versions of the system. During the execution of the system under test,

19

the tool records all inputs, such as keystrokes and mouse events, and saves them in the

script. Furthermore, it captures the screen images of the system. When the next version of

the system under test is executed, the tool plays the inputs recorded before to operate the

system and captures the screen images again. The screenshots of the first version of the

system are compared to the correlating screenshots of the second version called by the

same inputs. The tool displays the differences of the images and shows what components

of the UI design have been changed. This tool does not evaluate the final design of the

system, but demonstrates the visual differences between two versions of the same screen

via image capturing. This technique could be used to compare the real application screen

with the UI image created by the designer.

2.2.9 Sikuli:

Sikuli is developed by Tom Yeh, Tsung-Hsiang Chang and Robert C. Miller.

Sikuli image recognition tool to automate the testing experience of the GUI which

includes visual scripting API with an integrated development environment (Michael,

Nikolaus, & Tom, 2014). Sikuli is based on the finding of target patterns on the screen

and does not need access to the source code. Therefore it can be used both for desktop

and mobile applications. However, mobile applications can be tested only on the desktop

screen running in simulator or getting the application screen on the desktop connecting

the device via VNC server. The second option can be used for Android applications

without problems, but not for iOS devices, since VNC servers are not available for

iPhone/iPad. The tool provides two core functionalities – Sikuli Script and Sikuli Search.

With Sikuli Script it is possible to write visual scripts in Jython (combination of Java and

Python) and to refer to UI elements using the provided library of functions and action

commands. It allows the taking of a screenshot of the needed GUI component, adding it

to the script and defining the action that this element should perform. The tool searches

for a given component on the applications screen with a pattern matching technique,

using opensource computer vision library. It compares the target pattern to each region on

the screen of the same size, trying to find the most similar one, and is suitable for small

patterns, such as buttons or icons. Sikuli also has an algorithm to detect larger patterns,

20

like a window or dialog box using a combination of matching elements in the relation to

the target pattern. Applying grayscale or multiple scales to small elements, Sikuli is able

to identify color change and resized images to detect possible changes in screen

resolution. The system also provides the possibility to find text elements using optical

character recognition (OCR). Sikuli Search is a part of the system that enables the search

of information about the selected UI object in the online documentation. It contains

mentioned three components: First is a screenshot engine, Second is a UI for querying

the search engine and third is a UI for adding screenshots.

21

Figure 3 : Comparison of Available Framework

22

2.3 Programming languages for mobile testing:

In recent years, Mobile application development industry had been reached at the

stage which was unexpected for most of us. It is changing the way of businesses function

across the world. Enterprises are aligning mobile applications to their productivity with

the rapid innovation in mobile devices across platforms. Enterprise calls for mobile app

developers to write versions of an application for many different platforms with a

common language with of reusable code. To realize the idea, it's time to validate, and

narrow down on the platform you would like to build your application. As soon as it is

decided, it’s time to select language, keeping in mind the strategy which you build.

2.3.1 Python:

Python was developed through the PEP (Python Enhancement Proposal)

convention. PEP process was the basic mechanism to propose major new features, and to

collect input on an issue from community, and for documenting the design decisions

which have gone into Python development. PEPs were reviewed and commented by the

Python community (Our Documentation | Python.org). The major academic conference

on Python was named as PyCon. Many special mentoring programmes like the Pyladies

were there.

Python is high-level language which is widely used, general-purpose, and

interpreted dynamic programming language. Design philosophy of Python emphasizes on

code readability, syntax that allows programmers to express concepts in few lines of code

than in languages like Java or C++. Language provides constructs which is intended to

enable clear programs on small and large both scales.

Python language supports many programming paradigms which includes object-

oriented, functional programming or procedural style programming. It provide a dynamic

type system with an automatic memory management and has a large comprehensive

standard libraries. Python interpreters are available for variety of operating systems that

allow Python code execution on different systems. By using third-party tools, like

Py2exe, Pyinstaller, code can be packaged into various executable programs for some of

23

the popular operating systems by allowing the distribution of Python-based software to

use on vartous.

CPython is the implementation of Python which is free and open-source software;

also follows development model based on community based model for it for all of its

development. It is managed by the Python Software Foundation which is non profitable

organization. Most of the Python implementations can function as a command line

interpreter, by which the user writes sequential statements and receives the immediate

results.

Python integrated development environments are also consist browser-based

IDEs, intended for science and math-related development and hosting environment.

Language Enhancement goes along with CPython development. Public releases of

Python come in three categories. Version number used to increment considering these

distinct types.

Major releases are those which are largely compatible and introducing new

features in the version. In this case the second part of the version number used to

increment. Such releases used to schedule to occur every second year and each major

version supported for bug fixing after its release for several years. Bugfix releases do not

include any new features but only the fixing of bugs reported. In this case, the third and

final part of the version number used to increment for the version number update. Such

releases are made periodically when sufficient number of bugs have been fixed since last

released version. Security vulnerabilities also used to fixed in such releases versions.

2.3.2 Java

Java is a high-level programming language originally developed by Sun

Microsystems and released in 1995 which was later acquired by the Oracle Corporation.

It provided a system for developing application software and deploying it in a cross-

platform computing environment.Oracle Corporation is the current owner of the official

implementation of the Java SE platform, following their acquisition of Sun Microsystems

on January 27, 2010. This implementation is based on the original implementation of

Java by Sun. The Oracle implementation is available for Microsoft Windows (still works

24

for XP, while only later versions currently "publicly" supported), Mac OS X, Linux and

Solaris.

The Oracle implementation is packaged into two different distributions: The Java

Runtime Environment (JRE) which contains the parts of the Java SE platform required to

run Java programs and is intended for end users, and the Java Development Kit (JDK),

which is intended for software developers and includes development tools such as the

Java compiler, Javadoc, Jar, and a debugger.

2.3.2.1 Java Platform

Portability was one of the design goal of java, that means programs designed for

the Java platform may run same as any combination of hardware and operating system

with an accurate support of runtime. By compiling the java language code this can be

achieved to an intermediate depiction called Java byte code, rather than directly to

architecture particular machine code. Java byte code are intended to be executed by a

virtual machine which is particularly written for the host hardware, but it is considered

that Java byte code instructions are comparable to machine code. The End users use a

Java Runtime Environment (JRE) which is installed either on their own machine for

standalone Java applications or for java applets in a web browser.

Graphics, networking and threading are some of the host specific features which

were provided to access in a generic way by Standard libraries. The porting can be

simplified by the use of universal byte code. Although, the overhead of interpretation of

byte code into machine instructions makes programs always run more slowly than

native executables. Just-in-time was introduced for compilation of byte codes to machine

code during runtime. Java is a platform-independent language which means it can be

adapted to any platform to run on by a Java virtual machine (Java Software | Oracle).

2.3.2.2 Uses

Java was choosen to be used as a key pillar by Google and Android Inc. In the

creation of the Android operating system which is an open source mobile operating

system. Whilst the Android operating system which was built on the Linux kernel was

25

written mostly in C,the java language was used by the Android SDK as the basis for

Android applications. Though, Android using Java byte code as an intermediate step

while not using java virtual machine and finally targeting Android's own Dalvik virtual

machine or more recently Android Runtime which actually compiles applications to

native machine code upon installation.

Android also does not provide the full Java SE standard library, whilst the

Android class hierarchy has an independent subset for its implementation.

2.4 Literature Gaps:

Current work done in the field of mobile application testing shows that there are

still holes in effective automated testing considering the visual representation of the GUI

elements. In particular, currently available Mobile Application Testing framework has

various limitations and seems to be especially hard for mobile companies to adapt for

their Native Applications Testing. In recent years there has been an increased focus in

this area.

Prior Studies have generally focused on the way to establish a medium between

Automation Tool and the lower level of mobile devices in order to execute the scenarios

automatically. A well defined approach to adapt such tools have rarely focused

Scripting efforts are rarely considered. Reusability of test scripts is the area where

we require a framework with well defined hierarchy so that scripting efforts can be

optimized.

Approach for making generic scripts for different devices with similar

functionality has not been addressed which should be addressed in framework which

would give an edge to mobile testers

Making a group of device dynamically as per requirement for particular scenario

is not addressed. Devices grouping as Master and Support devices as per test case

requirement is an important area which should be implemented at framework core.

Maintainability is the important area for reusing the scripts for long time with the

UI changes which should be focused at framework level.

26

Chapter Three: Proposed Work

Current work done in the field of mobile application testing shows that there are

still holes in effective automated testing of UI design, considering the visual

representation of the GUI elements. In this chapter a hierarchal framework have been

proposed to address the limitation with the existing framework in the literature review.

3.1 Data Driven Model:

Main principle which guided the project implementation were to implement the

variability to elements such as environment, end points, test data, handling of test

devices, core protocols, locations separated out from the test logic (scripts). We

introduced library approach. All test paths has been divided into functional parts and put

in methods. If such method could be divided into other smaller functional parts which

could be used in other methods – new methods could be made. All methods have been

grouped into thematic libraries resulting in creation of hierarchical Framework. Objective

representation of the mobile UI is accomplished by DroidManager; however framework

is not dependent only on that. For achieving the Test Scripts versatility and flexibility,

This Framework was created. Moreover, for achieving utility, efficiency and ease of use

.ADB(Android Debug Bridge) is a adaptable command line tool that makes you

communicate with an emulator instance or connected Android-powered device. ADB lets

you communicate and form a bridge for establishing communication between mobile

device and PC running the tool. Core Methods are gathered in libraries at lower level.

DroidManager contains methods which are used by all helper libraries. They are the

lowest in terms of level of abstraction. Most of them are giving the basic UI interaction

functionalities like pressing the buttons, clicking particular objects or sliding on the

touchscreen. They are binding Droid engine and higher level methods.

27

Aside from above libraries which are implementing test cases execution paths,

there are others, responsible for background functionalities.

One of the most important is RunInThreads.py which is taking care of connected

samples management depending on the test script type. Different test cases need different

samples count to be properly performed. For example sending SMS needs at least 2

samples; one is sending the message and the second one is receiving it. Call forwarding

on the other hand needs at least 3 samples; one is making the voice call, second one is

forwarding it, and at the end the third one is receiving the call. To handle all connected

devices RunInThreads is setting them into groups which contain sample count needed to

execute the test. Each group consists of 1 Master device and Slave devices. Masters and

Slaves roles should be defined in GUI before the test. As it was explained before, core

functionalities like sending messages, needed for performing test cases are grouped into

thematic libraries like helpers. Test execution paths on the other hand are the highest

level of Framework abstraction and are located in Test Scripts. Test Scripts consists

mainly of test case logic and test path. They are only references to other Framework

methods arranged respectively to test case characteristic.

Figure 4 Interface Diagram for Droid Engine

Droid
Engine

DroidMa
nager.py

Helper
Librarie

s

Test
Scripts

Low Medium High

28

Framework Architecture

Framework Libraries

Helper_Libraries

TestResult
Manager

CMDMana
ger

DevicesMa
nager

DroidMana
ger

HighLevel
Manager

RunThreadManager SearchObjects Constants

Helper_Con
tacts

Helper_Cal
ls

Helper_Net
work

Helper_Cal
culator

………

Test Scripts

TS1.py TS3.py TS4.py TS5.py TS2.py

Figure 5 Framework Architecture

29

There are several ways to control a mobile device from a PC. Tool is using two of

them:

ADB: Android Debug Bridge is a command line utility included with Google’s Android

SDK that allows communicating with connected Android devices. With ADB it is

possible to execute Linux like powerful system commands and get access to lower layer

functions like installing applications, running activities & intents, pulling &

pushing files, getting device properties.

Droid Engine Libraries: Droid Engine interact with the device and use intents, UI

Objects, Activities to interact with device. ADB and Platform Droid Engine are therefore

responsible for communication and controlling the mobile devices from PC.

3.2 Class Diagram for the Hierarchy

Helper libraries are the classes in which functions are grouped applications wise.

These functions uses lower level libraries like HighLevelManager, DroidManager in the

functions. DevicesManager and RunThreadManager controls execution of test scripts.

As it was explained before, core functionalities like sending messages, needed for

performing test cases are grouped into thematic libraries like helpers. Test execution

paths on the other hand are the highest level of Framework abstraction and are located in

Test Scripts. Test Scripts consists mainly of test case logic and test path. They are only

references to other Framework methods arranged respectively to test case characteristic.

30

Result file manager manages contains functionalities for result management.

Below is the Class Diagram for the libraries.

31

3.3 Devices Grouping: Master/Slave Concept

Framework can handle multiple groups of test devices at same time depending on

Test Script Type. Different test cases may need different count of Test Devices to be

properly performed. For example sending SMS needs at least 2 samples – one is sending

the message and the second one is receiving it. Call forwarding on the other hand needs

at least 3 samples – one is making the voice call, second one is forwarding it, and at the

end the third one is receiving the call. Tester may also want to perform same test case

parllely on different Mobile Phone which can be overcome with the concept introduced.

Master devices are the devices which should be tested and return results. Slave

devices are not to be tested, but could be used to help in testing. Master devices, i.e. when

Test Script requires minimum two devices and we are testing only one Master.Each Test

Script is concentrating on testing one Master device at a time with the help of Slave

devices. Other Master devices are tested in parallel if proper Slave count is available.

Masters : [‘0: G925F, ‘1:G537FZ’, ‘2: N915FY’] Slaves: [‘3: G928F’]

Group of Devices:
[0: G925F, 3:G928F,]; [1: G357FZ, 2: N915FY];
[2: N915FY, 3: G928F]

G925F, G928F G935FZ, G928FY

N915FY, G928F

Test Script Execution Test Script Execution

Test Script Execution

[Grouping example with parallel execution 1] Figure 6 Devices Grouping Example with Parllel Execution

32

 Start

Result = 0

Tested Master = 0

Masters = Devices [Master]

Slaves = Devices [Slaves]

Remove Devices which fails

Masters = remove failed masters

Slaves = remove failed slaves

If (len(master)

+len(Slave))< sample

need to execute?

 Stop

If Len (master)

<len(tested

master) ?

I_master =0,I_Slave = 0

tmpSlaves = X for X in slaves

subtestgroups = []

No
Ye

No

Yes

Group can not be formed

:minimum device not connected”

If(

i_master<=len(

i_master=1

Test group=[]

 B

Result append

(sub test groups)

NYes

 A

33

Tmp slave append(masters[i_masters])
i_masters+=1

I_master<len(masters)and

(masters(i_masters))in

tested masters ?

 A

No

Yes

Len(test group)

==(samples needed to

execute)?

I_masters<
len (masters)?

Yes

No

No

Sub test groups append
(test groups) tested
mastersappend (test

group[0])

Test group append(masters[i_masters
]) i_masters+=1, t_sample+=1

If
t_sample<sample
need to execute-1

I_slave<len(tm
pslaves)?

Yes

Ye

No

 B

Test group append

(masters[i_masters])

i_masters+=1

Test group
append(tmpslaves[

i_slaves])i_slaves+=1

I_masters<len
(masters)?

Figure 7 Flow Chart for Grouping Algorithm

34

3.4 Scripting Approach:

Android provides methods and mechanisms allowing certain UI functionalities to

be performed with UI interaction at its top layer and without UI interaction at its lower

layers using Intents, KeyCode. All intent, attributes, object information are captured

using Dumpsys for scripting.

3.4.1 Raw Scripting Approach

Tester can for simulate simple methods like pressing hardware buttons ,touch

objects, clicking objects on the mobile screen. Droid Engine provides methods like

press(), or clickObject() with which interaction with mobile device User Interface is

possible. Such methods can be used to write test scripts with desired test scenarios.

TS1.py
………………………
press(“KEYCODE_HOME”,DOWN)
press(“KEYCODE_HOME”,UP)
setSearchObject(text = “Applications”)
clickObject(u“Application”, u“Applications”, “android.widget.TextView ”, “”,0)
setSearchObject(u“Messages”, u“Messages”, “android.widget.TextView”, “”,0)
clickObject(u“Messages”, u“Messages”, “android.widget.TextView”, “”,0)
……………………….

TS2.py
………………………
press(“KEYCODE_HOME”,DOWN)
press(“KEYCODE_HOME”,UP)
setSearchObject(text = “Applications”)
clickObject(u“Application”, u“Applications”, “android.widget.TextView ”, “”,0)
setSearchObject(u“Messages”, u“Messages”, “android.widget.TextView”, “”,0)
clickObject(u“Messages”, u“Messages”, “android.widget.TextView”, “”,0)
……………………......

Figure 8 Raw Scripting Approach Example

35

In above example there are two test scripts which are implementing some

different test scenarios, but they are sharing at some point, same path. They are all

opening Messages app by going to home screen, clicking Applications and then Messages

object. Such approach is sufficient when we assume that test scripts are written only for

specific device and the test path will not change. But if we would like to apply those test

scripts to other device with different UI, we would have to prepare new test scripts or

modify old ones. For above example, if new device will have object with text Apps

instead of Applications, we would have to change this text in every place in all test scripts

which could be very time-consuming.

3.4.2 Scripting Approach with Proposed Framework

To prevent constant modification in all places every time UI changes in new

devices, library approach has been used. All test paths has been divided into functional

parts and put in methods. If such method could be divided into other smaller functional

parts which could be used in other methods – new methods was made. All methods have

been grouped into thematic libraries resulting in creation of hierarchical Framework

Examples of such thematic libraries are helpers which are grouping methods module

wise. Example :

Lib/Helpers/messages.py :Methods related with messaging test cases:

sendSMS(), receiveSMS(), sendMMS(), receiveMMS(), eraseAllConversation(),

MessagesMenu()…

Lib/Helpers/calls.py :Methods related with calling test cases: callNumber(),

answerCall(), disconnectCall(), rejectCall(), goToPhoneMoreSettings(), sendSSCode()…

Lib/constants.py : Storing most frequently used constants like delays, Packages

Names

DroidPropertiesFileManager.py : Managing user configuration file which

contains properties needed for Test Scripts and Framework, e.g. application accounts

credentials

DeviceProperties.py : Getting the mobile device properties, e.g. network name,

model name, network type, packet data availability, SIM state, etc.

36

Aside from above libraries which are implementing test cases execution paths,

there are others, responsible for background functionalities. One of the most important is

RunInThreads.py which is taking care of connected samples management depending on

the test script type.

Above figure is showing implementation from figure given in raw scripting approach, but

with the approach given. The code which was responsible for opening Messages app, was

divided into smaller functional methods and was put in corresponding libraries. Now in

test scripts instead of redundant code, we have only one line which is calling

goToMessages() method, which is defined in Lib/Helpers/messages.py library. This

compared to raw STP scripting gives us benefits such as:

Flexibility : No need to change all test scripts in case of small modification. Proper

change can be done in corresponding method only and it will take effect automatically in

all test scripts in which it is used

TS1.py
…………….
helpers.messages. gotoMessages()
…………......

TS2.py
…………….
helpers.Messages. gotoMessages()
…………......

Lib/Helpers/messages.py
……………………
def goToMessages():
 self.goToHome()
 self.dev.clickObjectWith(text=”Apps”)
 self.dev.clickObjectWith(text=”Messages”)
…………………….

Lib/DroidManager.py
………………….
def goToHome():
 press(u”KEYCODE_HOME,UP)
 ………………..
def clickObjectWith(text,talkback):
 setSearchObject(text)
…………………

Figure 9 Test Script Writing Approach with the Framework

37

Versatility : No need to create different test script versions for different devices. All UI

changes can be handled in corresponding methods which are maintained by Automation

team to be compatible with all devices

Readability: Hierarchical framework structure makes test scripts easy to read as they

only consist of logical references to high level methods which are defined in

corresponding helper libraries

Saves development time: No need to write new Test Scripts from scratch, some

functionalities could be already implemented

3.5 RunThreadsManager:

RunInThreadManager is the core for the execution of test script. All the classes

which controls execution flow are defined in RunThreadManager. Device Grouping

algorithm, Sequencing of Methods required to be followed, MultiThreading etc. all

defined under RunThreadManager.

Perform Test Case Controller:

As it was explained before, core functionalities like sending messages, needed for

performing test cases are grouped into thematic libraries like helpers. Test execution

paths on the other hand are the highest level of Framework abstraction and are located in

Test Scripts. Test Scripts consists mainly of test case logic and test path. Common Test

Script structure has been made and divided into below parts.

Preconditions: checking if mobile device is well prepared for the particular test, e.g.

correct sample count, SIM card inserted. Executed in parallel on all connected devices

Set Up: setting up the devices to meet the test requirements, e.g. changing network mode

to 2G if testing some GSM only functionalities. There can be 2 types of Set Ups. Set Up

Master: Executed on Master device from each test group; Set Up Slaves: executed in

parallel on all Slave devices from each test group

Do Test: Implementing test case execution path – interactions b/w Master and Slaves

Result: TestResultManager used to take care of test result.Indicating proper end result:

Pass: performed successfully and pass criteria were met

38

Fail: failed if pass criteria were not met or object was not found

Skip: was not performed due to not met preconditions

Error: encountered an exception due to Script or Framework exception

Clean Up: changing back settings which were modified during Set Up part. Executed in

parallel on all devices from the test group

Preconditions

Create Groups

Setup Slaves Setup Master

Do Test
(Test Procedure)

Test Result

Skip
(NA for Device

Fail
(Test Failed)

Error
(Syntax Error)

Pass
(Test Suceeded)

Take Logs

Clean Up

Figure 10 Test Script Execution Flow

39

Chapter Four: RESULTS

In this chapter we are evaluating the usability of the framework that has been

presented. We will evaluate the areas which were discussed under literature gap in

chapter 2.The first implementation task of the pilot is to create prototypes of the

framework how well they have been met. it is that test automation is a very large and

non-trivial subject.

4.1 Evaluating the Framework

Feature from the framework while working with the framework is grouping

related test cases together into test suites. Libraries have been designed keeping

functional cohesion and coupling focused. Libraries have been kept at different layers to

group the similar functionality together.

Next tasks were writing helper classes to automated tests for Call and SMS

functionality using both the data-driven and keyword-driven approaches and using them

latter also in other modules which might need similar functionality in other modules.

Libraries proceeded without any surprises and in the end automated tests could be executed

for large scale. Libraries at core contain methods which can be used across all helper

classes. Some of these methods are like below:

Return Type Method and Description

Boolean
typeText()

To type any text eg. in messages, emails etc

Boolean
startActivity()

Start activities eg. Phone,Settings etc.

Boolean
setSearchText/Talkback ()

Find object with text or talkback on the screen

Boolean
checkIfCheckboxChecked()

Check if some options is enabled or disabled

Boolean
clickCheckboxWithName()

Change status of options with checkbox

Boolean
clickRadioButtonWithName()

Selection of radiobutton among the group

Boolean
slideHorizontalToClickSObject ()

Slide horizontal to click something on the screen

40

Boolean
home()/back()/menu()

Enters Home Screen/ Go to the previous screen/ Enters Menu

Boolean
makeScreenCapture()

Captures Screenshot

Boolean
unlockScreen()

Unlock Screen of the device

String
getPhoneNumber()

Get own phone number from phonebook

String
getScreenResolution()

Get Screen Resolution of the device

Boolean
clickObjectWith()

Click Object on the screen with perticular attribute

Boolean
hideKeyboard()

Hides the Key Board from the screen

Boolean
scrollBackward()
Performs a backward scroll with the default number of scroll steps
(55).

Boolean
scrollBackward(int steps)
Performs a backward scroll.

Boolean
scrollForward()
Performs a forward scroll with the default number of scroll steps
(55).

Boolean
scrollForward(int steps)
Performs a forward scroll.

Boolean
scrollToBeginning(int maxSwipes)
Scrolls to the beginning of a scrollable layout element.

Boolean
scrollToBeginning(int maxSwipes, int steps)
Scrolls to the beginning of a scrollable layout element.

Boolean
scrollToEnd(int maxSwipes)
Scrolls to the end of a scrollable layout element.

Boolean
scrollToEnd(int maxSwipes, int steps)
Scrolls to the end of a scrollable layout element.

Int
getChildCount(UiSelector childPattern)
Counts child UI element instances matching the childPattern
argument.

Int
getMaxSearchSwipes()
Gets the maximum number of scrolls allowed when performing a
scroll action in search of a child element.

Double getSwipeDeadZonePercentage()

41

Returns the percentage of a widget's size that's considered as a no-
touch zone when swiping.

4.1.1 Degree of Coupling and Cohesion in the Framework

Higher Level of cohesion and lower level of coupling lead to good software

design. Cohesion partitions functionality so that it is concise and closest to the data

relevant to it, however decoupling ensures that the functional implementation is isolated

from the rest of the system.

Low cohesion means that the class does a great variety of actions and is not

focused on what it should do. High cohesion would then mean that the class is focused on

what it should be doing, i.e. only methods relating to the intention of the class.

As explained in the class diagram given there are different libraries at different

layer which have grouped the functionality category wise.

DroidManager - Contains all the methods which directly interact to with the

Lower Layer of Android

HighLevelManager – Contains all the methods which are common and will be

required for execution of various steps in different mobile applications

TestResultManager – All the functionality related to Test Results Management

have been kept under this

Constants – All the constants which would be required in Test Scripts would be

kept here

Devicemanager – Functions related to devices management are kept under this

libraries

CLI Manager – All the functionality which needs to be controlled from CLI are

covered in this library

Helper Classes – Different Helper Classes used to be written as per the

Requirement. For Message Application Testing all the functions related to Messaging

would be kept here. Whenever tester needs any function related to message, he/she can

find in this libarary.

42

Decoupling allows you to change the implementation without affecting other parts

of your software. The most effective method of decreasing coupling via interface. As

explained all the modules are separated and mostly independent So changes at lower

level can be made without affecting the other parts. Framework at core hardly get

changed as all the functions written either interact at Lower Level of Android or its

related with device/framework management/Result Management. This way, higher

degree of Cohesion and Lower Level Of Coupling have been achieved in the framework.

4.1.2 High Level Requirements

• The framework MUST execute test cases automatically. That includes also for

example verifying results, handling errors and reporting results.

• The framework MUST be easy to use without programming skills.

• The framework MUST be easily maintainable.

4.1.3 Automatic Test Execution

• The framework introduced is able to execute tests unattended after starting the

Test.

• Tester should be able to start and stop test execution manually at any time.

• It is possible to start test execution automatically at any time which might be

predefined.

• After certain events tester should be possible to start test execution automatically.

• There should be handling for Non-fatal errors caused by the Device Under Test or

the test environment must without aborting the test execution.

• Test results must be verified.

• Every executed test case must give output as either Pass, Fail or Script Error

• Error and Failed test cases should have a short message explaining the failure

reason.

• Logs should be maintained for Test execution.

43

• Test execution SHOULD be logged using different, configurable logging levels.

• Result report must be created automatically after test.

4.1.4 Ease of Use

• The framework should use keyword-driven or Object driven approach.

• The framework must support creating Helper Classes to group similar

functionality together.

• The framework should be able to support specifying common set up and tear

down functionality for test cases.

• The framework should support grouping of test devices dynamically with the

execution of test script into test suites.

4.1.5 Maintainability

• The framework must follow modular approach for easy maintainability.

• The framework should be implemented using object oriented programming

languages.

• The testware in the framework must be under version control.

• The framework must have coding and naming conventions.

• Framework must have followed coding documentation standard. .

• Usability of the tested system must be increased as much as possible.

However, that the framework works well at least in similar contexts as in the

pilot. Proving that it works in general in system and component level acceptance testing

would require a larger study but there does not seem to be any problems preventing it.

Based on the positive experiences and good results it can be asserted that the framework

concept presented in this thesis is valid.

44

Chapter Five: Conclusion and Future Work

This report intended to present a new Data Driven Framework based on Python

Language. Framework has concept of grouping related test cases together into test suites.

Framework designed in Chapter 3 is based on the requirements gathered in Chapter 2.

Using data driven and hierarchal approaches were considered most important lower level

requirements in terms of ease-of-use and maintainability and the presented concept

naturally had these capabilities. Although the experimental results are preliminary, yet in

the pilot run everything went pretty much as expected. The approach worked very well

and proved to be useful. Keyword-driven pilots proceeded without problems as well and

results were even better than anticipated. Pilot experiences were collected together and

based on them the overall framework was declared feasible. Changes affected also

detailed requirements specified earlier and a revised requirement set was presented.

Framework derives many interesting issues which can be further investigated in

the future implementation. As example, here are some crucial issues to the practical use

of it. First, we have found the inconsistency problem for the Open GL Applications like

camera, Browser etc. For Such Applications libraries can be developed based on OpenCV

to access applications using Image Processing methods. I hope that in the near future the

framework can also be released as an open source in one format or other. That way ideas

presented in this thesis would be easily available in a functional format for everyone and

other people could extend the framework into new directions. While waiting for that to

happen, however, it is time to write the final period of this thesis.

45

Chapter Six: References

All About Symbian. (n.d.). Retrieved 05 15, 2016, from
http://www.allaboutsymbian.com/: http://www.allaboutsymbian.com/
Appium: Mobile App Automation Made Awesome. (n.d.). Retrieved May 07, 2016, from
http://appium.io/: http://appium.io/introduction.html?lang=en
Develop Apps | Android Developers. (n.d.). Retrieved 05 14, 2016, from Android
Developers: https://developer.android.com/index.html
Domenico, A., Anna, F. R., & Porfirio, T. (2015). MobiGUITAR Automated Model-
Based Testing of Mobile Apps. Software , 53-59.
Hsiang-Lin, W., Chia-Hui, L., Tzong-Han, H., & Cheng-Zen, Y. (2015). PATS: A
Parallel GUI Testing Framework for Android Application. Computer Software and
Applications Conference (COMPSAC), 2015 IEEE 39th Annual. Volume:2, pp. 210-215.
Taichung: IEEE.
Hughes Systique Corporation. (2013). Test Automation Tools for Mobile Applications: A
brief survey. 11.
iOS - Apple (IN). (n.d.). Retrieved 05 13, 2016, from http://www.apple.com/ios/what-is/:
http://www.apple.com/ios/what-is/
Java Software | Oracle. (n.d.). Retrieved 04 20, 2016, from Oracle Technology Network
for Java Developers | Oracle Technology Network | Oracle:
https://docs.oracle.com/javase/tutorial/
M. Pope, G., F. Stone, J., & John, A. G. (1994). Patent No. US5335342 A.
Maryam, A., Rosziati, I., & Noraini, I. (2015). Adaptation Model for Testing Android
Application. Computing Technology and Information Management (ICCTIM), 2015
Second International Conference (pp. 130-133). Johor: IEEE.
Michael, K., Nikolaus, C., & Tom, Y. (2014). Abstracting Perception and Manipulation
in End-User Robot Programming using Sikuli. 2014 IEEE International Conference on
Technologies for Practical Robot Applications (TePRA) (pp. 1-6). Woburn, MA: IEEE.
monkeyrunner | Android Developers. (n.d.). Retrieved May 05, 2016, from
http://developer.android.com:
http://developer.android.com/tools/help/monkeyrunner_concepts.html
Nariman, M., Hamid, B., Riyadh, M., & Sam, S. M. (2015). SIG-Droid: Automated
System Input Generation for Android Applications. Software Reliability Engineering
(ISSRE), 2015 IEEE 26th International Symposium on (pp. 461-471). Gaithersbury, MD:
IEEE.
Our Documentation | Python.org. (n.d.). Retrieved 04 24, 2016, from Python Software
Foundation [US]: https://www.python.org/dev/peps/
PalmOS Operating System. (n.d.). Retrieved 05 14, 2015, from PalmOS Operating
System: http://www.operating-system.org/betriebssystem/_english/bs-palmos.htm
Pavneet Singh, K., Ferdian, T., Nachiappan, N., Thomas, Z., & David, L. (2015).
Understanding the Test Automation Culture of App Developers. 2015 IEEE 8th
International Conference on Software Testing, Verification and Validation (ICST) (pp. 1-
10). Graz: IEEE.

46

THE MOBILE INDIAN. (n.d.). Retrieved 05 15, 2016, from THE MOBILE INDIAN:
http://www.themobileindian.com/talktime/question/What-is-the-operating-system-in-
Blackberry-Q-
Tschernuth, M., Lettner, M., & Mayrhofer, R. (2011). Evaluation of Descriptive User
Interface Methodologies for Mobile Devices. Berlin: Springer-Verlag.
User Guide Android Studio- Robotium Tech. (n.d.). Retrieved 05 10, 2015, from
Robotium Tech: http://robotium.com/pages/user-guide-android-studio

